

1 May 2012

The Manager Company Announcements Office Australian Securities Exchange 4th Floor, 20 Bridge Street SYDNEY NSW 2000

### **INVESTOR PRESENTATION – APRIL 2012**

Attached please find an Investor Presentation which provides an update on the Company's projects.

Hastings representatives will be presenting at:

### Proactive Investors One2One Forum Radisson Blu Hotel Cnr Pitt & O'Connell Street Sydney 4.30pm on 2 May 2012.

Investors interested in discussing the Company's projects should contact the Technical Director, Steve Mackowski, on + 61 2 9078 7674.

Guy Robertson Company Secretary

Register for the Proactive Investors One2One Forum on

http://www.proactiveinvestors.com.au/register/event\_details/42

# Investor Presentation Supplying Critical Metals For New Technologies

**April 2012** 



www.hastingsraremetals.com



### **Important Information**

All currency amounts are in AUD\$ unless stated otherwise.

### Disclaimer

This presentation has been prepared by Hastings Rare Metals Limited ("**Company**"). It does not purport to contain all the information that a prospective investor may require in connection with any potential investment in the Company. You should not treat the contents of this presentation, or any information provided in connection with it, as financial advice, financial product advice or advice relating to legal, taxation or investment matters.

No representation or warranty (whether express or implied) is made by the Company or any of its officers, advisers, agents or employees as to the accuracy, completeness or reasonableness of the information, statements, opinions or matters (express or implied) arising out of, contained in or derived from this presentation or provided in connection with it, or any omission from this presentation, nor as to the attainability of any estimates, forecasts or projections set out in this presentation.

This presentation is provided expressly on the basis that you will carry out your own independent inquiries into the matters contained in the presentation and make your own independent decisions about the affairs, financial position or prospects of the Company. The Company reserves the right to update, amend or supplement the information at any time in its absolute discretion (without incurring any obligation to do so).

Neither the Company, nor its related bodies corporate, officers, their advisers, agents and employees accept any responsibility or liability to you or to any other person or entity arising out of this presentation including pursuant to the general law (whether for negligence, under statute or otherwise), or under the Australian Securities and Investments Commission Act 2001, Corporations Act 2001, Competition and Consumer Act 2010 or any corresponding provision of any Australian state or territory legislation (or the law of any similar legislation in any other jurisdiction), or similar provision under any applicable law. Any such responsibility or liability is, to the maximum extent permitted by law, expressly disclaimed and excluded.

Nothing in this material should be construed as either an offer to sell or a solicitation of an offer to buy or sell securities. It does not include all available information and should not be used in isolation as a basis to invest in the Company.

#### Future matters

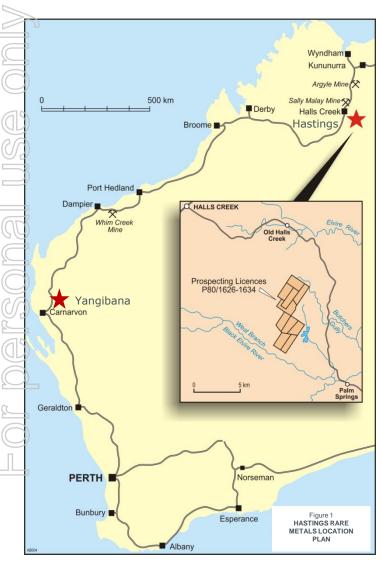
This presentation contains reference to certain intentions, expectations, future plans, strategy and prospects of the Company.

Those intentions, expectations, future plans, strategy and prospects may or may not be achieved. They are based on certain assumptions, which may not be met or on which views may differ and may be affected by known and unknown risks. The performance and operations of the Company may be influenced by a number of factors, many of which are outside the footrol of the Company. No representation or warranty, express or implied, is made by the Company, or any of its directors, officers, employees, advisers or agents that any intentions, expectations or plans will be achieved either totally or partially or that any particular rate of return will be achieved.

Given the risks and uncertainties that may cause the Company's actual future results, performance or achievements to be materially different from those expected, planned or intended, recipients should not place undue reliance on these intentions, expectations, future plans, strategy and prospects. The Company does not warrant or represent that the actual results, performance or achievements will be as expected, planned or intended.

#### Competent Person's Statement

The information in this presentation that relates to Mineral Resources is based on information compiled by Simon Coxhell. Mr. Coxhell is employed as a consultant to the Company and a member of the Australian Institute of Mining and Metallurgy. Mr. Coxhell has sufficient experience relevant to the styles of mineralisation and types of deposits which are covered in this presentation and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2004 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("**JORC Code**"). Mr. Coxhell consents to the inclusion in this presentation of the matters based on his information in the form and context in which it appears.


### **Exploration Targets**

The terms "Target" or "Exploration Target" where used in this presentation should not be misunderstood or misconstrued as an estimate of a Mineral Resource as defined in the JORC Code and therefore the terms have not been used in this context. Exploration Targets are conceptual in nature, there has been insufficient exploration to define a Mineral Resource and it is uncertain further exploration will result in the determination of a Mineral Resource.

### **US** disclosure

This document does not constitute any part of any offer to sell, or the solicitation of an offer to buy, any securities in the United States or to, or for the account or benefit of any "US person" as defined in Regulation S under the US Securities Act of 1993 ("**Securities Act**"). The Company's shares have not been, and will not be, registered under the Securities Act or the securities laws of any state or other jurisdiction of the United States, and may not be offered or sold in the United States or to any US person without being so registered or pursuant to an exemption from registration including an exemption for qualified institutional buyers.





## Hastings Overview

Hastings Rare Metals Limited (HAS) has two Rare Earth Projects in WA, both recognised by GeoScience Australia as key REO deposits. Both deposits remain open at depth and along strike.

### Hastings Project 100%

- Hastings Project (WA) is Australia's largest Heavy Rare Earth project\*, and includes significant Dysprosium and Yttrium, with Niobium and Zirconium byproducts.
- 2011 drilling defined JORC-compliant Indicated and Inferred Resources totalling:

36.2 million tonnes @2102ppm (0.21%) Total Rare Earth Oxides (**TREO**)including 85% Heavy Rare Earth Oxides (**HREO**)

3546ppm (0.35%) Nb<sub>2</sub>O<sub>5</sub>

8913ppm (0.89%) ZrO<sub>2</sub>

- Over \$10m previously spent on the project
- Historical metallurgical results from pilot plant tests show recoveries of around 75% for Dysprosium and Yttrium, 80% for Niobium and Zirconium
- Metallurgical test work is ongoing on samples prepared from the 2011 drilling programme

### Yangibana Project 60%

- Yangibana Project (WA) (206 sq. km under Exploration Licences) average grades of circa all 1.7%-2.0% TREO with high proportion of Neodymium (24%)
- \* HREO projects defined as > 35% HREO:TREO

Hastings Projects, Western Australia



### **Board Members**

## **Board & Advisers**

### David Nolan (Chairman)

Mr Nolan is a corporate lawyer with over 13 years experience advising on corporate acquisitions, capital raisings and financing for mining companies. Mr Nolan leads the Sydney corporate advisory practice of Mills Oakley Lawyers and was previously a senior adviser at the London Stock Exchange. Mr Nolan has extensive experience advising on corporate governance and legal compliance for small to medium cap listed companies.

