

ASX Release 8 January 2013

JUPITER MINES LTD

Level 42, 108 St Georges Terrace, Perth WA, 6000 Tel: +61 8 9346 5500 Fax: +61 8 9481 5933

Contacts: Greg Durack Melissa North

Email: info@jupitermines.com

Website: www.jupitermines.com

Directors/Officers Brian Gilbertson Paul Murray Andrew Bell Priyank Thapliyal Soo-Cheol Shin Greg Durack Melissa North

 Issued Capital:

 Shares:
 2,281,835,383

 Unlisted Opts:
 3,200,000

ASX Symbol: JMS

Currently Exploring for:

- Iron Ore
- Manganese

Northern and Southern Zones Increase Magnetite Resource at Mount Ida to 1.85Bt

The Northern and Southern Zones add 615Mt

Key Points

- The Northern and Southern Zones add 615 million tonnes at 28.86% Fe to the Central Zone.
- Central Zone mineral resource is 1.23 billion tonnes at 29.97% Fe.
- JORC compliant resource at Mount Ida Magnetite Project increases 50% to 1.85 billion tonnes at 29.48% Fe.

Jupiter Mines Limited (ASX: JMS) is pleased to announce that the Northern and Southern Zones at its Mount Ida Magnetite Project in the Yilgarn region of Western Australia have added a JORC compliant inferred resource of 615 million tonnes at 28.86% Fe (see Table 1).

Figure 1 - Mount Ida Escarpment

With the existing Central Zone JORC compliant indicated resource of 1.23 billion tonnes at 29.79% Fe, announced in early September 2012 (see ASX announcement dated September 4th, 2012), the total magnetite resource for the Project is now 1.85 billion tonnes at 29.48% Fe.

Table 1 - Mount Ida Northern and Southern Zone Magnetite Resource Statement

	Inferred Resource Fresh BIF 10% Magnetic Fe Block Grade Cut-off = 10%												
Region	Material	Tonnes x 10 ⁶	Fe %	SiO₂ %	Al ₂ O ₃ %	CaO %	P %	S %	LOI %	MgO %	MnO %		
	In situ Total	567	28.63	49.92	2.35	3.47	0.07	0.36	-0.65	2.76	0.09		
South	In situ Magnetic*	34.26	22.93	2.26	0.02	0.07	0.01	0.17	-1.02	0.05	0.01		
	Concentrate	194	66.93	6.60	0.06	0.21	0.02	0.50	-2.96	0.14	0.03		
	In situ Total	48	31.63	48.82	1.54	2.20	0.07	0.12	-0.84	2.07	0.06		
North	In situ Magnetic*	42.36	28.32	2.97	0.01	0.07	0.01	0.04	-1.32	0.05	0.02		
	Concentrate	20	66.85	7.02	0.03	0.16	0.02	0.09	-3.11	0.13	0.05		
	In situ Total	615	28.86	49.84	2.28	3.37	0.07	0.34	-0.67	2.71	0.09		
Total	In situ Magnetic*	34.89	23.35	2.32	0.02	0.07	0.01	0.16	-1.04	0.05	0.01		
	Concentrate	214	66.92	6.64	0.05	0.20	0.02	0.46	-2.98	0.14	0.04		

*In situ Magnetic is the material that reports to the magnetic fraction. The in situ Magnetic quantities in the Tonnes column are expressed as the percentage of the in situ Total tonnes (as estimated from Davis Tube Mass recovery).

The information in this statement that relates to Mineral Resource is based on work done by Rod Brown of SRK Consulting (Australasia) Pty Ltd and Len Skotsch of Jupiter Mining Ltd. Len Skotsch takes responsibility for the integrity of the Exploration Results including sampling, assaying, QA/QC and Geological Model. Rod Brown takes responsibility for the Mineral Resource Estimate. Rod Brown and Len Skotsch are Members of The Australasian Institute of Mining and Metallurgy and have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity they are undertaking to qualify as Competent Persons in terms of The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2004 edition).

The Competent Persons consent to the inclusion of such information in this report in the form and context in which it appears.

The updated resource now reflects the total drilling undertaken on the Project for the Feasibility Study, with approximately 100,000 metres of drilling completed.

On November 8th 2012, Jupiter froze further expenditure on the Project, mainly due to the increasing cost environment and uncertainty in delivering key infrastructure to enable the export of magnetite concentrate. The Mount Ida Magnetite Project now has a significant magnetite resource with the Feasibility Study components well advanced. The near-term focus of the recently hired Project Director for Mt Ida is to evaluate the Feasibility Study work done to date so as to recommend project capex and opex optimisation strategies to make the Project financially attractive for development.

