

## **ASX ANNOUNCEMENT**

**17 DECEMBER 2012** 

## SIRIUS RESOURCES NL

ASX: SIR

ABN: 46 009 150 083

#### Street address:

Unit 5, 5 Mumford Place, Balcatta 6021, Western Australia

#### Postal address:

PO Box 1011, Balcatta 6914, Western Australia

**Tel:** +61 8 9240 8914

Fax: +61 8 9240 8915

#### **Email:**

admin@siriusresources.com.au

#### Web:

www.siriusresources.com.au

#### **Projects:**

Fraser Range nickel-copper, gold

Polar Bear gold, nickel

**Canyon Creek** molybdenum, copper, gold

Youanmi nickel, copper, PGM's

Collurabbie nickel, copper, PGM's



# **NOVA UPDATE**

- Nickel-copper sulphide mineralisation confirmed at upper edge of conductor 5
- Disseminated sulphides intersected 800m south of Nova
- Systematic drilling of Western Rim commenced
- Nova infill drilling progressing well
- Environmental surveys completed
- Extension of term granted for Nova Exploration Licence

Sirius Resources NL (**ASX:SIR**) ("**Sirius**" or the "**Company**") advises that drilling and other activities are continuing in and around its Nova nickel-copper deposit, as outlined below.

## Nickel-copper sulphides confirmed at upper edge of conductor 5

Results received from holes drilled on what is now known to be the upper fringe of conductor 5 have confirmed the presence of a broad halo of nickel-copper sulphide mineralisation adjacent to the upper edge of the conductor.

Hole SFRD0125, drilled on the 850N line, intersected **11.77 metres @ 0.73% nickel and 0.58% copper** from 322.8 metres within a broader interval of **28.87 metres @ 0.5% nickel and 0.34% copper** from 305.7 metres. The upper edge of conductor 5 is located adjacent to this intercept and the main part of the conductor extends for 200 metres down dip to the east of this point (*see figures 1 and 2 and table 2*).

## Disseminated sulphides intersected 800m south of Nova

Disseminated sulphide mineralisation has been intersected in the first hole drilled to the south of the Nova nickel-copper deposit. This hole is situated approximately 800 metres south of Nova on the down dip continuation of the western contact zone of the Eye intrusion.

Hole SFRD0139 intersected 19.07 metres of disseminated sulphides



from 105.63 metres (see figure 2), beneath anomalous intercepts of nickel and copper in previous aircore drilling.

This is the only hole in the entire southern part of the Eye, and it further confirms the widespread nature of mineralisation along the basal contact.

## Western rim drilling commenced

Systematic drilling of the basal contact zone along the western rim of the Eye, between Nova and conductor 3, has commenced. The first hole is underway mid-way between conductor 5 and the Tethys prospect.

## Nova infill drilling progressing

Infill drilling of Nova is proceeding, with drilling now in progress on 25 metre spaced infill lines (*see figure 3*). Five holes have now been drilled on these lines and all have intersected mineralisation in line with expectations based on previous holes on adjacent lines. Drilling remains on schedule for completion to JORC Indicated Resource standard by the end of March 2013.

#### **Environmental surveys completed**

Preliminary environmental surveys completed in the area surrounding and including the Nova deposit have confirmed that there are no environmentally sensitive (ie, threatened or priority) flora or fauna species in the area.

## **Extension of term granted for Nova Exploration Licence**

The Western Australian Department of Minerals and Petroleum (DMP) has extended the term of the Exploration Licence containing the Nova deposit for a further 4 years. Sirius will commence the process of applying for a Mining Lease early in 2013.

### **Planned activities**

Drilling will continue until later this week and will resume early in January after the Christmas break, when an additional two rigs are scheduled to arrive. The first quarter of calendar 2013 will see seven rigs completing the infill drilling at Nova and intensively exploring the western rim of the Eye, including conductor 3, conductor 5 and the Tethys prospect.

Managing Director Mark Bennett said "As we near completion of the 2012 program I would like to extend my thanks to our team for their hard work and to all shareholders and stakeholders for their support during the year. We are looking forward to a safe, productive and prosperous 2013 and our strong balance sheet will enable us to start the new year with an intensive drill program designed to unlock the potential of the broader area around Nova."

Mark Bennett, Managing Director and CEO

and Born



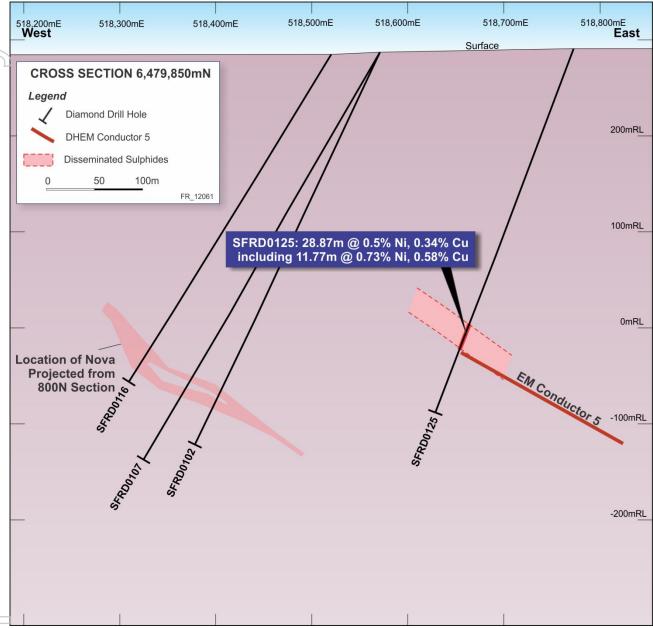



Figure 1. Section 850N - showing the holes drilled to date relative to the position of conductor 5.