### Steve Mackowski (Technical Director)

Mr Mackowski joined Hastings after serving at rare earths company Arafura Resources Ltd as General Manager Project Development & Technology. Mr Mackowski is a qualified engineer in mineral processing with over 30 years technical and operational experience in rare earths, uranium, industrial minerals, nickel, kaolin and iron ore. He has also worked at a number of major mining companies including, Iluka, TiWest, WMC, Comalco, Hamersley Iron and Mary Kathleen Uranium Ltd.

### **Tony Ho (Non-Executive Director)**

Mr Ho is an experienced company director having held numerous executive directorships and chief financial officer roles including Brazin Ltd. Mr Ho is currently a non-executive Director of Dolomatrix International Limited and a non-executive Director of rare earths and uranium development company Greenland Minerals and Energy Limited. He is also the non-executive Chairman of Apollo Minerals Limited.

### Guy Robertson (Chief Financial Officer/Company Secretary)

Mr Robertson is an experienced Company Director with over 25 years experience as a CFO and Company Secretary for mining exploration companies. Mr Robertson's previous roles include Finance Director of Jardine Lloyd Thompson, Chief Operating Officer of Collier Jardine Asia Pacific and General Manager of Franklins Limited.

### **Advisory Board**

### **Tony Grey**

Mr Grey is a corporate advisor and professional company director specialising in the provision of strategic advice. His corporate career spans numerous appointments including a diverse range of highly successful rare metal companies. He is presently the Chairman of International Ferro Metals Limited and a Director of International Potash Corporation. He is the former Managing Director of Pancontinental Mining Limited and Chairman of Kingsgate Consolidated Limited. He was also the former Chairman of the World Nuclear Association (previously called the Uranium Institute).

### **Dr. Tony Mariano**

Dr. Mariano is a geological consultant to the rare metal and rare earth mineral industry and is considered the preeminent authority on the geology and mineralogy of rare earths, niobium, tantalum, and other rare metals. Dr. Mariano has a PhD in geology from Boston University, has consulted to the United Nations, the United States Government, many of the world's rare metal and rare earth explorers and developers including Union Carbide Corporation and Molycorp Inc., and has authored and co-authored many technical publications on rare earths. During his time with Molycorp, Dr. Mariano spent time evaluating the Hastings Project.



## Hastings Project A Highly Experienced Project Team

### Steve Mackowski (Technical Director)

Mr Mackowski joined Hastings after serving at rare earths company Arafura Resources Ltd as General Manager Project Development & Technology. Mr Mackowski is a qualified engineer in mineral processing with over 30 years technical and operational experience in rare earths, uranium, industrial minerals, nickel, kaolin and iron ore. He has also worked at a number of major mining companies including, Iluka, TiWest, WMC, Comalco, Hamersley Iron and Mary Kathleen Uranium Ltd.

**ANSTO** (Australian Nuclear Science Technology Organisation) - flow sheet developers for Lynas, Arafura Resources and recently concluded the successful development of the flow sheet and pilot plant for Dubbo Zirconia (Alkane).

Jacobs Engineering – A world leader in process and project development

AMMTEC – Analytical laboratory and technical services

**NAGROM** – Mineral processing and metallurgical testing

SGS – Laboratory and environmental services

### Andy Border (Exploration Manager)

Mr Border is a geologist with over 30 years experience in the exploration and mining industry covering a wide range of commodities and projects from grass-roots exploration through to development and mining. Previous exploration roles include evaluation of significant gold, copper, rare metals and industrial mineral projects. Andy has been managing the exploration efforts together with Simon Coxhell.

For persor



# **Capital Structure**

| ASX Code - HAS               |                      |
|------------------------------|----------------------|
| Ordinary Shares              | 125.26 million       |
| Unlisted Options             | 15m at 40 cents      |
| Unlisted Options             | 37m at 25 cents      |
| Unlisted Options             | 20.6m at 15 cents    |
| Cash at hand (12 April 2012) | A\$4 million approx. |

| Trading Summary                          |          |
|------------------------------------------|----------|
| Market Capitalisation<br>(12 April 2012) | A\$17.5m |
| Last Price                               | 14c      |

| Тор 20                     | 59%  |
|----------------------------|------|
| Kongoni                    | 19%  |
| Singapore investment funds | 12%  |
| Japanese REE fund          | 6.4% |
| Board/Management           | 7%   |