Yours faithfully,

Jupiter Mines Limited

egn Aurack

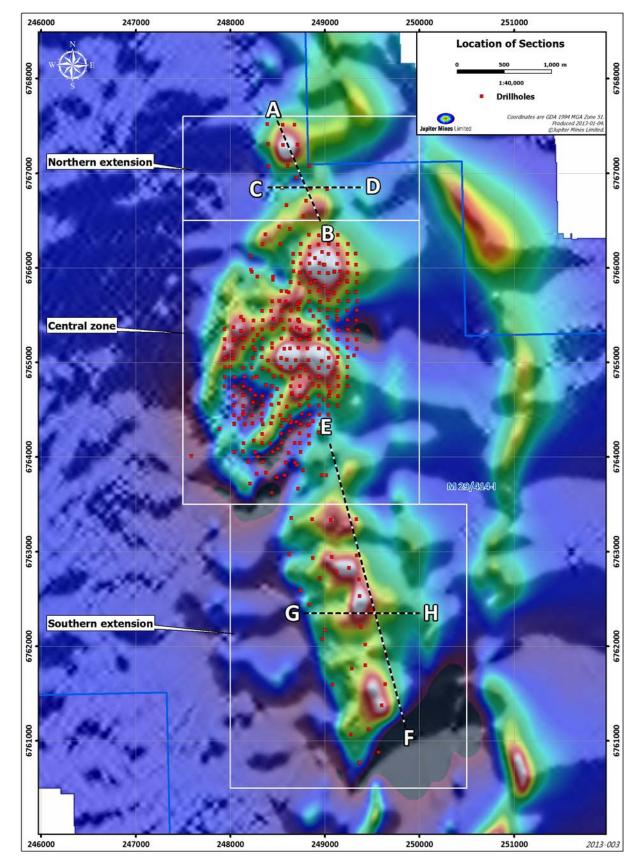
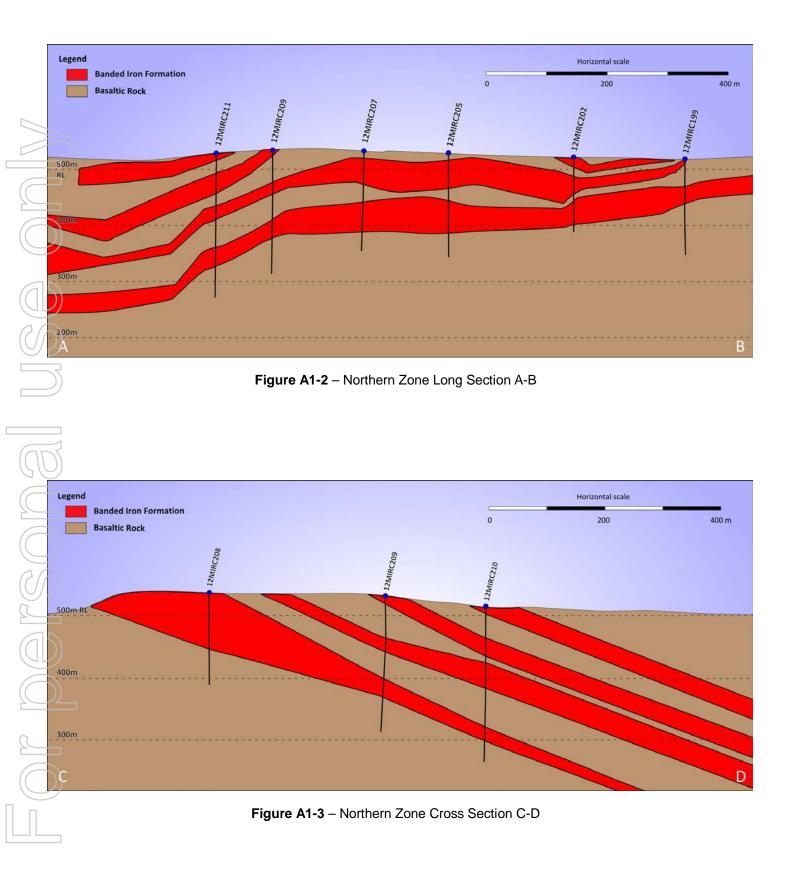
Greg Durack Chief Executive Officer

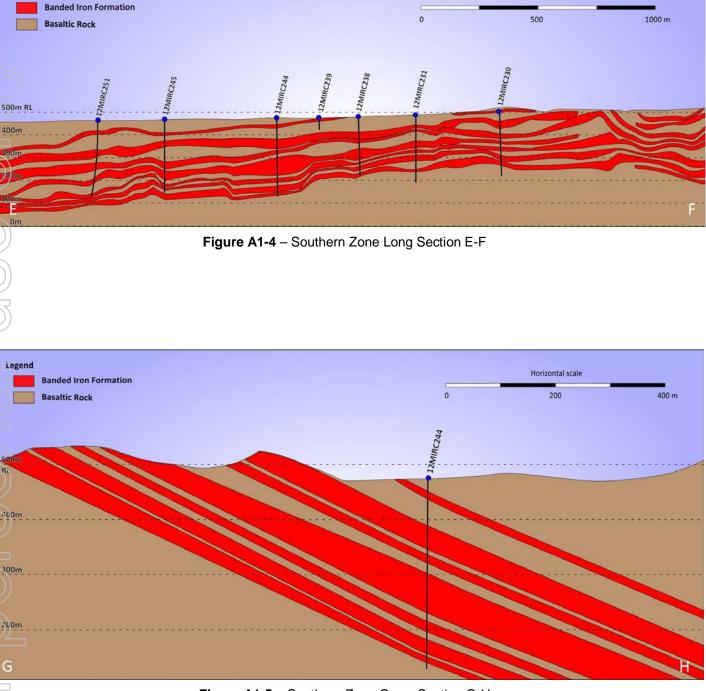
List of attachments:

Attachment 1 – Sections for Mount Ida Extension Drilling

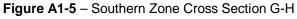
- Attachment 2 Mount Ida Magnetite Project North and South Zone Mineral Resource Statement December 2012
- Attachment 3 Significant Intercepts Mount Ida Extension Drilling

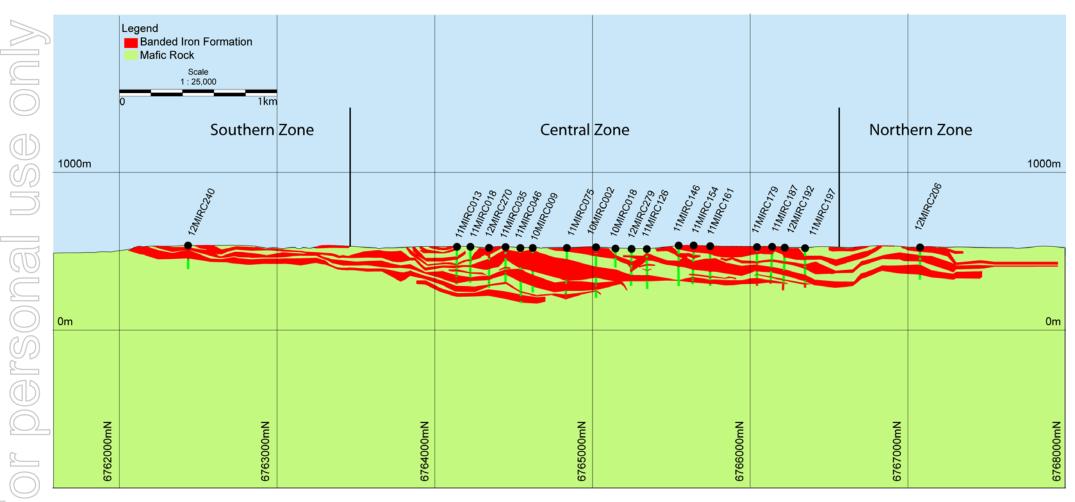
Attachment 1 – Sections for Mount Ida Extension Drilling


Figure A1-1 – Mount Ida Drill Hole Location Plan

Attachment 1 – Sections for Mount Ida Extension Drilling – continued




Attachment 1 - Sections for Mount Ida Extension Drilling - continued

Horizontal scale

Attachment 1 – Sections for Mount Ida Extension Drilling – continued

Figure A1-6 – Mount Ida Magnetite Project Long Section

Attachment 2 – Mount Ida Magnetite Project North and South Zone Mineral Resource Statement - December 2012

📌 srk consulting

Level 1 10 Richardson Street West Perth WA 6005, Australia

PO Box 943 West Perth WA 6872, Australia

T: +61 8 9288 2000 F: +61 8 9288 2001 E: perth@srk.com.au

www.srk.com.au

Project Memo

Client:	Jupiter Mines Limited	Date:	14 December 2012
Attention:	Mr Greg Durack	From:	Rod Brown
Project No:	JUP004	Revision No:	0
Project Name:	Mt Ida Feasibility Study	·	
Subject:	Mt. Ida Magnetite Project North and South Zone 2012	e Mineral Resource	e Statement - December

SRK Consulting (Australasia) (SRK) has prepared a resource model and Mineral Resource Estimate (MRE) for the North and South zone of the Mt Ida Magnetite deposit, using a geological model and exploration data provided by Jupiter Mines Limited (Jupiter). Resource estimates for the Central zone were prepared and reported in August 2012, and have not been updated in the December study.

The Mt Ida deposit is located in the Yilgarn region of Western Australia, approximately 100 km northwest of Menzies. The deposit is hosted within the Mt Ida greenstone belt, and the magnetite mineralisation occurs in folded banded iron formation (BIF) units that are interlayered with metamorphosed mafics. The BIFs form a prominent scarp along the western edge of the deposit, and dip shallowly to the east.

Although the deposit does exhibit some regional differences in geological characteristics, the division along strike into the three zones (South, Central, and North), is based on exploration focus and drill coverage, and the zone boundaries do not coincide with any specific changes in the geology.

The defined mineralisation in the South zone extends for approximately 3 km along strike and is over 1 km wide. Resources have been defined in seven shallow-dipping and sub-parallel BIF units. The average unit thickness is approximately 25 m, and the deepest intersection is approximately 340 m below the surface.

The defined mineralisation in the North zone has been identified over a strike extent of approximately 1 km and a width exceeding 600 m. Resources have been defined in a single BIF unit only (other BIF units have been identified in the region, but they have been intersected by insufficient drillholes for resource delineation). The average unit thickness is approximately 40 m, and the deepest intersection is approximately 250 m below the surface.