# About the Nova nickel discovery

- The Nova deposit is a blind (ie concealed by transported sediments) virgin discovery which vindicates Sirius' exploration methodologies and corporate strategy of identifying high leverage greenfields opportunities in stable jurisdictions.
- It was discovered by Sirius' target identification expertise and systematic use of geological, geophysical and geochemical exploration techniques.
- Drilling at conductor 1 has delineated a major nickel-copper sulphide deposit approximately 500 metres long, up to 400 metres across and up to 80 metres thick.



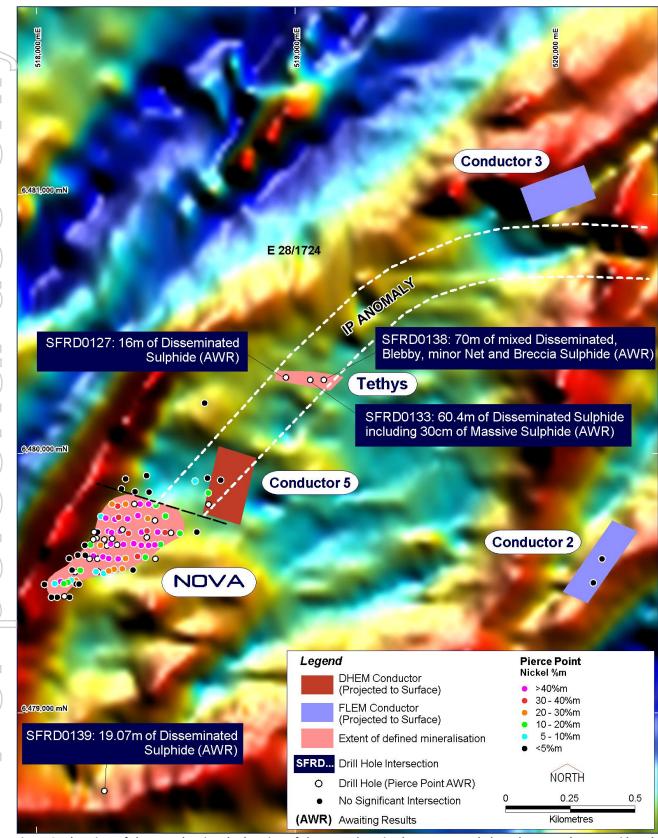



Figure 2. Plan view of the Eye, showing the location of the Nova deposit, the new expanded conductor 5, the IP corridor, the Tethys prospect, EM conductor 3 and the new reconnaissance hole 800m south of Nova.



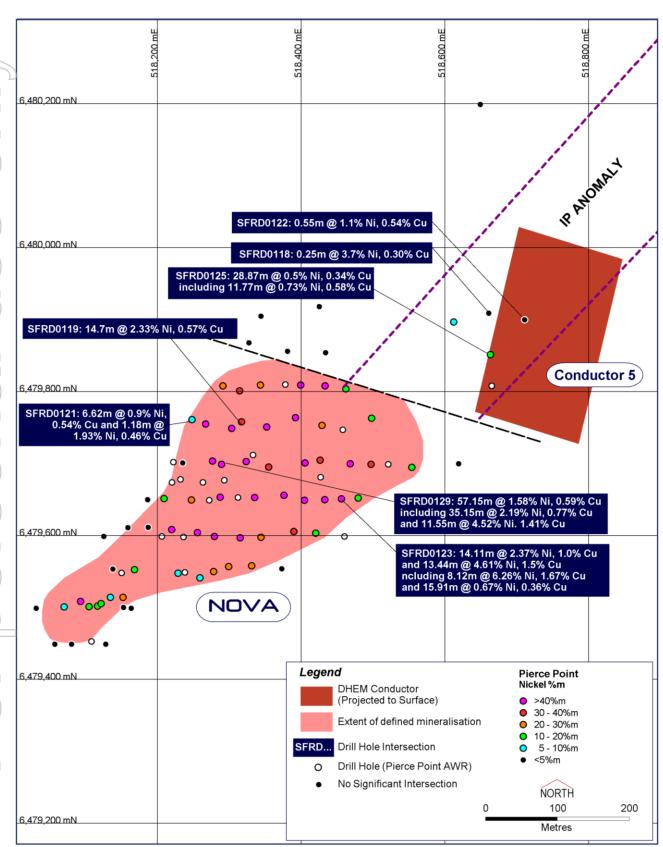



Figure 3. Detailed plan projection of Nova, showing location of new drillholes and assayed intersections. Previously reported intercepts are shown as metal factor (ie, estimated true width x grade, commonly referred to as %metre, %m or metal factor). Refer to Tables 1 and 2 and previous announcements for assayed intersections.



- The EM conductor that represents the Nova deposit is the first EM target at the Eye nickel-copper prospect to be tested.
- The mineralisation comprises pyrrhotite, pentlandite and chalcopyrite within very strongly metamorphosed rocks termed granulites. The sulphide minerals are coarse grained and high tenor and will likely produce a clean high value concentrate and the accompanying silicate minerals are likely to be highly amenable to conventional separation techniques.
- The sulphides occur in a variety of styles typical of magmatic sulphide deposits. These include massive, matrix, net textured, breccia, blebby and disseminated sulphides.
- The host rock is a hypersthene-augite-garnet-hornblende-labradorite-quartz gneiss interpreted to represent a strongly metamorphosed mafic-ultramafic intrusion of predominantly gabbroic composition.
- The deposit is only 40km north of the Eyre Highway and closer, via sealed road, to the port of Esperance than any operating nickel sulphide mine/concentrator in Western Australia.
- Planned metallurgical testwork will better quantify the mineralisation in terms of its crushing, grinding and flotation characteristics, the deportment of nickel and copper within the sulphides and the level (if any) of any deleterious or penalty elements in such a concentrate.