### **Rare Earths and Rare Metals**

**Periodic Table of the Elements** 

| 1A<br>1<br><b>H</b>                     |                                         |                                       |                                                                     |                                                                   |                                                                                |                                                                     |                                                                   |                                                                  |                                                                   |                                                                 |                                                                                  | © 2009                                                                |                                                                      | about.com<br>Imenstin                                          |                                                                        |                                                                    | 8A<br>2<br><b>He</b>                                                 |
|-----------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|
| 1.00794<br>Hydrogen                     | 2A                                      |                                       |                                                                     |                                                                   |                                                                                |                                                                     |                                                                   |                                                                  |                                                                   |                                                                 |                                                                                  | 3A                                                                    | 4A                                                                   | 5A                                                             | 6A                                                                     | 7A                                                                 | 4.002602<br>Helium                                                   |
| 3<br>Li<br>6.941<br>Lithium             | 4<br><b>Be</b><br>9.012182<br>Beryllium |                                       |                                                                     |                                                                   |                                                                                | Ear                                                                 |                                                                   | <b>`</b>                                                         |                                                                   | are                                                             |                                                                                  | 5<br><b>B</b><br>10.811<br>Boron                                      | 6<br><b>C</b><br>12.0107<br>Carbon                                   | 7<br><b>N</b><br>14.0067<br>Nitrogen                           | 8<br><b>O</b><br>15.9994<br>Oxygen                                     | 9<br><b>F</b><br>18.9984032<br>Fluorine                            | 10<br><b>Ne</b><br>20.1797<br>Neon                                   |
| 11<br>Na<br>22.989769<br>Sodium         | 12<br>Mg<br>24.3050<br>Magnesium        | 3В 🔰                                  |                                                                     | 5B                                                                | ng<br><sub>6B</sub>                                                            | 7B                                                                  | 30                                                                | <b>)</b><br>— 8B —                                               |                                                                   | tals                                                            | 2B                                                                               | 13<br>AI<br>26.9815386<br>Aluminum                                    | 14<br>Si<br>28.0855<br>Silicon                                       | 15<br>P<br>30.973762<br>Phosphorus                             | 16<br><b>S</b><br>32.065<br>Sulfur                                     | 17<br>CI<br>35.453<br>Chlorine                                     | 18<br>Ar<br>39.948<br>Argon                                          |
| 19<br>K<br>39.0983<br>Potassium         | 20<br><b>Ca</b><br>40.078<br>Calcium    | 21<br>Sc<br>44.955912<br>Scandium     | 22<br><b>Ti</b><br>47.867<br>Titanium                               | 23<br>V<br>50.9415<br>Vanadium                                    | 24<br><b>Cr</b><br>51.9961<br>Chromium                                         | 25<br>Mn<br>54.938045<br>Manganese                                  | 26<br>Fe<br>55.845<br>Iron                                        | 27<br><b>Co</b><br>58.933195<br>Cobalt                           | 28<br><b>Ni</b><br><sup>58.6934</sup><br>Nickel                   | 29<br>Cu<br>63.546<br>Copper                                    | 30<br>Zn<br>65.38<br>Zinc                                                        | 31<br><b>Ga</b><br>69.723<br>Gallium                                  | 32<br>Ge<br>72.64<br>Germanium                                       | 33<br><b>As</b><br>74.92160<br>Arsenic                         | 34<br>Se<br>78.96<br>Selenium                                          | 35<br><b>Br</b><br>79.904<br>Bromine                               | 36<br><b>Kr</b><br>83.798<br>Krypton                                 |
| 37<br><b>Rb</b><br>85.4678<br>Rubidium  | 38<br><b>Sr</b><br>87.62<br>Strontium   | 39<br><b>Y</b><br>88.90585<br>Yttrium | 40<br><b>Zr</b><br>91.224<br>Zirconium                              | 41<br><b>Nb</b><br>92.90638<br>Niobium                            | 42<br>Mo<br>95.96<br>Molybdenum                                                | 43<br>Tc<br>[98]<br>Technetium                                      | 44<br><b>Ru</b><br>101.07<br>Ruthenium                            | 45<br>Rh<br>102.90550<br>Rhodium                                 | 46<br>Pd<br>106.42<br>Palladium                                   | 47<br>Ag<br>107.8682<br>Silver                                  | 48<br>Cd<br>112.411<br>Cadmium                                                   | 49<br><b>In</b><br>114.818<br>Indium                                  | 50<br><b>Sn</b><br>118.710<br>Tin                                    | 51<br><b>Sb</b><br>121.760<br>Antimony                         | 52<br><b>Te</b><br>127.60<br>Tellurium                                 | 53<br> <br>126.90447<br>lodine                                     | 54<br>Xe<br>131.293<br>Xenon                                         |
| 55<br><b>Cs</b><br>32.9054519<br>Cesium | 56<br><b>Ba</b><br>137.327<br>Barium    | 57-71<br>Lanthanides                  | 72<br><b>Hf</b><br>178.49<br>Hafnium                                | 73<br><b>Ta</b><br>180.94788<br>Tantalum                          | 74<br>W<br>183.84<br>Tungsten                                                  | 75<br><b>Re</b><br>186.207<br>Rhenium                               | 76<br><b>OS</b><br>190.23<br>Osmium                               | 77<br><b>Ir</b><br>192.217<br>Iridium                            | 78<br>Pt<br>195.084<br>Platinum                                   | 79<br>Au<br>196.966569<br>Gold                                  | 80<br>Hg<br>200.59<br>Mercury                                                    | 81<br><b>TI</b><br>204.3833<br>Thallium                               | 82<br>Pb<br>207.2<br>Lead                                            | 83<br><b>Bi</b><br>208.98040<br>Bismuth                        | 84<br>Po<br>[209]<br>Polonium                                          | 85<br>At<br>[210]<br>Astatine                                      | 86<br><b>Rn</b><br>[222]<br>Radon                                    |
| 87<br><b>Fr</b><br>[223]<br>Francium    | 88<br><b>Ra</b><br>[226]<br>Radium      | 89 103<br>Actinides                   | 104<br><b>Rf</b><br>[267]<br>Rutherfordium                          | 105<br><b>Db</b><br>[268]<br>Dubnium                              | 106<br>Sg<br>[271]<br>Seaborgium                                               | 107<br><b>Bh</b><br>[272]<br>Bohrium                                | 108<br><b>HS</b><br>[270]<br>Hassium                              | 109<br>Mt<br>[276]<br>Meitnerium                                 | 110<br><b>DS</b><br>[281]<br>Darmstadtium                         | 111<br><b>Rg</b><br>[280]<br>Roentgenium                        | 112<br>Cp<br>[285]<br>Copernicium                                                | 113<br>Uut<br>[284]<br>Ununtrium                                      | 114<br><b>Uuq</b><br>[289]<br>Ununquadium                            | 115<br>Uup<br>[288]<br>Ununpentium                             | 116<br><b>Uuh</b><br>[293]<br>Ununhexium                               | 117<br><b>Uus</b><br>[294]<br>Ununseptium                          | 118<br><b>Uuo</b><br>[294]<br>Ununoctium                             |
|                                         | Lantha<br>Act                           | anides                                | 57<br>La<br>138.90547<br>Lanthanum<br>89<br>AC<br>[227]<br>Actinium | 58<br>Ce<br>140.116<br>Cerium<br>90<br>Th<br>232.03806<br>Thorium | 59<br>Pr<br>140.90765<br>Praseodymium<br>91<br>Pa<br>231.03588<br>Protactinium | 60<br>Nd<br>144.242<br>Neodymium<br>92<br>U<br>238.02891<br>Uranium | 61<br>Pm<br>[145]<br>Promethium<br>93<br>Np<br>[237]<br>Neptunium | 62<br>Sm<br>150.36<br>Samarium<br>94<br>Pu<br>[244]<br>Plutonium | 63<br>Eu<br>151.964<br>Europium<br>95<br>Am<br>[243]<br>Americium | 64<br>Gd<br>157.25<br>Gadolinium<br>96<br>Cm<br>[247]<br>Curium | 65<br><b>Tb</b><br>158.92535<br>Terbium<br>97<br><b>Bk</b><br>[247]<br>Berkelium | 66<br>Dy<br>162.500<br>Dysprosium<br>98<br>Cf<br>[251]<br>Californium | 67<br>Ho<br>164.93032<br>Holmium<br>99<br>Es<br>[252]<br>Einsteinium | 68<br>Er<br>167.259<br>Erbium<br>100<br>Fm<br>[257]<br>Fermium | 69<br>Tm<br>168.93421<br>Thulium<br>101<br>Mcd<br>[258]<br>Mendelevium | 70<br>Yb<br>173.054<br>Ytterbium<br>102<br>No<br>[259]<br>Nobelium | 71<br>Lu<br>174.9668<br>Lutetium<br>103<br>Lr<br>[262]<br>Lawrencium |
|                                         |                                         |                                       | Alkali<br>Metals                                                    | Alka<br>Ea                                                        |                                                                                | Basic<br>Metal                                                      | Haloge                                                            | n Noble                                                          | e Gas <mark>No</mark>                                             | n Metal                                                         | Rare<br>Earth                                                                    |                                                                       |                                                                      | ansition<br>Metal                                              |                                                                        |                                                                    |                                                                      |



