ASX ANNOUNCEMENT

1 June 2011

Significant gold assays and potential new gold trends confirmed at Justinian

Gold Road Resources Limited ("Gold Road" or "the Company") (ASX: GOR) is pleased to announce significant results from its ongoing diamond, RC and RAB drilling program at its **Hann** and **Justinian** gold projects, located on the Company's Yamarna Belt in Western Australia.

Justinian - diamond drilling

Assay results from the sole diamond hole (11GYD0008) drilled to date confirm the presence of significant amount of gold at Justinian:

5 metres @ 8.28 g/t Au from 94 metres; including 1 metre @ 18.6
g/t Au and 1m @ 10.9 g/t Au

Justinian - RAB drilling

A gold trend has been intercepted in all 11 RAB lines along the strike length of +500 metres. Results indicate the Justinian Trend might be displaced by east-west cross-cutting structures. RAB holes intercepted significant gold values between Central Bore and Justinian, and east of Justinian indicating the possible presence of additional mineralised trends.

- 7 metres @ 1.87 g/t Au from 11 metres; including 1 metre @ 8.50 g/t Au (RAB hole 11GYRB0037),
- 4 metres @ 3.17 g/t Au from 12 metres (RAB hole 11GYRB00350)
- 4 metres @ 2.11 g/t Au from 0 metres (RAB hole 11GYRB00363)
- 4 metres @ 2.12 g/t Au from 40 metres (RAB hole 11GYRB00445)
- 4 metres @ 1.85 g/t Au from 16 metres (RAB hole 11GYRB00444,
- 4 metres @ 1.98 g/t Au from 24 metres (RAB hole 11GYRB0055)

Hann – RC drilling

Gold was intercepted in all six of the 500 metre-long lines in multiple zones over the total strike length of 660 metres. The purpose of the initial drilling program at Hann is to test the southern 2.4 kilometre long gold anomaly in the soils. RC drilling was chosen instead of RAB due to hardness of the outcropping rocks, though it is essentially a RAB type of drilling program.

- 1 metre @ 4.78 g/t Au from 10 metres (RC hole 11GYRC0011)
- 1 metre @ 3.38 g/t Au from 65 metres (RC hole 11GYRC0023)
- 4 metres @ 3.04 g/t Au from 56 metres (RC hole 11GYRC0025)
- 2 metres @ 1.39 g/t Au from 65 metres (RC hole 11GYRC0012)
- 4 metres @ 1.45 g/t Au from 80 metres (RC hole 11GYRC0058)
- 4 metres @ 1.60 g/t Au from 60 metres (RC hole 11GYRC0004)

ASX Code: GOR

ABN 13 109 289 527

COMPANY DIRECTORS lan Murray Chairman

Ziggy Lubieniecki Executive Director Russell Davis

Non-Executive Director Kevin R Hart Company Secretary, Non-Executive

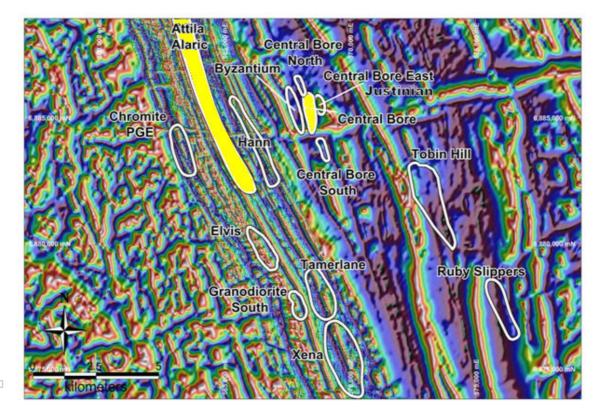
Director Martin Pyle Non-Executive Director

CONTACT DETAILS Principal & Registered Office 22 Altona St, West Perth, WA, 6005

Website www.goldroad.com.au

Email perth@goldroad.com.au Phone

+61(8) 9486 4144 **Fax** +61(8) 9481 6405


Gold Road's drilling tally in the current campaign which began on 27 March 2011 is as follows:

- ~8,000 metres of RC at Hann (RC rig commenced 27 March 2011, this rig can convert to drill diamond holes),
- ~20,000 meters of RAB at the Justinian and Central Bore area (RAB rig commenced 27 April 2011),
- ~1,000 metres of RC at Central Bore Deposit (RC rig commenced on 19 May 2011, and has the capacity to drill 800m holes).