The MRE was prepared from the geological model and database provided by Jupiter on 26 September 2012. The geological model was interpreted using geophysical data, geology logging data, whole rock assay data, and Davis Tube recovery and concentrate data (DTR). The resource model grades were estimated using DTR and head grade data. The resource estimates were classified in accordance with the 2004 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2004).

	Inferred Re	source Fre	esh BIF 1	0% Mag	netic Fe	Block (Grade C	Cut-off	= 10%		
Region	Material	Tonnes x 10 ⁶	Fe %	SiO₂ %	Al ₂ O ₃ %	CaO %	P %	S %	LOI %	MgO %	MnO %
	In situ Total	567	28.63	49.92	2.35	3.47	0.07	0.36	-0.65	2.76	0.09
South	In situ Magnetic*	34.26	22.93	2.26	0.02	0.07	0.01	0.17	-1.02	0.05	0.01
	Concentrate	194	66.93	6.60	0.06	0.21	0.02	0.50	-2.96	0.14	0.03
	In situ Total	48	31.63	48.82	1.54	2.20	0.07	0.12	-0.84	2.07	0.06
North	In situ Magnetic*	42.36	28.32	2.97	0.01	0.07	0.01	0.04	-1.32	0.05	0.02
	Concentrate	20	66.85	7.02	0.03	0.16	0.02	0.09	-3.11	0.13	0.05
	In situ Total	615	28.86	49.84	2.28	3.37	0.07	0.34	-0.67	2.71	0.09
Total	In situ Magnetic*	34.89	23.35	2.32	0.02	0.07	0.01	0.16	-1.04	0.05	0.01
	Concentrate	214	66.92	6.64	0.05	0.20	0.02	0.46	-2.98	0.14	0.04

Table 1: Mt Ida Magnetite Resource Statement

*In situ Magnetic is the material that reports to the magnetic fraction. The in situ Magnetic quantities in the Tonnes column are expressed as the percentage of the in situ Total tonnes (as estimated from Davis Tube Mass recovery).

Notes:

The North and South zone resource estimates were derived from a single block model that covered the entire Mt Ida deposit, and was prepared using all of the Mt Ida resource delineation drill data. The Mt Ida exploration database contains a total of 465 holes, comprising 99,308 drill metres. The estimation dataset contains a total of 333 RC holes (81,935 m) and 30 core holes (9,036 m).

A total of 30 RC holes, comprising 7,212 m, are located in the South zone. The holes are nominally spaced on a 200 m grid. A total of 932 major oxide head grade analyses and 684 Davis Tube tests were performed on samples acquired from these holes. A total of 14 RC holes, comprising 2,389 m, are located in the North zone. The holes are nominally spaced on a 200 m grid. A total of 309 major oxide head grade analyses and 208 Davis Tube tests were performed on samples acquired from these holes.

The quality assurance database contains data derived from field duplicates, laboratory duplicates, laboratory repeats, Standards, and Blanks. The laboratory testwork was performed by ALS, and Bureau Veritas Perth.

All survey data are reported using MGA-Zone 51 (GDA94 AHD). The topographic surface model was created using data acquired from a LiDAR survey conducted on 11 August 2011. Drillhole collar locations were surveyed using DGPS. Downhole surveys were conducted on approximately 60% of the holes using gyroscopic equipment.

The geological model was used to subset the assay data according to individual BIF units and weathering characteristics (domain). The data within each domain were composited to 5 m intervals and statistical and variography studies were conducted.

A block model framework was created to represent the complete modelling volume. Model cells were assigned domain codes using the lithology and weathering wireframes. Cells located above the topographic surface were removed.

Grade estimation was undertaken using ordinary kriging. Cells within each domain were estimated using only the composites from that domain. A two-pass search strategy was implemented. Cells that did not receive an interpolated grade were assigned default grades equivalent to the composite grade averages for the domain. The results from the variography studies were used to assist with the selection of search parameters.

Page 3

A new set of variables were calculated for each composite to facilitate the inclusion of concentrate grades into the model. These variables represent the *in situ* grade of the material that reports to the magnetic fraction. They are calculated from the mass recovery and concentrate grade data (for example, MAGFE = MASSREC x ConcFe). In the above Table, these variables are termed "*in situ Magnetic*". The following constituent grades were estimated for each model cell:

MASSREC, MAGFE, MAGSIO2, MAGAL2O3, MAGCAO, MAGMGO, MAGMNO, MAGP, MAGS, MAGLOI, FE, SIO2, AL2O3, CAO, MGO, MNO, P, S, and LOI.

The *in situ* magnetic grades and the mass recovery were then used to back-calculate the concentrate grades for each model cell (*CFE*, *CSIO2*, *CAL2O3*, *CCAO*, *CMGO*, *CMNO*, *CP*, *CS*, *and CLOI*).

The density dataset contains a total of 209,626 readings derived from the downhole gamma logging of 93 drillholes. A strong correlation was observed between density and total Fe. A regression equation derived from this correlation was used to estimate the density for each cell from the estimated Fe grade. The mean model density is approximately 3.6 t/m³.

Model validation included visual and statistical comparisons of the composite grades and model grades, an assessment of estimation performance results, and a check of estimated oxide totals.