# **About the Fraser Range Joint Venture**

The Fraser Range Joint Venture is a joint venture between Sirius Resources (70%) and companies of the Creasy Group (30%), owned by Mark Creasy who is also Sirius' major shareholder through his investment company, Yandal Holdings Pty Ltd.

The joint venture ground covers over 100 strike kilometres of the prospective belt and Sirius, together with various private companies owned by Mark Creasy, control the majority of this new nickel province.

Sirius acknowledges the assistance provided by the WA Government co-funded drilling program, which sponsored a previous reconnaissance drill hole on the project area (see previous ASX announcements) and the Geological Survey of Western Australia (GSWA) through its regional geophysics and geochemical survey initiatives.

| Hole No. | North   | East   | Dip | Azim | From,<br>m | To, m | Width<br>m | Grade, % Ni, Cu, Co & g/t Ag, Au, Pt, Pd                           |
|----------|---------|--------|-----|------|------------|-------|------------|--------------------------------------------------------------------|
| SFRC0024 | 6479503 | 518212 | 60  | 270  | 174        | 175   | 1          | 0.76% Ni, 1.36% Cu, 0.03% Co, 4.0g/t Ag                            |
|          | А       | nd     |     |      | 178        | 181   | 3          | 0.31% Ni, 0.68% Cu, 0.01% Co, 1.4g/t Ag                            |
|          | А       | nd     |     |      | 191        | 195   | 4          | 4.02% Ni, 1.41% Cu, 0.12% Co, 2.2g/t Ag                            |
| SFRC0025 | 6479506 | 518080 | 60  | 270  | -          | -     | -          | Missed target                                                      |
| SFRC0026 | 6479505 | 518151 | 60  | 270  | 123        | 136   | 13         | 4.30% Ni, 1.83% Cu, 0.12% Co, 3.1g/t Ag, 0.09g/t Pd,<br>0.08g/t Pt |
|          | Incl    | uding  |     |      | 128        | 136   | 8          | 5.81% Ni, 2.26% Cu, 0.16% Co, 3.7g/t Ag, 0.12g/t Pd,<br>0.12g/t Pt |
| SFRC0027 | 6479499 | 518249 | 60  | 270  | 229        | 238   | 9          | 1.48% Ni, 0.86% Cu, 0.05% Co, 2.5g/t Ag, 0.15g/t Au                |
|          | Incl    | uding  |     |      | 229        | 232   | 3          | 1.45% Cu, 0.4% Ni, 4.9g/t Ag, 0.34g/t Au                           |
|          | А       | nd     |     |      | 232        | 238   | 6          | 1.84% Ni, 0.57% Cu                                                 |
|          | Incl    | uding  |     |      | 236        | 237   | 1          | 4.70% Ni, 0.40% Cu, 0.12% Co                                       |



