

ASX Announcement

SHARE INFORMATION

1 July 2011

Issued Shares: 450.7M

Unlisted
Options:
0.6M

Unlisted
Performance Share
Rights:
2.6M

MINERAL RESOURCES

Measured: 1.20Mozs 20.3Mt 1.84g/t

Indicated: 0.55Mozs 9.90Mt 1.73g/t

Inferred: 0.36Mozs 6.98Mt 1.62g/t

ORE RESERVES

Proven: 854,000ozs 13.52Mt 1.96g/t

Probable: 214,000ozs 3.02Mt 2.21g/t

MARKET CAPITALISATION A\$257M

EXPLORATION UPDATE MINERALISATION EXTENDED AT SALMAN June 2011

- Ongoing exploration program identifies opportunities for future development.
- RC drilling between Salman North and Teberu 01 pits intersects significant mineralisation.
- Resource definition drilling underway at the Nfutu prospect.
- Fieldwork has commenced at the Kanyankaw licence in preparation for a drill program.
- New soil anomalies identified on the Apa Tam licence with follow-up work in progress.
- · RC drilling planned at the Hotopo licence.

Gold producer Adamus Resources Limited (ASX:ADU) is continuing with an ongoing exploration program in the vicinity of its Nzema Gold Project in Ghana.

The Company is pleased to provide an update on the latest results of the program, which have identified significant opportunities for further growth and development of the project.

Salman North – Teberu Link

Initial results have been received from reverse circulation (RC) drilling between the Teberu 01 and the Salman North pits along the Salman Trend. Best results include:

SNRC1168 12m @ 2.19g/t Au from 18m

SNRC1174 12m @ 2.93g/t Au from 16m

SNRC1261 19m @ 1.91g/t Au from 13m

SNRC1242 5m @ 3.81g/t Au from 23m

These results are significant because they suggest that the N-S trending ore zones extend beyond the boundaries of the current optimised pits and may support a cutback or the linking of the pits with a corresponding reduction in the mining strip ratio. In addition, the close proximity of the area to existing infrastructure and haul roads will allow any additional ore reserves discovered to be rapidly integrated into the mine schedule.

Stock Exchange Codes

ASX: ADU TSXV: ADU FSE: AXM

^{*} Further details on the exploration results are provided in Appendix 1

Resource definition drilling at the southern edge of the Salman North pit intersected **25m** @ **3.45g/t** Au from 2m in SNRC1252 in an area not previously considered to be strongly mineralised (see Figure 1). This provides additional support for a southern cut back to the pit and illustrates the growth potential of the Nzema project.

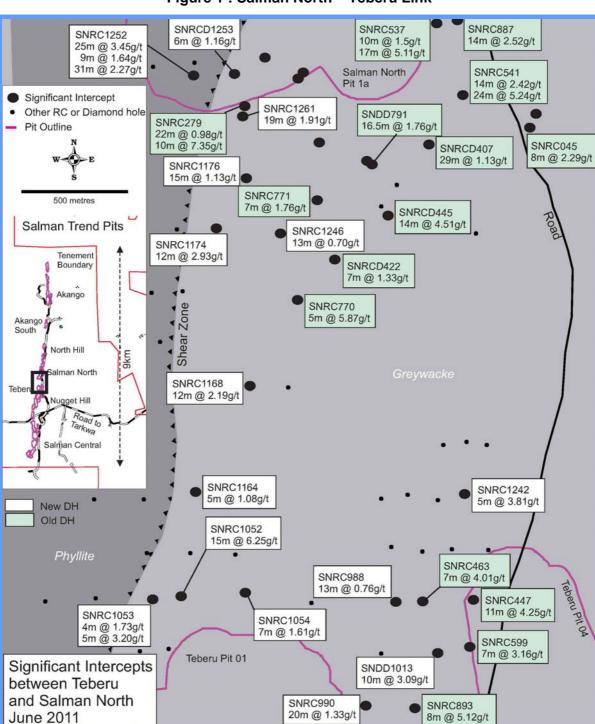
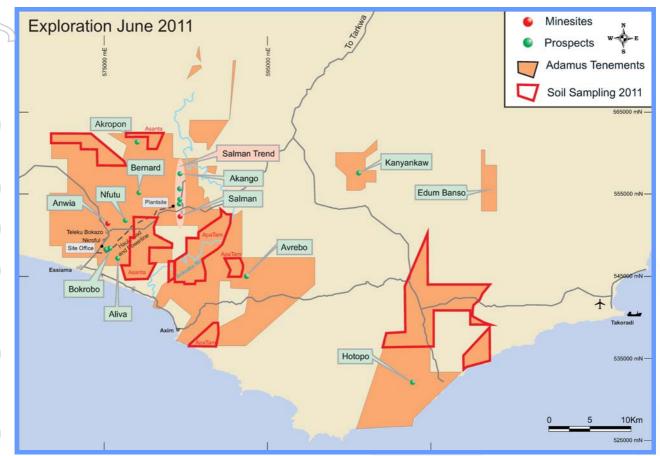
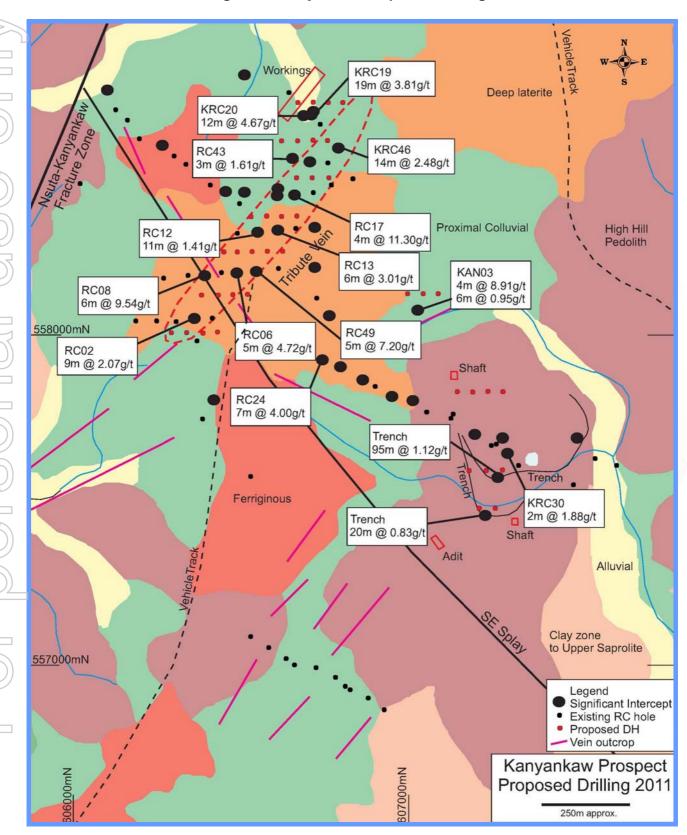