As a result of the exciting intercepts from the RAB drilling program at Justinian, Gold Road will accelerate exploration activity by relocating the RC/Diamond drilling rig - currently at Hann - to Justinian within the next few weeks.

Gold Road plans to drill in excess of 100,000 metres throughout 2011, focussing primarily on Central Bore, Justinian, Hann and Attila as well as new gold targets.

Figure 1: Location Map of Prospects and Deposits within the Yamarna Project area. The Attila & the Central Bore Gold Projects are marked with yellow colour outline.

For further information please visit www.goldroad.com.au or contact:

Ian Murray Executive Chairman Telephone: +61 (0) 438 384 735 Media Paul Downie/ Melanie Gray Stokes FD Mobile: +61 (0) 414 947 129 Telephone: +61 8 9386 12

GOLDROAD

About Gold Road Resources Limited

Gold Road Resources Limited (ASX: GOR) is a gold exploration company which owns tenements covering over 5,000 square kilometres of the Yamarna greenstone belt. The Yamarna Belt is located approximately 150km east of Laverton on the eastern edge of the Yilgarn Craton.

The Yamarna Belt, adjacent to the 500km long Yamarna shear zone, is a historically under-explored region that is highly prospective for gold mineralisation and hosts a number of significant new discoveries. It lies north of the recently discovered 5 million ounce Tropicana deposit owned jointly by AngloGold-Ashanti / Independence.

Gold Road is progressing two key gold trends, together with two recently discovered trends, on the Yamarna Belt:

- Attila Trend, which includes Attila, Alaric, Khan and Khan North Projects and extends for over 33 kilometres and hosts a significant JORC resource.
- **Central Bore Area** is a 6km² area east of the southern extent of the Attila Trend which has delivered five new discoveries in 15 months. Key projects in the Area include:
 - Central Bore Project gold mineralisation over a strike length of 800 metres and from surface to a depth of 300 metres; assay results of up to 1,000g/t gold, remains open to the north, south and depth; hosts a significant JORC resource.
 - Justinian Project 200 metres east of the Central Bore Project, 600 metres long, wider structure than Central Bore, with intercepts up to 7m @ 27g/t Au.
 - Central Bore North 500 metres north of the Central Bore Project's high-grade Imperial Shoot.
 - Byzantium Project 500 metres west of the Central Bore Project, 1km long, VMS style base metal prospect.
 - **Hann Project** 2.4 kilometre west of the Central Bore Project, 4.3 kilometre long, three parallel gold anomalies.
- Tobin Hill 5.5 kilometres southeast of the Central Bore, 1.5 kilometre gold anomaly.
- **Dorothy Hills** 23 kilometres north-east of the Central Bore, two gold anomalies, 1.4 and 1.8 kilometre long.

NOTES:

The information in this report which relates to Exploration Results or Mineral Resources is based on information compiled by Ziggy Lubieniecki, the Technical Director of Gold Road Resources Limited, who is a Member of the Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Ziggy Lubieniecki has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2004 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Ziggy Lubieniecki consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Appendix

