

# **ASX Announcement**

# 17 March 2011

# **POSITIVE DUNDAS IRON ORE DRILLING RESULTS**

## **HIGHLIGHTS:**

- Results include excellent iron in concentrate grades of up to 69.8% Fe at a grind size of 32 microns.
- Highest grade Intercepts include the following DTR results:
  - I0DURC002 56m @ 31.78% DTR, 67.81% Fe and 4.95% SiO2 (From 40 m)
  - > 10DURC007 31m @ 29.33% DTR, 68.78% Fe and 3.66% SiO2 (From 46 m)
- > 10DURC006 26m @ 37.04% DTR, 66.49% Fe and 7.37% SiO2 (From 53 m)
- > 10DURC007 20m @ 30.67% DTR, 68.32% Fe and 4.12% SiO2 (From 126 m)
- > 10DURC006 19m @ 36.20% DTR, 69.79% Fe and 3.24% SiO2 (From 53 m)
- 10DURC003 15m @ 41.41% DTR, 67.23% Fe and 6.02% SiO2 (From 35 m)
- 10DURC005 15m @ 34.97% DTR, 68.18% Fe and 4.40% SiO2 (From 45 m) hole stopped in Magnetite zone
- 10DURC022 59m @ 37.66% DTR, 65.30% Fe and 7.57% SiO2 (From 49 m) hole stopped in Magnetite zone
- > 10DURC011 11m @ 33.42% DTR, 68.01% Fe and 4.89% SiO2 (From 41 m)
- Impurities such as Alumina and Phosphorous are at very low levels while sulphur is at acceptable levels.
- DTR results have confirmed that highest iron grades in concentrate grades are focused in the Central and Eastern BIF units.
- The Company believes that a significant Exploration Target\*1 of beneficiable magnetite BIF exists.
- All zones remain open at depth.

Matsa Resources Limited (ASX:MAT, "Matsa" or the "Company") is pleased to advise that it has received very encouraging results from recently completed Davis Tube Recovery (DTR) test work on the shallow Reverse Circulation (RC) and Diamond Drill samples from Matsa's Dundas Magnetite Project. All zones remain open at depth.

Preliminary interpretation reveals that there exists the potential for an economically viable project. Davis Tube Recoveries up to 49% with concentrate grade of up to 70.7% Fe were achieved and drilling has provided a clear focus for further work in the Central and Eastern BIF units. As only one drill hole was completed to the base of the most prospective Eastern BIF the remainder of the Eastern BIF along strike remains an attractive target for further drilling.

The Dundas drilling programme comprised 22 drill holes for 1,901m of RC and 197.5m of HQ3 Diamond drilling. The programme was carried out between 26th October and 16th December 2010.

There are broadly three Banded Iron Formation (BIF) Units at Dundas which can be seen in Figure 2 to be oriented north – south and dipping moderately to steeply towards the west.

From an interpretation of detailed aeromagnetic data it is apparent that the Central and Eastern BIF bands have a higher magnetite content than the Western band. Consequently drilling to test magnetite mineralisation was concentrated in the Central and Eastern BIF units.

Drill hole locations are presented in Figure 2 and Appendix 2. A summary of DTR results is presented in Appendix 1.



Figure 1: Dundas Summary Drill Section 6424550N



Figure 2: Dundas drill holes and Summary Geology on Aeromagnetic Image

Head Office:Suite 11, 139 Newcastle Street, Perth Western Australia 6000Tel: +61 8 9230 3555Fax: +61 8 9227 0370Kalgoorlie Office:Suite 1, Vosper House, 31-33 Dugan Street, Kalgoorlie 6430Tel: +61 8 9021 7200 Fax: +61 8 9021 7277Bangkok Office:Unit 1808, 2 Pacific Place, Sukhumvit Road, Sukhumvit BangkokTel: +66 0 2653 0258 Fax: +66 0 2653 0258reception@matsa.com.auwww.matsa.com.auP a g e | 3

# **Davis Tube Test work on RC Drill Samples**

This test work was carried out in order to establish where the best magnetite recoveries and grade can be achieved at Dundas and to use this information to redefine Matsa's Exploration Target<sup>\*1</sup> on the project.

A total of 155 composite samples were submitted for DTR test work. These include all samples with an estimated magnetite content >15% based on magnetic susceptibility values.

Stage pulverizing was carried out to achieve a  $P_{80}$  of 32 microns and provide a basis for comparison across the project.

Results are presented in Appendix 1 and a representative cross section is presented in Figure 1.