Figure 1 : Salman North - Teberu Link

Figure 2 : Location Plan

Kanyankaw Prospecting Licence

The Kanyankaw Prospecting licence (PL) is located 23km east of Nzema and is the site of both alluvial gold and hardrock mining. Fieldwork has commenced at the Kanyankaw PL in preparation for an RC drilling program to test several priority targets (see Figure 3). The highlight from previous drilling was the discovery of the Tribute Vein that trends NNE over a distance of 600m. Hole KRC46 drilled in 1992 intersected 14m @ 2.48/t from 90m.


RC drilling is planned to evaluate an area 1km to the southeast of the Tribute Vein. Sampling of a road cutting to the north, by Adamus, returned multiple zones of anomalous gold including 95m @ 1.12g/t Au and 20m @ 0.83g/t Au.

Nfutu

RC resource definition drilling has commenced at the Nfutu prospect located 6km west of the Nzema plant and just 800m from the haul road. The mineral resource estimate for the prospect in 2008 contained 31,000oz Au, at a cut-off grade of 0.8g/t Au, mostly in the Inferred category. The current drill program of approximately 3,500m will close the drill spacing to 25m with the aim of converting the mineral resource estimate to Indicated category.

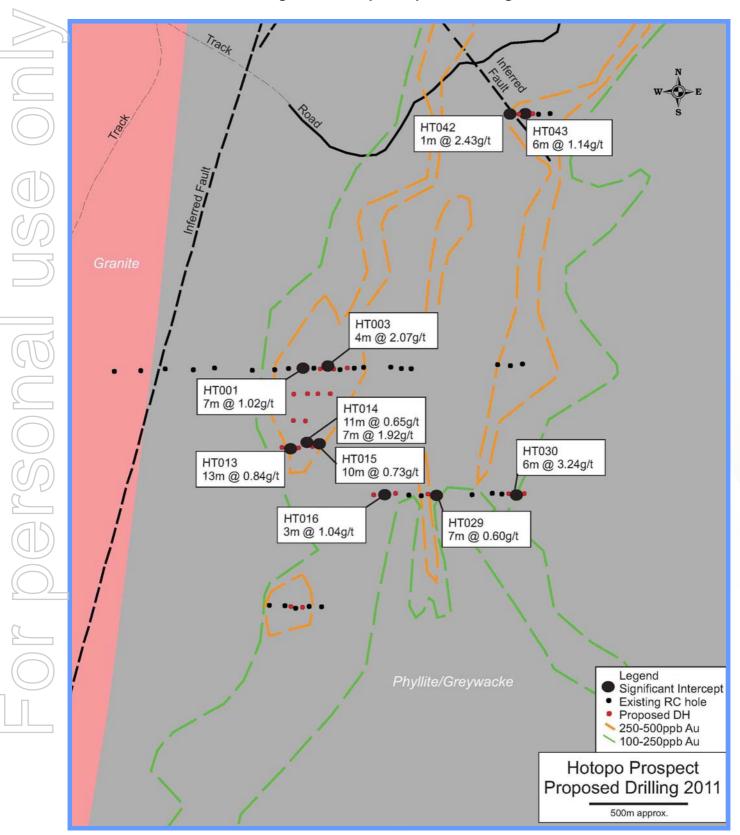
Figure 3: Kanyankaw Proposed Drilling

Soil Sampling

Soil sampling has continued on the Hotopo PL and Asanta PL with 1,920 samples taken during May 2011. Trial soil sampling with a powered auger was undertaken. The powered auger is easily maneuverable in dense vegetation and allows a sample to be taken at a depth of over 1m below the depth of the surface transported material. If the trial is successful the auger will be used more extensively to follow up existing soil anomalies.

Soil sampling on the Apa Tam PL has revealed several new anomalies. One anomaly is located on an interpreted NNE trending structure marking the contact between a granite and mafic volcanics unit. The soil anomaly extends at least 800m on traverses spaced 400m apart and has a peak value of 521ppb Au (0.52g/t Au). This soil anomaly, and others of similar tenor, will be followed up with 100m spaced traverses of infill soil sampling using the powered auger.

Other Targets


RC drilling is planned in Q3 2011 at the Avrebo West prospect and on the Hotopo PL.

At Avrebo West, drilling will follow up anomalous trench results including 10m @ 2.22g/t Au in a new mineralised trend to the west of the main Avrebo prospect (*refer Exploration Update - May 2011*).

At the Hotopo PL \sim 4,000m of drilling is planned to follow up drill intersections within a broad 6km x 3km >100ppb Au soil anomaly (see Figure 4). Best results from previous drilling include : 10m @ 0.73g/t Au in HT015, 11m @ 0.65g/t Au and 7m @ 1.92g/t in HT014 and 4m @ 2.07g/t Au in HT003.

Figure 4: Hotopo Proposed Drilling

About Adamus

Adamus Resources Limited is a gold producer, listed on the Australian Securities Exchange (ASX), TSX Venture Exchange (TSX-V) and Frankfurt Stock Exchange Open Market (FSE).

The Company's primary focus is on expanding the economic potential of the Nzema Gold Project in Ghana, West Africa and exploring concessions in Liberia, West Africa. The Nzema Project encompasses approximately 665km² of tenure in the Ashanti Gold Belt – host to over 100moz of gold and the project boasts excellent access to port and road infrastructure. Ghana is a stable West African country with a long history and some of the world's largest gold mining operations. Gold production is vital to the national economy. Members of the Adamus Board and management team have proven records in mineral exploration, project development and project financing.

