

ASX/MEDIA RELEASE

16 April 2008

HIGH GRADE GOLD RESULTS FIRM UP 3km CARDINIA SYSTEM

Coherent shallow high-grade gold intersections from an ongoing program of close-spaced RC drilling has significantly increased the mining potential of the 3km Cardinia gold system at Navigator's 950,000 oz Leonora gold project (Figure 1).

The drill results include some of the best intersections yet obtained from Cardinia:-

- 12m at 10.4 g/t gold from 8m
- 7m at 15.1 g/t gold from 5m
- 1m at 67.8 g/t gold from 24m
- 9m at 6.0 g/t gold from 8m
- 12m at 4.2 g/t gold from 13m
- 6m at 7.9 g/t gold from 4m
- 4m at 11.3 g/t gold from 10m

Drill Program/Background

A program of close-spaced, shallow RC drilling (5m spacing on 8m lines, 25m depth) is in progress over selected areas within the Cardinia gold system (Figure 2). The main objective of the drilling is to clarify the detailed nature of the mineralization and to establish the continuity (mineability) of mineralization. It is anticipated that the drilling will be used for grade control purposes in later mining.

The drill program forms part of Navigator's ongoing feasibility studies aimed at bringing the Leonora project into production in 2009.

The Cardinia area was Navigator's initial focus at Leonora until January 2006, when successive discoveries in the Mertondale area to the north prompted a shift in priority to that area. Prior to this, Navigator's exploration at Cardinia was successful in extending the strike length of the Cardinia gold system from 1km to 2kms, and expanding the Inferred Mineralization from 57,700 oz at 1.9 g/t gold, to 154,100 oz at 2.3 g/t gold. Additional drilling is currently in progress to extend the strike length of the resource to 3kms (Figure 2).

Drill Results

A summary of higher grade (plus 8 gram metre) drill results is presented in Table 1. Average total downhole gold grades are colour-coded on Figure 3.

The results to date indicate coherent zones of mineralization that can be modeled in three dimensions (Figures 3 - 5). Continuity and therefore mineability of mineralization is clearly evident using lower cut-off grades of between 0.2 g/t gold and 0.4 g/t gold (Figures 4 and 5). The frequent presence of very high grades of limited continuity within a thicker zone of low to medium grade mineralization appears to be characteristic.

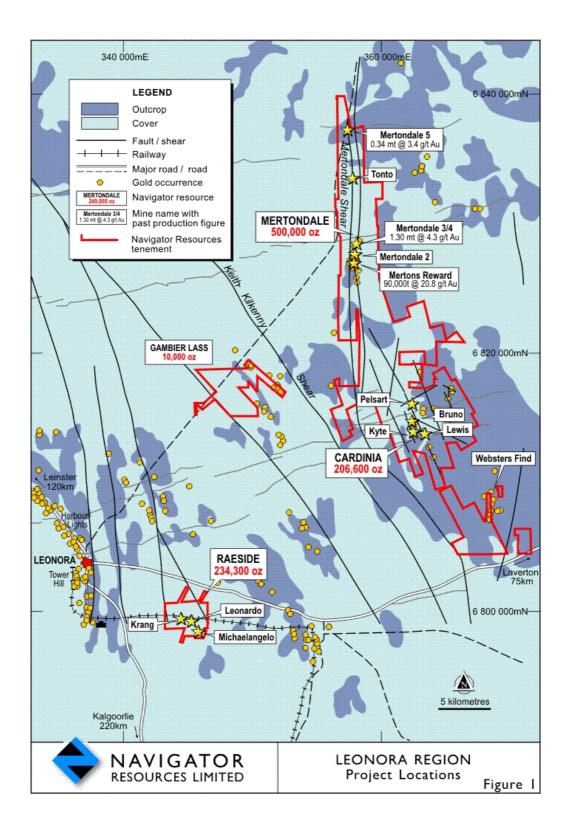
clarified. Significance of Results/Follow up Actions The initial RC drill results enhance the mining potential of the entire 3km Cardinia gold system which, in conjunction with significant gold systems identified at Tonto and Mertondale South, appears likely to provide Navigator with a third large open pit work area within the Leonora project (in addition to ten other satellite open pit areas). The presence of significant high-grade, near surface gold mineralization, in addition to bulk low to medium grade style mineralization, increases the mining options as well as providing scope to enhance the cash flow in the early mining phase. Further RC grade control drilling in selected areas will continue with the specific aim of proving continuity and assessing the controls on mineralization. Infill RC drilling to reduce the drill line spacing to 16m or 24m will be now conducted as required along the northern 2km of the Cardinia gold system to upgrade the JORC category of mineralization to at least Indicated status. The geometry of the Cardinia gold system is still evolving which creates scope to expand the resource in this area. Drilling is currently in progress in the southern portion of the Cardinia gold system with the aim of extending the resource from 2km to 3kms and will progress to other mineralized shears within the system to evaluate the resource potential.

