

# ASX ANNOUNCEMENT 29 April 2014

# Australian Securities Exchange Code: NST

#### **Board of Directors**

Mr Chris Rowe
Non-Executive Chairman

Mr Bill Beament Managing Director

Mr Peter O'Connor Non-Executive Director

Mr John Fitzgerald
Non-Executive Director

Ms Liza Carpene Company Secretary

### **Issued Capital**

Shares 578.6M

Options 3.8M

Current Share Price \$1.195

Market Capitalisation \$691.4 million

Cash/Bullion and Investments 31 Mar 2014 - \$80 million

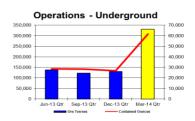
#### **Projects**

Paulsens Mine Plutonic Mine Kanowna Belle Mine Kundana Mines (51% of EKJV) Ashburton

**Listed Investments** VXR, BNR, DAU, RND, TBR

### **March 2014 Quarter Activities Report**


# ACQUISITIVE QUARTER SETS UP NORTHERN STAR FOR +350,000OZPA AT ~A\$1,050/OZ


Rich Pegasus deposit to start production in 2015

### **KEY POINTS**

- Three major acquisitions transform Northern Star into fifth-largest ASX gold stock
- Plutonic acquisition completed on February 1; Kanowna Belle and East Kunduna JV acquisitions completed on March 1
- ▶ June Quarter forecast: 80-90,000oz at all-in sustaining cost of A\$1,100/oz
- March Quarter Production:
  - 61,501oz mined and 50,219oz recovered
  - 43,307oz sold at \$1,444/oz for \$62.5M revenue
  - All-in sustaining costs "AISC" of A\$1,167/oz
  - Gold in stockpiles, circuit and transit totalled 65,518oz
- Paulsens Gold Operations:
  - 28,669oz mined and 22,342oz recovered
  - All-in sustaining costs of A\$1,139/oz
- Plutonic Gold Operations: (February / March)
  - 14,283oz mined and 12,778oz recovered
  - All-in sustaining costs of A\$1,502/oz
- Kanowna Belle Gold Operations (March only):
  - 11,626oz mined and 7,618oz recovered
  - All-in sustaining costs of A\$984/oz
- Kundana Gold Operations (March only):
  - 6,923oz mined and 7,482oz recovered
  - All-in sustaining costs of A\$706/oz
- ~\$130m raised to cover acquisitions and working capital
- Cash, Bullion and Investments increased to \$80M
- Investors can listen to the Analysts' Briefing Call via webcast which starts at noon EST (10am WST) today http://www.brr.com.au/event/123129.









### For the quarter ended 31 March 2014



### **QUARTERLY OVERVIEW**

Northern Star Resources Limited (ASX: NST) is pleased to provide its first quarterly activities report since acquiring three major WA gold operations, taking its total number of operating business units to four. This report details Paulsens Gold Operations activities for the full quarter and incorporates the activities of the recently-acquired Plutonic Gold Operations as from 1 February 2014 and the Kanowna Belle and Kundana Gold Operations<sup>1</sup> as from 1 March 2014.

Northern Star Managing Director Bill Beament said the results left him in no doubt that the Company was well on track to achieving its goal of producing 350,000ozpa-plus at an all-in sustaining cost of A\$1,050/oz.

"Given the inevitable issues surrounding major asset handovers, these results are extremely pleasing," Mr Beament said.
"As we continue to drive productivity at each of our new operations and bring the Pegasus deposit at Kundana into production it will become clear that we will meet our production and cost guidance.

"I am also confident that we will generate growth through exploration, particularly at Pegasus where I believe the maiden 350,000oz resource<sup>2</sup> will quickly expand to one million ounces.

"As we bed down these acquisitions, Northern Star will generate substantial growth in its free cashflow while enjoying a conservative balance sheet and outstanding growth potential.

"These traits are all consistent with our objective of making Northern Star an Australian gold producer which attracts global investors."

### Group Safety

There was one lost-time injury across the Group during the quarter as the result of a processing operator at Paulsens straining his shoulder. The combined Group 12-month moving average Lost Time Injury Frequency Rate (LTIFR) for the March 2014 guarter remained stable at 1.9. The Group LTIFR remains below the gold industry LTIFR rate of 2.50<sup>3</sup>.

### **Group Operations**

Ore mined for the quarter totalled 330,718 tonnes at 5.8gpt for 61,501 ounces.

Ore milled for the quarter totalled 389,129 tonnes at a blended grade of 4.6gpt gold for 50,219 recovered ounces. Unprocessed ore stocks available for mill feed at the end of the quarter are ~0.590 million tonnes at ~2.2gpt containing ~41,500 ounces of gold.

Production from Paulsens Gold Operations was affected by reduced plant recoveries. Improvements to the process circuit have restored recoveries back above 90% in April.

At Plutonic, the key operating indicators rose in February and March following a focus on increased underground production. Mined ore grade was lower than historical performance due to maximising the gold extraction sequence before acquisition. Cost improvements have been achieved early in the handover and will continue in the current quarter. There has been strong acceptance within the workforce of a renewed approach to this operation.

Kanowna Belle has continued to perform strongly throughout the ownership transition. Processing ore feed included underground sources and low-grade surface stockpiles. A redundancy program is underway to align labour levels with the forecast production profile and underpin cost reduction initiatives. This is expected to result in a one-off \$6-10 million restructuring cost.

Kundana Gold Operations include the Raleigh, Rubicon, Hornet and Pegasus ore bodies. Raleigh rehabilitation is progressing after the regional earthquake damage. Significant analysis and risk assessment has been conducted to ensure safe re-entry into the production areas. Increased production at Rubicon and Hornet has offset the effect of Raleigh. Capital development to access the Pegasus orebody has commenced and targeted drilling is being completed at this outstanding discovery.

Across the four operations, gold bullion sold for the quarter was 43,307 ounces at an average realised price of A\$1,444/oz for A\$62.5 million revenue. All-in sustaining costs for the quarter were A\$1,167/oz. Gold in stockpiles and circuit totalled 59,342 ounces. Bullion refined and not sold at the end of the quarter totalled 6,176 ounces.

ASX: NST Page 2 of 23

<sup>&</sup>lt;sup>1</sup> Kundana Gold Operations reflects the Company's 51% interest in the East Kundana Joint Venture.

<sup>&</sup>lt;sup>2</sup> Northern Star has a 51% interest in the Pegasus Resource through its holding in the East Kundana Joint Venture.

<sup>&</sup>lt;sup>3</sup> Safety Performance in the Western Australian Mineral Industry 2012-13 Accident and Incident Statistics – Department of Mines & Petroleum.

## For the quarter ended 31 March 2014



| Northern Star                   | Units  | Sep-13 Qtr | Dec-13 Qtr | Mar-14 Qtr | FY YTD  |
|---------------------------------|--------|------------|------------|------------|---------|
|                                 |        |            |            |            |         |
| Ore Hoisted                     | Tonnes | 122,213    | 129,876    | 330,718    | 582,807 |
| Mined Grade                     | gpt Au | 7.20       | 6.42       | 5.78       | 6.22    |
| Gold in Ore Hoisted             | Oz     | 28,276     | 26,818     | 61,501     | 116,595 |
|                                 |        |            |            |            |         |
| Milled Tonnes                   | Tonnes | 111,387    | 118,368    | 389,129    | 618,884 |
| Head Grade                      | gpt Au | 7.74       | 7.20       | 4.57       | 5.64    |
| Ounces Produced                 | Oz     | 27,718     | 27,417     | 57,158     | 112,293 |
| Recovery                        | %      | 94         | 89         | 88         | 90      |
| Gold Recovered                  | Oz     | 26,009     | 24,410     | 50,219     | 100,638 |
|                                 |        |            |            |            |         |
| Ounces Sold                     | Oz     | 24,171     | 26,756     | 43,307     | 94,235  |
| Average Gold Price              | A\$/oz | 1,465      | 1,371      | 1,444      | 1,429   |
| Revenue                         | A\$M   | 35.4       | 36.7       | 62.5       | 135     |
| Cash Operating Cost             | A\$/oz | 722        | 852        | 929        | 854     |
| All in Sustaining Cost          | A\$/oz | 1,081      | 1,156      | 1,167      | 1,156   |
| 7                               |        |            |            |            |         |
| Total Stockpiles Contained Gold | Oz     | 10,490     | 9,881      | 41,474     | 41,474  |
| Gold in Circuit (GIC)           | Oz     | 3,820      | 1,299      | 17,877     | 17,877  |
| Gold in Transit (GIT)           | Oz     | 1,957      | 2,130      | 6,176      | 6,176   |