For further information contact:

Mark Connelly – Managing Director / CEO +61 8 9322 5943

email: mark.connelly@adamusresources.com.au

For media enquiries contact:

David Ikin – Professional Public Relations +61 8 9388 0944

email: david.ikin@ppr.com.au

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Information in this report pertaining to exploration results was compiled by Martin Bennett, an employee of Adamus Resources Limited, who is a Member of the Australasian Institute of Geoscientists and has more than 5 years experience in estimation of recoverable resources in gold deposits. He qualifies as a "Qualified Person" under Canadian National Instrument 43-101 – Standards of Disclosure for Mineral Projects. Martin Bennett has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a "Competent Person" as defined in the JORC Code. Martin Bennett consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Information in this announcement pertaining to ore reserves was compiled by Glenn Williamson an employee of Mining Resources Pty Ltd, who is a Member of The Australasian Institute of Mining and Metallurgy. He qualifies as a "Qualified Person" under Canadian National Instrument 43-101 – Standards of Disclosure for Mineral Projects. Glenn Williamson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a "Competent Person" as defined in the JORC Code. Glenn Williamson consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Information in this announcement pertaining to mineral resources was compiled by Nic Johnson, an employee of Hellman & Schofield Pty Ltd, who is a Member of The Australian Institute of Geoscientists and has more than 5 years experience in estimation of recoverable resources in gold deposits. He qualifies as a "Qualified Person" under Canadian National Instrument 43-101 – Standards of Disclosure for Mineral Projects. Nic Johnson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a "Competent Person" as defined in the JORC Code. Nic Johnson consents to the inclusion in the report of the matters based on this information in the form and context in which it appears. Caution Regarding Forward Looking Information.

Certain statements included in this announcement, including information regarding Adamus' plans with respect to its mineral properties, constitute forward-looking information. Forward-looking information includes, among other things, statements regarding expected operations. Forward-looking information is based upon a number of estimates and assumptions made by the Company in light of its experience, current conditions and expectations of future developments, as well as other factors that the Company believes are appropriate in the circumstances. While these estimates and assumptions are considered reasonable by the Company, they are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Investors are cautioned that forward-looking information is no guarantee of future performance and, accordingly, investors are cautioned not to put undue reliance on forward-looking information due to the inherent uncertainty therein. Forward-looking information is made as at the date of this announcement and the Company disclaims any intent or obligation to update publicly such forward-looking information, whether as a result of new information, future events or results or otherwise.