"Having a free-dig gold system that is potentially open pitable over a three kilometre strike length adds substantial backbone to the Leonora gold project", Managing Director Mr Sanders said. "We have quadrupled the gold resource at Leonora over the last three years and there are still extensive areas with shallow untested resource potential; the deeper underground potential is largely untapped", he added.

Importantly, the mineralization is near-surface, deeply weathered, and readily amenable to "free-dig" open pit mining. The mineralization is typically horizontal and supergene in nature with multiple zones commonly present. It is best developed over broad north to northwesttrending shear structures within mafic or felsic porphyry host rocks. The detailed geometry of primary mineralized structures, above which the supergene gold is best developed, is still being

Deeper drilling at Cardinia is anticipated once the geological controls in the primary zone are better understood.

Further information can be found on the Company's website at:www.navigatorresources.com.au


Yours faithfully

0

Tom Sanders Managing Director Navigator Resources Limited Tel: +61 8 9226 5311

Table 1 Cardinia RC Drill Intercept Summary									
(plus 8 gram metres)									
	1.0 g/t Cutoff								
Hole_ID	Easting	Northing	From	То	Intercept				
100000000	(m)	(m)	(m)	(m)	(g/t Au)				
NCGC00003	363120	6813574	3	14	11m at 2.3 g/t				
NCGC00005	363130	6813574	13	14	1m at 9.7 g/t				
NCGC00006	363135	6813574	23	24	1m at 9.9 g/t				
NCGC00016	363185	6813574	18	20	2m at 4.5 g/t				
NCGC00020	363204	6813574	15	16	1m at 13.9 g/t				
NCGC00021 NCGC00039	363210	6813574	7	12	5m at 4 g/t				
NCGC00039	363120 363145	6813582	17 12	18 13	1m at 16.3 g/t				
NCGC00044 NCGC00047	363145	6813582	12	13	1m at 19.3 g/t				
NCGC00047	363170	6813583	14	23	1m at 8.5 g/t				
NCGC00049		6813582			5m at 2.9 g/t				
NCGC00052 NCGC00053	363185 363190	6813582 6813582	17 22	22 23	5m at 2.1 g/t 1m at 16.6 g/t				
NCGC00053 NCGC00089	363190		16	23 17	1m at 16.6 g/t				
NCGC00089	363130	6813590 6813590	24	25	1m at 12.1 g/t				
NCGC00093			12		-				
NCGC00094	363155 363175	6813590 6813590	12	25 23	13m at 1.9 g/t 5m at 3.3 g/t				
NCGC00098	363185	6813598	13	23 16	3m at 5.7 g/t				
NCGC00155	363195	6813598	6	13	7m at 3.2 g/t				
NCGC00202	363160	6813606	5	7	2m at 4 g/t				
NCGC00202	363170	6813606	1	4	3m at 3.1 g/t				
NCGC00204	303170	0010000	21	22	1m at 11.9 g/t				
NCGC00204	363190	6813606	8	10	2m at 4.1 g/t				
NCGC00254	363140	6813614	2	7	5m at 2.3 g/t				
NCGC00257	363155	6813614	3	4	1m at 11.4 g/t				
NCGC00258	363160	6813614	5	6	1m at 12.5 g/t				
NCGC00261	363175	6813614	12	15	3m at 5 g/t				
NCGC00262	363180	6813614	8	16	8m at 2.7 g/t				
NCGC00264	363190	6813614	7	14	7m at 2.7 g/t				
NCGC00314	363155	6813622	2	8	6m at 3.8 g/t				
NCGC00314			19	20	1m at 10.1 g/t				
NCGC00316	363165	6813622	4	11	7m at 2.5 g/t				
NCGC00317	363170	6813622	8	19	11m at 1.6 g/t				
NCGC00320	363185	6813622	9	12	3m at 4.1 g/t				
NCGC00369	363145	6813630	2	4	2m at 4.9 g/t				
NCGC00372	363160	6813630	12	14	2m at 5.7 g/t				
NCGC00376	363180	6813630	14	16	2m at 4.7 g/t				
NCGC00377	363185	6813630	8	17	9m at 6 g/t				
NCGC00398	363290	6813630	15	17	2m at 9.8 g/t				
NCGC00399	363295	6813630	23	25	2m at 7.1 g/t				
NCGC00402	363310	6813630	14	18	4m at 4.2 g/t				
NCGC00429	363160	6813638	10	19	9m at 2.4 g/t				
NCGC00430	363165	6813638	13	18	5m at 6.3 g/t				
NCGC00433	363180	6813638	12	18	6m at 2.4 g/t				
NCGC00434	363184	6813638	9	12	3m at 3.3 g/t				
NCGC00434			22	24	2m at 6.6 g/t				
NCGC00444	363235	6813638	7	14	7m at 3.9 g/t				
NCGC00446	363245	6813638	6	11	5m at 3.2 g/t				
NCGC00476	363110	6813649	19	21	2m at 4.8 g/t				

