Transplantation of Microencapsulated Neonatal Porcine Islets in Patients with Type 1 Diabetes: Safety and Efficacy

R.B Elliott, O Garkavenko, P Tan, N.N Skaletsky, A Guliev, B Draznin

Auckland, New Zealand; Moscow, Russia; Denver, CO, USA

Presenter Disclosure

Boris Draznin, MD, PhD

Board Member/Advisory Panel: none Consultant: none Employee: none Research Support: Amylin; Sanofi-Aventis; Novo-Nordisk Speaker's Bureau: none Stock/Shareholder: none Other: none

- Destruction or severe malfunction of pancreatic islets is the core pathogenetic feature of diabetes
- Cure of diabetes is impossible without restoration of pancreatic islet – β-cell – function
- Pancreatic β cells are the only cells capable of sensing ambient blood glucose and converting this information into regulated insulin secretion

Strategies to Restore β-cell Function

- Islet transplantation
- Stem cell derived insulin producing cells
- Non-islet cells genetically modified
- Islet cell regeneration

- T1DM > 2,000,000 patients
- T2DM >20,000,000 patients in the U.S. alone
- Only around 1,000 cases of allogenic islet transplantation

Islet Transplantation

Intrahepatic allotransplantation with immune suppression is not the answer to treatment of Type 1 diabetes

Porcine Islets

Pro:

- Porcine insulin
- Essentially unlimited supply of cells for transplantation
- Islets respond to the same physiological range of glucose as human islets
- Potential to do implants without immunosuppression
- Ethical considerations

Con:

- Humans express high titers of antibodies against Galactose (1,3) α-galactose residue present in most pig cells
- Retroviruses

Pig Viruses

- Pig Hep E
- Pig circovirus type 2
- Cytomegalovirus
- Pig lymphotropic herpesvirus
- Others

Pig Endogenous Retrovirus (PERV)

- Part of the pig genome (with more than 100 of per-viruses)
- PERV- A and PERV- B are infections to human cells in vitro

Prerequisites for Xenotransplantation

- Cells must be free from any xenotic agent
- Islets must be uncontaminated, undamaged, free of exocrine tissue
- Anti-rejection strategy should not be based on immunosuppression

Cells Free From any Xenotic Agent

- Source herd must be free of infections capable of being transmitted to man Specific Pathogen Free animals (SPF)
- Must be housed in the Designated Pathogen Free (DPF) facilities
- Must be checked for infection status frequently

Discovered in 1806; Area 220 sq miles; Temp 35-65° F; humid, cloudy and very windy.

Viruses in New Zealand and Auckland Islands Herd

Virus	Prevalence in Population	· · ·	Prevalence in BioCert herd (PCR)		
	> 20 weeks	7 days	>20 weeks	7 days	
PCMV	70%	Not detected	Not detected	Not detected	
PLHV	95%	Not detected	Not detected	Not detected	
PCV1	Not detected	Not detected	Not detected	Not detected	
PCV2	96%	10%	Not detected	Not detected	
HepEV	90% (14 weeks)	Not detected	Not detected	Not detected	
EMCV	Not detected	Not detected	Not detected	Not detected	
Conventional pathogens					
AuJD	Not detected	Not detected	Not detected	Not detected	
BVD	Not detected	Not detected	Not detected	Not detected	
PPV	Present	Not detected	Not detected	Not detected	
Toxoplasma gondii	Present	Not detected	Not detected	Not detected	
Leptospiroses	Present	Not detected	Not detected	Not detected	
Mycoplasma hyopneumoniae	Present		Not detected	Not detected	

Islet Isolation

- Stress to the tissue
- Harsh enzymatic digestion
- Encapsulation
- Storage
- Transport
- Viability at the time of transplantation

Uncontaminated

Undamaged

Free floating islet day 15 culture. Insulin producing cells red Zinc staining DTZ.