Appendix 1 - Drilling Results

	HOLE ID	FROM (m)	TO (m)	Au_ppm	HOLE ID	FROM (m)	TO (m)	Au_ppm
	Ŋ			KANYAN	NKAW			
	KAN03	8	10	KAN03	RC06	18	19	RC06
	KAN03	10	12	KAN03	RC06	19	20	RC06
	KAN03	20	22	KAN03	RC08	104	105	RC08
	KAN03	22	24	KAN03	RC08	105	106	RC08
	KAN03	24	26	KAN03	RC08	106	107	RC08
	KRC19	5	6	KRC19	RC08	107	108	RC08
92	KRC19	6	8	KRC19	RC08	108	109	RC08
	KRC19	8	10	KRC19	RC08	109	110	RC08
20	KRC19	10	12	KRC19	RC12	94	95	RC12
	KRC19	12	14	KRC19	RC12	95	96	RC12
	KRC19	14	16	KRC19	RC12	96	97	RC12
	KRC19	16	18	KRC19	RC12	97	98	RC12
	KRC19	18	20	KRC19	RC12	98	99	RC12
	KRC19	20	22	KRC19	RC12	99	100	RC12
	KRC19	22	24	KRC19	RC12	100	101	RC12
(())	KRC20	0	2	KRC20	RC12	101	102	RC12
	KRC20	2	4	KRC20	RC12	102	103	RC12
	KRC20	4	6	KRC20	RC12	103	104	RC12
	KRC20	6	8	KRC20	RC12	104	105	RC12
	KRC20	8	10	KRC20	RC13	29	30	RC13
	KRC20	10	12	KRC20	RC13	30	31	RC13
	KRC30	0	2	KRC30	RC13	31	32	RC13
	KRC46	90	92	KRC46	RC13	32	33	RC13
	KRC46	92	94	KRC46	RC13	33	34	RC13
as	KRC46	94	96	KRC46	RC13	34	35	RC13
	KRC46	96	98	KRC46	RC17	101	102	RC17
	KRC46	98	100	KRC46	RC17	102	103	RC17
	KRC46	100	102	KRC46	RC17	103	104	RC17
	KRC46	102	104	KRC46	RC17	104	105	RC17
	RC02	79	80	RC02	RC24	54	55	RC24
	RC02	80	81	RC02	RC24	55	56	RC24
	RC02	81	82	RC02	RC24	56	57	RC24
	RC02	82	83	RC02	RC24	57	58	RC24
	RC02	83	84	RC02	RC24	58	59	RC24
	RC02	84	85	RC02	RC24	59	60	RC24
l	RC06	15	16	RC06	RC24	60	61	RC24
l	RC06	16	17	RC06	RC49	20	25	RC49
	RC06	17	18	RC06				

HOLE ID	FROM (m)	TO (m)	Au_ppm	HOLE ID	FROM (m)	TO (m)	Au_ppm
			ното	PO			
HT001	51	52	3.09	HT014	27	28	0.48
HT001	52	53	0.54	HT014	28	29	0.37
HT001	53	54	0.49	HT014	29	30	1.36
HT001	54	55	0.08	HT014	30	31	1.32
HT001	55	56	1.64	HT015	13	14	0.65
HT001	56	57	0.31	HT015	14	15	0.27
HT001	57	58	0.96	HT015	15	16	0.11
HT003	40	41	1.62	HT015	16	17	0.67
HT003	41	42	0.31	HT015	17	18	1.15
HT003	42	43	2.82	HT015	18	19	1.05
HT003	43	44	3.51	HT015	19	20	0.58
HT013	13	14	0.54	HT015	20	21	0.44
HT013	14	15	0.55	HT015	21	22	1.29
HT013	15	16	0.26	HT015	22	23	1.13
HT013	16	17	1.05	HT016	68	69	1.27
HT013	17	18	0.31	HT016	69	70	1.26
HT013	18	19	1.24	HT016	70	71	0.58
HT013	19	20	1.73	HT029	17	18	0.57
HT013	20	21	1.24	HT029	18	19	0.62
HT013	21	22	1.04	HT029	19	20	1.54
HT013	22	23	1.24	HT029	20	21	0.58
HT013	23	24	0.74	HT029	21	22	0.17
HT013	24	25	0.38	HT029	22	23	0.12
HT013	25	26	0.62	HT029	23	24	0.57
HT014	11	12	0.85	HT030	4	5	0.82
HT014	12	13	1.73	HT030	5	6	4.17
HT014	13	14	0.72	HT030	6	7	11.87
HT014	14	15	0.12	HT030	7	8	0.83
HT014	15	16	0.21	HT030	8	9	0.59
HT014	16	17	1.26	HT030	9	10	1.14
HT014	17	18	0.09	HT042	75	76	2.43
HT014	18	19	0.55	HT043	16	17	0.8
HT014	19	20	0.53	HT043	17	18	0.73
HT014	20	21	0.38	HT043	18	19	1.01
HT014	21	22	0.67	HT043	19	20	1.06
HT014	24	25	0.66	HT043	20	21	1.9
HT014	25	26	8.4	HT043	21	22	1.35
HT014	26	27	0.85				