## Value Drivers

HAS leads the way in valuable REE mix with HREE (Dysprosium and Yttrium) at Hastings and LREE (Neodymium) at Yangibana. These are classified as "critical" rare earths by the US Department of Energy (December 2010)

**Dysprosium** has been highlighted as being among the highest priority and most critical strategic metals now consumed world-wide for **high technology, clean energy applications and military**. The December 2010 report by the US Department of Energy named dysprosium as the single most critically threatened strategic metal to the United States. This situation has also been recognised in Europe and Asia.

**Yttrium** The most important use of yttrium is in making **phosphors**, such as the red ones used in television and tablet displays and in LEDs. Other uses include the production of electrodes, electrolytes, electric filters, lasers and superconductors.

**Neodymium** oxide is widely considered one of the three rare earth oxides with critical supply shortages looming in the **high performance magnet industry**.

### Also at Hastings

**Niobium** and tantalum commonly occur in the associated minerals columbite  $(Fe,Mn)Nb_2O_5$  and tantalite  $(Fe,Mn)Ta_2O_5$ . Main source of niobium however is pyrochlore  $NaCaNb_2O_6F$ . Niobium is an important alloying element in steels and Fe-Ni-Co based **superalloys**. Lesser use in diverse areas such as camera lenses and coating of glass for computer screens.

**Zirconium** occurs predominantly as the silicate mineral zircon  $ZrO_2$ . Used mostly in **ceramics**, foundry applications, opacifiers and **refractories**. Main growth areas are advanced ceramics and auto-exhaust catalysts. Significant use in nuclear energy industry in fuel rods and reactor vessel construction.

**Tantalum** occurs in wide range of minerals but any tantalum-bearing concentrate is commonly termed tantalite. Highly corrosion resistant and refractory. Used in cutting tools, mobile phones, high temperature alloys and furnace parts to computer hard drive discs.



### Implications of Substitution and Recycling on Future Growth

t Rare Earths Cerium Lanthanum **Dysprosium** Yttrium

Uses

Industrial Commodities Glass polishing Crude Oil cracking Rechargeable batteries





Neodymium Praseodymium Industrial Necessities Magnets used in wind turbines, electric / hybrid cars and hi-speed rail systems Energy efficient lights

Hi-Tech and Clean Energy **High Efficiency Magnets** Phosphors (LCD's) Military applications

**Heavy Rare Earths** 

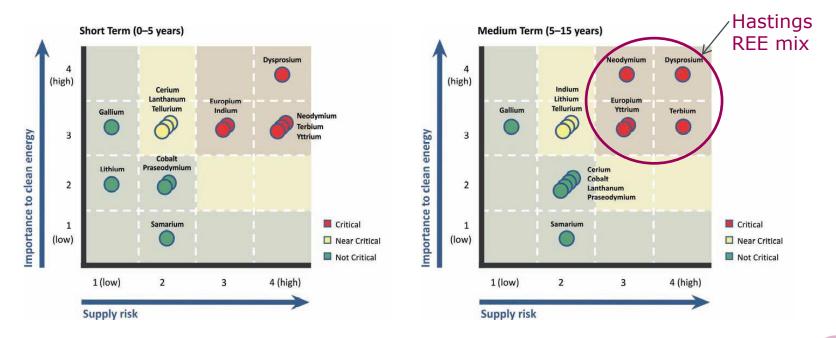




### Market Direction Lower Prices

Recent prices have driven substitution. Proposed high volumes of new capacity will drive down prices and promote strong competition

Sustained good growth but recycling will occur soon at end of lifecycle in larger units


Prolonged high demand with no substitution or recycling due to high value applications but low use per item

**Higher Prices** 



# Heavy Rare Earths in Serious Undersupply

Critical Supply Matrix (US Department of Energy, December 2010)




- Hastings project includes significant resources of Dysprosium and Yttrium while Yangibana contains Neodymium, three of the critical rare earths (CREO).
- The Hastings project mineralisation contains 85% HREO to TREO the highest percentage of all advanced exploration projects\*.

<sup>\*</sup> Defined as projects with formally defined mineral resources or reserves under the guidelines of a relevant scheme such as the JORC code or NI43-101

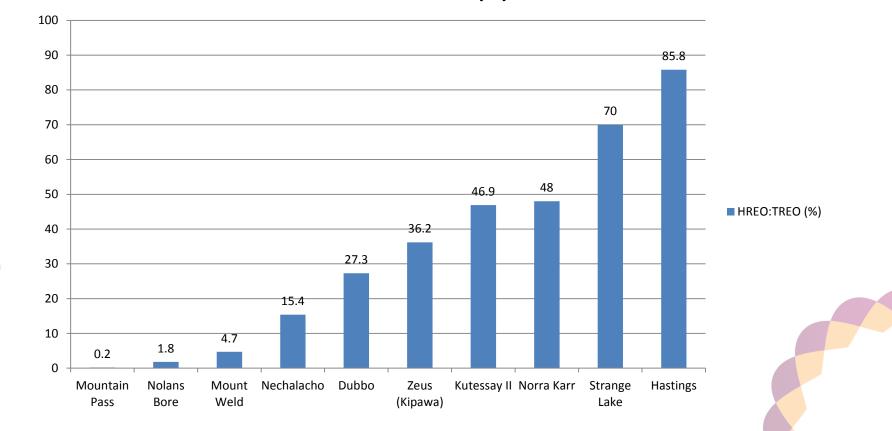


## **Rare Earth Price History**



- Continued restrictions on exports and shortfall in supply/demand will support long term high HREO prices
- Further supply from new producers will threaten LREO prices and volume