| SFRC0028   6479452     | 518152    | 60 | 270 | 116    | 120    | 4     | 0.48% Ni, 0.38% Cu, 0.02% Co, 0.09g/t Ag            |
|------------------------|-----------|----|-----|--------|--------|-------|-----------------------------------------------------|
| 3111C0020 0473432      | And       | 00 | 270 | 156    | 164    | 8     | 0.25% Ni, 0.22% Cu, 1.5g/t Ag                       |
| SFRC0029 6479600       | 518299    | 60 | 270 | 234    | 236    | 2     | 0.96% Ni, 0.46% Cu, 1.3g/t Ag                       |
| SFRC0030 6479600       | 518250    | 60 | 270 | 188    | 196    | 8     | 0.41% Ni, 0.40% Cu, 0.02% Co, 1.78g/t Ag            |
| SFRC0031 6479600       | 518200    | 60 | 270 | -      | -      | -     | Missed target                                       |
| SFRC0032 6479506       | 518084    | 75 | 270 | 60     | 64     | 4     | 1.47% Ni, 0.17% Cu, 0.05% Co, 0.25g/t Ag            |
| 311(C0032 0473300      | and       | /3 | 270 | 80     | 82     | 2     | 2.11% Ni, 1.12% Cu, 0.07% Co, 4.25g/t Ag            |
| SFRC0033 6479501       | 518154    | 70 | 270 | 165    | 171    | 6     | 3.16% Ni, 0.49% Cu, 0.10% Co, 1.12g/t Ag            |
| SFRC0034 6479503       | 518230    | 60 | 270 | 200    | 204    | 4     | 0.22% Ni, 1.07% Cu, 0.01% Co, 2.8g/t Ag             |
| 31110031 0173303       | And       | 00 | 270 | 212    | 219    | 7     | 1.27% Ni, 0.35% Cu, 0.04% Co, 0.84g/t Ag            |
| In                     | cluding   |    |     | 216    | 219    | 3     | 2.63% Ni, 0.45% Cu, 0.08% Co, 1.13g/t Ag            |
|                        | And       |    |     | 220    | 224    | 4     | 0.18% Ni, 0.47% Cu, 1.1g/t Ag                       |
| SFRD0035 6479503       | 518155    | 70 | 270 | 146.7  | 152.9  | 6.2   | 1.68% Ni, 0.36% Cu, 0.05% Co, 0.3g/t Ag             |
|                        | cluding   | 70 | 270 | 149.2  | 152.9  | 2.9   | 2.52% Ni, 0.44% Cu, 0.08% Co, 0.5g/t Ag             |
| SFRC0036 6479439       | 518640    | 90 | n/a | n/a    | n/a    | n/a   | Abandoned                                           |
| SFRD0037 6479599       | 518352    | 60 | 270 | 263.9  | 268.4  | 4.5   | 0.23% Ni, 1.16% Cu, 0.01% Co, 3.9g/t Ag, 0.1g/t Pt  |
| 311120037 0473333      | and       | 00 | 270 | 268.4  | 281.7  | 13.3  | 3.9% Ni, 2.0% Cu, 0.12% Co, 3.7g/t Ag               |
| In                     | cluding   |    |     | 271.85 | 279    | 7.15  | 5.1% Ni, 2.36% Cu, 0.15% Co, 4.0g/t Ag              |
| SFRD0038 6479499       | 518296    | 60 | 270 | 285.4  | 286.1  | 0.7   | 2.85% Ni, 0.33% Cu, 0.08% Co                        |
| SFRD0039 6479599       | 518352    | 69 | 270 | 270    | 271    | 1     | 1.71% Ni, 0.51% Cu, 0.06% Co, 0.8g/t Ag             |
| 311120033 0173333      | And       | 03 | 270 | 272.97 | 273.24 | 0.27  | 6.58% NI, 0.98% Cu, 0.21% Co, 1.6g/t Ag             |
|                        | And       |    |     | 298.1  | 313.52 | 15.42 | 2.74% Ni, 1.09% Cu, 0.09% Co, 2.54g/t Ag            |
| In                     | cluding   |    |     | 298.1  | 301.7  | 3.6   | 4.83% Ni, 1.73% Cu, 0.15% Co, 3.98g/t Ag            |
|                        | And       |    |     | 311.3  | 313.5  | 2.22  | 5.92% Ni, 0.82% Cu, 0.19% Co, 1.85g/t Ag            |
| SFRD0041 6479599       |           | 76 | 270 | 293.4  | 329    | 35.6  | 3.47% NI, 1.44% Cu, 0.10% Co, 3.19g/t Ag            |