HOLE ID	FROM (m)	TO (m)	Au_ppm	HOLE ID	FROM (m)	TO (m)	Au_ppn
			SALM	IAN			
SNDD1013	30	31	1.96	SNRC1052	65	66	0.13
SNDD1013	31	32	1.78	SNRC1052	66	67	0.87
SNDD1013	32	33	5.63	SNRC1052	67	68	0.83
SNDD1013	33	34	3.88	SNRC1052	68	69	4.18
SNDD1013	34	35	9.84	SNRC1052	69	70	8.09
SNDD1013	35	36	2.51	SNRC1052	70	71	0.78
SNDD1013	36	37	2.2	SNRC1052	71	72	0.6
SNDD1013	37	38	0.24	SNRC1052	72	73	0.14
SNDD1013	38	39	1.53	SNRC1052	73	74	0.17
SNDD1013	39	40	1.28	SNRC1052	74	75	52.06
SNDD791	52	53	0.74	SNRC1052	75	76	20.06
SNDD791	53	54	0.26	SNRC1052	76	77	1.18
SNDD791	54	55	0.91	SNRC1052	77	78	0.51
SNDD791	55	56	1.87	SNRC1053	50	51	2.97
SNDD791	56	57	2.45	SNRC1053	51	52	0.4
SNDD791	57	58	0.75	SNRC1053	52	53	1.89
SNDD791	58	59	3.14	SNRC1053	53	54	1.66
SNDD791	59	60	3.08	SNRC1053	75	76	6.3
SNDD791	60	61	0.3	SNRC1053	76	77	1.49
SNDD791	61	62	1.16	SNRC1053	77	78	0.32
SNDD791	62	63	0.52	SNRC1053	78	79	5.31
SNDD791	63	63.5	1.14	SNRC1053	79	80	2.6
SNDD791	63.5	64	10.3	SNRC1054	2	3	4
SNDD791	64	64.5	4.66	SNRC1054	3	4	0.67
SNDD791	64.5	65	4.01	SNRC1054	4	5	0.45
SNDD791	65	65.5	1.46	SNRC1054	5	6	4.74
SNDD791	65.5	66	0.1	SNRC1054	6	. 7	0.66
SNDD791	66	66.5	0.37	SNRC1054	7	8	0.15
SNDD791	66.5	67	0.46	SNRC1054	8	9	0.57
SNDD791	67	67.5	3.13	SNRC1164	2	3	2.19
SNDD791	67.5	68	0.99	SNRC1164	3	4	1.33
SNDD791	68	68.5	1.19	SNRC1164	4	5	0.17
SNRC045	72	73	2.35	SNRC1164	5	6	0.64
SNRC045	73	74	1.06	SNRC1164	6	7	1.06
SNRC045	74	75	2.01	SNRC1168	18	19	0.64
SNRC045	75	76	1.9	SNRC1168	19	20	3.55
SNRC045	76	77	3.8	SNRC1168	20	21	2.28
SNRC045	77	78	4.33	SNRC1168	21	22	1.54
SNRC045	78	79	1.65	SNRC1168	22	23	1.11
SNRC045	79	80	1.21	SNRC1168	23	24	6.08
SNRC1052	63	64	3.8	SNRC1168	24	25	4.09
SNRC1052	64	65	0.4	SNRC1168	25	26	3.4