Minimum iron(Fe%) in DTR concentrate, Maximum DTR, maximum iron(Fe%) in DTR concentrate and weighted average and associated assay values are presented in Table 1.

|                       | Davis Tube       | Associated grade in that DTR Concentrate |                    |                                  |      |      |  |
|-----------------------|------------------|------------------------------------------|--------------------|----------------------------------|------|------|--|
|                       | Recovery weight% | Fe %                                     | SiO <sub>2</sub> % | Al <sub>2</sub> O <sub>3</sub> % | Р%   | S%   |  |
| Min DTR %Fe grade     | 14.96            | 49.33                                    | 22.10              | 0.07                             | 0.14 | 2.49 |  |
| Max DTR%              | 54.51            | 61.41                                    | 13.60              | 0.06                             | 0.02 | 0.03 |  |
| Max DTR %Fe grade     | 38.20            | 70.79                                    | 1.69               | 0.02                             | 0.00 | 0.02 |  |
| Weighted average of   |                  |                                          |                    |                                  |      |      |  |
| the listed intercepts | 34.80            | 67.20                                    | 5.72               | 0.31                             | 0.01 | 0.13 |  |

### Table 1. Values for RC DTR Concentrates

Results from this work suggest that the Dundas BIF units include significant zones where excellent DTR recoveries and concentrate grades exist.

Figure 1 and Figure 2 show the location of high grade concentrate intercepts which are located in the Eastern part of the project area within the Eastern and Central BIF bands. This provides a clear target for further drilling.

### **Further work**

Matsa will refine the Exploration Target<sup>\*1</sup> at Dundas based on these results with further drilling planned as soon as practical.

It is noteworthy that there are variations between the BIF units where DTR on intercepts with very similar magnetite contents produces markedly different concentrate grades particularly iron and silica using the same grinding protocol. Matsa is currently engaged in detailed studies to characterise the geological differences between these units.

Splitting and sampling of remaining diamond core in 10DNDH001 and 10DNDH002 is underway with samples currently being prepared for assay and DTR test work.

Planning has commenced on a follow up drilling programme designed to determine an Inferred Resource at Dundas.

### Paul Poli Executive Chairman

Phone+61 8 9230 3555Fax+61 8 9227 0370

Emailreception@matsa.com.auWebwww.matsa.com.au

Head Office:Suite 11, 139 Newcastle Street, Perth Western Australia 6000Tel: +61 8 9230 3555Fax: +61 8 9227 0370Kalgoorlie Office:Suite 1, Vosper House, 31-33 Dugan Street, Kalgoorlie 6430Tel: +61 8 9021 7200Fax: +61 8 9021 7277Bangkok Office:Unit 1808, 2 Pacific Place, Sukhumvit Road, Sukhumvit BangkokTel: +66 0 2653 0258Fax: +66 0 2653 0258reception@matsa.com.auwww.matsa.com.auP a g e | 4

#### **Competent Persons Statement**

### Exploration Target \*1

Under Clause 18 of the JORC Code the exploration targets outlined in this report are conceptual in nature as there has been insufficient exploration by the Company at this stage to define a Mineral Resource and that there is no certainty that further exploration will result in the determination of a Mineral Resource or a Mineral Reserve. Estimates of tonnages and grade have been made by geologists who are familiar with the style and type of magnetite mineralisation and who have conducted field mapping and limited sampling, including the drilling contained in this announcement, of the mineralisation and completed aeromagnetic interpretation of the units hosting the mineralisation.

### Exploration results, mineral resources and reserves

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by David Fielding, who is a Fellow of the Australasian Institute of Mining and Metallurgy. David Fielding is a full time employee of Matsa Resources. David Fielding has sufficient experience which is relevant to the style of mineralisation and the type of ore deposit under consideration and the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Mineral Resources and Ore Reserves. David Fielding consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