| Gold in Transit (GIT)                     | Oz        | 1,957 | 2    | 2,130      | 6,176 |       | 6,176      |        |
|-------------------------------------------|-----------|-------|------|------------|-------|-------|------------|--------|
| Table 1. Key Group Performance Figures (Q | uarterly) |       |      |            |       |       |            |        |
| Northern Star - All in Sustaining Cos     | sts       | Uı    | nits | Sep-13 Qtr | Dec-1 | 3 Qtr | Mar-14 Qtr | FY YTC |
| Mining                                    |           | AS    | S/oz | 447        |       | 421   | 718        | 5      |
| Processing                                |           | AS    | S/oz | 224        |       | 198   | 290        | 2      |
| Site Services                             |           | AS    | S/oz | 63         | 1     | 69    | 83         |        |
| Ore Stock & GIC Movements                 |           | AS    | S/oz | (45        |       | 132   | (204)      | (      |
| Royalties                                 |           | AS    | S/oz | 33         | i     | 34    | 46         |        |
| By Product Credits                        |           | AS    | S/oz | (2)        |       | (2)   | (3)        |        |
| Rehabilitation - Accretion & Amortisation | n         | AS    | S/oz | 1          |       | 1     | 1          |        |
| Corporate Overheads                       |           | AS    | S/oz | 77         |       | 68    | 68         |        |
| Mine Development / Sustaining Capex       |           | AS    | S/oz | 261        |       | 211   | 150        | 1      |
| Mine Exploration                          |           | AS    | S/oz | 23         |       | 24    | 18         | •      |
| All in Sustaining Costs                   |           | AS    | S/oz | 1,081      |       | 1,156 | 1,167      | 1,1    |

Table 2: Key Group Cost per Ounce Measures

Table 2: All in Costs including cash costs, corporate costs, mine exploration and sustaining CAPEX (Non-GAAP Measures)

ASX: NST Page 3 of 23

<sup>(1)</sup> Mine Development and sustaining capital includes all capitalised mine development expenditure and all mine capital expenditure except for expansion capital (ie. once off capital).

<sup>(2)</sup> Includes all resource definition drilling costs.

<sup>(3)</sup> Corporate costs allocated on an ounces sold basis.

### For the quarter ended 31 March 2014



| Production KPIs         | Units  | Paulsens | Plutonic | Kanowna<br>Belle | Kundana | Total   |
|-------------------------|--------|----------|----------|------------------|---------|---------|
| Total Ore Hoisted       | Tonnes | 113,128  | 122,113  | 80,096           | 15,381  | 330,718 |
| Mine Grade              | gpt Au | 7.88     | 3.64     | 4.51             | 14.00   | 5.78    |
| Gold in Ore Hoisted     | Oz     | 28,669   | 14,283   | 11,626           | 6,923   | 61,501  |
|                         |        |          |          |                  |         |         |
| Milled Tonnes           | Tonnes | 114,027  | 170,091  | 88,778           | 16,232  | 389,129 |
| Head Grade              | gpt Au | 7.10     | 2.73     | 2.96             | 14.85   | 4.57    |
| Recovery                | %      | 86       | 85       | 90               | 97      | 88      |
| Gold Recovered          | Oz     | 22,342   | 12,778   | 7,618            | 7,482   | 50,219  |
| Gold Sold               | Oz     | 23,838   | 10,285   | 5,184            | 4,000   | 43,307  |
|                         |        |          |          |                  |         |         |
| Cash Operating Costs    | A\$/oz | 845      | 1,289    | 935              | 496     | 929     |
| All In Sustaining Costs | A\$/oz | 1,139    | 1,502    | 984              | 706     | 1,167   |

Table 3. Key Quarterly Mine Production Performance

### Capital Raising

During the Quarter, the Company completed a \$100 million equity raising through a fully underwritten placement by RBC Capital Markets of 116,279,070 ordinary shares at an issue price of \$0.86 per share to domestic and international institutional investors (consisting of existing and new Shareholders). The Company also raised an additional \$28.9 million through a heavily over-subscribed Share Purchase Plan which resulted in the issue of a further 33,554,440 at \$0.86 per share.

### Guidance - Year Ended 30 June 2014

Taking into account the new acquisitions in February and March 2014, Group Guidance is expected to be between 180,000 to 190,000 ounces of gold at between A\$1,100 to A\$1,150 per ounce AISC. The June quarter is expected to recover 80,000 to 90,000 ounces of gold at an AISC of A\$1,100/oz.

### Paulsens Gold Operations - Overview

Ore tonnes mined from the underground of 113,128t were lower than the previous quarter due to a reduction in quarterly ore development. Mined grade for the quarter was higher than previous quarter at 7.9gpt Au.

Milled production for the quarter totalled 22,342oz. Ore tonnes milled were marginally lower than the previous quarter as planned maintenance was completed in the plant. Process recoveries were affected during the quarter and have been restored in April above 90% with a stabilised feed blend and improvements to the process circuit.

Quarterly gold sales from the Paulsens Gold Mine totalled 23,838oz. Unaudited all in sustaining costs for the quarter was A\$1,139/oz.

| Production Summary - Paulsens             |        | Sep-13 Qtr | Dec-13 Qtr | Mar-14 Qtr |
|-------------------------------------------|--------|------------|------------|------------|
| Ore Mined                                 | Tonnes | 122,213    | 129,876    | 113,128    |
| Mined Grade                               | gpt Au | 7.20       | 6.42       | 7.88       |
| Ounces Mined                              | Oz     | 28,276     | 26,818     | 28,669     |
|                                           |        |            |            |            |
| Milled Tonnes                             | Tonnes | 111,387    | 118,368    | 114,027    |
| Head Grade                                | gpt Au | 7.74       | 7.20       | 7.10       |
| Recovery                                  | %      | 94         | 89         | 86         |
| Gold Recovered                            | Oz     | 26,009     | 24,410     | 22,342     |
|                                           |        |            |            |            |
| Cash Operating Costs - Paulsens           |        | Sep-13 Qtr | Dec-13 Qtr | Mar-14 Qtr |
| Mining                                    | A\$/oz | 447        | 421        | 488        |
| Processing                                | A\$/oz | 224        | 198        | 258        |
| Site Services                             | A\$/oz | 63         | 69         | 74         |
| Ore Stock Movements                       | A\$/oz | (45)       | 132        | (9)        |
| Royalties                                 | A\$/oz | 33         | 34         | 36         |
| By Product Credits                        | A\$/oz | (2)        | (2)        | (2)        |
| Rehabilitation - Accretion & Amortisation | A\$/oz | 1          | 1          | 1          |
| Corporate Overheads                       | A\$/oz | 77         | 68         | 69         |
| Mine Development / Sustaining Capex       | A\$/oz | 261        | 211        | 191        |
| Paulsens Mine Exploration                 | A\$/oz | 23         | 24         | 33         |
| All in Sustaining Costs - Paulsens        | A\$/oz | 1,081      | 1,156      | 1,139      |

Table 4. Summary Details - Paulsens

ASX: NST Page 4 of 23

### For the quarter ended 31 March 2014



#### **Plutonic Gold Operations - Overview**

The Plutonic Gold Operations were acquired on 1 February 2014.

