

Initial drilling outlines continuous hematite iron ore over 8km at Roper River

Results support Project's substantial potential

<u>Highlights</u>

- Strong start to drilling at Roper River Iron Ore Project (Northern Territory) with results outlining a continuous zone of 3-4m thick supergene-enriched oolitic hematite over an 8km strike length and up to 1.2km in width
- Mineralisation remains open across strike to the north
- Results show substantial volume of grades above 50% Fe, including several zones above 55% Fe, providing strong confidence in published Exploration Targets¹
- Drilling program proceeding faster than expected, making up four of the eight weeks lost due to a prolonged wet season in the Northern Territory
- Batavia deadline to exercise option to acquire the Project extended by four weeks in light of wet season delays
- Scoping Study well advanced; Initial JORC Resource due in September, 2010

Batavia Mining (ASX: **BTV**) is pleased to report that the initial phase of drilling at the **Roper River Iron Ore Project** ("the Project") in the Northern Territory has returned significant results which highlight the Project's potential.

Drilling at Roper River's flagship W Prospect has outlined a continuous 3-4 metre thick supergene zone of oolitic hematite grading 48-58% Fe over an 8km strike length with widths of up to 1.2km. The hematite mineralisation remains open across strike to the north (see attached drill plan) and occurs from surface to a maximum depth of approximately 16 metres. The oolitic hematite overlies a ferruginous sandstone unit typically grading 10-40% Fe.

RC drilling at W Prospect continues with approximately 125 holes now completed. Assay results for the first 56 holes have been received. The table below shows the intersections with a greater than 55% calcined Fe and the complete results for the 56 holes are attached.

¹ The potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource and that it is uncertain if further exploration will result in the determination of a Mineral Resources.

Drillhole	Interval m	Fe %	P %	SiO₂ %	Al ₂ O ₃ %	S %	LOI %	Calcined Fe %
RCW001	3	57.2	0.103	11.25	1.95	0.003	2.47	58.7
RCW002	3	55.3	0.105	14.97	2.63	0.004	2.30	56.6
RCW003	3	53.0	0.093	12.11	2.06	0.014	6.96	56.9
RCW004	3	54.2	0.088	14.95	2.76	0.010	3.84	56.4
RCW005	4	51.7	0.084	15.70	1.93	0.010	6.72	55.4
RCW006	3	55.0	0.070	17.11	2.42	0.007	1.40	55.7
RCW007	3	55.8	0.084	13.06	2.00	0.006	3.15	57.6
RCW009	3	51.0	0.109	13.87	1.74	0.026	8.97	56.0
RCW017	3	53.0	0.085	12.55	1.99	0.189	6.45	56.7
RCW018	3	53.1	0.091	13.83	2.06	0.035	5.31	56.1
RCW022	4	56.3	0.075	14.65	2.25	0.006	1.85	57.4
RCW023	3	54.5	0.073	16.27	3.02	0.003	2.25	55.8
RCW028	4	56.6	0.061	13.70	2.58	0.008	2.14	57.8
RCW031	4	53.2	0.197	15.76	3.70	0.010	3.40	55.1
RCW032	4	54.6	0.082	16.90	2.53	0.006	1.71	55.5
RCW033	2	48.9	0.088	9.90	1.81	0.082	14.96	57.5
RCW034	3	51.3	0.086	10.06	3.26	0.039	10.29	57.2
RCW035	3	54.5	0.097	15.80	2.74	0.004	2.40	55.8
RCW055	3	54.3	0.078	16.70	2.24	0.003	2.300	55.6

W Prospect Intersections Summary Based on 55% Calcined Fe Threshold

The results underpin the Project's previously published Exploration Targets¹, which in turn are at the centre of Batavia's plan to develop a world-scale iron ore operation at Roper River. RC drilling will continue on W Prospect until the mineralisation has been closed off across strike. Drilling will then move to the nearby T, U, V and X Prospects which are interpreted as truncated extensions of W.

Diamond drilling is due to commence at W mid August. The initial diamond drilling has been commissioned to complete up to 1000 metres of coring for geotechnical and metallurgical studies.