HOLE ID	FROM (m)	TO (m)	Au_ppm	HOLE ID	FROM (m)	TO (m)	Au_ppm
			SALM	IAN			
SNRC1168	26	27	1.9	SNRC1246	43	44	1.57
SNRC1168	27	28	0.9	SNRC1246	44	45	0.13
SNRC1168	28	29	0.29	SNRC1246	45	46	0.58
SNRC1168	29	30	0.5	SNRC1246	46	47	0.28
SNRC1174	16	17	0.55	SNRC1246	47	48	0.12
SNRC1174	17	18	2.21	SNRC1246	48	49	0.61
SNRC1174	18	19	0.7	SNRC1252	2	3	2
SNRC1174	19	20	3.09	SNRC1252	3	4	2.54
SNRC1174	20	21	3.06	SNRC1252	4	5	0.65
SNRC1174	21	22	2.77	SNRC1252	5	6	1.39
SNRC1174	22	23	7.17	SNRC1252	6	7	6.16
SNRC1174	23	24	6.34	SNRC1252	7	8	7.67
SNRC1174	24	25	2.72	SNRC1252	8	9	11.85
SNRC1174	25	26	2.25	SNRC1252	9	10	11.24
SNRC1174	26	27	3.3	SNRC1252	10	11	12.73
SNRC1174	27	28	0.95	SNRC1252	11	12	9.6
SNRC1176	26	27	1.73	SNRC1252	12	13	3.81
SNRC1176	27	28	1.38	SNRC1252	13	14	1.74
SNRC1176	28	29	0.54	SNRC1252	14	15	1.3
SNRC1176	29	30	0.95	SNRC1252	15	16	1.55
SNRC1176	30	31	0.55	SNRC1252	16	17	1.08
SNRC1176	31	32	0.22	SNRC1252	17	18	6.12
SNRC1176	32	33	0.53	SNRC1252	18	19	0.34
SNRC1176	33	34	1.08	SNRC1252	19	20	1
SNRC1176	34	35	0.13	SNRC1252	20	21	0.46
SNRC1176	35	36	0.38	SNRC1252	21	22	0.27
SNRC1176	36	37	1.11	SNRC1252	22	23	0.98
SNRC1176	37	38	0.94	SNRC1252	23	24	0.52
SNRC1176	38	39	3.52	SNRC1252	24	25	0.15
SNRC1176	39	40	0.43	SNRC1252	25	26	0.52
SNRC1176	40	41	3.51	SNRC1252	26	27	0.96
SNRC1242	23	24	1.74	SNRC1252	30	31	1.43
SNRC1242	24	25	7.32	SNRC1252	31	32	0.21
SNRC1242	25	26	3.86	SNRC1252	32	33	1.62
SNRC1242	26	27	4.27	SNRC1252	33	34	3.37
SNRC1242	27	28	1.85	SNRC1252	34	35	3.51
SNRC1246	36	37	0.55	SNRC1252	35	36	0.29
SNRC1246	37	38	1.5	SNRC1252	36	37	0.39
SNRC1246	38	39	2.03	SNRC1252	37	38	3.27
SNRC1246	39	40	0.09	SNRC1252	38	39	0.63
SNRC1246	41	42	0.9	SNRC1252	44	45	1.34
SNRC1246	42	43	0.6	SNRC1252	45	46	0.47

HOLE ID	FROM (m)	TO (m)	Au_ppm	HOLE ID	FROM (m)	TO (m)	Au_ppm
			SALM	IAN			
SNRC1252	46	47	1.58	SNRC1261	26	27	0.4
SNRC1252	47	48	0.67	SNRC1261	27	28	1.11
SNRC1252	48	49	0.63	SNRC1261	28	29	0.36
SNRC1252	49	50	6.42	SNRC1261	29	30	0.64
SNRC1252	50	51	0.76	SNRC1261	30	31	0.64
SNRC1252	51	52	1.96	SNRC1261	31	32	3.29
SNRC1252	52	53	6.28	SNRC279	10	11	0.8
SNRC1252	53	54	7.77	SNRC279	11	12	2.42
SNRC1252	54	55	12.13	SNRC279	12	13	1.75
SNRC1252	55	56	5.22	SNRC279	13	14	0.22
SNRC1252	56	57	0.32	SNRC279	14	15	0.14
SNRC1252	57	58	0.15	SNRC279	15	16	1.77
SNRC1252	58	59	3.56	SNRC279	16	17	0.17
SNRC1252	59	60	0.47	SNRC279	17	18	0.53
SNRC1252	60	61	2.58	SNRC279	18	19	1.23
SNRC1252	61	62	0.52	SNRC279	19	20	0.75
SNRC1252	62	63	0.57	SNRC279	20	21	1.44
SNRC1252	63	64	1.31	SNRC279	21	22	4.68
SNRC1252	64	65	0.4	SNRC279	22	23	0.31
SNRC1252	65	66	1.72	SNRC279	23	24	1.33
SNRC1252	66	67	2.16	SNRC279	24	25	0.49
SNRC1252	67	68	1.1	SNRC279	25	26	0.48
SNRC1252	68	69	2.35	SNRC279	26	27	0.89
SNRC1252	69	70	1.55	SNRC279	27	28	0.12
SNRC1252	70	71	1.12	SNRC279	28	29	0.21
SNRC1252	71	72	0.77	SNRC279	29	30	0.84
SNRC1252	72	73	0.99	SNRC279	30	31	0.16
SNRC1252	73	74	2.56	SNRC279	31	32	0.75
SNRC1252	74	75	1	SNRC279	54	55	0.84
SNRC1261	13	14	1.66	SNRC279	55	56	15
SNRC1261	14	15	0.24	SNRC279	56	57	18.9
SNRC1261	15	16	0.58	SNRC279	57	58	5.35
SNRC1261	16	17	0.02	SNRC279	58	59	1.21
SNRC1261	17	18	0.67	SNRC279	59	60	3.8
SNRC1261	18	19	1.32	SNRC279	60	61	5.18
SNRC1261	19	20	6.29	SNRC279	61	62	10.6
SNRC1261	20	21	5.33	SNRC279	62	63	1.33
SNRC1261	21	22	1.74	SNRC279	63	64	2.22
SNRC1261	22	23	0.48	SNRC279	64	65	11.3
	23	24					
SNRC1261 SNRC1261	24	25	3.41 6.77	SNRC447 SNRC447	13 14	14 15	0.17
	+						
SNRC1261	25	26	1.38	SNRC447	15	16	1.82