# Appendix 1: DTR Results on RC Drill Samples

| Hole      | From<br>(m) | To (m) | Intercept<br>(m) | DTR % | Fe %  | SiO2 % | Al2O3<br>% | Р%     | S %  | Remark           |
|-----------|-------------|--------|------------------|-------|-------|--------|------------|--------|------|------------------|
| 10DNDH001 | 59          | 91     | 32               | 49.10 | 58.70 | 15.90  | 0.40       | 0.048  | 0.04 |                  |
| 10DURC001 | 61          | 90     | 29               | 28.02 | 55.60 | 18.60  | 0.61       | 0.019  | 0.16 | open at<br>depth |
| 10DURC002 | 40          | 96     | 56               | 31.78 | 67.81 | 4.95   | 0.35       | 0.005  | 0.03 |                  |
| 10DURC003 | 35          | 50     | 15               | 41.41 | 67.23 | 6.02   | 0.11       | 0.014  | 0.03 |                  |
| 10DURC003 | 35          | 69     | 34               | 35.82 | 63.03 | 10.31  | 0.63       | 0.026  | 0.09 |                  |
| 10DURC003 | 50          | 69     | 19               | 31.41 | 59.71 | 13.69  | 1.04       | 0.035  | 0.14 |                  |
| 10DURC004 | 40          | 49     | 9                | 31.09 | 57.88 | 16.51  | 0.49       | 0.024  | 0.02 |                  |
| 10DURC004 | 67          | 71     | 4                | 34.39 | 57.03 | 17.85  | 0.10       | 0.017  | 0.39 |                  |
| 10DURC004 | 75          | 79     | 4                | 28.65 | 62.80 | 11.80  | 0.11       | 0.012  | 0.04 |                  |
| 10DURC005 | 20          | 40     | 20               | 28.64 | 63.92 | 9.48   | 0.31       | 0.026  | 0.03 |                  |
| 10DURC005 | 45          | 60     | 15               | 34.97 | 68.18 | 4.40   | 0.14       | 0.007  | 0.14 | open at<br>depth |
| 10DURC006 | 53          | 79     | 26               | 37.04 | 66.49 | 7.37   | 0.11       | 0.006  | 0.02 |                  |
| 10DURC006 | 53          | 72     | 19               | 36.20 | 69.79 | 3.24   | 0.03       | 0.001  | 0.02 |                  |
| 10DURC006 | 72          | 79     | 7                | 39.31 | 57.52 | 18.59  | 0.32       | 0.018  | 0.04 |                  |
| 10DURC006 | 84          | 90     | 6                | 34.30 | 59.43 | 15.54  | 0.69       | 0.017  | 0.18 | open at<br>depth |
| 10DURC007 | 46          | 77     | 31               | 29.33 | 68.78 | 3.66   | 0.05       | 0.003  | 0.54 |                  |
| 10DURC007 | 82          | 90     | 8                | 28.53 | 68.82 | 2.64   | 0.08       | -0.001 | 0.54 |                  |
| 10DURC007 | 100         | 108    | 8                | 15.44 | 63.81 | 9.99   | -0.01      | -0.001 | 0.45 |                  |
| 10DURC007 | 121         | 126    | 5                | 25.71 | 56.31 | 9.74   | 0.18       | 0.010  | 3.90 |                  |
| 10DURC007 | 126         | 146    | 20               | 30.67 | 68.32 | 4.12   | 0.32       | 0.011  | 0.10 |                  |
| 10DURC008 | 41          | 51     | 10               | 47.16 | 62.43 | 11.83  | 0.08       | 0.015  | 0.00 |                  |
| 10DURC008 | 51          | 56     | 5                | 36.81 | 69.80 | 2.73   | 0.04       | 0.004  | 0.00 |                  |
| 10DURC008 | 66          | 84     | 18               | 32.13 | 63.35 | 6.74   | 0.11       | 0.012  | 1.68 | open at<br>depth |
| 10DURC009 | 50          | 89     | 39               | 30.26 | 61.89 | 11.19  | 0.20       | 0.040  | 0.33 |                  |
| 10DURC010 | 54          | 65     | 11               | 31.02 | 69.16 | 3.75   | 0.02       | 0.001  | 0.05 |                  |
| 10DURC010 | 70          | 75     | 5                | 18.83 | 61.73 | 9.60   | 0.11       | 0.011  | 1.03 |                  |
| 10DURC011 | 41          | 52     | 11               | 33.42 | 68.01 | 4.89   | 0.03       | 0.007  | 0.07 |                  |
| 10DURC011 | 41          | 61     | 20               | 28.86 | 65.32 | 7.46   | 0.03       | 0.009  | 0.29 |                  |
| 10DURC011 | 52          | 61     | 9                | 23.28 | 62.04 | 10.61  | 0.04       | 0.012  | 0.56 |                  |
| 10DURC011 | 71          | 79     | 8                | 31.61 | 55.08 | 16.80  | 0.09       | 0.012  | 1.71 |                  |
| 10DURC013 | 40          | 50     | 10               | 42.14 | 60.88 | 14.09  | 0.28       | 0.052  | 0.03 |                  |
| 10DURC014 | 31          | 47     | 16               | 34.74 | 60.01 | 14.47  | 0.40       | 0.027  | 0.01 |                  |
| 10DURC014 | 82          | 85     | 3                | 37.18 | 61.79 | 12.20  | 0.38       | 0.028  | 0.02 |                  |
| 10DURC016 | 47          | 52     | 5                | 33.15 | 55.72 | 18.90  | 0.05       | 0.016  | 0.33 |                  |
| 10DURC016 | 54          | 66     | 12               | 35.11 | 55.98 | 17.65  | 0.14       | 0.018  | 0.76 |                  |
| 10DURC017 | 40          | 60     | 20               | 23.31 | 63.48 | 10.06  | 0.34       | 0.030  | 0.08 | open at<br>depth |
| 10DURC021 | 50          | 80     | 30               | 35.36 | 65.12 | 8.37   | 0.19       | 0.021  | 0.05 |                  |
| 10DURC021 | 88          | 107    | 19               | 32.25 | 59.49 | 14.72  | 0.58       | 0.050  | 0.07 | open at<br>depth |
| 10DURC022 | 49          | 108    | 59               | 37.66 | 65.30 | 7.57   | 0.66       | 0.012  | 0.07 | open at<br>depth |