| In                     | cluding   |    |     | 293.4  | 308.9  | 15.5  | 4.72% Ni, 1.98% Cu, 0.15% Co, 4.7g/t Ag             |
|                        | cluding   |    | -   | 302.17 | 308.9  | 6.73  | 6.11% Ni, 2.14% Cu, 0.19% Co, 4.95g/t Ag            |
|                        | And       |    |     | 321.66 | 326.68 | 5.02  | 6.11% Ni, 2.57% Cu, 0.19% Co, 5.64g/t Ag            |
|                        | Also      |    |     | 341    | 344    | 3     | 1.86% Ni, 1.26% Cu, 0.05% Co, 4.61g/t Ag            |
|                        | And       | 7  |     | 349.6  | 350.5  | 0.9   | 6.15% Ni, 1.25% Cu, 0.19% Co, 2.5g/t Ag             |
| SFRD0042 6479700       | 518501    | 60 | 270 | 361.3  | 384    | 22.7  | 0.91% Ni, 0.73% Cu, 0.02% Co, 6.55g/t Ag, 0.1g/t Au |
|                        | and       |    |     | 392.72 | 413.65 | 20.93 | 1.56% Ni, 0.65% Cu, 0.05% Co, 1.85g/t Ag            |
| SFRD0043 6479600       | 518399    | 74 | 270 | 314.4  | 319.8  | 5.4   | 4.72% Ni, 2.01% Cu, 0.14% Co, 3.98g/t Ag            |
|                        | and       |    |     | 330.74 | 344.57 | 13.83 | 3.11% Ni, 0.97% Cu, 0.10% Co, 2.6g/t Ag, 0.12g/t Pt |
| in                     | cluding   |    |     | 338.73 | 344.57 | 5.84  | 5.11% Ni, 1.4% Cu, 0.16% Co, 3.46g/t Ag, 0.26g/t Pt |
| SFRD0044 6479600       | 518399    | 80 | 270 | 327.8  | 332.38 | 4.58  | 2.33% Ni, 0.67% Cu, 0.07% Co, 1.3g/t Ag             |
|                        | and       |    |     | 348.05 | 349.91 | 1.86  | 1.17% Ni, 0.99% Cu, 0.04% Co                        |
|                        | and       |    |     | 356    | 363.21 | 7.21  | 2.2% Ni, 1.27% Cu, 0.07% Co, 3.8g/t Ag, 0.1g/t Au   |
| SFRD0045 6479549       | 518299    | 60 | 270 | 248.95 | 250.75 | 1.8   | 1.21% Ni, 0.49% Cu, 0.04% Co, 0.45g/t Ag            |
|                        | and       |    |     | 255.11 | 257.19 | 2.08  | 1.93% Ni, 0.35% Cu, 0.07% Co, 0.28g/t Ag            |
| SFRD0046<br>W1 6479700 | 518501    | 67 | 270 | 363.75 | 384    | 20.25 | 1.94% Ni, 0.53% Cu, 0.06% Co, 1.67g/t Ag            |
| <u> </u>               | including |    |     |        |        |       | 7.45% Ni, 0.98% Cu, 0.25% Co, 1.94g/t Ag, 0.1g/t Pd |
|                        | and       |    |     |        |        |       | 5.18% Ni, 1.63% Cu, 0.16% Co, 3.81g/t Ag            |
| SFRD0047 6479549       | 518299    | 70 | 270 | 265.37 | 272.67 | 7.3   | 0.64% Ni, 0.36% Cu, 0.02% Co                        |
| •                      | and       |    |     |        |        |       | 1.09% Ni, 0.41% Cu, 0.03% Co                        |
| SFRD0049 6479600       | 518552    | 65 | 270 | 405.74 | 426    | 20.26 | 1.57% Ni, 0.51% Cu, 0.05% Co, 1.66g/t Ag            |
| SFRD0050 6479600       | 518553    | 70 | 270 | 362.94 | 363.95 | 1.01  | 4.92% Ni, 1.06% Cu, 0.16% Co                        |
|                        | and       |    |     | 398    | 404.8  | 6.8   | 0.79% Ni, 0.5% Cu, 0.03% Co                         |
|                        | and       |    |     | 412.85 | 419.07 | 6.22  | 1.77% Ni, 0.41% Cu, 0.06% Co                        |
| SFRD0051 6479549       | 518199    | 82 | 270 | 206    | 209    | 3     | 1.25% Ni, 0.15% Cu, 0.03% Co                        |