When assigning classifications to the resource estimates, data quality, geological complexity, data coverage, model validation results, and potential economic viability were taken into consideration. Extrapolation was limited to approximately 100 m, which corresponds to about half of the nominal drill spacing.

The information in this statement that relates to the Mineral Resource Estimate is based on work done by Rod Brown of SRK Consulting (Australasia) Pty Ltd and Len Skotsch of Jupiter Mining Ltd. Len Skotsch takes responsibility for the integrity of the Exploration Results including sampling, assaying, QA/QC as well as the Geological Model. Rod Brown takes responsibility for the Mineral Resource Estimate.

Rod Brown and Len Skotsch are Members of The Australasian Institute of Mining and Metallurgy and have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity they are undertaking to qualify as Competent Persons in terms of The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2004 edition).

The Competent Persons consent to the inclusion of such information in this report in the form and context in which it appears.

Yours faithfully

SRK Consulting (Australasia) Pty Ltd

Signed by:

Signed by:

Nocl brown

Rod Brown Principal Consultant (Geology)

Rasimpso

Robin Simpson Principal Consultant (Geology)

Significant intercepts, Mt Ida extensional drilling

								TUBE REC	OVERY PR	ODUCT	-			
			Length	Fe Head	Weight	Fe Conc	Al2O3	P Conc	S Conc	SiO2	LOI			
Hole ID	From (m)	To (m)	(m)	(%)	Recovery (%)		Conc	(%)	(%)	Conc	Con			
			(11)	(70)	Necovery (78)	(70)	(%)	(70)	(70)	(%)	(%)			
12MIRC201	20	57	37	36.69	19.42	69.63	0.039	0.018	0.004	1.41	-1.2			
12MIRC202	33	38	5	30.56	12.40	69.89	0.13	0.006	0.005	1.11	-1.1			
12MIRC202	43	65	22	35.92	20.34	67.79	0.091	0.017	0.004	3.9	-1.0			
12MIRC202	68	71	3	29.15	30.10	69.39	0.09	0.007	0.041	3.31	-2.7			
12MIRC202	80	114	34	31.23	43.13	66.59	0.051	0.012	0.007	7.4	-3.0			
12MIRC203	68	78	10	34.61	46.15	67.4	0.025	0.011	0.008	6.27	-3.0			
12MIRC203	83	106	23	21.34	20.04	70.61	0.167	0.004	0.013	1.46	-3.3			
12MIRC203	120	161	41	34.31	43.29	69.57	0.037	0.008	0.003	3.28	-3.2			
12MIRC205	30	125	95	34.38	37.18	67.92	0.047	0.013	0.004	5.1	-2.6			
12MIRC206	55	94	39	26.48	30.35	70.57	0.143	0.006	0.062	1.98	-3.4			
12MIRC206	113	174	61	32.17	42.65	67.96	0.044	0.014	0.016	5.79	-3.3			
12MIRC207	83	134	51	31.8	43.11	66.99	0.044	0.016	0.003	6.95	-3.1			
12MIRC208	29	92	63	34.45	27.70	67.57	0.027	0.015	0.003	4.77	-1.5			
12MIRC208	128	131	3	21.86	19.50	68.18	0.08	0.009	0.006	4.28	-2.2			
12MIRC209	72	92	20	35.69	43.90	68.97	0.04	0.01	0.005	4.16	-2.9			
12MIRC209	104	110	6	26.23	31.70	67.86	0.04	0.017	0.003	5.97	-3.1			