\* Source: Metal Pages price average for the respective period. N.B prices are for a nominal 99% REO product, except for Europium which is reported at 99.9%




use only



## Hastings Project HREO Ratio – A Clear Advantage

HREO:TREO (%)



12



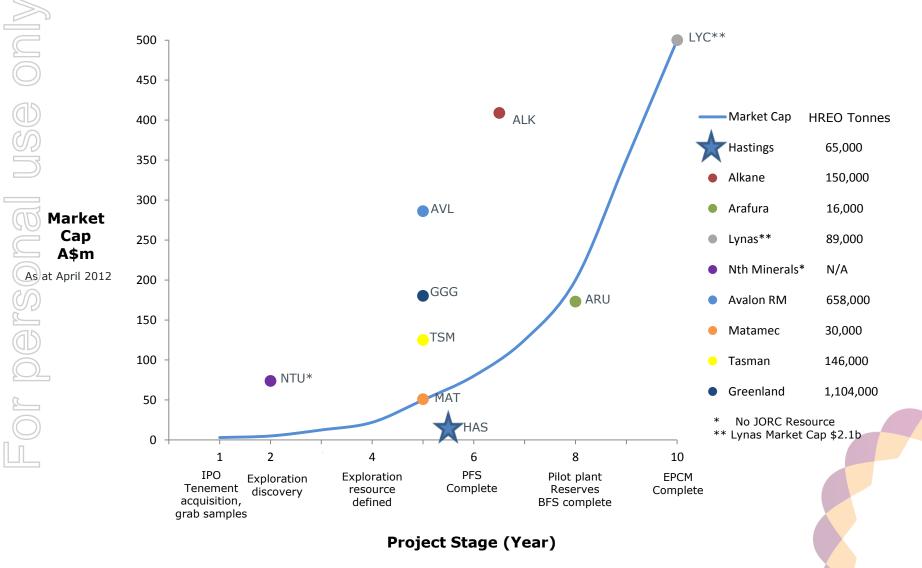
### Hastings Project Value Distribution

|                     |             |             |             |        |               |        |               | alue         | Dist         | -      |            |
|---------------------|-------------|-------------|-------------|--------|---------------|--------|---------------|--------------|--------------|--------|------------|
| 2                   |             | HAST<br>(H/ | INGS<br>AS) |        | A KARR<br>SM) |        | IGE LK<br>RM) | NECHA<br>(A) | LACHO<br>/L) |        | BBO<br>LK) |
| D                   | \$/kg China |             | In Situ     |        | In Situ       |        | In Situ       |              | In Situ      |        | In Situ    |
| Oxides              | FOB*        | % Dist      | \$/kg       | % Dist | \$/kg         | % Dist | \$/kg         | % Dist       | \$/kg        | % Dist | \$/kg      |
| Lanthanum           | 28          | 1.6         | 0.45        | 10.1   | 10.44         | 7.5    | 2.10          | 17.1         | 4.80         | 22.9   | 6.42       |
| Cerium              | 27          | 6.0         | 1.63        | 23.9   | 21.01         | 15.0   | 4.05          | 39.5         | 10.60        | 43.2   | 11.66      |
| Praseodymium        | 135         | 0.9         | 1.22        | -      | -             | -      | -             | 4.9          | 6.65         | 4.7    | 6.36       |
| Neodymium           | 135         | 3.5         | 4.69        | 5.0    | 6.75          | 5.0    | 6.75          | 19.2         | 25.96        | 1.7    | 2.24       |
| Samarium            | 88          | 2.2         | 1.43        | 2.5    | 1.76          | 2.5    | 2.20          | 3.8          | 3.33         | 0.3    | 0.22       |
| Total LREO Value/kg |             |             | 9.92        |        | 32.57         |        | 15.10         |              | 51.42        |        | 26.90      |
| Europium            | 3020        | 0.1         | 4.31        | -      | -             | -      | -             | 0.5          | 13.55        | 0.1    | 2.69       |
| Terbium             | 2220        | 1.1         | 25.35       | 0.3    | 7.08          | -      | -             | 0.4          | 8.98         | 0.4    | 7.92       |
| Dysprosium          | 1170        | 8.8         | 103.53      | 6.0    | 70.00         | 1.3    | 14.67         | 1.8          | 21.34        | 2.4    | 27.72      |
| Gadolinium          | 148         | 3.6         | 5.28        | 4.0    | 5.04          | -      | -             | 3.1          | 4.61         | 2.6    | 3.77       |
| Yttrium             | 145         | 53.2        | 77.26       | 37.8   | 54.80         | 55.0   | 79.74         | 7.8          | 11.26        | 18.6   | 26.96      |
| Total HREO Value/kg |             |             | 215.73      |        | 137.72        |        | 94.41         |              | 59.24        |        | 69.06      |
| Total TREO Value/kg |             |             | 225.65      |        | 170.29        |        | 109.51        |              | 111.16       |        | 95.96      |

pricing as at end March 2012

- The Hastings deposit has the highest in situ value per kg of REO versus its HREO peers
- The Hastings deposit has the least exposure to any potential decline in Light Rare Earth Oxides (LREO) prices
- Lynas TREO Value \$84.61/kg (as at end March 2012)