|                      |         |                    | 218 | 223.8 | 5.8                  | 2.05% Ni, 0.79% Cu, 0.06% Co |       |                                                              |
|----------------------|---------|--------------------|-----|-------|----------------------|------------------------------|-------|--------------------------------------------------------------|
|                      | inclu   | uding              |     |       | 221                  | 223.8                        | 2.8   | 3.06% Ni, 0.91% Cu, 0.09% Co                                 |
| SFRD0052             | 6479549 | 518196             | 67  | 270   | 159                  | 164                          | 5     | 0.57% Ni, 2.36% Cu, 0.03% Co, 10.01g/t Ag, 0.15g/t Au        |
|                      | Inclu   | uding              |     |       | 159                  | 161                          | 2     | 0.43% Ni, 4.68% Cu, 0.03% Co, 19.21g/t Ag, 0.21g/t Au        |
| SFRD0053             | 6479700 | 518501             | 74  | 270   | 376                  | 383.3                        | 7.3   | 2.2% Ni, 0.6% Cu, 0.07% Co                                   |
|                      | aı      | nd                 |     |       | 393                  | 410                          | 17    | 3.68% Ni, 3.82% Cu, 0.12% Co                                 |
|                      | inclu   | uding              |     |       | 398.9                | 410                          | 11.1  | 4.31% Ni, 5.03% Cu, 0.14% Co                                 |
| SFRD0054             | 6479700 | 518501             | 79  | 270   | 392.44               | 405.07                       | 12.63 | 2.57% Ni, 1.85% Cu, 0.08% Co                                 |
| SFRD0055             | 6479649 | 518400             | 70  | 270   | 310.5                | 312.07                       | 1.57  | 1.99% Ni, 0.57% Cu, 0.07% Co                                 |
|                      | aı      | nd                 |     |       | 331.06               | 366.28                       | 35.22 | 3.09% Ni, 1.06% Cu, 0.10% Co                                 |
|                      | inclu   | uding              |     |       | 354.75               | 366.28                       | 11.53 | 5.42% Ni, 1.83% Cu, 0.17% Co                                 |
| SFRD0056             | 6479649 | 518398             | 60  | 270   | 276.24               | 277.44                       | 1.2   | 0.86% Ni, 3.11% Cu, 0.04% Co                                 |
|                      | aı      | nd                 |     |       | 282.77               | 292.8                        | 10.03 | 0.85% Ni, 0.49% Cu, 0.03% Co                                 |
|                      | aı      | nd                 |     |       | 301                  | 304                          | 3     | 0.26% Ni, 1.18% Cu, 0.02% Co                                 |
|                      | aı      | nd                 |     |       | 309                  | 326.72                       | 17.72 | 1.58% Ni, 0.72% Cu, 0.05% Co                                 |
|                      | inclu   | uding              |     |       | 321.1                | 326.72                       | 5.62  | 3.48% Ni, 1.12% Cu, 0.11% Co                                 |
| SFRD0057             | 6479700 | 518599             | 70  | 270   | 393.01               | 431.91                       | 38.9  | 3.23% Ni, 1.46% Cu, 0.10% Co                                 |
|                      | inclu   | uding              |     |       | 407.05               | 423.49                       | 16.44 | 5.23% Ni, 2.19% Cu, 0.16% Co                                 |
|                      | inclu   | uding              |     |       | 413.38               | 423.49                       | 10.11 | 6.0% Ni, 2.75% Cu, 0.19% Co                                  |
| SFRD0058             | 6479700 | 518351             | 77  | 270   | 298                  | 345.2                        | 47.2  | 1.86% Ni, 0.57% Cu, 0.06% Co                                 |
|                      | inclu   | uding              |     |       | 309.2                | 345.2                        | 36    | 2.23% Ni, 0.65% Cu, 0.08% Co                                 |
|                      | inclu   | uding              |     |       | 309.2                | 312.25                       | 3.05  | 6.1% Ni, 1.31% Cu, 0.19% Co                                  |
| SFRD0059             | 6479800 | 518602             | 71  | 270   | 416.48               | 422.22                       | 5.74  | 3.3% Ni, 0.8% Cu, 0.1% Co                                    |
| SFRD0060             | 6479649 | 518518             | 60  | 270   | 368                  | 376                          | 8     | 0.89% Ni, 0.46% Cu, 0.03% Co                                 |
|                      | aı      | nd                 |     | 1     | 395                  | 410.45                       | 15.45 | 4.61% Ni, 2.19% Cu, 0.15% Co                                 |
|                      | inclu   | uding              |     |       | 396.25               | 405.1                        | 8.85  | 6.29% Ni, 3.08% Cu, 0.21% Co                                 |
|                      | aı      | nd                 |     |       | 417                  | 423                          | 6     | 2.02% Ni, 1.01% Cu, 0.06% Co                                 |
| SFRD0061             | 6479649 | 518521             | 67  | 270   | 361.82               | 423.5                        | 61.68 | 3.4% Ni, 1.27% Cu, 0.10% Co                                  |
|                      | inclu   | uding              |     |       | 361.82               | 364.21                       | 2.39  | 6.56% Ni, 1.5% Cu, 0.19% Co                                  |
|                      | aı      | nd                 |     |       | 384.08               | 406.93                       | 22.85 | 5.83% Ni, 2.03% Cu, 0.17% Co                                 |
| SFRD0065             | 6479800 | 518601             | 65  | 270   | 404                  | 422.05                       | 18.05 | 4.11% Ni, 1.74% Cu, 0.13% Co                                 |
|                      | inclu   | uding              |     | ı     | 410.3                | 419.4                        | 9.1   | 6.2% Ni, 2.67% Cu, 0.20% Co                                  |
| SFRD0066             | 6479700 | 518600             | 75  | 270   | 412.02               | 420.47                       | 8.45  | 4.19% Ni, 1.6% Cu, 0.12% Co                                  |
| SFRD0070             | 6479800 | 518601             | 60  | 270   | 379.82               | 384.63                       | 4.81  | 0.93% Ni, 0.33% Cu, 0.02% Co                                 |
|                      | aı      | nd                 |     |       | 394.92               | 423                          | 28.08 | 4.48% Ni, 1.77% Cu, 0.14% Co                                 |
|                      | inclu   | uding              |     |       | 399.29               | 405.5                        | 6.21  | 5.93% Ni, 2.55% Cu, 0.18% Co                                 |
|                      | aı      | nd                 |     |       | 412.4                | 423                          | 10.6  | 6.5% Ni, 2.48% Cu, 0.20% Co                                  |
| SFRD0076             | 82      | 270                | 346 | 349.6 | 3.6                  | 4.43% Ni, 1.42% Cu, 0.16% Co |       |                                                              |
|                      | aı      | nd                 |     | ı     | 362.5                | 365                          | 2.5   | 1.04% Ni, 0.4% Cu, 0.04% Co                                  |
| SFRD0077             | 6479649 | 518521             | 75  | 270   | 349                  | 412.6                        | 63.6  | 3.41% Ni, 1.3% Cu, 0.11% Co                                  |
|                      | inclu   | uding              |     | ı     | 363                  | 378.23                       | 15.23 | 7.01% Ni, 2.36% Cu, 0.22% Co                                 |
| SFRD0078             | 6479799 | 518498             | 66  | 270   | 343                  | 346                          | 3     | 0.95% Ni, 0.12% Cu, 0.03% Co                                 |
|                      | aı      | nd                 |     | l     | 358                  | 363                          | 5     | 0.96% Ni, 0.24% Cu, 0.03% Co                                 |
|                      |         | nd                 |     |       | 377.3                | 383.3                        | 6     | 4.63% Ni, 0.84% Cu, 0.15% Co                                 |
| SFRD0079             | 6479700 | 518736             | 71  | 270   | 380                  | 381.6                        | 1.6   | 0.85% Ni, 0.34% Cu, 0.02% Co                                 |
| 3FKD00/9             | 6479649 | 518521             | 84  | 270   | 395.95               | 400                          | 4.05  | 1.09% Ni, 0.42% Cu, 0.04% Co                                 |
| SFRD0079<br>SFRD0086 | 0-730-3 | 1                  |     |       |                      | 412.5                        | 7.5   | 0.71% Ni, 0.52% Cu, 0.03% Co                                 |
|                      |         | nd                 |     |       | 405                  |                              |       |                                                              |
|                      | aı      | nd<br>nd           |     |       | 405<br>416.35        |                              |       |                                                              |
|                      | aı      | nd<br>nd<br>518498 | 60  | 270   | 405<br>416.35<br>327 | 421                          | 4.65  | 2.32% Ni, 0.86% Cu, 0.07% Co<br>0.88% Ni, 0.42% Cu, 0.02% Co |