HOLE ID	FROM (m)	TO (m)	Au_ppm	HOLE ID	FROM (m)	TO (m)	Au_ppm
			SALM	IAN			
SNRC447	16	17	11.52	SNRC541	42	43	2.02
SNRC447	17	18	2.09	SNRC541	43	44	1.11
SNRC447	18	19	2.19	SNRC541	44	45	0.75
SNRC447	19	20	1.73	SNRC541	45	46	0.41
SNRC447	20	21	1.07	SNRC541	46	47	1.28
SNRC447	21	22	3.97	SNRC541	47	48	1.23
SNRC447	22	23	9.93	SNRC541	48	49	1.61
SNRC447	23	24	10.58	SNRC541	49	50	1.68
SNRC463	29	30	1.73	SNRC541	50	51	1.39
SNRC463	30	31	4.81	SNRC541	51	52	6.13
SNRC463	31	32	4.32	SNRC541	52	53	7.02
SNRC463	32	33	8.3	SNRC541	- 53	54	0.39
SNRC463	33	34	6.34	SNRC541	54	55	6.03
SNRC463	34	35	1.72	SNRC541	55	56	2.76
SNRC463	35	36	0.83	SNRC541	69	70	2.41
SNRC537	38	39	0.56	SNRC541	70	71	0.61
SNRC537	39	40	0.58	SNRC541	71	72	0.64
SNRC537	40	41	0.31	SNRC541	72	73	2.36
SNRC537	41	42	6.03	SNRC541	73	74	0.96
SNRC537	42	43	2.02	SNRC541	74	75	0.21
SNRC537	43	44	0.97	SNRC541	75	76	1.81
SNRC537	44	45	1.15	SNRC541	76	77	2.03
SNRC537	45	46	0.73	SNRC541	77	78	0.33
SNRC537	46	47	0.08	SNRC541	78	79	0.37
SNRC537	47	48	2.61	SNRC541	79	80	7.1
SNRC537	62	63	3.99	SNRC541	80	81	11.05
SNRC537	63	64	12.76	SNRC541	81	82	0.73
SNRC537	64	65	15.16	SNRC541	82	83	8.65
SNRC537	65	66	3.74	SNRC541	83	84	11.61
SNRC537	66	67	5.71	SNRC541	84	85	8.38
SNRC537	67	68	8.95	SNRC541	85	86	9.69
SNRC537	68	69	10.61	SNRC541	86	87	6.03
SNRC537	69	70	8.35	SNRC541	87	88	18.8
SNRC537	70	71	7.09	SNRC541	88	89	7.85
SNRC537	71	72	2.27	SNRC541	89	90	10.91
SNRC537	72	73	3.97	SNRC541	90	91	5.33
SNRC537	73	74	2.14	SNRC541	91	92	4.17
SNRC537	74	75	0.21	SNRC541	92	93	3.85
SNRC537	75	76	0.28	SNRC599	21	22	3.46
SNRC537	76	77	0.62	SNRC599	22	23	4.63
SNRC537	77	78	0.33	SNRC599	23	24	8.34
SNRC537	78	79	0.72	SNRC599	24	25	0.9