Table 1 Cardinia RC Drill Intercept Summary									
(plus 8 gram metres) - contd									
	1.0 g/t Cutoff								
Hole_ID	Easting	Northing	From	То	Intercept				
NO.0000400	(m)	(m)	(m)	(m)	(g/t Au)				
NCGC00480	363130	6813646	14	19	5m at 5.1 g/t				
NCGC00482	363140	6813646	18	22	4m at 5.2 g/t				
NCGC00487	363165	6813646	18	24	6m at 2.5 g/t				
NCGC00488 NCGC00489	363170 363175	6813646 6813646	11 8	13	2m at 6.7 g/t				
NCGC00489	363175		8 10	20 14	12m at 10.4 g/t				
NCGC00490	363180	6813646 6813646	10	21	4m at 11.3 g/t 6m at 2.5 g/t				
NCGC00519	363325	6813646	13	21 25	11m at 2.7 g/t				
NCGC00520	363320	6813646	14	25 19	2m at 10.5 g/t				
NCGC00525	363355	6813646	23	19 25	2m at 6.8 g/t				
NCGC00523	363115	6813654	23	25 25	2m at 8.9 g/t				
NCGC00531	363115	6813654	23 23	25 25	2m at 8.9 g/t 2m at 4 g/t				
NCGC00533	363125	6813654	23 11	25 13	2m at 6.7 g/t				
NCGC00540	363175	6813654	15	13	2m at 4.6 g/t				
NCGC00544	363180	6813654	22	25	3m at 6.2 g/t				
NCGC00571	363315	6813654	11	23 17	6m at 2.7 g/t				
NCGC00572	363320	6813654	13	25	12m at 4.2 g/t				
NCGC00582	363115	6813662	4	7	3m at 3.3 g/t				
NCGC00582	303113	0013002	23	24	1m at 9.1 g/t				
NCGC00583	363120	6813662	8	13	5m at 2.3 g/t				
NCGC00585	363130	6813662	17	21	4m at 7.6 g/t				
NCGC00585	000100	0010002	6	9	3m at 8.5 g/t				
NCGC00587	363140	6813662	6	17	11m at 2.9 g/t				
NCGC00587		0010002	24	25	1m at 67.8 g/t				
NCGC00588	363145	6813662	8	10	2m at 5.8 g/t				
NCGC00590	363155	6813662	4	6	2m at 6.8 g/t				
NCGC00592	363165	6813662	7	9	2m at 5.1 g/t				
NCGC00594	363175	6813662	8	15	7m at 3.3 g/t				
NCGC00595	363180	6813662	4	10	6m at 7.9 g/t				
NCGC00595			20	24	4m at 5.5 g/t				
NCGC00596	363185	6813662	11	14	3m at 8.3 g/t				
NCGC00596			22	25	3m at 11.4 g/t				
NCGC00605	363230	6813662	9	13	4m at 2.1 g/t				
NCGC00618	363295	6813662	6	14	8m at 2.3 g/t				
NCGC00619	363300	6813662	11	18	7m at 4.3 g/t				
NCGC00620	363305	6813662	18	25	7m at 2.5 g/t				
NCGC00622	363315	6813662	14	25	11m at 2.1 g/t				
NCGC00634	363125	6813670	16	18	2m at 5 g/t				
NCGC00635	363130	6813670	17	18	1m at 22 g/t				
NCGC00663	363270	6813670	19	22	3m at 6.7 g/t				
NCGC00664	363275	6813670	22	25	3m at 3 g/t				
NCGC00665	363280	6813670	5	12	7m at 15.1 g/t				
NCGC00666	363285	6813670	9	11	2m at 8.1 g/t				
NCGC00669	363300	6813670	20	25	5m at 6.7 g/t				
NCGC00670	363305	6813670	18	19	1m at 28.5 g/t				
NCGC00671	363310	6813670	20	24	4m at 9.1 g/t				
NCGC00672	363315	6813670	12	18 All drill bo	6m at 1.7 g/t				
NB: Analyses by Aqua Regia 50g; Grades uncut; All drill holes vertical Intercepts represent down hole lengths; coordinates in MGA94 Zone 51									