|          |                                | inclu   | uding  |    |     | 363           | 375.65 | 12.65 | 2.26% Ni, 0.79% Cu, 0.07% Co |
|----------|--------------------------------|---------|--------|----|-----|---------------|--------|-------|------------------------------|
|          | including                      |         |        |    |     |               | 375.65 | 2.65  | 5.47% Ni, 0.96% Cu, 0.16% Co |
| S        | SFRD0090 6479748 518540 67 270 |         |        |    |     |               | 409.91 | 33.8  | 4.03% Ni, 1.69% Cu, 0.13% Co |
|          | including                      |         |        |    |     |               | 401.96 | 13    | 5.43% Ni, 2.25% Cu, 0.18% Co |
| S        | FRD0093                        | 6479799 | 518448 | 60 | 270 | 307           | 323.6  | 16.6  | 1.31% Ni, 0.54% Cu, 0.04% Co |
|          |                                | inclu   | uding  |    | l-  | 321.4         | 323.6  | 2.2   | 4.02% Ni, 1.18% Cu, 0.12% Co |
|          |                                | a       | nd     |    |     | 330.65        | 331    | 0.35  | 0.73% Ni, 10.9% Cu, 0.05% Co |
| S        | FRD0094                        | 6479700 | 518350 | 66 | 270 | 244.9         | 248    | 3.1   | 1.32% Ni, 0.23% Cu, 0.05% Co |
|          |                                | а       | nd     |    |     | 289.3         | 289.8  | 0.5   | 6.53% Ni, 1.14% Cu, 0.19% Co |
|          |                                | а       | nd     |    |     | 294           | 295.4  | 1.4   | 0.67% Ni, 1.6% Cu, 0.03% Co  |
| S        | FRD0095                        | 6479899 | 518701 | 70 | 270 | 270           | 285    | 15    | 0.52% Ni, 0.28% Cu, 0.03% Co |
|          |                                | inclu   | uding  |    |     | 279           | 282    | 3     | 1.01% Ni, 0.45% Cu, 0.05% Co |
| S        | FRD0096                        | 6479900 | 518451 | 71 | 270 | -             | ı      | -     | NSI                          |
| S        | FRD0098                        | 6479748 | 518541 | 60 | 270 | 394.35        | 415.07 | 20.72 | 3.13% Ni, 1.93% Cu, 0.10% Co |
| S        | FRD0099                        | 6479502 | 517680 | 60 | 90  | -             |        | -     | NSI – conductor 4            |
| SF       | RD0102                         | 6479850 | 518570 | 65 | 270 | 319.57        | 320.18 | 0.61  | 1.64% Ni, 0.19% Cu, 0.03% Co |
| SF       | RD0103                         | 6479550 | 518435 | 73 | 270 | 331.8         | 334.03 | 2.23  | 2.58% Ni, 0.86% Cu, 0.09% Co |
|          |                                | а       | nd     |    |     | 343.9         | 356    | 12.1  | 0.86% Ni, 0.51% cu, 0.03% Co |
|          |                                | a       | nd     |    |     | 365           | 387    | 22    | 1.01% Ni, 1.05% Cu, 0.03% Co |
| SF       | RD0104                         | 6479748 | 518541 | 73 | 270 | 400.1         | 408.17 | 8.07  | 2.95% Ni, 0.91% Cu, 0.09% Co |
| SF       | RD0106                         | 6479649 | 518276 | 74 | 270 | 235.85        | 239.24 | 3.39  | 5.72% Ni, 0.59% Cu, 0.17% Co |
| S        | FRD0107                        | 6479850 | 518570 | 60 | 270 | -<            |        |       | NSI                          |
| S        | FRD0108                        | 6479550 | 518435 | 65 | 270 | 340.8         | 356.8  | 16    | 1.66% Ni, 0.64% Cu, 0.05% Co |
|          |                                | inclu   | uding  |    | -   | 340.8         | 349    | 8.2   | 2.55% Ni, 0.62% Cu, 0.08% Co |
|          | including                      |         |        |    |     |               | 345.45 | 4.05  | 3.82% Ni, 0.87% Cu, 0.11% Co |
| S        | FRD0109                        | 6479649 | 518276 | 60 | 270 | 183           | 185.01 | 2.01  | 1.1% Ni, 6.66% Cu, 0.06% Co  |
| S        | FRD0110                        | 6479750 | 518710 | 60 | 270 | 441.25        | 458.2  | 16.95 | 0.85% Ni, 0.32% Cu, 0.03% Co |
| S        | FRD0111                        | 6479800 | 518745 | 60 | 270 |               |        |       | NSI                          |
| S        | FRD0112                        | 6479550 | 518435 | 80 | 270 | 344.65        | 345.95 | 1.3   | 1.06% Ni, 0.35% Cu, 0.04% Co |
| S        | FRD0113                        | 6479750 | 518420 | 69 | 270 | 273.12        | 274.45 | 1.33  | 1.35% Ni, 0.62% Cu, 0.03% Co |
|          |                                | a       | nd     |    |     | 312           | 352.4  | 40.4  | 2.25% Ni, 1.1% Cu, 0.07% Co  |
|          |                                | Inclu   | uding  |    |     | 327.9         | 336.44 | 8.54  | 5.24% Ni, 1.01% Cu, 0.16% Co |
|          |                                |         | nd     |    |     | 348.15        | 352.4  | 4.25  | 4.76% Ni, 3.1% Cu, 0.16% Co  |
| S        | FRD0114                        | 6479750 | 518420 | 60 | 270 | 314           | 336.07 | 22.07 | 2.94% Ni, 0.7% Cu, 0.09% Co  |
|          | FRD0115                        | 6479500 | 517600 | 60 | 90  | -             | -      |       | NSI – conductor 4            |
|          | FRD0116                        | 6479850 | 518520 | 60 | 270 | 250.73        | 253.33 | 2.6   | 0.65% Ni, 1.79% Cu, 0.01% Co |
| S        | FRD0117                        | 6479650 | 518520 | 71 | 270 | 342<br>349.97 | 416    | 70    | 3.44% Ni, 1.29% Cu, 0.09% Co |
| <u> </u> | including                      |         |        |    |     |               | 372.55 | 22.58 | 6.77% Ni, 2.24% Cu, 0.18% Co |
| _        | FRD0119                        | 6479750 | 518420 | 73 | 270 | 347.2         | 361.9  | 14.7  | 2.33% Ni, 0.57% Cu, 0.07% Co |
| -        | FRD0120                        | 6479550 | 518435 | 61 | 270 | 335.43        | 353    | 17.57 | 1.67% Ni, 0.69% Cu, 0.05% Co |
| S        | FRD0121                        | 6479750 | 518390 | 61 | 270 | 252<br>278.58 | 258.62 | 6.62  | 0.9% Ni, 0.54% Cu, 0.03% Co  |
| -        | and                            |         |        |    |     |               | 277.76 | 1.18  | 1.93% Ni, 0.46% Cu, 0.06% Co |
| S        | FRD0123                        | 6479650 | 518520 | 79 | 270 | 346.43        | 360.54 | 14.11 | 2.37% Ni, 1.0% Cu, 0.08% Co  |
| -        |                                | and     |        |    |     | 385.68<br>391 | 399.12 | 13.44 | 4.61% Ni, 1.50% Cu, 0.14% Co |
|          | including                      |         |        |    |     |               | 399.12 | 8.12  | 6.26% Ni, 1.67% Cu, 0.18% Co |
| _        | EDD0455                        | and     | E405-1 |    | 2=2 | 407.09        | 423    | 15.91 | 0.67% Ni, 0.36% Cu, 0.02% Co |
| S        | FRD0129                        | 6479700 | 518351 | 79 | 270 | 309           | 366.15 | 57.15 | 1.58% Ni, 0.59% Cu, 0.05% Co |
| _        |                                |         | uding  |    |     | 330           | 366.15 | 35.15 | 2.19% Ni, 0.77% Cu, 0.07% Co |
|          |                                | inclu   | uding  |    |     | 353.45        | 365    | 11.55 | 4.52% Ni, 1.41% Cu, 0.14% Co |