	Appendix	Table 1: Si	mmorie	Cianifias		II Intoroon	to from luci	linion
	Comple	Table 1: Su						
	Sample	Hole_ID	mFrom	mTo	Interval	Au g/t	AMG_E	AMG_N
	RB00140	11GYRB00031	0	4	4	0.14	568,733	6,885,270
	RB002389	11GYRB00036	0	1	1	0.69	568,684	6,885,253
	RB002390	11GYRB00036	1	2	1	0.25	568,684	6,885,253
	RB002391	11GYRB00036	2	3	1	0.33	568,684	6,885,253
	RB002392	11GYRB00036	3	4	1	0.13	568,684	6,885,253
	RB002393	11GYRB00037	0	1	1	0.12	568,673	6,885,249
	RB002394	11GYRB00037	1	2	1	0.39	568,673	6,885,249
	RB002402	11GYRB00037	8	9	1	0.19	568,673	6,885,249
	RB002403	11GYRB00037	9	10	1	0.44	568,673	6,885,249
	RB002404	11GYRB00037	10	11	1	0.25	568,673	6,885,249
	RB002405	11GYRB00037	11	12	1	0.53	568,673	6,885,249
	RB002406	11GYRB00037	12	13	1	0.68	568,673	6,885,249
	RB002407	11GYRB00037	13	14	1	0.48	568,673	6,885,249
	RB002408	11GYRB00037	14	15	1	0.47	568,673	6,885,249
	RB002409	11GYRB00037	15	16	1	1.69	568,673	6,885,249
(a b)	RB002410	11GYRB00037	16	17	1	8.50	568,673	6,885,249
	RB002411	11GYRB00037	17	18	1	0.75	568,673	6,885,249
	RB002412	11GYRB00037	18	19	1	0.40	568,673	6,885,249
$(\mathcal{C}(\mathcal{A}))$	RB002414	11GYRB00037	20 21	21	1 1	1.22 0.71	568,673	6,885,249
$\Box \vartheta$	RB002415	11GYRB00037		22			568,673	6,885,249
	RB002416	11GYRB00037	22 23	23	1	0.20	568,673	6,885,249
	RB002417 RB002419	11GYRB00037		24	1	0.13	568,673	6,885,249
	RB002419 RB002420	11GYRB00037 11GYRB00037	25 26	26 27	1	0.10 0.75	568,673 568,673	6,885,249 6,885,249
	RB002420 RB002421	11GYRB00037	20	27	1	0.15	568,673	6,885,249
	RB002421 RB00174	11GYRB00037	28	20	1	0.13	568,673	
	RB00174	11GYRB00038	28	29	4	0.10	568,664	6,885,249 6,885,247
ad	RB002422	11GYRB00038	24	20	4	0.19	568,664	6,885,247
(ζU)	RB002422 RB002423	11GYRB00038	24	26	1	0.22	568,664	6,885,247
	RB002423	11GYRB00038	26	20	1	0.10	568,664	6,885,247
	RB002424	11GYRB00038	20	28	1	0.11	568,664	6,885,247
	RB00182	11GYRB00038	28	32	4	0.12	568,664	6,885,247
	RB002427	11GYRB00038	28	29	1	0.16	568,664	6,885,247
(\bigcirc)	RB002428	11GYRB00038	29	30	1	0.10	568,664	6,885,247
	RB00261	11GYRB00053	24	28	4	0.15	568,677	6,885,464
	RB00262	11GYRB00053	28	32	4	0.10	568,677	6,885,464
$(C \land \cap)$	RB00263	11GYRB00053	32	36	4	0.10	568,677	6,885,464
00	RB00264	11GYRB00053	36	39	3	0.20	568,677	6,885,464
(RB00270	11GYRB00054	20	24	4	1.19	568,668	6,885,461
	RB00271	11GYRB00054	24	28	4	0.24	568,668	6,885,461
615	RB00278	11GYRB00055	16	20	4	0.10	568,657	6,885,458
	RB00279	11GYRB00055	20	24	4	0.13	568,657	6,885,458
\sim	RB00280	11GYRB00055	24	28	4	1.98	568,657	6,885,458
()	RB00281	11GYRB00055	28	32	4	0.13	568,657	6,885,458
	RB00288	11GYRB00056	20	24	4	0.14	568,646	6,885,454
	RB00365	11GYRB00069	20	24	4	0.33	568,667	6,885,501
~	RB00366	11GYRB00069	24	28	4	1.41	568,667	6,885,501
	RB00367	11GYRB00069	28	32	4	0.10	568,667	6,885,501
	RB00378	11GYRB00070	20	24	4	0.36	568,660	6,885,499
\bigcirc	RB00379	11GYRB00070	24	28	4	0.10	568,660	6,885,499
	RB00387	11GYRB00071	20	24	4	0.28	568,652	6,885,497
	RB00388	11GYRB00071	24	28	4	0.16	568,652	6,885,497
	RB00402	11GYRB00072	24	28	4	0.14	568,643	6,885,494
	RB00405	11GYRB00072	36	38	2	0.21	568,643	6,885,494
	RB00412	11GYRB00073	24	28	4	0.16	568,633	6,885,490
	RB00413	11GYRB00073	28	32	4	0.17	568,633	6,885,490
	RB00444	11GYRB00081	12	16	4	0.14	568,686	6,885,552
	RB00486	11GYRB00085	16	19	3	0.14	568,651	6,885,540
	RB00491	11GYRB00086	16	20	4	0.14	568,643	6,885,538
	RB00492	11GYRB00086	20	24	4	0.88	568,643	6,885,538
	RB00493	11GYRB00086	24	28	4	0.28	568,643	6,885,538

