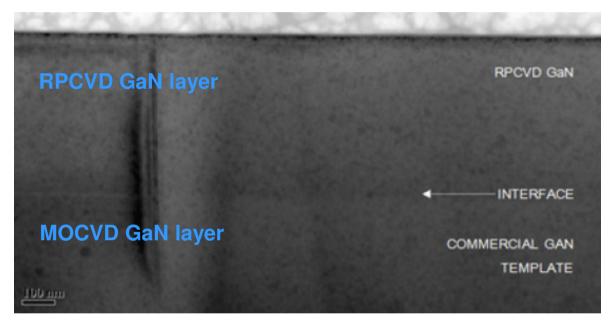
### **BLUGLASS PRESENTATION**

GILES BOURNE, CEO, BLUGLASS LIMITED

**JULY 2012** 



- This document has been prepared by BluGlass Limited to provide existing and prospective investors in BluGlass Limited with a summary of progress to date.
- Any statements, opinions, or other material contained in this document do not constitute any commitments, representations or warranties by BluGlass Limited or/and associated entities or its directors, agents and employees. Except as required by law, and only to the extent so required, directors, agents and employees of BluGlass Limited shall in no way be liable to any person or body for any loss, claim, demand, damages, costs or expenses of whatsoever nature arising in any way out of, or in connection with, the information contained in this document.
- This document includes certain information which reflects various assumptions. The assumptions may or may not prove to be correct. Recipients of the document must make their own independent investigations, consideration and evaluations prior to making any decisions to invest in the Company.


### **EXECUTIVE SUMMARY**

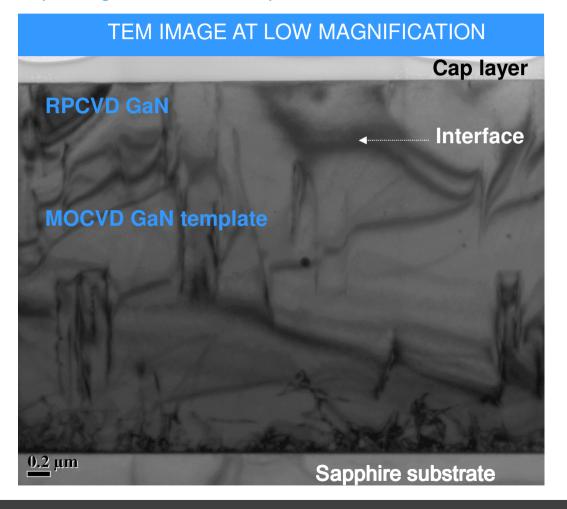
|          | <b>✓</b> | Breakthrough<br>Technology            | <ul> <li>BluGlass has patented processes for exploiting Remote Plasma<br/>Chemical Vapour Deposition (RPCVD)</li> <li>Applicable to several large end markets</li> </ul>                                                                                              |  |  |
|----------|----------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|          | <b>/</b> | Performance and Cost Advantages       | <ul> <li>Superior performance potential for LED and PV devices enabled through BluGlass' unique lower temperature process</li> <li>Cost and scalability benefits</li> </ul>                                                                                           |  |  |
|          | <b>✓</b> | Rapidly Growing<br>End Markets        | <ul> <li>LED market grew from \$11.3B in 2010 to \$12.5B in 2011. Demand for LEDs in lighting market grew 44% to \$1.8B in 2011 <sup>1.</sup></li> <li>Concentrated Photovoltaic (CPV) solar cell market expanding to 1.5GW by 2015 <sup>2.</sup></li> </ul>          |  |  |
| Delsonal | <b>/</b> | Key Partnerships                      | <ul> <li>JV with SPTS Technologies (global semiconductor equipment provider)</li> <li>Significant Australian Government grants</li> </ul>                                                                                                                             |  |  |
|          |          | Progressing towards commercialisation | <ul> <li>RPCVD technology approaches commercialisation</li> <li>Next steps for the company:         <ul> <li>Produce commercial quality material</li> <li>Produce market leading material</li> <li>Customer site for demonstration and testing</li> </ul> </li> </ul> |  |  |

1. Source: Strategies Unlimited March 2012 2. Source: 2010-2015 CPV Consortium 2010 Report

### RECENT ANNOUNCEMENTS

### TEM IMAGE AT INTERMEDIATE MAGNIFICATION




As shown in the transmission electron microscopy (TEM) image, both the MOCVD and low temperature RPCVD GaN layers (dark grey layers) are of equal quality, i.e. both have a low defect density and good crystalline quality