12MIRC209	135	162	27	27.05	34.35	64.16	0.081	0.017	0.954	10.14	-2.5			
12MIRC209	197	200	3	19.43	21.80	67.97	0.12	0.023	0.017	5.14	-2.7			
12MIRC210	56	110	54	24.05	25.19	68.29	0.12	0.015	0.035	4.54	-3.0			
12MIRC210	115	132	17	31.59	44.12	65.47	0.02	0.017	0.007	9.02	-3.0			
12MIRC210	145	152	8	26.48	31.74	67.96	0.02	0.017	0.154	5.28	-3.1			
12MIRC210	143	216	18	20.48	42.96	62.57	0.030	0.022	0.134	12.55	-2.9			
12MIRC210	30	63	33	34.31	25.00	66.4	0.039	0.033	0.044	6.02	-2.5			
12MIRC211	82	106	24	26.31	33.52	65.46	0.029	0.011	0.004	8.66	-2.9			
			35	33										
12MIRC211	158	193 51	35	33	44.79	66.07	0.017	0.015	0.012	7.9	-3 -1			
12MIRC212 12MIRC212	19 70		32 9		12.08	67.48	0.048	0.017	0.006	4.34				
		79		26.23	17.62	68.84	0.068	0.01	0.003	2.83	-1.6			
12MIRC212	108	138	30	32.49	41.92	69.71	0.024	0.009	0.005	3.34	-3.2			
12MIRC217	60	100	40	34.32	41.91	68.38	0.041	0.01	0.004	4.89	-2.8			
12MIRC217	134	145	11	25.34	30.94	65.34	0.086	0.025	0.041	9.07	-3.0			
12MIRC217	203	237	34	31.95	42.71	68.96	0.029	0.011	0.012	4.26	-3.			
12MIRC227	43	93	50	22.7	19.11	65.76	0.056	0.019	1.865	7.05	-1.6			
12MIRC228	54	75	21	24.61	26.75	62.57	0.062	0.029	0.041	12.48	-2.6			
12MIRC228	98	110	12	22.39	17.17	67.27	0.113	0.025	1.816	5.56	-2.2			
12MIRC228	133	142	9	23.82	15.37	70.94	0.065	0.011	1.099	1.32	-2.			
12MIRC229	60	79	19	30.12	34.06	68.87	0.024	0.008	0.009	3.84	-2.8			
12MIRC229	93	99	6	30.91	44.30	63.08	0.02	0.032	0.099	11.65	-2.9			
12MIRC229	114	148	34	22.63	25.99	64.61	0.092	0.026	0.821	9.34	-2.7			
12MIRC229	164	193	29	26.76	25.79	65.99	0.067	0.018	2.384	7.08	-2.5			
12MIRC230	81	100	19	26.8	31.73	70.09	0.108	0.006	0.011	2.6	-3.2			
12MIRC230	105	118	13	28.54	32.59	66.67	0.095	0.011	0.005	7.12	-3.2			
12MIRC230	136	152	16	31.14	43.19	65.9	0.069	0.015	0.111	8.21	-3.0			
12MIRC230	167	173	6	19.08	19.30	66.76	0.1	0.029	0.243	6.67	-3.0			
12MIRC230	189	206	17	26.5	26.78	67.5	0.094	0.013	2.589	4.55	-2.0			
12MIRC230	232	256	24	31.3	40.85	69.62	0.035	0.01	0.18	3.23	-3.2			
12MIRC230	264	275	11	22.21	20.66	70.24	0.059	0.006	1.609	1.38	-2.4			
12MIRC231	39	44	5	15.06	11.90	65.69	0.17	0.017	0.092	7.39	-2.8			
12MIRC231	58	66	8	34.1	52.05	60.22	0.045	0.022	0.005	16.22	-2.7			
12MIRC231	110	136	26	27.12	32.49	66.17	0.096	0.019	0.05	7.79	-2.9			
12MIRC231	145	159	14	18.58	19.07	63.7	0.091	0.037	1.225	10.47	-2.			
12MIRC231	171	195	24	23.31	22.55	66.81	0.072	0.021	1.65	6.14	-2.7			
12MIRC231	238	246	8	23.85	16.60	68.71	0.06	0.011	2.955	2.77	-1.9			
12MIRC232	38	46	8	27.87	35.50	60.97	0.06	0.022	0.05	14.94	-2.7			
12MIRC232	62	69	7	23.72	24.07	66.49	0.05	0.024	0.686	7.14	-2.7			
12MIRC232	83	116	33	25.99	23.45	67.99	0.057	0.011	5.03	3.1	-2.1			