Ore tonnes mined from underground sources were 112,113t. Mined grade for the quarter was 3.64gpt Au.

Milled production for the quarter totalled 12,778oz. Ore tonnes milled were reduced due to the trial introduction of campaign milling in March 2014 eliminating the processing of mineralised waste.

Quarterly gold sales from the Plutonic Gold Operations totalled 10,285oz. Unaudited all in sustaining costs for the quarter was A\$1,502/oz. This unit cost is expected to be reduced in the June quarter through increased gold production and cost reduction initiatives.

|   | Production Summary - Plutonic             |        | Mar-14 Qtr |
|---|-------------------------------------------|--------|------------|
|   | Ore Mined                                 | Tonnes | 122,113    |
|   | Mined Grade                               | gpt Au | 3.64       |
|   | Ounces Mined                              | Oz     | 14,283     |
|   |                                           |        |            |
|   | Milled Tonnes                             | Tonnes | 170,091    |
|   | Head Grade                                | gpt Au | 2.73       |
|   | Recovery                                  | %      | 85         |
|   | Gold Recovered                            | Oz     | 12,778     |
| 1 |                                           |        |            |
| 1 | Cash Operating Costs – Plutonic           |        | Mar-14 Qtr |
|   | Mining                                    | A\$/oz | 1,119      |
|   | Processing                                | A\$/oz | 374        |
|   | Site Services                             | A\$/oz | 98         |
|   | Ore Stock Movements                       | A\$/oz | (337)      |
|   | Royalties                                 | A\$/oz | 37         |
|   | By Product Credits                        | A\$/oz | (2)        |
|   | Rehabilitation - Accretion & Amortisation | A\$/oz | 1          |
| _ | Corporate Overheads                       | A\$/oz | 85         |
|   | Mine Development / Sustaining Capex       | A\$/oz | 128        |
| 7 | Plutonic Mine Exploration                 | A\$/oz | 0          |
| 7 | All in Sustaining Costs - Plutonic        | A\$/oz | 1,502      |

Table 5. Summary Details - Plutonic

### Kanowna Belle Gold Operations - Overview

The Kanowna Belle Gold Operations were acquired on 1 March 2014.

Ore tonnes mined from the Kanowna Belle underground were 80,096t. Mined grade for the guarter was 4.51gpt Au.

Milled production for the quarter totalled 7,618oz. Ore tonnes milled were in line with campaign feed plan from Kanowna Belle, Kundana and surface low grade stockpiles.

Quarterly gold sales from Kanowna Belle totalled 5,184oz. Unaudited all in sustaining costs for the quarter was A\$984/oz.

| 7         | Production Summary - Kanowna Belle        |        | Mar-14 Qtr |
|-----------|-------------------------------------------|--------|------------|
|           | Ore Mined                                 | Tonnes | 80,096     |
| $\neg$    | Mined Grade                               | gpt Au | 4.51       |
|           | Ounces Mined                              | Oz     | 11,626     |
|           |                                           |        |            |
|           | Milled Tonnes                             | Tonnes | 88,778     |
| -         | Head Grade                                | gpt Au | 2.96       |
| $\exists$ | Recovery                                  | %      | 90         |
|           | Gold Recovered                            | Oz     | 7,618      |
|           |                                           |        |            |
|           | Cash Operating Costs – Kanowna Belle      |        | Mar-14 Qtr |
|           | Mining                                    | A\$/oz | 1,148      |
| ı         | Processing                                | A\$/oz | 366        |
| Ì         | Site Services                             | A\$/oz | 120        |
|           | Ore Stock Movements                       | A\$/oz | (791)      |
|           | Royalties                                 | A\$/oz | 102        |
|           | By Product Credits                        | A\$/oz | (9)        |
|           | Rehabilitation - Accretion & Amortisation | A\$/oz | 1          |
|           | Corporate Overheads                       | A\$/oz | 49         |
|           | Mine Development / Sustaining Capex       | A\$/oz | 0          |
|           | Kanowna Belle Mine Exploration            | A\$/oz | 0          |
|           | All in Sustaining Costs – Kanowna Belle   | A\$/oz | 984        |

Table 6. Summary Details - Kanowna Belle

ASX: NST Page 5 of 23

### For the quarter ended 31 March 2014



### **Kundana Gold Operations - Overview**

The Kundana Gold Operations were acquired on 1 March 2014 and includes the Company's 51% interest in the East Kundana Joint Venture.

Northern Star's share of ore tonnes mined from Rubicon and Hornet were 15,381. Mined grade for the quarter was 14.00gpt Au. Mined tonnes were lower due to no production from Raleigh during rehabilitation activity.

Northern Star's share of milled production from Kundana Gold Operations for the quarter totalled 7,482oz. Ore tonnes milled were in line with expectation.

Quarterly gold sales from the Kundana Gold Operations totalled 4,000oz. Unaudited all in sustaining costs for the quarter was A\$706/oz.

| Production Summary - Kundana              |        | Mar-14 Qtr |
|-------------------------------------------|--------|------------|
| Ore Mined                                 | Tonnes | 15,381     |
| Mined Grade                               | gpt Au | 14.00      |
| Ounces Mined                              | Oz     | 6,923      |
| 10                                        |        |            |
| Milled Tonnes                             | Tonnes | 16,232     |
| Head Grade                                | gpt Au | 14.85      |
| Recovery                                  | %      | 97         |
| Gold Recovered                            | Oz     | 7,482      |
| 9/ <i>0</i>                               |        |            |
| Cash Operating Costs                      |        |            |
| Mining                                    | A\$/oz | 502        |
| Processing                                | A\$/oz | 170        |
| Site Services                             | A\$/oz | 37         |
| Ore Stock Movements                       | A\$/oz | (267)      |
| Royalties                                 | A\$/oz | 58         |
| By Product Credits                        | A\$/oz | (4)        |
| Rehabilitation - Accretion & Amortisation | A\$/oz | 1          |
| Corporate Overheads                       | A\$/oz | 49         |
| Mine Development / Sustaining Capex       | A\$/oz | 160        |
| Kundana Mine Exploration                  | A\$/oz | 0          |
| All in Sustaining Costs                   | A\$/oz | 706        |

Table 7. Summary Details - Kundana

Additional information on the individual Operations can be found in Appendix 1.

### EXPLORATION AND DEVELOPMENT - OPERATIONS

#### Paulsens

During the quarter 19,881 metres of underground diamond drilling from three rigs was undertaken on grade control, resource extension programs for both Voyager 1 and Voyager 2 and further defining the new Titan discovery.

The latest drilling results at Titan which are up to 126gpt, demonstrate both the high grade and the continuity of the mineralisation and show the deposit is emerging as a substantial addition to its Paulsens gold mine (see Figure 1).

In light of these consistently strong results, Northern Star believes Titan has the potential to become a significant part of Paulsens, particularly given that it can be accessed from the existing underground operations.

Previous drilling programs at Titan have focused on defining the parameters of the quartz because this is the rock which hosts all the known mineralisation at Paulsens.

This latest round of drilling is the first to have targeted the mineralisation within the quartz. This means the results are particularly significant because they show that Titan shares many key characteristics with the Voyager 1 and Voyager 2 lodes which currently supply all the gold being produced at Paulsens.

ASX: NST Page 6 of 23

### For the quarter ended 31 March 2014



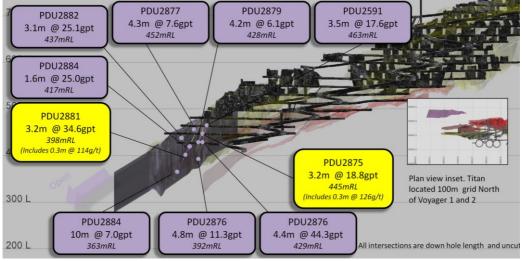



Figure 1 - Long section view (looking North) of significant drill results for Titan inside quartz lode outline

During the quarter drilling into the Voyager 1 and Voyager 2 lodes continued to generate a consistent stream of high-grade results which will continue to help underpin increases in Paulsens' mine life (see Figure 2).