- BluGlass produces high quality crystalline GaN films using low temperature RPCVD
  - ✓Independent Expert verification of film quality
- The achievement of high quality crystalline GaN films grown at low temperature on commercial MOCVD GaN templates is the result of a significant reduction of the 'defect density' in RPCVD GaN material

### LOW DEFECT DENSITY RPCVD GAN

### BluGlass has made inroads towards proving the commercial potential of RPCVD

- Significant progress towards minimising impurities to within industry acceptable ranges
- The crystal quality is a dramatic improvement for RPCVD; and is largely due to the reduction of impurities incorporated into the GaN layer during growth



# For personal use only

### **CONTENTS**

| • | <ul><li>BLUGLASS OVERVIEW</li><li>Fast Facts</li><li>Virtual Tour</li><li>A Platform Technology</li></ul>                                              | 7  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| • | <ul> <li>THE LED OPPORTUNTITY</li> <li>A Low Temperature Process</li> <li>Target Market Features</li> <li>Equipment Market</li> </ul>                  | 10 |
| ۰ | <ul> <li>THE SOLAR OPPORTUNITY</li> <li>What is CPV</li> <li>Why InGaN CPV</li> <li>Why RPCVD for InGaN CPV</li> <li>Target Market Features</li> </ul> | 16 |
| ١ | <ul><li>ROADMAP and HIGHLIGHTS</li><li>Roadmap to Market</li><li>Investment Highlights</li></ul>                                                       | 21 |



# VIRTUAL TOUR



| BluGlass Limited Corporate Profile                                                                                                                                                    |                                                                                                                             |                                     |                           |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|--|--|--|
| ASX CODE                                                                                                                                                                              | BLG                                                                                                                         | ESTABLISHED                         | 22 September 2006         |  |  |  |
| SHARES ON ISSUE                                                                                                                                                                       | 240 Million                                                                                                                 | MARKET<br>CAPITALISATION            | \$18.9 Million (28.06.12) |  |  |  |
| SPTS Pty Ltd (Global Semiconductor Equipment Manufacturer) (19.9%)  SIGNIFICANT HOLDERS  Access Macquarie and Macquarie University (9.7%)  Wellington Management (Boston, USA) (5.8%) |                                                                                                                             |                                     |                           |  |  |  |
| KEY STAFF                                                                                                                                                                             | Giles Bourne (CEO) Stuart Uhlhorn (CFO)                                                                                     | Dr lan Mann (CTO)                   |                           |  |  |  |
| BOARD OF DIRECTORS                                                                                                                                                                    | George Venardos (Chairman) Chandra Kantamneni Greg Cornelsen                                                                | Dr Bill Johnson (SPTS<br>Dr Alan Li | S President)              |  |  |  |
| JOINT VENTURE  BluGlass has entered into a joint venture with global semiconductor equipment manufacturer, SPTS Pty Ltd to bring RPCVD to market on field proven production platforms |                                                                                                                             |                                     |                           |  |  |  |
| INTELLECTUAL PROPERTY                                                                                                                                                                 | BluGlass currently has fourteen patents accepted or granted in key semiconductor markets including the USA, Japan and China |                                     |                           |  |  |  |

### A PLATFORM TECHNOLOGY

### ONE SOLUTION, MULTIPLE MARKETS

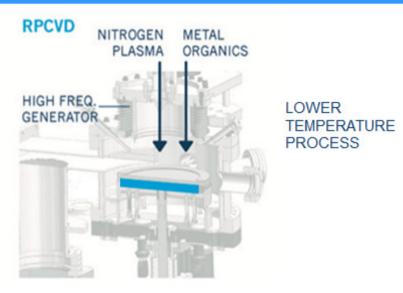




LED DEVICE

POWER IN

POWER OUT **4** 




### **LED OPPORTUNITY**

"It is estimated it is possible to alleviate the need for 133 nuclear power stations in the US by the year 2025 if white solid state lighting is implemented" Professor Shuji Nakamura

## POTENTIAL VALUE PROPOSITION OF A LOW TEMPERATURE PROCESS

### **BLUGLASS TECHNOLOGY**



A low temperature process offers
manufacturers of LEDs significant
advantages for both performance and cost