HOLE ID	FROM (m)	TO (m)	Au_ppm	HOLE ID	FROM (m)	TO (m)	Au_ppm
			SALM	IAN			
SNRC599	25	26	1.96	SNRC988	21	22	0.92
SNRC599	26	27	1.97	SNRC990	50	51	0.65
SNRC599	27	28	0.8	SNRC990	51	52	5.77
SNRC770	84	85	19.74	SNRC990	52	53	2.06
SNRC770	85	86	1.13	SNRC990	53	54	0.4
SNRC770	86	87	1.15	SNRC990	54	55	0.21
SNRC770	87	88	1.61	SNRC990	55	56	0.68
SNRC770	88	89	5.73	SNRC990	56	57	0.7
SNRC887	52	53	3.95	SNRC990	57	58	0.24
SNRC887	53	54	0.04	SNRC990	58	59	0.47
SNRC887	54	55	1.56	SNRC990	59	60	2.66
SNRC887	55	56	0.61	SNRC990	60	61	1.43
SNRC887	56	57	0.03	SNRC990	61	62	0.2
SNRC887	57	58	0.66	SNRC990	62	63	0.76
SNRC887	58	59	0.71	SNRC990	63	64	1.43
SNRC887	59	60	1.24	SNRC990	64	65	1.13
SNRC887	60	61	0.68	SNRC990	65	66	2.56
SNRC887	61	62	0.97	SNRC990	66	67	1.18
SNRC887	62	63	2.38	SNRC990	67	68	1.57
SNRC887	63	64	12.13	SNRC990	68	69	0.85
SNRC887	64	65	7.41	SNRC990	69	70	1.7
SNRC887	65	66	2.84	SNRCD407	124	125	0.74
SNRC893	45	46	1.49	SNRCD407	125	126	0.69
SNRC893	46	47	6.63	SNRCD407	126	127	0.07
SNRC893	47	48	7.61	SNRCD407	127	128	0.5
SNRC893	48	49	12.81	SNRCD407	128	129	1.1
SNRC893	49	50	7.82	SNRCD407	129	130	0.61
SNRC893	50	51	2.07	SNRCD407	130	131	0.41
SNRC893	51	52	1.57	SNRCD407	131	132	0.17
SNRC893	52	53	1.56	SNRCD407	132	133	0.92
SNRC988	9	10	0.63	SNRCD407	133	134	0.37
SNRC988	10	11	1.38	SNRCD407	134	135	1.79
SNRC988	11	12	0.13	SNRCD407	135	136	3.28
SNRC988	12	13	0.11	SNRCD407	136	137	2.45
SNRC988	13	14	0.88	SNRCD407	137	138	0.08
SNRC988	14	15	0.38	SNRCD407	138	139	0.7
SNRC988	15	16	0.15	SNRCD407	139	140	1.67
SNRC988	16	17	0.93	SNRCD407	140	141	4.93
SNRC988	17	18	0.28	SNRCD407	141	142	0.32
SNRC988	18	19	2.46	SNRCD407	142	143	1.66
SNRC988	19	20	1.21	SNRCD407	143	144	1.81
SNRC988	20	21	0.39	SNRCD407	144	145	0.58

HOLE ID	FROM (m)	TO (m)	Au_ppm	HOLE ID	FROM (m)	TO (m)	Au_ppm				
	SALMAN										
SNRCD407	145	146	1.24	SNRCD445	72	73	1.44				
SNRCD407	146	147	0.94	SNRCD445	73	74	6.97				
SNRCD407	147	148	0.57	SNRCD445	74	75	4.6				
SNRCD407	148	149	0.06	SNRCD445	75	76	1.47				
SNRCD407	149	150	0.71	SNRCD445	76	77	12.62				
SNRCD407	150	151	2.57	SNRCD445	77	78	7.92				
SNRCD407	151	152	1.09	SNRCD445	78	79	2.04				
SNRCD407	152	153	0.86	SNRCD445	79	80	5.69				
SNRCD422	58	59	0.61	SNRCD445	80	81	7.51				
SNRCD422	59	60	2.7	SNRCD445	81	82	3.03				
SNRCD422	60	61	0.33	SNRCD445	82	83	5.84				
SNRCD422	61	62	2.39	SNRCD445	83	84	1.13				
SNRCD422	62	63	0.2	SNRCD445	84	85	0.25				
SNRCD422	63	64	0.52	SNRCD445	85	86	2.69				
SNRCD422	64	65	2.54								

HOLE ID	FROM (m)	TO (m)	Au_ppm	HOLE ID	FROM (m)	TO (m)	Au_ppm
			KANYANKAW	TRENCHES			
MDTR02	71	72	2.88	MDTR02	128	132	1.04
MDTR02	72	76	0.53	MDTR02	132	136	0.51
MDTR02	76	80	0.45	MDTR02	136	140	0.36
MDTR02	80	84	2.71	MDTR02	140	144	1.38
MDTR02	84	88	0.64	MDTR02	144	148	0.88
MDTR02	88	92	1.43	MDTR02	148	152	1.34
MDTR02	92	96	0.42	MDTR02	152	156	1.62
MDTR02	96	100	0.55	MDTR02	156	158	2.85
MDTR02	100	104	0.55	MDTR02	180	184	1.04
MDTR02	104	108	0.5	MDTR02	184	188	0.96
MDTR02	108	112	0.37	MDTR03	332	336	0.76
MDTR02	112	116	0.51	MDTR03	336	340	0.17
MDTR02	116	120	4.67	MDTR03	340	344	1.65
MDTR02	120	124	0.99	MDTR03	344	348	1.04
MDTR02	124	128	0.99	MDTR03	348	352	0.54

^{*} Notes to Exploration Results

- (i) Assaying conducted by Intertek Laboratories, Tarkwa, Ghana using industry standard 50g lead collection fire assays with AAS finish.
- (ii) Reference standards, field duplicates and blank samples are routinely inserted at 1:20 and assays of quality control samples are routinely monitored.
- (iii) Assays are reported within the limits of 0.01g/t analytical precision.