## Hastings Project Positioning

| Advanced Rare Ear | th projects, sorted | l by conta | ained ton | nes of HRE | D    |      |           |
|-------------------|---------------------|------------|-----------|------------|------|------|-----------|
| Deposit           | Company             | Status     | Con'd t   | Resource   | %    | %    | HREO:TREO |
|                   |                     |            | HREO      | mt         | TREO | HREO | %         |
| HREO PROJECTS     | (>35% HREO:TR       | EO)        |           |            |      |      |           |
| Strange Lake      | QRM                 | Inf        | 408,280   | 50.80      | 1.15 | 0.80 | 70.0      |
| Norra Karr        | TSM                 | Inf        | 145,745   | 60.50      | 0.51 | 0.24 | 48.0      |
| Lemhi Pass        | UREE                | Inf        | 155,509   | 70.75      | 0.52 | 0.22 | 42.1      |
| HASTINGS          | HAS                 | Ind/Inf    | 65,269    | 36.20      | 0.21 | 0.18 | 85.8      |
| Zeus (Kipawa)     | MAT                 | Ind/Inf    | 29,733    | 16.31      | 0.50 | 0.18 | 36.2      |
| Kutessay II       | RUU                 | Inf        | 19,947    | 16.27      | 0.26 | 0.12 | 46.9      |
| LREO PROJECTS (   | <35% HREO:TR        | EO)        |           |            |      |      |           |
| Kvanefjeld        | GGG                 | Ind/Inf    | 1,103,802 | 861.00     | 1.07 | 0.13 | 12.0      |
| Nechalacho        | AVL                 | Ind/Inf    | 658,035   | 315.00     | 1.36 | 0.21 | 15.4      |
| Dubbo             | ALK                 | Ind/Inf    | 150,368   | 70.20      | 0.79 | 0.21 | 27.3      |
| Mount Weld        | LYC                 | M/Ind/Inf  | 88,578    | 23.94      | 7.93 | 0.37 | 4.7       |
| Nolans Bore       | ARU                 | M/Ind/Inf  | 15,514    | 30.30      | 2.80 | 0.05 | 1.8       |
| Mountain Pass     | MCP                 | M/Ind/Inf  | 4,000     | 20.00      | 8.47 | 0.02 | 0.2       |
| Sartarfoq         | HUD                 | Inf        | 4,667     | 14.10      | 1.51 | 0.03 | 2.2       |
| Cummins Range     | NAV                 | Inf        | 4,014     | 11.15      | 1.08 | 0.04 | 3.3       |

### Hastings is the 4<sup>th</sup> largest HREO project in the world and the largest in Australia

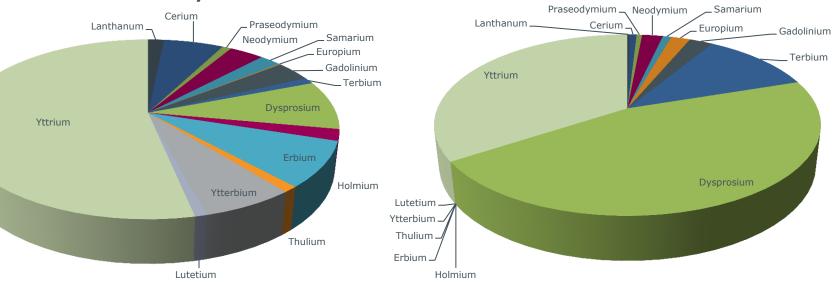


### Market Cap v Project Stage



of defsonal




# Hastings Project Rare Earth Distribution

**Distribution of REOs by \$ Value** 

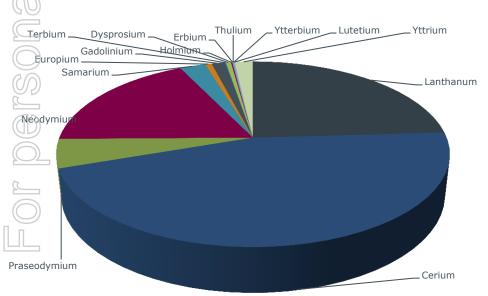
|              | Rare Earth Distribut |       |       |                         |       |                         |       |            |                         |       |       |       | outi  |                                |                        |
|--------------|----------------------|-------|-------|-------------------------|-------|-------------------------|-------|------------|-------------------------|-------|-------|-------|-------|--------------------------------|------------------------|
|              | La₂O₅                | Ce₂O₅ | Pr₂O₅ | <mark>●</mark><br>Nd₂O₅ | Sm₂O₅ | <mark>●</mark><br>Eu₂O₅ | Gd₂O₅ | ●<br>Tb₂O₅ | <mark>●</mark><br>Dy₂O₅ | Ho₂O₅ | Er₂O₅ | Tm₂O₅ | Yb₂O₅ | Lu <sub>2</sub> O <sub>5</sub> | ●<br>Y <sub>2</sub> O₃ |
| Grade<br>ppm | 34                   | 127   | 19    | 73                      | 46    | 3                       | 75    | 24         | 186                     | 43    | 173   | 22    | 139   | 18                             | 1120                   |

Critical Rare Earths (US Department of Energy December 2010)



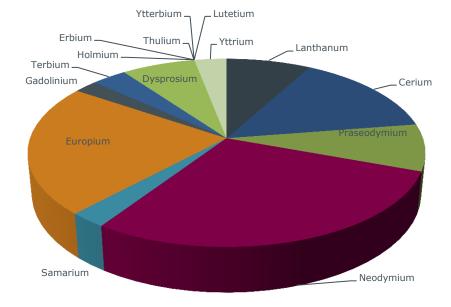


- Hastings has highest HREO to TREO of all advanced projects\* at 85%
- Significant value contained in Y and Dy component

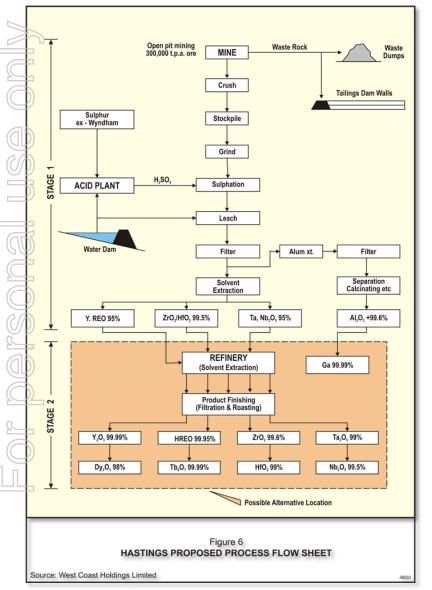

\* Defined as projects with formally defined mineral resources or reserves under the guidelines of a relevant scheme such as the JORC code or NI43-101



# Lynas Project Rare Earth Distribution


|   |              |       |                                |                                |       |       |       |       | Ra    | re l                           | Ear   |                                | Dis   |                                |                                |      |
|---|--------------|-------|--------------------------------|--------------------------------|-------|-------|-------|-------|-------|--------------------------------|-------|--------------------------------|-------|--------------------------------|--------------------------------|------|
| 0 | )            | La₂O₅ | Ce <sub>2</sub> O <sub>5</sub> | Pr <sub>2</sub> O <sub>5</sub> | Nd₂O₅ | Sm₂O₅ | Eu2O5 | Gd₂O₅ | Tb₂O₅ | Dy <sub>2</sub> O <sub>5</sub> | Ho₂O₅ | Er <sub>2</sub> O <sub>5</sub> | Tm₂O₅ | Yb <sub>2</sub> O <sub>5</sub> | Lu <sub>2</sub> O <sub>5</sub> | Y₂O₃ |
|   | Grade<br>ppm | 24090 | 45650                          | 5040                           | 18030 | 2520  | 630   | 1260  | 13    | 560                            | 13    | 13                             | 0     | 13                             | 0                              | 1770 |