High potential for scalability

# PERFORMANCE ADVANTAGES FOR LED

A low temperature growth system such as RPCVD offers LED manufacturers compelling performance advantages at several stages of device growth

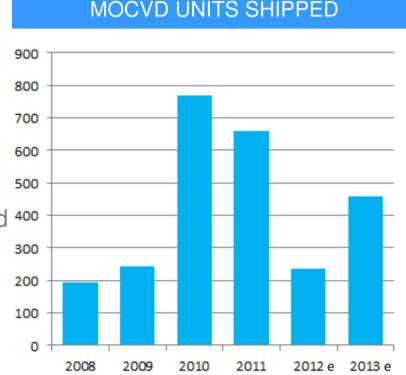
### LED STRUCTURE GROWN USING MOCVD

p-GaN grown at high temperature

Multi-Quantum-Well InGaN layer, the **ACTIVE REGION** of an LED - grown at lower
temperature

n-GaN grown at high temperature

GaN grown at high temperature


**Substrate** 

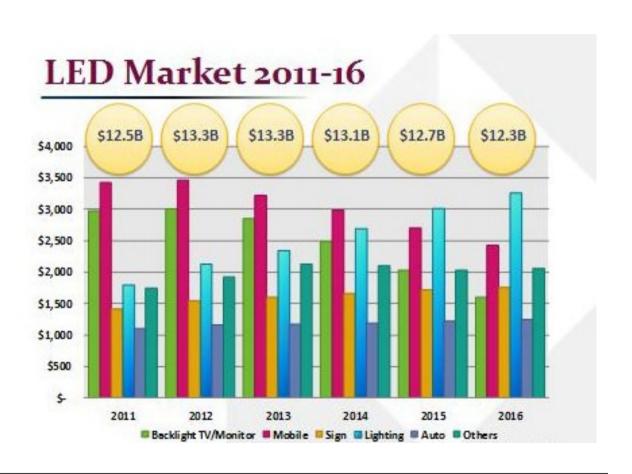
### BENEFITS OF RPCVD GROWTH

The higher temperature growth of the p-GaN top layer can cause some of Indium to diffuse out of the active MQW layer and reduce the LEDs light performance. MOCVD cannot effectively grow quality p-GaN at lower temperatures RPCVD has great potential to improve device performance simply by growing a low temperature p-GaN layer which in turn improves the stability of the InGaN layer during fabrication

A second potential for RPCVD is the growth of high quality InGaN MQW layers at lower temperatures than MOCVD *The RPCVD process could enable Indium rich MQW layers necessary for green LEDs and also for PV devices* 

- personal use only
- BluGlass is targeting the high value / high margin LED equipment market
  - US\$6.1Billion opportunity through to the end of the decade<sup>1</sup>
- Veeco estimates ~400-800 machines shipped annually for LEDs to 2016<sup>2</sup>
- Two global (NASDAQ) MOCVD companies hold +95% of the market
  - Veeco (US) (market cap US\$1.32B<sup>3</sup>)
  - Aixtron (Germany) (market cap US\$1.48B³)
- High gross margins with tools selling ~US\$2M system purchase price
- This market is driven by the rapidly expanding LED lighting market




Notes: 1). Yolé Developpement III-V Epitaxy Equipment and Application Market Report 2012 2). Veeco Investor Presentation June 2012 3). As at 13 June 2012; Chart Source: B Riley and Co 2012

The MOCVD market is highly concentrated and is currently dominated by two key players:

Aixtron of Germany and Veeco of the USA

### **EQUIPMENT MARKET SHARE** 80% 70% SHARE PERCENTAGE 60% 50% 40% 30% MARKET 20% 10% 0% Q1 '10 Q4 '09 Q2 '10 | Q3 '10 Q4 '10 Q1 '11 Q2 ' 11 | Q3 '11 | Q4 '11 Q1 '09 Q2 '09 Q3 '09 Aixtron 71% 65% 61% 54% 52% 52% 52% 49% 57% 61% 60% 26% Nippon Sanso 17% 11% 2% 6% 4% 3% 3% 2% 2% 4% Vee co 13% 24% 33% 36% 33% 42% 44% 45% 45% 48% 70% 41% Other 0% 0% 0% 0% 3% 1% 1% 1% 1% 0% 0% 1%

Source: IMS Research Quarterly GaN LED Supply and Demand Report March 2012



ERROR: stackunderflow
OFFENDING COMMAND: ~

STACK:

For personal use only