Head Office:Suite 11, 139 Newcastle Street, Perth Western Australia 6000Tel: +61 8 9230 3555 Fax: +61 8 9227 0370Kalgoorlie Office:Suite 1, Vosper House, 31-33 Dugan Street, Kalgoorlie 6430Tel: +61 8 9021 7200 Fax: +61 8 9021 7277Bangkok Office:Unit 1808, 2 Pacific Place, Sukhumvit Road, Sukhumvit BangkokTel: +66 0 2653 0258 Fax: +66 0 2653 0258reception@matsa.com.auwww.matsa.com.auP a g e | 6

## Appendix 2 Drill hole collar locations

| Hole_ID   | Hole_Type | Depth | Zone     | East   | North   | RL  |
|-----------|-----------|-------|----------|--------|---------|-----|
| 10DNDH001 | RC/DD     | 147   | MGA94_51 | 387041 | 6424561 | 322 |
| 10DNDH002 | RC/DD     | 161   | MGA94_51 | 387097 | 6423708 | 309 |
| 10DURC001 | RC        | 90    | MGA94_51 | 386977 | 6422810 | 290 |
| 10DURC002 | RC        | 150   | MGA94_51 | 387012 | 6422820 | 293 |
| 10DURC003 | RC        | 80    | MGA94_51 | 386983 | 6423599 | 299 |
| 10DURC004 | RC        | 84    | MGA94_51 | 387041 | 6423598 | 304 |
| 10DURC005 | RC        | 60    | MGA94_51 | 387132 | 6423702 | 302 |
| 10DURC006 | RC        | 90    | MGA94_51 | 387196 | 6424522 | 314 |
| 10DURC007 | RC        | 156   | MGA94_51 | 387133 | 6424561 | 322 |
| 10DURC008 | RC        | 84    | MGA94_51 | 387085 | 6424557 | 322 |
| 10DURC009 | RC        | 96    | MGA94_51 | 386958 | 6424600 | 328 |
| 10DURC010 | RC        | 78    | MGA94_51 | 387118 | 6424916 | 305 |
| 10DURC011 | RC        | 84    | MGA94_51 | 387114 | 6425073 | 304 |
| 10DURC013 | RC        | 60    | MGA94_51 | 386914 | 6424173 | 311 |
| 10DURC014 | RC        | 96    | MGA94_51 | 387019 | 6423614 | 304 |
| 10DURC016 | RC        | 90    | MGA94_51 | 386909 | 6422809 | 278 |
| 10DURC017 | RC        | 60    | MGA94_51 | 386865 | 6422815 | 271 |
| 10DURC018 | RC        | 60    | MGA94_51 | 387043 | 6425588 | 290 |
| 10DURC019 | RC        | 54    | MGA94_51 | 386861 | 6425841 | 289 |
| 10DURC020 | RC        | 36    | MGA94_51 | 386887 | 6425851 | 304 |
| 10DURC021 | RC        | 108   | MGA94_51 | 386860 | 6426085 | 320 |
| 10DURC022 | RC        | 108   | MGA94_51 | 387218 | 6426197 | 296 |

Head Office: Suite 11, 13 Kalgoorlie Office: Suite 1, Vos Bangkok Office: Unit 1808, 2