This high-grade mineralisation remains open at depth and will be included in future resource upgrades, potentially extending Paulsens' mine life and underpinning the consistent production, low costs and strong cashflow enjoyed by Northern Star.

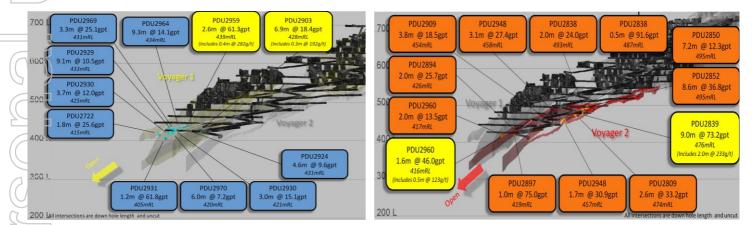



Figure 2 - Long section view (looking North) of significant drill results for Voyager 1 and 2

Ore development is underway at Voyager 2 as part of the strategy to mine the Voyager lodes in parallel, providing scope for further cost savings. The Voyager 2 development grades seen to date have been very encouraging, with production scheduled for next financial year.

Refer to NST ASX release 19 February 2014

#### **Plutonic**

During the quarter 8,718 metres of underground diamond drilling from two rigs was undertaken on grade control and resource extension programs for the major lodes at Plutonic.

Analysis and explanation of these results will be released in the June quarter.

#### Kanowna Belle

During the quarter one underground drill focussed on drilling both the Troy and FM33 lodes, both have the potential to add to the Kanowna Belle mine plan.

Analysis and explanation of these results will be released in the June quarter.

#### Kundana

During the quarter 7,795 metres of diamond drilling and 2,657 metres of RC drilling were completed at the Pegasus discovery.

ASX: NST Page 7 of 23





The assay results received during the quarter from Pegasus, which is yet to be developed, have extended the known strike length of the current 355,000oz<sup>4</sup> resource by 500m and the known vertical depth of the high-grade zone by 100m to 550m (refer to Figure 3).

A number of the new drilling intersections contained visible gold while the hit at depth was 3.2m at 49.9gpt.

As well as being very high-grade (1.1 million tonnes at 9.8gpt Au), the Pegasus resource is considered an extremely attractive economic proposition because the mineralisation runs from very close to the surface and can be accessed from the existing Rubicon underground mine just 250m away.

Development to access Pegasus is due to commence in the June guarter with first production scheduled for 2015.

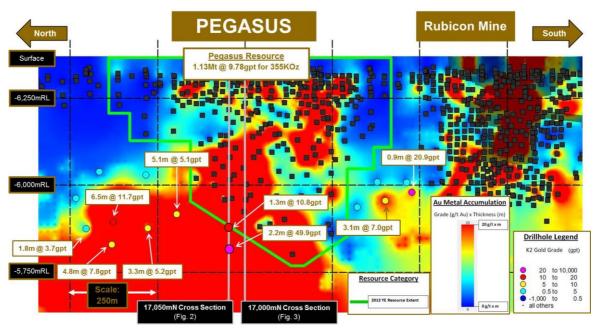
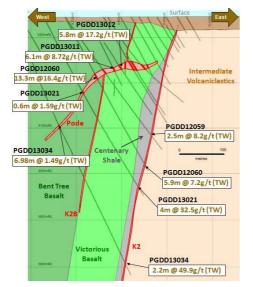




Figure 3 - Long section view (looking East) of significant drill results for Pegasus K2 vein, all intersections are true widths.

In addition, recent intersections confirm the existence of a new mineralised structure at Pegasus named the 'Pode' Vein. This mineralisation is outside of the main K2 vein that hosts the Pegasus Resource, providing further scope for an increase in resources (refer to Figures 4 and 5).

Infill drilling at Pegasus also returned strong results which confirm the continuity of the resource model. These results will be included in a resource upgrade and in a maiden reserve estimation expected in the June Quarter 2014. Drilling continues with further assays pending for Pegasus K2 and Pode veins.



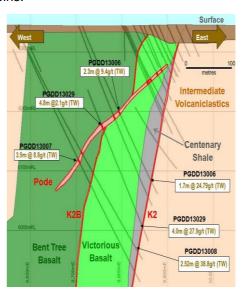



Figure 4 and 5 - Cross section view 17050mN and 17000mN (looking North) of significant drill results for the K2 and the new Pode veins

#### Refer to NST ASX release 6 March 2014

ASX: NST Page 8 of 23

<sup>&</sup>lt;sup>4</sup> Refer to Appendix 2 – Pegasus Drilling Information, Gold Mineral Resources - Table 1 note.

### For the quarter ended 31 March 2014



### REGIONAL EXPLORATION

#### **Paulsens Near-Mine Exploration**

- ▶ Gabbro Offset -Two surface diamond holes targeting Gabbro Offset mineralisation drilled in the previous quarter intersected zones of significant quartz veining with minor sulphides, no significant gold intercepts were returned.
- Aries Several RC holes were completed at the Aries prospect, which lies just north of the Paulsens orebody. A significant gold intercept had been recorded from previous drilling in the area. A 3m zone of quartz-ankerite veining with up to 15% sulphides and moderate gold mineralisation was intersected in RC hole PAVRC0016. Follow up drilling is planned for this area.
- Paulsens East A diamond tail was completed at Paulsens East, around 800m to the SE of Aries. Significant intervals of gabbro similar to the mine gabbro were intersected.
  - Other Detailed mapping and compilation of data was completed for the area surrounding Paulsens. This work, together with drilling data has enabled the 3D stratigraphic model for the near mine area to be significantly updated.

#### Ashburton Gold Project

Target generation for additional free-milling oxide mineralisation has continued. Follow up RC drilling has been planned for the Titus prospect, and is awaiting heritage clearance. Soil sampling at Titus previously returned a significant soil anomaly with gold values over 250ppb Au extending for at least 250m, within a 1.5km long alteration zone

#### **Electric Dingo Gold Project**

Northern Star continued gold exploration on the Electric Dingo project during the quarter. Infill soil sampling was completed at the Kazput Fault prospect, with results awaited. Some anomalous geochemical results were returned from aircore drilling completed in the previous quarter. Compilation and interpretation of the geochemical results is ongoing.

#### **Kazput Coal Project**

Northern Star announced the discovery of a significant coal occurrence on the Electric Dingo Project at the Kazput prospect, with further details provided in an ASX release on 30 October 2013. Thick thermal coal intersections of up to 65m were encountered, with initial analysis showing that the coal would be suitable for fuelling a major base-load power station.

Since announcement of the discovery, work has focussed on RC and diamond drilling in order to potentially establish a maiden JORC resource estimate. During the quarter a total of 551.9m of diamond core was drilled. Drilling has now been completed, together with coal quality and other analytical work. A maiden resource report is close to being finalised.

#### Fortescue JV

Work on compilation of historic data, acquisition of remote sensing data and target generation continued. An aeromagnetic/radiometric survey over the Fortescue JV and Northern Star tenements in the Ashburton Basin was completed and data processed. This survey will be used in conjunction with other available geophysical, geochemical and geological data to focus exploration on target zones within Northern Star's large landholding in the region. The Centre for Exploration Targeting at the University of WA has been engaged to assist with this work.

Diamond drilling was carried out on Fortescue JV tenement E47/2236 as part of the Kazput Coal Project resource drilling program (see previous section).