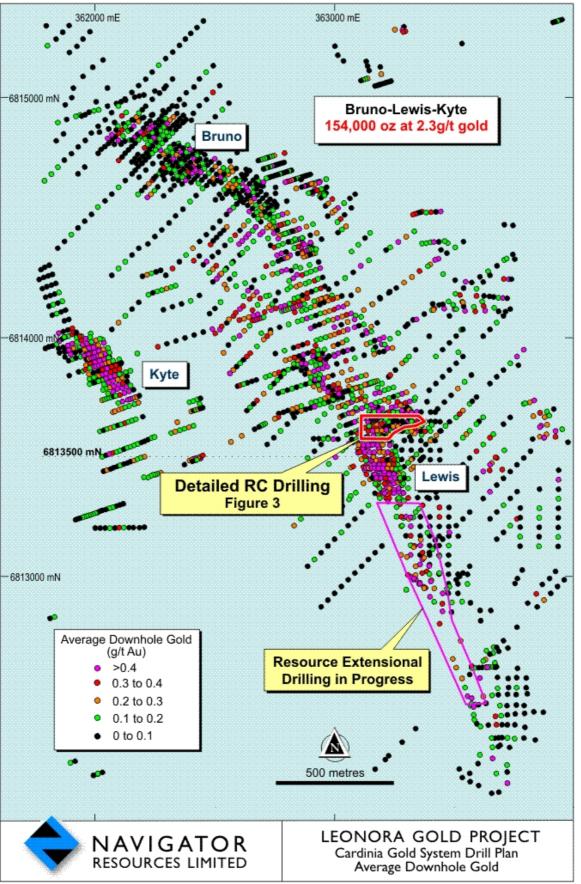
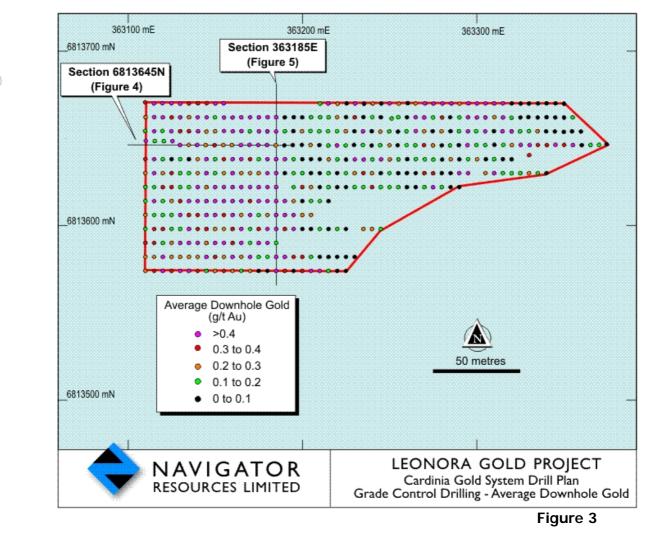
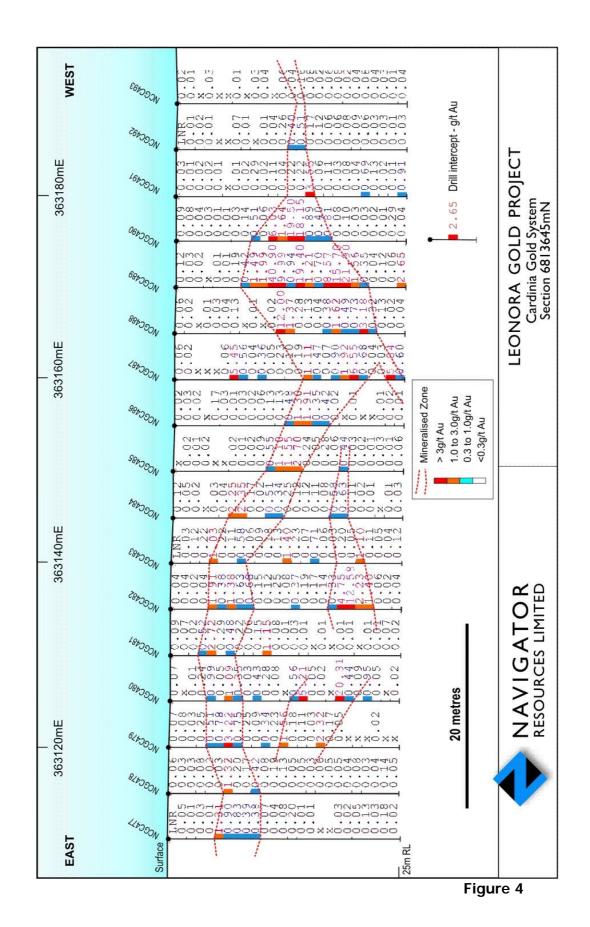
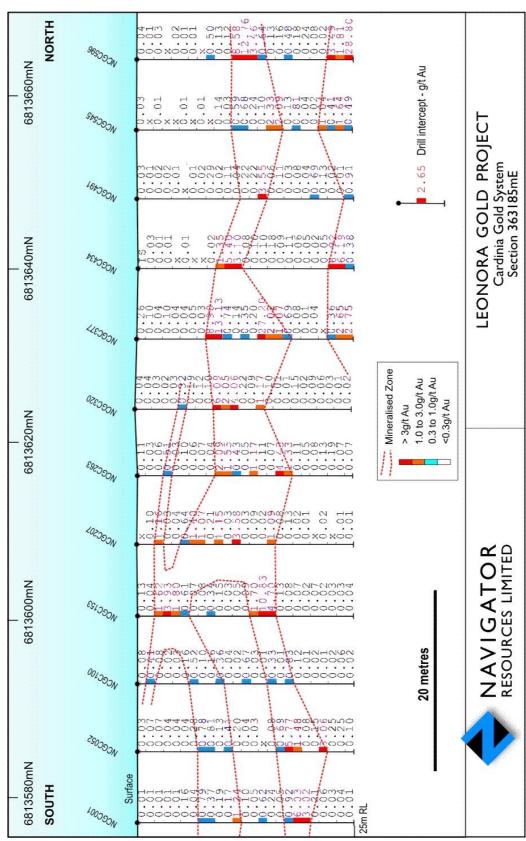





Figure 2

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled by Mr Ben Pollard and Mr Tom Sanders who are Members of the Australasian Institute of Mining and Metallurgy. Mr Pollard and Mr Sanders are full time employees of Navigator Resources Limited and have sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity undertaken to qualify as a Competent Persons as defined in the 2004 Edition of the "Australian Code for Reporting of Mineral Resources and Ore Reserves". Mr Pollard and Mr Sanders consent to the inclusion in this report of the matters based on information in the form and context in which it appears. Mr Sanders ia a shareholder in Navigator Resources Ltd.