The results to date confirm low levels of phosphorous and aluminium. As expected, an oolitic hematite iron ore mineralisation such as Roper River, contains significant silica (SiO_2) as a result of being formed from beach sand deposits. The silica content is inversely proportional to Fe content and above 55% Fe the silica grade is generally in the range of 10-14%.

Previous metallurgical work performed on a sample from W Prospect was conducted by Nagrom in 2009. This work indicated a significant reduction in the level of silica and elevated Fe could be achieved using dense media separation (DMS). Nagrom recommended gravity separation/spiral processing to concentrate minerals before final liberation.

¹ The potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource and that it is uncertain if further exploration will result in the determination of a Mineral Resources.

Further testwork is now being undertaken on bulk samples collected from the recent trenching conducted across W to determine the most efficient method for reducing the silica.

Option to Acquire the Roper River Iron Ore Project - 4 Week Extension

The pace of RC drilling has exceeded Batavia's expectations, enabling the Company to make up some of the time lost at the start of the program due to the prolonged wet season. However, in response to this partial delay, Batavia has negotiated an extension to its option over the Project by four weeks to 29 August 2010. This will provide time to complete the assays on the remaining holes already drilled and obtain preliminary metallurgical results.

Scoping Study and Initial JORC

As previously announced, Engenium Pty Ltd is preparing a Scoping Study on the Project. The Scoping Study, which has already confirmed the suitability of the Project's planned infrastructure, is well advanced and will be finalised by September 2010. Planning for the Feasibility Study is underway.

An initial JORC Resource on the W Prospect is expected in September 2010.

NEIL G BIDDLE Director

2 August 2010

Investors/Shareholders:

Neil G Biddle – Director or Greg Bittar – Interim CEO Tel: +61 (0) 8 9327 0980

Media:

Nicholas Read / Paul Armstrong – Read Corporate Tel: +61 (0) 8 9388 1474

Competent Person's Statement

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Neil Biddle who is a Member of The Australasian Institute of Mining and Metallurgy and a Director of Batavia Mining Limited. Neil Biddle has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Neil Biddle consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Drillhole	Easting GDA94	Northing GDA94	Interval m	From m	To m	Fe %	P %	SiO₂ %	Al₂O₃ %	S %	LOI %	Calcined Fe %
RCW001	382898	8318161	3	2	5	57.2	0.103	11.25	1.95	0.003	2.47	58.7
RCW002	382902	8318265	3	7	10	55.3	0.105	14.97	2.63	0.004	2.30	56.6
RCW003	382894	8318366	3	11	14	53.0	0.093	12.11	2.06	0.014	6.96	56.9
RCW004	382902	8318464	3	13	16	54.2	0.088	14.95	2.76	0.010	3.84	56.4
RCW005	382901	8318562	4	10	14	51.7	0.084	15.70	1.93	0.010	6.72	55.4
RCW006	382900	8318665	3	5	8	55.0	0.070	17.11	2.42	0.007	1.40	55.7
RCW007	383083	8318315	3	12	15	55.8	0.084	13.06	2.00	0.006	3.15	57.6
RCW008	383089	8318417	2	14	16	47.9	0.077	13.50	2.20	0.067	12.65	54.8
RCW009	383097	8318513	3	14	17	51.0	0.109	13.87	1.74	0.026	8.97	56.0
RCW010	383089	8318609	4	9	13	49.1	0.102	20.48	2.75	0.010	3.69	51.0
RCW011	383093	8318713	3	2	5	52.1	0.079	20.07	2.86	0.009	1.70	53.0
RCW012	383468	8318309	2	3	5	49.5	0.079	22.85	3.26	0.006	2.25	50.7
RCW013	383492	8318418	4	7	10	53.0	0.099	17.95	2.43	0.008	2.43	54.4
RCW014	383468	8318513	5	4	9	49.8	0.082	22.07	2.90	0.007	2.99	51.3
RCW015	383462	8318616	4	9	13	49.8	0.064	22.44	2.96	0.018	2.26	51.0
RCW016	383466	8318707	3	13	16	51.2	0.103	16.37	2.59	0.092	5.25	54.0
RCW017	383480	8318802	3	12	15	53.0	0.085	12.55	1.99	0.189	6.45	56.7
RCW018	383501	8318903	3	10	13	53.1	0.091	13.83	2.06	0.035	5.31	56.1
RCW019	383483	8319005	4	1	5	53.3	0.101	18.32	1.97	0.012	1.79	54.3
RCW021	383950	8318470	2	0	2	49.2	0.049	23.25	2.98	0.008	2.76	50.6
RCW022	383945	8318579	4	0	4	56.3	0.075	14.65	2.25	0.006	1.85	57.4
RCW023	383950	8318682	3	4	7	54.5	0.073	16.27	3.02	0.003	2.25	55.8
RCW024	383951	8318776	4	8	12	53.1	0.068	18.92	2.59	0.002	1.77	54.0
RCW025	383949	8318869	3	12	15	51.7	0.083	19.67	2.11	0.007	2.41	53.0