Table 1. Drill results from the Nova deposit. Visual estimates are not included here until assays are received.



| Hole No. | North   | East   | Dip   | Azim | From,<br>m | To, m              | Width<br>m | Grade, % Ni, Cu, Co & g/t Ag, Au, Pt, Pd |
|----------|---------|--------|-------|------|------------|--------------------|------------|------------------------------------------|
| SFRD0118 | 6479900 | 518780 | 70    | 270  | 348.93     | 349.18             | 0.25       | 3.7% Ni, 0.3% Cu, 0.17% Co               |
| SFRD0122 | 6479900 | 518780 | 78    | 270  | 352.4      | 352.95             | 0.55       | 1.1% Ni, 0.54% Cu, 0.05% Co              |
| SFRD0125 | 6479850 |        |       | 270  | 305.7      |                    | 28.87      | 0.5% Ni, 0.34% Cu                        |
|          |         |        | 322.8 |      | 11.77      | 0.73% Ni, 0.58% Cu |            |                                          |
| SFRD0126 | 6480200 | 518720 | 74    | 270  |            |                    |            | NSI                                      |

Table 2. Drill results around Conductor 5 and Tethys. Visual estimates are not included here until assays are received.

## **Competent Persons statement**

The information in this report that relates to Exploration Results is based on information compiled by Mark Bennett and Andy Thompson who are employees of the company. Dr Bennett is a member of the Australasian Institute of Mining and Metallurgy, a fellow of the Australian Institute of Geologists and a fellow of the Geological Society of London. Mr Thompson is a member of the Australasian Institute of Mining and Metallurgy. Dr Bennett and Mr Thompson have sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as Competent Persons as defined in the 2004 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Bennett and Mr Thompson consent to the inclusion in this report of the matters based on information in the form and context in which it appears.

Exploration results are based on standard industry practices, including sampling, assay methods, and appropriate quality assurance quality control (QAQC) measures. Reverse circulation (RC), aircore (AC) and rotary air blast (RAB) drilling samples are collected as composite samples of 4 or 2 metres and as 1 metre splits (stated in results). Mineralised intersections derived from composite samples are subsequently re-split to 1 metre samples to better define grade distribution. Core samples are taken as half NQ core or quarter HQ core and sampled to geological boundaries where appropriate. The quality of RC drilling samples is optimised by the use of riffle and/or cone splitters, dust collectors, logging of various criteria designed to record sample size, recovery and contamination, and use of field duplicates to measure sample representivity.

For soil samples, PGM and gold assays are based on an aqua regia digest with Inductively Coupled Plasma (ICP) finish and base metal assays may be based on aqua regia or four acid digest with inductively coupled plasma optical emission spectrometry (ICPOES) or atomic absorption spectrometry (AAS) finish. In the case of reconnaissance RAB, AC, RC or rock chip samples, PGM and gold assays are based on lead or nickel sulphide collection fire assay digests with an ICP finish, base metal assays are based on a four acid digest and inductively coupled plasma optical emission spectrometry (ICPOES) and atomic absorption spectrometry (AAS) finish, and where appropriate, oxide metal elements such as Fe, Ti and Cr are based on a lithium borate fusion digest and X-ray fluorescence (XRF) finish. In the case of strongly mineralised samples, base metal assays are based on a special high precision four acid digest (a four acid digest using a larger volume of material) and an AAS finish using a dedicated calibration considered more accurate for higher concentrations.

Sample preparation and analysis is undertaken at Minanalytical, Genalysis Intertek and Ultratrace laboratories in Perth, Western Australia. The quality of analytical results is monitored by the use of internal laboratory procedures and standards together with certified standards, duplicates and blanks and statistical analysis where appropriate to ensure that results are representative and within acceptable ranges of accuracy and precision.

Where quoted, nickel-copper intersections are based on a minimum threshold grade of 0.5% Ni and/or Cu, and gold intersections are based on a minimum gold threshold grade of 0.1g/t Au unless otherwise stated. Intersections are length and density weighted where appropriate as per standard industry practice. All sample and drill hole co-ordinates are based on the GDA/MGA grid and datum unless otherwise stated. Exploration results obtained by other companies and quoted by Sirius have not necessarily been obtained using the same methods or subjected to the same QAQC protocols. These results may not have been independently verified because original samples and/or data may no longer be available.

The information in this report that relates to Mineral Resources is based on information compiled by Andrew Thompson who is an employee of the company. Mr Thompson is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2004 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Thompson consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

Mineral Resources, if stated, have been estimated using standard accepted industry practices, as described in each instance. Top cuts have been applied to the composites based on statistical analysis and consideration of the nature and style of mineralization in all cases. Where quoted, Mineral Resource tonnes and grade, and contained metal, are rounded to appropriate levels of precision, which may cause minor apparent computational errors. Mineral Resources are classified on the basis of drill hole spacing, geological continuity and predictability, geostatistical analysis of grade variability, sampling analytical spatial and density QAQC criteria, demonstrated amenability of mineralization style to proposed processing methods, and assessment of economic criteria.