#### **Kalgoorlie Operations**

Work continued at regional targets in the Kalgoorlie area, including 1,110 metres RC drilling at the Ambition prospect (around 10km NW of Pegasus) and surface geochemical sampling at the Red Eye prospect (around 10km NW of Kanowna Belle).

### Mt Clement Project (ARV 80%: NST 20%) (Antimony, Lead, Silver, Gold)

Artemis Resources announced a new Exploration Target for the Eastern Sb-Pb project, which incorporates the recent maiden JORC compliant resource for the Taipan Zone, extensions to the Taipan Zone, and potential mineralisation at the Dugite Zone (see ASX: ARV release 26 March 2014 for more details). New rock chip assay results with high Sb-Pb grades were recently received from the Dugite and Gwardar Zones (details in ASX: ARV release 5 March 2014). A scoping study to assess the economic parameters around the deposit is scheduled for early 2014, while planning is underway for follow up drilling to commence in 2014.

ASX: NST Page 9 of 23

### For the quarter ended 31 March 2014



### **FINANCE**

The following is a table of the cash, bullion and investments held at the end of the quarter.

|                 | Units | September 2013<br>Quarter | December 2013<br>Quarter | March 2014<br>Quarter |
|-----------------|-------|---------------------------|--------------------------|-----------------------|
| Cash at Bank    | \$M   | \$45.3                    | \$49.3                   | \$67.8                |
| Bullion on Hand | \$M   | \$2.8                     | \$3.0                    | \$8.6                 |
| Investments     | \$M   | \$2.2                     | \$2.0                    | \$3.6                 |
| Total           | \$M   | \$50.3                    | \$54.3                   | \$80.0                |

Table 8: Cash, Bullion and Investment Holdings

At the end of the quarter, gold in circuit, transit and stockpiles totalled 65,527 ounces.

| Gold in Process           | March 2014<br>Quarter oz |
|---------------------------|--------------------------|
| Stockpiles Contained Gold | 41,474                   |
| Gold in Circuit           | 17,877                   |
| Gold in Transit           | 6,176                    |
| Total in Process          | 65,527                   |

Table 9: Gold in Process

Cashflow

| C   | Cash Flow Per Ounce                     | March 2014<br>Quarter (A\$/oz) |
|-----|-----------------------------------------|--------------------------------|
| 1/6 | Gold Sold (oz)                          | 43,307                         |
| A   | verage Realised Gold Price              | 1,444                          |
| Α   | त्री in Sustaining Costs <sup>(1)</sup> | 1,167                          |
| C   | Cash Margin per ounce                   | 277                            |

Note 1: Refer to Table 2.

Table 10: Cash Flow per Ounce

#### Hedging

The Company established a hedging facility with Investec Bank and subsequently sold forward 100,000 ounces of future production spread evenly over a 12 month period at A\$1,462/oz. At the end of March forward gold hedging commitments amounted to 83,446 ounces of gold. The hedge programme equates to approximately 28% of this coming year's production.

### CORPORATE

A General Meeting of Shareholders was held on 10 March 2014 to approve the placement of Tranche 1 and 2 shares in relation to the acquisition of the 51% interest in the East Kundana Joint Venture (EKJV) and Kanowna Belle Gold Mines. All resolutions passed on a show of hands.

Settlement occurred for the following acquisitions:

- Plutonic Gold Mine on 1 February 2014, and
- 51% interest in the EKJV and Kanowna Belle Gold Mines on 1 March 2014.
- ► The Company lodged a Notice of Initial Substantial Holder (Form 603) in Dampier Gold Ltd after obtaining 3,400,000 ordinary shares on 1 February 2014 as part of the Plutonic acquisition.
- The Company announced an interim dividend of 1 cent per share on 27 February 2014, which was subsequently paid to Shareholders on 4 April 2014.
- During the Quarter, Northern Star participated in the following conferences: RIU Conference in Perth and the BMO Conference in Miami, Florida. An Analyst tour of the Plutonic and Kalgoorlie Operations was conducted over two days. The Company maintains a proactive presentation calendar to stockbroking firms, institutional and retail investors to promote the Company and its activities.

ASX: NST Page 10 of 23

### For the quarter ended 31 March 2014



#### Issued Capital

During the quarter, the Company issued a total of 150,222,153 ordinary fully paid shares comprising:

- 106,932 ordinary shares in accordance with the Employee Share Plan,
- 64,255,464 ordinary shares in satisfaction of Tranche 1 capital raising issued at \$0.86 per share,
  - 33,554,440 ordinary shares in accordance with the SPP issued at \$0.86 per share,
    - 22,183 ordinary shares through a conversion of employee options,
- 259,528 ordinary shares through a conversion of options, and
- 52,023,606 ordinary shares in satisfaction of Tranche 2 capital raising issued at \$0.86 per share.

In addition, 8,684 ordinary fully paid shares were released from voluntary escrow on 25 March 2014 in accordance with the 2011 Employee Share Plan and 458,334 employee options vested.

The issued capital of the Company at the date of this report is:

| Class of Securities        | Issued capital |
|----------------------------|----------------|
| Fully Paid Ordinary Shares | 578,591,915    |
| Unlisted Options           | 3,791,666      |

Table 11: Issued Capital

The Company holds the following investments in publicly listed companies:

| Investment Register – Publicly Listed Companies |          |             |                     |  |  |  |  |  |
|-------------------------------------------------|----------|-------------|---------------------|--|--|--|--|--|
| Company                                         | ASX Code | Shares      | % of Issued Capital |  |  |  |  |  |
| Venturex Resources Ltd                          | VXR      | 199,689,768 | 12.901              |  |  |  |  |  |
| Bulletin Resources Ltd                          | BNR      | 1,624,695   | 1.264               |  |  |  |  |  |
| Dampier Gold Ltd                                | DAU      | 3,400,000   | 5.099               |  |  |  |  |  |
| Rand Mining Ltd                                 | RND      | 2,925,360   | 4.808               |  |  |  |  |  |
| Tribune Resources Ltd                           | TBR      | 10,000      | 0.016               |  |  |  |  |  |

Table 12: Investments in Publicly Listed Companies

Yours faithfully

BILL BEAMENT
Managing Director

Bill Bennent

Northern Star Resources Limited

ASX: NST Page 11 of 23

### For the quarter ended 31 March 2014



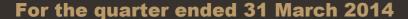
#### **Competent Persons Statements**

The information in this announcement that relates to Paulsens and Ashburton mineral resource estimations, exploration results, data quality, geological interpretations, potential for eventual economic extraction and estimates of exploration potential, is based on and fairly represents information compiled by or under the supervision of Brook Ekers, who is an AIG member and is a full-time employee of Northern Star Resources Limited. Mr Ekers has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Ekers consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Information in this announcement that relates to the Paulsens Project Ore Reserves has been compiled by or under the supervision of Darren Stralow, General Manager – Paulsens Gold Mine, who is a full-time employee of Northern Star Resources Ltd. Mr Stralow has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Stralow is a Member of the Australasian Institute of Mining and Metallurgy and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Information in this announcement that relates to the Ashburton Ore Reserves has been compiled by Shane McLeay, Principal Engineer – Entech Pty Ltd, who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Shane McLeay is a Member of the Australasian Institute of Mining and Metallurgy and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Information in this announcement that relates to the Pegasus mineral resource estimations, exploration results, data quality, geological interpretations and potential for eventual economic extraction, is based on information compiled by Alan Pedersen (Member AusIMM) and reviewed by Bernd Sostak, (Member AusIMM), and both are full-time employees of Northern Star Resources Limited. Mr Sostak has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" for the Pegasus Deposit. Mr Sostak consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.