W Prospect Intersections Summary Based on 45% Assayed Fe Threshold

RCW026	383949	8318966	4	13	17	53.1	0.081	18.75	2.41	0.008	1.89	54.2
Drillhole	Easting	Northing	Interval	From	То	Fe	Р	SiO2	AI2O3	S	LOI	Calcined Fe
	GDA94	GDA94	m	m	m	%	%	%	%	%	%	%
RCW027	383950	8319100	2	14	16	47.4	0.066	13.10	2.11	0.041	13.71	54.9
RCW028	384150	8318750	4	0	4	56.6	0.061	13.70	2.58	0.008	2.14	57.8
RCW029	384150	8318850	4	2	6	52.2	0.072	18.94	3.14	0.005	2.68	53.6
RCW030	384150	8318950	4	5	9	53.2	0.076	17.56	3.04	0.006	2.67	54.6
RCW031	384150	8319050	4	10	14	53.2	0.197	15.76	3.70	0.010	3.40	55.1
RCW032	384150	8319150	4	9	13	54.6	0.082	16.90	2.53	0.006	1.71	55.5
RCW033	384154	8319272	2	14	16	48.9	0.088	9.90	1.81	0.082	14.96	57.5
RCW034	384146	8319370	3	16	19	51.3	0.086	10.06	3.26	0.039	10.29	57.2
RCW035	384139	8319478	3	16	19	54.5	0.097	15.80	2.74	0.004	2.40	55.8
RCW037	384604	8319702	3	11	14	53.2	0.088	18.10	2.40	0.005	2.600	54.6
RCW038	384598	8319807	3	13	16	48.4	0.087	24.30	3.07	0.003	2.420	49.6
RCW039	384604	8319925	3	14	17	49.1	0.076	22.40	2.91	0.004	2.970	50.6
RCW040	384581	8320008	3	14	17	47.1	0.085	24.27	2.87	0.005	3.100	48.6
RCW042	384687	8320208	1	11	12	49.1	0.096	22.50	3.10	0.007	2.770	50.5
RCW043	384987	8320064	3	5	8	45.3	0.077	23.77	2.36	0.013	5.150	47.8
RCW044	385000	8319972	4	12	16	47.1	0.096	24.35	3.08	0.003	3.100	48.6
RCW045	384969	8319879	5	9	14	50.3	0.086	21.88	2.63	0.005	2.790	51.7
RCW046	384984	8319747	1	2	3	49.3	0.083	18.25	6.48	0.009	4.200	51.5
RCW048	385606	8319714	3	0	3	50.3	0.081	20.90	3.81	0.021	2.710	51.7
RCW049	385616	8319818	4	0	4	52.9	0.071	18.95	2.79	0.010	2.050	54.0
RCW050	385620	8319910	4	0	4	49.6	0.073	22.41	4.89	0.009	4.070	51.7
RCW051	385612	8320001	4	3	7	52.0	0.090	20.69	2.09	0.004	2.210	53.1
RCW052	385599	8320084	4	1	5	51.1	0.083	20.90	2.78	0.005	2.270	52.3
RCW053	386006	8319933	4	0	4	47.9	0.060	19.79	6.29	0.012	4.830	50.3
RCW054	386003	8320025	4	8	12	49.8	0.100	22.05	2.75	0.004	2.600	51.1
RCW055	385993	8320120	3	12	15	54.3	0.078	16.70	2.24	0.003	2.300	55.6
RCW056	386002	8320224	2	14	16	47.2	0.078	13.02	1.88	0.044	13.800	54.8