Viable

Porcine Free Islets AOPI staining

Viability > 95%

Shelf Life Stability (BR103-109)

Data are mean + SD

Differentiation in Neonatal Islets

Insulin

Glucagon

day 1 (free islets)

day 4 (free islets)

day 35 (encapsulated islets)

Exocrine Free (amylase)

Microencapsulation

- Surrounding of islet cells with a highly biocompatible biopolymer called alginate which reduces the host's immune response to the implanted islets
- Alginate coat allows insulin, glucose, oxygen and other nutrients to diffuse freely, while blocking antibodies and Tcells

NanoBioCapsule Attributes

Strong, Elastic Physical Barrier

Unrestricted Cell Viability

Allow Inward Nutrient Diffusion

Outward Protein and Metabolite Release

Immunoisolation

Control Internal Cell Attachment

Biocompatible

DIABECELL[®] Encapsulated Neonatal Porcine Islets

DTZ 10x

AOPI 10x

LCT's Encapsulation

Other alginate capsule [90days]

LCT capsule [215 days]

Patients and Methods

- 8 Patients with T1 DM
- Age 23 63
- Duration of diabetes 5 to 15 years
- Dose of neonatal islets between 5,000 and 10,000 Islet Equivalents per Kg body weight
- Delivered laparoscopically into the lesser sac of omentum

Clinical Data

Phase I/IIa 2007 – 2010 Sklifasovsky Institute, Moscow, Russia

Subjects

- 8 adult Type 1 diabetes patients
- Insulin dependent > 5 years

Dose

- 5,000 10,000 islet equivalents/kg
- Up to 3 repeat implants

Results of the First Human Trial

Patient No. of No. Implants		Insulin Dose (Units/day)			HbA1c (%)			
		Follow-up (Weeks)	Pre- Implant	3-6mo after	% Dose Reduction	Pre- Implant	3-6 mo after	
1	3	96	113	76	33	7.1	6.3	0.8
2	3	84	22	0	100	8.2	7.3	0.9
3	3	72	66	53	14	10.1	7.4	2.7
4	3	60	30	27	10	7.6	6.5	1.1
5	2	30	68	58	15	9.8	6.2	3.6
6	1	20	41	51	-	8.5	8.5	0
7	2	18	37	0	100	8.3	4.9	3.4
8	1	18	83	83	0	11.3	8.2	3.1

Results

- Two out of 8 patients became insulin independent
- Insulin dose was reduced by 34%
- HbA1c was reduced from 8.86% to 6.91%
- Viable islets were recovered from 5 patients
- Porcine insulin was detected
- No side effects and no xenosis

Insulin Detection in Post HPLC Eluates Patient# 1 before and after glucagon stimulation

Efficacy – Reduction in HbA1c (mean)

Patient Implant – Recovered Cells

Safety Within a Week of Transplant

- Significant adverse events NONE
- 2 pts abdominal discomfort resolved in 5 days
- 2 pts creatinine elevations to 1.5 for 3 days
- 2 pts low grade fever for 3 days

Safety at 24 Months

- No significant adverse events to date
- PERV RNA negative
- PERV DNA negative

Preliminary Efficacy

- Improved blood glucose control with reduced HbA1c
- Reduced daily dose of insulin injections
- Two patients off insulin up to 32 weeks
- Intact capsules retrieved after 6 months
- Pig insulin detected in patient blood

Candidates for Xenotransplantation

- "Brittle diabetes" with or without other complications
- Severe hypoglycemia with attempts to optimize care
- Hypoglycemic unawareness
- 7 patients in New Zealand have received transplants in the past 6 months.

Summary

- Safety objectives have been met
- Proof of concept in humans possible to achieve therapeutic success without immunosuppression
- Future questions the effect of the appropriate dose of islets on magnitude and duration of response

Conclusions

- Careful manufacturing of encapsulated islets from neonatal pigs yields a product that shows significant promise as a treatment of T1DM without immunosuppression
- Regulatory concerns around PERV appear to be a non-issue. Other xenoses can be avoided

Thanks for your kind attention...