Information in this announcement that relates to the Plutonic Gold Project, Kanowna Belle Gold Project and the East Kundana Joint Venture Ore Reserves and Mineral Resources has been taken from Barrick Gold Corporation's Annual Information Form for the year ended 31 December 2012 filed with the Canadian Securities Administrators as a foreign estimate according to ASX Listing Rule 5.12. Mr Sostak consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

#### **Forward Looking Statements**

Northern Star Resources Limited has prepared this announcement based on information available to it. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this announcement. To the maximum extent permitted by law, none of Northern Star Resources Limited, its directors, employees or agents, advisers, nor any other person accepts any liability, including, without limitation, any liability arising from fault or negligence on the part of any of them or any other person, for any loss arising from the use of this announcement or its contents or otherwise arising in connection with it. This announcement is not an offer, invitation, solicitation or other recommendation with respect to the subscription for, purchase or sale of any security, and neither this announcement nor anything in it shall form the basis of any contract or commitment whatsoever. This announcement may contain forward looking statements that are subject to risk factors associated with gold exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

The information in this announcement that relates to mineral resource estimations, exploration results, data quality, geological interpretations and potential for eventual economic extraction, is based on information compiled by Alan Pedersen (Member AusIMM) and reviewed by Bernd Sostak, (Member AusIMM), and both are full-time employees of Northern Star Resources Limited. Mr Sostak has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" for the Pegasus Deposit. Mr Sostak consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

ASX: NST





### **APPENDIX 1 – ADDITIONAL INFORMATION - OPERATIONS**

#### **Paulsens Gold Operations**

#### Safety

There was one Loss Time Injuries ("LTI") for the quarter where a processing employee strained his shoulder in a manual handling incident.

### Underground Production

Mine Development:

|                | 3 months to  | 3 months to       | 3 months to      | 3 months to   |
|----------------|--------------|-------------------|------------------|---------------|
| \              | 30 June 2013 | 30 September 2013 | 31 December 2013 | 31 March 2014 |
| Decline        | 241.3m       | 289.9m            | 196.0m           | 129.3m        |
| Level          | 336.6m       | 204.0m            | 340.0m           | 350.4m        |
| Strike driving | 930.2m       | 1,051.8m          | 596.8m           | 510.8m        |
| Total (metres) | 1,508.1m     | 1,545.7m          | 1,132.8m         | 990.5m        |

Table 1: Underground Production - Mine Development

Development was scaled back to one twin boom jumbo during the quarter which resulted in lower advance rates in the decline in favour of establishing new level accesses in the mine. This development primarily included the access for the next Voyager 1 Upper Zone Extension levels, the 441 drill drive platform and the 1146 decline for Upper levels development.

Ore development was carried out on the Voyager 1 Extension upper zones mainly on the 441 and 424 levels and Voyager 2 upper/lower zones on the 492/475/458 levels. High grades were continually seen from the Voyager 2 lode 475. Paulsens upper level development continued on the 904 level.

Development yielded 27,214 tonnes at an average reconciled grade of 8.6gpt. Low-grade ore intersected whilst accessing the main ore zones yielded 3,075 tonnes at 0.72gpt.

| _                       | 3 months to<br>30 June 2013 | 3 months to<br>30 September 2013 | 3 months to<br>31 December 2013 | 3 months to<br>31 March 2014 |
|-------------------------|-----------------------------|----------------------------------|---------------------------------|------------------------------|
| Development ore (t)     | 40,899                      | 47,303                           | 24,569                          | 27,214                       |
| Development grade (gpt) | 7.1                         | 5.4                              | 6.7                             | 8.6                          |
| Stope ore (t)           | 86,491                      | 61,485                           | 89,747                          | 82,839                       |
| Stope grade (gpt)       | 6.8                         | 9.9                              | 7.2                             | 7.9                          |
| Low grade ore (t)       | 11,238                      | 13,425                           | 15,831                          | 3,075                        |
| Low grade (gpt)         | 1.1                         | 1.3                              | 1.3                             | 0.72                         |
| Total ore (t)           | 138,628                     | 122,213                          | 129,423                         | 113,128                      |
| ☐ Total grade (gpt)     | 6.4                         | 7.2                              | 6,2                             | 7.9                          |
| Contained gold (oz)     | 28,681                      | 28,276                           | 26,818                          | 28,869                       |

t=tonnes, gpt=grams per tonne, oz=ounces

Table 2: Ore Development - Mine Development

Stope production was 82,839 tonnes at 7.9gpt. This was predominately from the Voyager 1 Extension upper zone ore body on the 509, 492, 475, 458 and 441 levels. Mining also extracted the Voyager 1 upper zone on the 543 and 526 levels and Voyager 2 on the 509 level.

#### ☐ Gold Production

114,027 tonnes were milled during the quarter at 7.1gpt and 86% recovery for 22,342 ounces produced. Mill feed consisted of mainly Voyager 1 extension zone plus some Voyager 1 upper/lower zone stoping and Voyager 2 development ore. Gold recovered for the quarter was down due to a disruption to the operating parameters in the processing plant. Improvements to the process circuit have restored recoveries back above 90% in April by maintaining a consistent feed blend and monitoring reagent use closely. Ore stocks at the end of the quarter totalled 137,390 tonnes containing 12,545 ounces of gold.

### Gold Sales

23,838 ounces were refined and sold at an average realised price of A\$1,444/oz for \$34.4 million. Gold in circuit and transit was 1,934 ounces.

ASX: NST Page 13 of 23

### For the quarter ended 31 March 2014



#### **Plutonic Gold Operations**

#### Safety

There were no Lost Time Injuries ("LTI") for the quarter. One Medically Treated Injury ("MTI") was recorded with a diamond driller sustaining a finger injury. The mine had 59 days LTI free by the end of the quarter under new ownership. The operation has completed 331 days LTI free to the end of March 2014.

#### Underground Production

| <u></u>          |                              |
|------------------|------------------------------|
| Mine Development |                              |
|                  | 2 months to<br>31 March 2014 |
| Decline          | 66m                          |
| Level            | 114m                         |
| Strike driving   | 833m                         |
| Total (metres)   | 1,013m                       |
|                  |                              |

Table 3: Underground Production - Mine Development

The main focus on capital development has been advancing the Baltic West decline to the BW 42 level and establishing level access for the West Decline 15 level.

Further ore development was carried out in the West decline, North decline, Coral Incline, Spur Decline, Timor Access, Timor Decline, Baltic West and Mariner Decline areas.

Development yielded 26,909 tonnes at an average reconciled grade of 2.8gpt.

|                                       | 2 months to<br>31 March 2014 |
|---------------------------------------|------------------------------|
| Development ore (t)                   | 26,909                       |
| Development grade (gpt)               | 2.8                          |
| Stope ore (t)                         | 95,204                       |
| Stope grade (gpt)                     | 3.9                          |
| Low grade ore (t)                     |                              |
| □ Low grade (gpt)                     |                              |
| Total ore (t)                         | 122,113                      |
| Total grade (gpt)                     | 3.64                         |
| Contained gold (oz)                   | 14,283                       |
| t=tonnes, gpt=grams per tonne, oz=oun | ces                          |
| Table 4: Underground Production       | n – Ore Tonnes               |
| Underground Stoping produce           | d 95,204 tonnes a            |

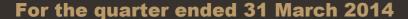
Underground Stoping produced 95,204 tonnes at 3.9gpt.

#### **Gold Production**

170,091 tonnes were milled during the quarter at 2.73gpt and 85.5% recovery for 12,778 ounces produced. Mill feed included 49,043 tonnes of mineralised waste in February at 0.49gpt. Reclamation of this material ceased and a campaign milling program was established in March treating feed from only underground material. Gold recovered for the Quarter was down due to lower grade production areas being available to the mine plan.

Recoveries were higher than the budget due mainly to the removal of the mineralised waste from the feed in March and commencing a selective blending scheduling from the underground ores.

Ore stocks at the end of the guarter totalled 5,332 tonnes containing 754 ounces of gold.


#### **Gold Sales**

10,285 ounces were refined and sold at an average realised price of A\$1,444/oz for \$14.9 million. Gold in circuit and transit was 4,997 ounces.