Sample Hole ID		mFrom	mTo	1: Continua Interval	Au g/t	AMG E	AMG N
RB00504	11GYRB00087	28	32	4	0.73	568,634	6,885,534
RB00506	11GYRB00087	36	40	4	0.68	568,634	6,885,534
RB00530	11GYRB00093	16	17	1	0.48	568,584	6,885,517
RB00532	11GYRB00094	4	8	4	0.10	568,574	6,885,514
RB00574	11GYRB00100	4	8	4	0.28	568,521	6,885,496
RB00809	11GYRB00145	32	33	1	0.32	568,789	6,885,587
RB00926	11GYRB00167	4	8	4	1.35	569,031	6,885,538
RB00927	11GYRB00167	8	12	4	0.21	569,031	6,885,538
RB00928	11GYRB00167	12	16	4	0.32	569,031	6,885,538
RB001088	11GYRB00198	4	8	4	1.00	568,757	6,885,448
RB001113	11GYRB00202	12	16	4	0.12	568,720	6,885,436
RB001155	11GYRB00202	28	29	1	0.12	568,686	6,885,425
RB001169	11GYRB00208	20	29	4	0.10	568,669	6,885,419
RB001599	11GYRB00286	20	24	4	0.24	568,683	6,885,339
RB001599	11GYRB00286	32	34	2	0.58		
RB001603	11GYRB00286	24	28	4	0.81	568,683 568,674	6,885,339 6,885,336
RB001610				4			
	11GYRB00289	8	12		0.13	568,653	6,885,329
RB001897	11GYRB00341	0 12	4	4	0.24	568,778	6,885,244
RB001929	11GYRB00350		16	4	3.17	568,688	6,885,214
RB001930	11GYRB00350	16	20	4	0.21	568,688	6,885,214
RB001939	11GYRB00351	24	28		0.52	568,679	6,885,212
RB001940	11GYRB00351	28	31	3	0.17	568,679	6,885,212
RB001970	11GYRB00363	0	4	4	2.11	568,559	6,885,174
RB002134	11GYRB00387	8	12	4	0.60	568,958	6,885,221
RB002280	11GYRB00414	16	20	4	0.72	568,705	6,885,136
RB002283	11GYRB00414	28	32	4	0.22	568,705	6,885,136
RB002291	11GYRB00415	16	20	4	0.40	568,697	6,885,133
RB002294	11GYRB00415	28	32	4	0.65	568,697	6,885,133
RB002295	11GYRB00415	32	36	4	0.59	568,697	6,885,133
RB002296	11GYRB00415	36	40	4	0.47	568,697	6,885,133
RB002298	11GYRB00415	44	48	4	0.11	568,697	6,885,133
RB002299	11GYRB00416	0	4	4	0.11	568,688	6,885,130
RB002308	11GYRB00416	32	36	4	0.11	568,688	6,885,130
RB002310	11GYRB00416	40	41	1	0.10	568,688	6,885,130
RB002344	11GYRB00423	16	17	1	0.12	568,623	6,885,108
RB002508	11GYRB00444	16	20	4	1.85	568,724	6,885,097
RB002509	11GYRB00444	20	24	4	0.12	568,724	6,885,097
RB002510	11GYRB00444	24	28	4	0.10	568,724	6,885,097
RB002518	11GYRB00445	16	20	4	0.20	568,713	6,885,094
RB002519	11GYRB00445	20	24	4	0.17	568,713	6,885,094
RB002522	11GYRB00445	32	36	4	0.16	568,713	6,885,094
RB002524	11GYRB00445	40	44	4	2.12	568,713	6,885,094
RB002532	11GYRB00446	20	24	4	0.15	568,704	6,885,092
RB002544	11GYRB00447	24	28	4	0.23	568,694	6,885,089
RB002546	11GYRB00447	32	36	4	0.18	568,694	6,885,089
RB002806	11GYRB00499	20	21	1	0.18	569,132	6,885,148
RB002819	11GYRB00501	20	23	3	0.10	569,115	6,885,142
RB002995	11GYRB00530	12	13	1	0.12	568,859	6,885,060