				_	-		DAVIS	ORF KEC	OVERY PR	ODUCI	-				
			Length	Fe Head	Weight	Fe Conc	Al2O3	P Conc	S Conc	SiO2					
Hole ID	From (m)	To (m)	(m)	(%)	Recovery (%)		Conc	(%)	(%)	Conc	Con				
							(%)		. ,	(%)	(%)				
12MIRC232	125	137	12	31.65	37.63	67.5	0.043	0.012	0.447	6.04	-2.9				
12MIRC232	151	156	5	26.14	20.40	69.08	0.09	0.007	2.05	2.84	-2.3				
12MIRC232	223	228	5	15.29	11.00	69.06	0.12	0.005	4.69	1.66	-1.1				
12MIRC233	56	66	10	22.12	24.35	64.61	0.085	0.028	0.043	9.68	-3.0				
12MIRC233	76	97	21	25.8	26.00	67.27	0.047	0.017	2.999	4.8	-1.8				
12MIRC233	100	104	4	25.62	21.60	67.94	0.06	0.016	3.19	3.83	-1.7				
12MIRC234	45	67	22	24.04	18.90	68.8	0.088	0.015	2.766	3.01	-2.1				
12MIRC234	205	215	10	22.58	20.10	68.28	0.11	0.017	3.455	3.32	-1.3				
12MIRC235	57	76	19	29.47	29.77	70.7	0.041	0.008	1.473	1.35	-2.6				
12MIRC236	45	60	15	29.44	40.67	61.73	0.047	0.035	0.01	13.87	-2.6				
12MIRC236	78	102	24	30.41	37.93	68.67	0.047	0.014	0.367	4.45	-3.0				
12MIRC236	109	140	31	29.02	34.58	65.68	0.063	0.02	0.831	8.25	-2.7				
12MIRC237	48	84	36	34.02	44.83	70.01	0.022	0.008	0.009	3.03	-3.2				
12MIRC237	95	139	44	23.36	22.94	66.47	0.111	0.021	2.953	6.09	-2.0				
12MIRC237	151	180	29	28.16	30.71	68.36	0.071	0.018	1.72	4.14	-2.4				
12MIRC238	44	91	47	29.78	34.91	67.7	0.074	0.012	0.004	5.1	-3.1				
12MIRC238	116	166	50	31.9	38.28	68.8	0.035	0.011	0.034	4.36	-3.2				
12MIRC238	179	185	6	18.86	16.00	67.05	0.1	0.025	1.46	5.72	-2.5				
12MIRC238	195	211	16	25.61	21.43	67.78	0.064	0.016	3.397	4.02	-1.7				
12MIRC239	23	69	46	38.44	41.22	69.46	0.032	0.006	0.003	3.34	-3.0				
12MIRC239	129	145	16	36.31	40.92	68.75	0.029	0.009	0.003	4.58	-3.1				
12MIRC239	152	176	24	32.6	41.73	68.84	0.04	0.01	0.058	4.45	-3.1				
12MIRC239	180	186	6	28.15	40.90	58.89	0.05	0.043	0.262	17.78	-2.6				
12MIRC239	203	221	18	30.48	38.98	68.2	0.058	0.014	0.163	5.01	-3.1				
12MIRC240	31	82	51	31.01	26.48	70.32	0.061	0.008	0.713	1.67	-2.4				
12MIRC241	52	62	10	29.43	44.40	57.45	0.065	0.04	0.022	19.79	-2.4				
12MIRC241	81	124	43	28.05	29.52	69.28	0.059	0.011	1.34	3.1	-2.				
12MIRC242	60	64	4	23.83	27.90	59.83	0.07	0.024	0.858	15.38	-2.2				
12MIRC242	72	83	11	27.12	38.14	61.56	0.069	0.036	0.047	13.82	-2.7				
12MIRC242	99	143	44	27.96	29.89	69	0.073	0.011	2.718	2.83	-2.8				
12MIRC243	14	52	38	36.15	33.06	65.75	0.042	0.011	0.003	8.16	-2.4				
12MIRC243	102	125	23	35.66	41.89	68.48	0.042	0.011	0.004	4.89	-3.1				
12MIRC243	140	179	39	33.59	46.23	68.09	0.029	0.011	0.005	5.54	-3.1				
12MIRC243	203	207	4	24.84	33.40	59.49	0.06	0.03	1.39	16.26	-2.0				
12MIRC243	214	227	13	28.29	40.70	59.98	0.065	0.035	0.193	16.11	-2.6				
12MIRC243	247	274	27	30.88	38.74	68.64	0.045	0.014	0.065	4.46	-3.1				
12MIRC243 12MIRC244	284	294	10	24.67 35.87	19.47	70.3	0.076	0.012	1.095	1.83	-2.7				
	92 171	153	61		39.71	70.34	0.09	0.005	0.005	2.07	-3.2				
12MIRC244	171	248	77	32.07	39.19	68.35	0.042	0.01	0.01	4.86	-3.2				
12MIRC244	262	285	23	24.45	29.00	62.83	0.101	0.027	0.146	11.78	-2.9				
12MIRC244	295	335	40	27.13	28.45	68.53	0.072	0.014	1.677	3.6					
12MIRC245	66	70	4	30.26	33.50	69.31	0.12	0.007	0.008	3.51	-3.2				
12MIRC245	93	121	28	37.17	44.23	66.51	0.041	0.011	0.002	7.69	-3.0				
12MIRC245	190	218	28	36.2	42.62	67.79	0.032	0.012	0.006	5.87	-3.1				
12MIRC245	232	268	36	33.35	45.28	68.06	0.027	0.011	0.009	5.53	-3.1				
12MIRC245 12MIRC246	290	311 57	21	22.71	28.93 44.01	61.19	0.108	0.032	0.87	14.1	-2.3				
	36 73	57 95	21	36.46		69.86	0.042	0.008	0.026	2.88	-3.1				
12MIRC246		95 141	22	36.11	49.26	67.55	0.042	0.012	0.029	5.92	-3.0				
12MIRC246	108		33	32.49	42.84	68.59	0.041	0.01	0.054	4.84	-3.1				
12MIRC246	156	160	4	30.99	47.80	54.06	0.04	0.03	0.081	23.86	-2.2				
12MIRC246	188	193	5	26.17	34.40	58.84	0.11	0.027	0.388	17.11	-2.4				
12MIRC246	205	210	5	28.92	41.60	57.66	0.05	0.035	0.44	18.37	-2.4				
12MIRC246 12MIRC247	229 34	250 45	21 11	30.11 35.32	38.01 21.36	68.84 66.33	0.047	0.013	0.104	4.27 5.72	-3.1 -0.8				
		/15									• - 11 X				