Maximisation of the mining plan pre-acquisition impacted the available higher grade ore sources in February and March. Mining physicals and in particular jumbo development metres have significantly improved, enabling quicker access to new production areas which will restore mined grades in the coming quarters.

Cost reductions have been implemented and continue to be a focus at the operation. Target areas for further improvement include reduction in labour costs, flights, mining and maintenance materials.

ASX: NST Page 14 of 23





#### **Kanowna Belle Gold Operations**

#### Safety

There were no Lost Time Injuries ("LTI") for the quarter. One Medically Treated Injury ("MTI") was recorded with a fitter sustaining a finger injury. The mine had 31 days LTI free by the end of the quarter under new ownership.

#### **Underground Production**

Mine Development:

|                    | 1 month to<br>31 March 2014 |
|--------------------|-----------------------------|
| Decline            | Nil                         |
| Level              | Nil                         |
| Strike driving (1) | 199m                        |
| Total (metres)     | 199m                        |

Table 5: Underground Production - Mine Development (1) includes 54m development through paste-fill

The main development focus in March was associated with establishing the 9800mRL access ramps to the SIMMS ore-body. During March 199m of strike driving was completed which included 54m of development through paste fill. No capital development is being done at Kanowna Belle. Development also progressed in the Troy ore-body which is a new stoping area located in the upper regions of Kanowna Belle mine.

|                         | 1 month to<br>31 March 2014 |
|-------------------------|-----------------------------|
| Development ore (t)     | 1,726                       |
| Development grade (gpt) | 5.2                         |
| Stope ore (t)           | 78,370                      |
| Stope grade (gpt)       | 4.5                         |
| Low grade ore (t)       | Nil                         |
| Low grade (gpt)         | Nil                         |
| Total ore (t)           | 80,096                      |
| Total grade (gpt)       | 4.5                         |
| Contained gold (oz)     | 11,626                      |

t=tonnes, gpt=grams per tonne, oz=ounces

Table 6: Underground Production - Ore Production

Stope production was 78,370 tonnes at 4.5gpt. A total of 13 stopes were mined in March to achieve this production primarily from D-block and E-block west. The main stoping priority for March was to complete E-block west stopes to ensure the mines stoping sequence is maintained for ongoing consistent production. With the depletion of the stopes from C-block and D-block the stope production from these areas will reduce in coming months. During March 16,651m3 of paste fill was placed in the mine.

#### **Gold Production**

Ore processed through the Kanowna Belle processing facility is "batch" processed with batches coming from Kanowna Belle, Low Grade flushing material from historical Red Hill/QED mines and EKJV ore. The NSR share of the total processing in March was 105,010 tonnes at 4.8gpt and 93.3% recovery for 15,100 ounces of gold.

From the Kanowna Belle mine, 55,046 tonnes were milled in March at 4.3gpt and 90.3% recovery for 6,933 gold ounces produced.

Low grade flushing material required to be processed between the batch treatments is from the historical Red Hill/QED mines. 33,732 tonnes were milled in March at 0.7gpt and 90.3% recovery for 685 gold ounces produced.

The breakdown of the gold production associated with the EKJV is shown below under the Kundana Gold Operations.

Ore stocks located at the Kanowna Belle ROM pad from the Kanowna Belle mine at the end of the quarter totalled 45,623 tonnes containing 6,658 ounces of gold.

### Gold Sales

5,184 ounces were refined and sold at an average realised price of A\$1,444/oz for \$7.5 million. Gold in circuit and transit was 13,400 ounces.

ASX: NST Page 15 of 23





### **Kundana Gold Operations**

#### Introduction

The Kundana Gold Operations includes the Rubicon/Hornet underground mine and the Raleigh underground mine. Both mines are part of the East Kundana Joint Venture (EKJV) with companies Rand Mining Ltd (Rand) and Tribune Resources Ltd (Tribune). Northern Star Resources (NSR) owns 50% of the Raleigh mine and 51% of the Rubicon/Hornet mine and is the operating company for these mines. All (100%) the ore produced from the Kundana Gold Operations is transported and processed at the Kanowna Belle processing facility, including the Rand and Tribune component of the ore which is processed under a Toll Treatment agreement.

The NSR share of the EKJV was acquired from Barrick on 1st March 2014. The reporting period shown in this quarterly report only includes metrics associated with the month of March 2014.

### Safety

There were no Lost Time Injuries ("LTI") for the quarter. The mine had 31 days LTI free by the end of the quarter under new ownership.

### **Underground Production**

All mine production physicals associated with the EKJV are reported as 100% of those physicals to better represent overall mine performance.

#### Mine Development:

|                             | 1 month to    |
|-----------------------------|---------------|
|                             | 31 March 2014 |
| Decline                     | 43m           |
| Level                       | 81m           |
| Strike driving (incl paste) | 91m           |
| Total (metres)              | 215m          |

Table 7: Underground Production - Mine Development (physicals represent 100% EKJV)

The main focus on capital development has been advancing the Rubicon decline from the 6,052mRL to the 6,050mRL and the Hornet decline from the 5,940mRL to the 5,937mRL. The capital level development was associated with establishing the 6055 level at Rubicon and the 5945 level at Hornet. 90m of strike driving was completed in March which included 42m of development through paste fill. Next quarter will include commencement of Pegasus decline with the introduction of an additional development jumbo. There will also be an increased focus on development performance in Rubicon and Hornet.

Following a regional seismic event north of the Raleigh mine on 26th February, the company has commenced technical evaluation and rehabilitation in the Raleigh mine. As a result of this no mine production was achieved at Raleigh in March. Rehabilitation activity is continuing at Raleigh in April with sound progress being made in 5812 and 5795 levels where initial production will recommence.

Development yielded 2,383 tonnes at an average reconciled grade of 7.8gpt.

|                         | 1 month to<br>31 March 2014 |
|-------------------------|-----------------------------|
| Development ore (t)     | 2,383                       |
| Development grade (gpt) | 7.8                         |
| Stope ore (t)           | 27,776                      |
| Stope grade (gpt)       | 14.5                        |
| Low grade ore (t)       | NA                          |
| Low grade (gpt)         | NA                          |
| Total ore (t)           | 30,159                      |
| Total grade (gpt)       | 14.0                        |
| Contained gold (oz)     | 14,024                      |

t=tonnes, gpt=grams per tonne, oz=ounces

Table 8: Underground Production - Ore production (physicals represent 100% EKJV)

Stope production was 27,776 tonnes at 14.5gpt. This was primarily mined from Rubicon and Hornet coming from the 6145, 5985 and 6065 levels with 14 stopes mined over the month. During the month 13,566m3 of paste fill was placed in preparation of stoping in April. Raleigh remained off-line during rehabilitation activity.

ASX: NST Page 16 of 23





#### Gold Production

From the NSR share of Raleigh Mine (EKJV), 5,622 tonnes were milled in March at 15.4gpt and 96.5% recovery for 2,691 gold ounces produced. Gold produced in March from the Raleigh mine was mined in February.

From the NSR share of the Rubicon/Hornet Mine (EKJV), 10,610 tonnes were milled in March at 14.6gpt and 96.5% recovery for 4,790 gold ounces produced.

The ore processed associated with the Toll Treatment component of the EKJV was 15,816 tonnes.

Ore stocks at the end of the quarter located at the Kanowna Belle ROM associated with the EKJV(100%) totalled 14,597 tonnes containing 6,228 ounces of gold.

Ore stocks at the end of the quarter located at the Rubicon/Hornet ROM associated with the EKJV(100%) totalled 13,497 tonnes containing 5,981 ounces of gold.

#### **Gold Sales**

4,000 ounces were refined and sold at an average realised price of A\$1,444/oz for \$5.8 million. Gold in circuit and transit was 3,339 ounces.