Source: (Lynas Corporation website)




### **Distribution of REOs by Volume**

**Distribution of REOs by \$ Value** 







## Hastings Project Processing Testwork

- West Coast Holdings (WCH) undertook significant amounts of processing test work in the 1980s culminating in the establishment of a pilot plant at the Warren Springs laboratory in UK.
- 100 tonnes of oxidised mineralisation was sent to UK and test work was proceeding well when WCH entered receivership and the pilot plant was halted.
- Hastings has commenced validation and verification processing test work with a number of experienced rare earth processing groups in Australia. Optimisation test work will follow to reflect the changes in market conditions from 1990 to today.
- Previously optimised metallurgical test work resulted in extraction efficiencies of around 75% for Dysprosium and Yttrium, and 80% for Nb and Zr.
- Financial assessment of product suite and form is underway to reflect current and future market requirements

Flow Sheet (1990) to be verified and validated



# Hastings Project Previous Exploration

Early exploration for uranium highlighted radiometric anomalies.

UNOCAL (previously parent company of Molycorp) (1982-85) carried out exploration including detailed mapping, sampling, trenching and 19 drillholes.

Defined the "Niobium Tuff" as the rare metal-rare earth bearing horizon.

Mineralogical studies at CSIRO confirmed fine-grained nature of mineralisation.

West Coast Holdings (WCH) took over management and drilled a further 23 holes.

Intensive metallurgical testwork undertaken including establishing a pilot plant at Warren Springs laboratory in the UK (1989).

Testwork progressed positively but WCH fell into receivership and testwork and reporting was not completed.

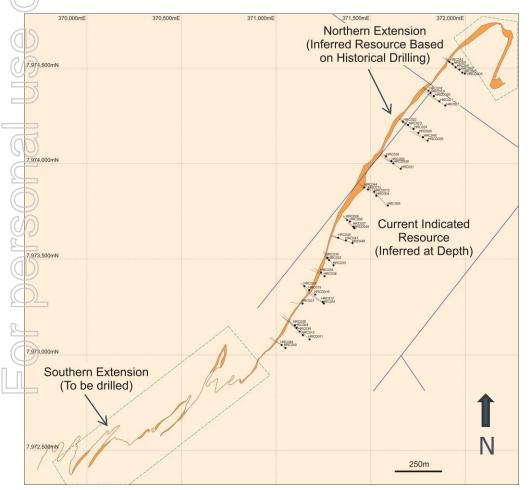
Various resource estimates carried out during the progress of exploration.





# Hastings Project *Resources*

In 2011 Hastings drilled 51 reverse circulation holes (7443m) and 8 diamond drill tails (HQ3) (739m).

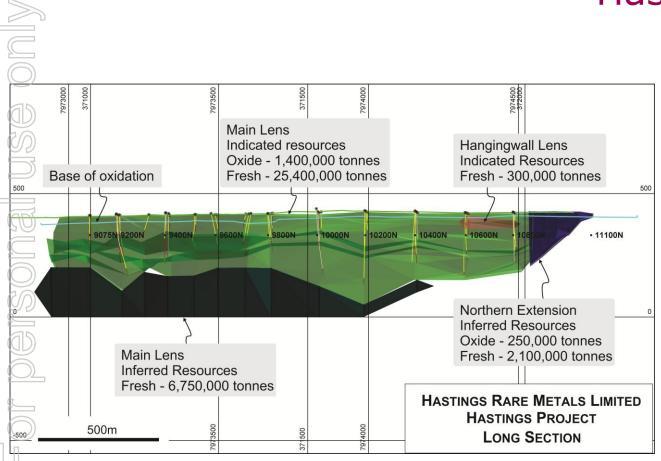

This tested the central 1.8km of strike to a maximum depth of 290m.

This enabled a detailed interpretation and resource estimation to be carried out, leading to the establishment of JORCcompliant resources of:

| 页<br>Eens/zone | Category  | Oxide/<br>Primary | Tonnes     | ppm              | ppm   | ppm   | ppm   | ppm              | ppm  | ppm  | ppm   | ppm  |
|----------------|-----------|-------------------|------------|------------------|-------|-------|-------|------------------|------|------|-------|------|
| 6              |           |                   |            | ZrO <sub>2</sub> | Nb2O5 | Ta2O5 | Ga2O5 | HfO <sub>2</sub> | TREO | HREO | Dy205 | Y2O3 |
| Main           | Indicated | Oxide             | 1,400,000  | 8860             | 3507  | 183   | 113   | 322              | 2151 | 1828 | 190   | 1132 |
|                | Indicated | Primary           | 25,400,000 | 8914             | 3547  | 182   | 110   | 318              | 2100 | 1802 | 186   | 1120 |
| H/Wall         | Indicated | Primary           | 300,000    | 9080             | 3625  | 183   | 104   | 311              | 2130 | 1772 | 185   | 1096 |
| Total          | Indicated |                   | 27,100,000 | 8913             | 3545  | 183   | 110   | 318              | 2103 | 1803 | 186   | 1120 |
| Nth Extension  | Inferred  | Oxide             | 250,000    | 8860             | 3507  | 182   | 113   | 322              | 2151 | 1828 | 190   | 1132 |
| 6              | Inferred  | Primary           | 2,100,000  | 8914             | 3547  | 183   | 110   | 318              | 2100 | 1802 | 186   | 1120 |
| Main Deep      | Inferred  | Primary           | 6,750,000  | 8914             | 3547  | 183   | 110   | 318              | 2100 | 1802 | 186   | 1120 |
| Total          | Inferred  |                   | 9,100,000  | 8914             | 3547  | 183   | 110   | 318              | 2100 | 1802 | 186   | 1120 |
| TOTAL          |           |                   | 36,200,000 | 8913             | 3546  | 182   | 110   | 318              | 2102 | 1802 | 186   | 1120 |



## Hastings Project Significant Potential to Increase Resource




- Current Indicated resources confined to central 1.9km of sub-cropping mineralisation
- Inferred Resources at depth below Indicated Resources and around the northern fold closure
- Southern Extension locally returns high scintillometer readings over significant widths (to 40m) and warrants drilling (strike length of 750 metres)
- Long mine life potential > 30 years