	From (m)	To (m)				DAVIS TUBE RECOVERY PRODUCT						
Hole ID			Length (m)	Fe Head (%)	Weight Recovery (%)	Fe Conc (%)	Al2O3 Conc (%)	P Conc (%)	S Conc (%)	SiO2 Conc (%)	LOI Con (%)	
12MIRC247	94	102	8	26.04	33.18	62.63	0.081	0.03	0.332	12.51	-2.6	
12MIRC247	110	118	8	25.3	35.21	61.67	0.094	0.033	0.435	13.31	-2.6	
12MIRC247	142	157	15	29.02	36.23	67.63	0.05	0.018	0.13	5.8	-3.0	
12MIRC247	167	185	18	21.31	17.47	66.06	0.115	0.018	5.629	5.07	-0.5	
12MIRC248	61	84	23	30.85	37.81	66.87	0.044	0.015	0.035	7.1	-3.0	
12MIRC248	97	108	11	25.41	20.61	69.96	0.083	0.006	2.523	1.65	-2.0	
12MIRC249	17	55	38	36.23	38.04	69.88	0.044	0.008	0.004	2.36	-2.4	
12MIRC249	87	90	3	18.26	15.10	69.38	0.15	0.012	0.016	3.25	-3.	
12MIRC249	101	109	8	22.11	19.70	64.11	0.125	0.015	0.844	9.89	-2.4	
12MIRC249	113	118	5	28.42	29.80	69.35	0.13	0.012	0.31	3.1	-2.9	
12MIRC249	126	131	5	27.19	33.50	61.83	0.08	0.036	1.11	12.58	-2.2	
12MIRC249	144	158	14	29.42	35.42	68.61	0.051	0.016	0.657	4.38	-2.7	
12MIRC249	163	168	5	20.94	14.80	68.17	0.07	0.013	7.66	1.45	0.4	
12MIRC249	174	179	5	25.02	26.20	68.21	0.11	0.017	0.82	4.32	-2.7	
12MIRC249	193	196	3	24.03	23.80	69.07	0.08	0.01	3.63	2.17	-1.4	
12MIRC250	26	31	5	30.47	36.70	65.76	0.07	0.008	0.012	8.05	-2.	
12MIRC250	36	71	35	34.63	42.37	70.02	0.096	0.006	0.007	2.5	-3.2	
12MIRC250	95	134	39	33.79	39.22	67.52	0.092	0.011	0.064	5.99	-3.1	
12MIRC250	152	177	25	31.11	45.70	61.9	0.05	0.025	0.112	13.64	-2.8	
12MIRC250	251	268	17	27.21	29.74	62.83	0.089	0.03	0.696	11.7	-2.7	
12MIRC250	271	281	10	29.21	37.40	71.01	0.045	0.007	0.859	1.34	-2.9	
12MIRC250	290	300	10	21.32	14.10	70.08	0.11	0.008	2.345	1.66	-2.3	
12MIRC251	80	123	43	32.79	39.52	67.97	0.119	0.01	0.006	5.26	-3.2	
12MIRC251	141	181	40	35.79	48.34	66.75	0.054	0.012	0.007	6.93	-3.1	
12MIRC251	233	245	12	31.42	42.84	65.01	0.063	0.014	0.038	8.45	-3.0	
12MIRC251	292	339	47	26.51	30.97	67.82	0.088	0.01	2.781	4.23	-2.8	
12MIRC252	48	97	49	30.53	41.13	69.7	0.044	0.009	0.012	3.29	-3.2	
12MIRC252	140	149	9	23.39	26.77	68.29	0.097	0.018	0.273	4.92	-3.0	
12MIRC252	161	206	45	29.6	35.72	70.56	0.071	0.009	0.546	1.91	-3.1	
12MIRC253	43	48	5	25.82	30.80	61.94	0.04	0.023	0.028	13.33	-2.7	
12MIRC253	61	70	9	26.87	30.11	65.21	0.073	0.018	0.201	8.77	-2.9	
12MIRC253	81	110	29	24.17	23.51	69.49	0.079	0.011	1.221	2.85	-2.8	
12MIRC253	125	134	9	26.02	26.09	67.53	0.457	0.01	3.46	4.12	-1.5	
12MIRC254	62	75	13	23.29	26.27	66.47	0.085	0.022	0.751	7.26	-2.8	
12MIRC254	89	98	9	27.23	34.68	64.36	0.113	0.023	0.086	10.11	-2.9	
12MIRC254	107	114	7	29.72	43.16	60.54	0.08	0.026	0.086	15.64	-2.7	
12MIRC254	130	137	7	26.04	24.36	69.82	0.07	0.005	3.583	1.37	-1.7	
12MIRC255	46	49	3	38.18	36.10	71.67	0.07	0.008	0.007	0.58	-3.	
12MIRC255	97	122	25	34.08	43.74	70.14	0.05	0.008	0.005	2.82	-3.	
12MIRC255	149	191	42	22.92	28.80	67.92	0.207	0.012	0.242	5.22	-3.1	
12MIRC255	207	210	3	15.51	18.70	65.91	0.17	0.012	0.195	8.01	-3.1	
12MIRC255	235	269	34	18.19	16.96	68.95	0.126	0.011	2.147	2.8	-2.3	

Sample analyses by x-ray Fluorescence Spectrometry (XRF) at ALS Chemex and Bureau Veritas in Perth

Loss On Ignition (LOI) values were determined using Thermo-gravimetric Analyses at 1000°C

5 metre composite samples used for DTR with XRF assays

Intersections have been calculated using 10% mass recovery lower cut-off grade

Maximum internal dilution up to 7m

Intercepts are based on downhole lengths, not true widths