	Sample	Hole_ID	mFrom	mTo	Interval	Au g/t	Au g/t Rpt1	Au g/t Rpt2	AMG_E	AMG_N
Ī	98735	11GYD0008	53	54	1.00	0.51		0.52	568,654	6,885,371
	98736	11GYD0008	54	55	1.00	0.69	0.67		568,654	6,885,371
1	98748	11GYD0008	66	67	1.00	0.56			568,654	6,885,371
1	98754	11GYD0008	72	73	1.00	0.32			568,654	6,885,371
	98755	11GYD0008	73	74	1.00	0.14			568,654	6,885,371
	98756	11GYD0008	74	75	1.00	0.63			568,654	6,885,371
	98759	11GYD0008	75	76	1.00	2.83	2.56	2.57	568,654	6,885,371
	98760	11GYD0008	76	77	1.00	10.90	9.30	9.10	568,654	6,885,371
	98761	11GYD0008	77	78	1.00	18.60	18.80	18.80	568,654	6,885,371
	98762	11GYD0008	78	79	1.00	8.42	9.40		568,654	6,885,371
	98763	11GYD0008	79	80	1.00	0.28			568,654	6,885,371
\ \										
1										

Table 2: Summary of Significant Diamond Drill Intercepts from Justinian

Table 3: Summary of Significant RC Drill Intercepts from Hann

Sample	Hole_ID	mFrom	mTo	Interval	Au g/t	Au g/t Rpt1	Au g/t Rpt2	AMG_E	AMG_N
97315	11GYRC0004	60	64	4.00	1.60			566,418	6,883,869
97866	11GYRC0007	29	30	1.00	2.12	2.02		566,351	6,883,683
97867	11GYRC0007	30	31	1.00	0.18	0.16		566,351	6,883,683
97868	11GYRC0007	31	32	1.00	0.71			566,351	6,883,683
98583	11GYRC0007	86	87	1.00	0.24			566,351	6,883,683
98617	11GYRC0011	10	11	1.00	4.78	5.40	5.40	566,504	6,883,735
98622	11GYRC0011	15	16	1.00	0.41	0.38		566,504	6,883,735
98626	11GYRC0011	34	35	1.00	0.31			566,504	6,883,735
97494	11GYRC0011	68	72	4.00	0.48			566,504	6,883,735
98633	11GYRC0012	65	66	1.00	1.83	1.78		566,541	6,883,748
98634	11GYRC0012	66	67	1.00	0.94	0.94		566,541	6,883,748
98641	11GYRC0012	77	78	1.00	0.51		0.46	566,541	6,883,748
98439	11GYRC0023	65	66	1.00	3.38	3.35		567,459	6,882,365
97855	11GYRC0025	56	60	4.00	3.04	3.00		567,539	6,882,398
97981	11GYRC0030	52	56	4.00	0.97			567,068	6,882,400
98175	11GYRC0037	56	60	4.00	0.51			567,333	6,882,495
98518	11GYRC0050	80	84	4.00	0.57	0.67		567,248	6,882,632
98874	11GYRC0058	80	84	4.00	1.45	1.43		566,936	6,882,697