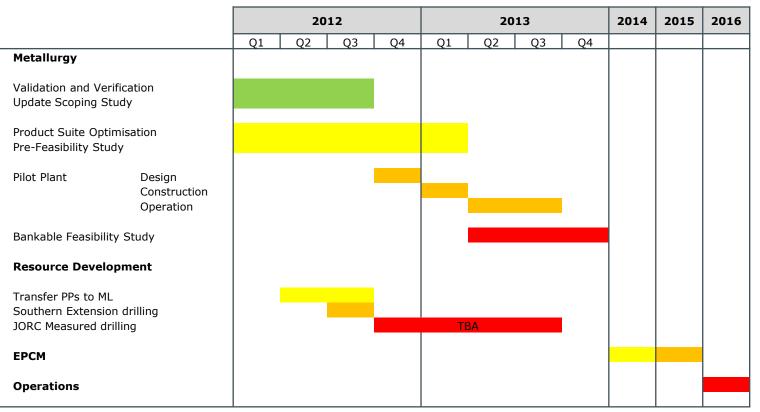
Hastings Project – Resource and Target Areas



# Hastings Project *Resources*



- Indicated and Inferred Resources extend to the base of the south – plunging syncline at the north end and to a maximum depth of around 400m
- Mineralisation remains open at depth down to the base of the syncline
- Mineralisation remains open to the south where it becomes tightly folded but can be traced for at least a further 750m



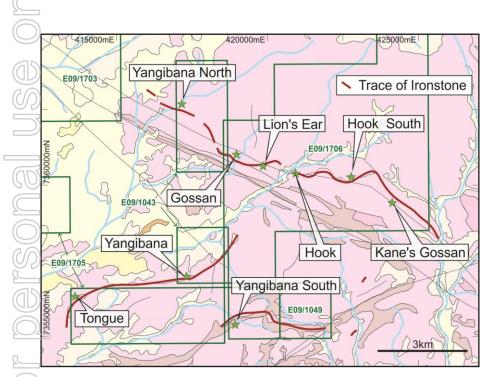

## Hastings Project Path Forward and significant milestones

- Validation and Verification of previous metallurgy (Mid Year)
- Scoping Study to confirm economics
- Define Southern Extension Opportunity
- Optimisation of product suite (End of Year)
- Pre-feasibility study (Early 2013)
- Pilot plant (Early 2013)
- Bankable Feasibility study (End of 2013)



## Hastings Project Schedule






# Yangibana Project *History*

- Known mineralisation is associated with long linear, narrow ironstone outcrops
- Early exploration based on elevated radio metrics assessed the ironstones for uranium, but also base metals
- Rock chips returned elevated rare earth values and the ironstones were drilled in the late 1980s
- 80 reverse circulation holes tested the ten main outcropping bodies
- Almost all holes intersected shallow oxidised mineralisation over widths from 2 to 6m
- Rare earth values associated with the mineral monazite
- Rare earths are heavily biased to LREO, with HREO averaging 600ppm
- However, the deposit contains unusually high neodymium values, averaging 4000ppm Nd2O5
  - Drilling and resource estimation tested only 2.2km of the potential strike length of the main mineralised zone that exceeds 7km within Hastings' ground
  - Subsequent surface sampling has returned TREO values up to 19.4%, with an arithmetic average of 56 samples taken from four areas in 2008 being 2.84%TREO



# Yangibana Project Previous Exploration



Yangibana – REO Mineralisation zones

| RC DRILL | ING | RESULTS | INCLUDED |
|----------|-----|---------|----------|
|          |     |         |          |
|          |     |         |          |

| Prospect        | m | %TREO |
|-----------------|---|-------|
| Yangibana North | 7 | 2.21  |
|                 | 8 | 2.78  |
|                 | 4 | 1.83  |
|                 | 6 | 2.40  |
| Gossan          | 3 | 2.12  |
| The Lion's Ear  | 4 | 1.80  |
|                 | 4 | 2.05  |
|                 | 4 | 2.73  |
|                 | 3 | 1.78  |
|                 | 4 | 1.77  |
| Hook South      | 2 | 1.65  |
| Kane's Gossan   | 8 | 1.43  |
|                 | 5 | 1.18  |
| Yangibana       | 2 | 1.25  |

### **ROCK CHIP SAMPLES INCLUDED**

| Prospect        | No of Samples | Av. %TREO grade |
|-----------------|---------------|-----------------|
| Yangibana North | 22            | 3.88            |
| Hook            | 5             | 1.00            |
| Kane's Gossan   | 9             | 3.22            |
| Yangibana       | 10            | 1.50            |
| Yangibana South | 15            | 1.97            |



# Yangibana Project Proposed Exploration

The obvious initial target is to pattern drill the exposed ironstone outcrops and the intervening ground along strike, with only 2.2km of the main mineralised zone tested to date. This zone has a strike length of around 7km within Hastings' ground.

Closer spaced drilling over the 7km of strike could define resources of up to 10 million tonnes of oxidised mineralisation at grades comparable to those indicated by previous drilling

All previous drilling has tested only the oxidised portion of these linear structures. Deeper drilling is required to determine whether the grades within the oxidised portion of the lenses are enriched or whether similar grades extend to depth in the primary zone

The Yangibana ironstones are known to be of ferrocarbonatite composition. They are presumably sourced from a large ferrocarbonatite body at some depth. Widespread fenitisation (K-feldspar alteration) of the surrounding granites has been identified by previous explorers and the Geological Survey of Western Australia (GSWA)

 The GSWA is undertaking mapping in the Yangibana region and is very positive regarding the potential for a large buried rare earth-bearing body to be present in this area

Ongoing discussions with GSWA will lead to a detailed programme to evaluate this potentially large target

AIU0



# Hastings Project Advantages of Hastings Project

Indicated JORC resource of >30 years operations at 1m tonnes per annum – potential to expand and to double outputs

4<sup>th</sup> largest HREO Project in the world, largest in Australia

85% Heavy Rare Earths as a percentage of TREO

Historic pilot plant operation for the critical initial extraction circuit

Experienced team of management, process developers and project engineers in place

Schedule savings in Exploration and Metallurgy Development are significant compared to other potential HREO developers (4-5 years).



## **Contact Details**





### Steve Mackowski Technical Director

T: +61 2 9078 7674 F: +61 2 9078 7661

E: smackowski@hastingsraremetals.com Level 9, 50 Margaret Street, Sydney NSW 2000 www.hastingsraremetals.com