ASX: NST Page 17 of 23

### For the quarter ended 31 March 2014



# APPENDIX 2 - PEGASUS DRILLING INFORMATION - Released 6/3/2014

| <b>GOLD MINERAL RE</b>       | OLD MINERAL RESOURCES ' |           |         |         |               |         |         |          |       |         |         |                  |         |  |  |
|------------------------------|-------------------------|-----------|---------|---------|---------------|---------|---------|----------|-------|---------|---------|------------------|---------|--|--|
| As at December 31, 2013      | MEA                     | ASURED (I | M)      | IND     | INDICATED (I) |         |         | INFERRED | (Inf) |         | TOT     | TOTAL (MI & Inf) |         |  |  |
|                              | Tonnes                  | Grade     | Ounces  | Tonnes  | Grade         | Ounces  | Ounces  | Tonnes ( | Grade | Ounces  | Tonnes  | Grade            | Ounces  |  |  |
| Based on attributable ounces | (000's)                 | (gpt)     | (000's) | (000's) | (gpt)         | (000's) | (000's) | (000's)  | (gpt) | (000's) | (000's) | (gpt)            | (000's) |  |  |
| Pegasus(EKJV-51%)            |                         |           |         |         |               |         |         |          |       |         |         |                  |         |  |  |
| Pegasus                      |                         |           |         | 351     | 9.0           | 101     | 101     | 225      | 11.0  | 80      | 576     | 9.8              | 181     |  |  |
| TOTAL                        | -                       | -         | -       | 351     | 9.0           | 101     | 101     | 225      | 11.0  | 80      | 576     | 9.8              | 181     |  |  |

<sup>1</sup>Table 1 - Pegasus Resource as at 31 December 2013

(table reflects Northern Star's 51% interest in the Total Mineral Resource of 355,000oz Au)

| Ч         |            | F                         | PEGASU                     | S EXTENS                                  | SION DRIL        | .LING (Ou                             | tside of                       | 31 Decem                | ber 2013              | Resource)                       |                      |                              |
|-----------|------------|---------------------------|----------------------------|-------------------------------------------|------------------|---------------------------------------|--------------------------------|-------------------------|-----------------------|---------------------------------|----------------------|------------------------------|
|           | Drill Hole | Easting<br>(Mine<br>Grid) | Northing<br>(Mine<br>Grid) | Drill hole<br>collar RL<br>(Mine<br>Grid) | Dip<br>(degrees) | Azimuth<br>(degrees,<br>Mine<br>Grid) | End of<br>hole<br>depth<br>(m) | Downhole<br>From<br>(m) | Downhole<br>To<br>(m) | Downhole<br>Intersection<br>(m) | Au<br>(gpt)<br>uncut | Est True<br>Thickness<br>(m) |
| $\forall$ | EKD037B    | 9587                      | 16725                      | 6342                                      | -64              | 63                                    | 505                            | 463.75                  | 465.16                | 1.41                            | 3.1                  | 1.0                          |
|           | PGDD12062  | 9569                      | 17205                      | 6344                                      | -61              | 62                                    | 549                            | 485.04                  | 492.10                | 7.06                            | 5.1                  | 5.1                          |
| 4         | PGDD12063  | 9652                      | 17298                      | 6345                                      | -60              | 62                                    | 411                            | 358.00                  | 360.00                | 2.00                            | 4.1                  | 1.5                          |
|           | PGDD12098  | 9652                      | 17298                      | 6344                                      | -73              | 65                                    | 564                            | 481.00                  | 487.00                | 6.00                            | 5.2                  | 3.3                          |
| 4         | PGDD12119  | 9618                      | 16619                      | 6343                                      | -62              | 62                                    | 492                            | 436.16                  | 440.65                | 4.49                            | 7.0                  | 3.1                          |
|           | PGDD12120  | 9621                      | 16527                      | 6343                                      | -60              | 59                                    | 450                            | 419.75                  | 421.00                | 1.25                            | 20.9                 | 0.9                          |
|           | PGDD12125  | 9532                      | 17422                      | 6344                                      | -61              | 62                                    | 567                            | 511.00                  | 520.00                | 9.00                            | 11.7                 | 6.5                          |
|           | PGDD12126  | 9718                      | 17421                      | 6346                                      | -70              | 61                                    | 369                            | 321.25                  | 322.13                | 0.88                            | 3.7                  | 0.5                          |
|           | PGDD12127  | 9603                      | 17486                      | 6346                                      | -70              | 88                                    | 573                            | 543.40                  | 552.10                | 8.70                            | 7.8                  | 4.8                          |
|           | PGDD12128  | 9635                      | 17489                      | 6345                                      | -66              | 62                                    | 474                            | 415.70                  | 417.10                | 1.40                            | 2.4                  | 1.0                          |
|           | PGDD12129  | 9603                      | 17488                      | 6347                                      | -70              | 65                                    | 552                            | 499.00                  | 502.00                | 3.00                            | 3.7                  | 1.8                          |
| -         | PGDD13026  | 9560                      | 17039                      | 6345                                      | 62               | -63                                   | 555                            | 385.00                  | 385.60                | 0.60                            | 2.3                  | 0.9                          |
|           | PGDD13027  | 9637                      | 16647                      | 6343                                      | 58               | -60                                   | 480                            | 386.68                  | 387.10                | 0.42                            | 3.4                  | 0.3                          |
|           | PGDD13033  | 9643                      | 16559                      | 6344                                      | 58               | -60                                   | 416                            | 519.76                  | 521.61                | 1.85                            | 10.8                 | 1.3                          |
| 7         | PGDD13034  | 9560                      | 17040                      | 6344                                      | 55               | -66                                   | 609                            | 544.55                  | 547.70                | 3.15                            | 49.9                 | 2.2                          |

Table 2 - Complete table of Pegasus drill results outside of the 31 December 2013 Resource estimation (released 23/1/2014)

|   | PEGASUS RESOURCE DEFINITION (Inside 31 December 2013 Inferred Resource) |                           |                            |                                           |                  |                                       |                                |                         |                       |                                 |                      |                              |  |  |  |
|---|-------------------------------------------------------------------------|---------------------------|----------------------------|-------------------------------------------|------------------|---------------------------------------|--------------------------------|-------------------------|-----------------------|---------------------------------|----------------------|------------------------------|--|--|--|
|   | Drill Hole<br>#                                                         | Easting<br>(Mine<br>Grid) | Northing<br>(Mine<br>Grid) | Drill hole<br>collar RL<br>(Mine<br>Grid) | Dip<br>(degrees) | Azimuth<br>(degrees,<br>Mine<br>Grid) | End of<br>hole<br>depth<br>(m) | Downhole<br>From<br>(m) | Downhole<br>To<br>(m) | Downhole<br>Intersection<br>(m) | Au<br>(gpt)<br>uncut | Est True<br>Thickness<br>(m) |  |  |  |
| Л | PGDD13021                                                               | 9630                      | 17049                      | 6344                                      | -61              | 59                                    | 450                            | 427.00                  | 431.00                | 4.00                            | 32.5                 | 2.8                          |  |  |  |
| - | PGDD13028                                                               | 9646                      | 17089                      | 6344                                      | -60              | 57                                    | 435                            | 392.82                  | 395.00                | 2.18                            | 6.9                  | 1.5                          |  |  |  |
|   | PGDD13029                                                               | 9670                      | 16968                      | 6344                                      | -62              | 46                                    | 408                            | 376.00                  | 381.74                | 5.74                            | 27.9                 | 4.0                          |  |  |  |
| F | PGDD13030                                                               | 9646                      | 16921                      | 6344                                      | -62              | 60                                    | 456                            | 415.26                  | 416.40                | 1.14                            | 9.9                  | 0.8                          |  |  |  |
| 1 | PGDD13031                                                               | 9606                      | 16892                      | 6343                                      | -57              | 68                                    | 489                            | 432.35                  | 433.60                | 1.25                            | 3.3                  | 0.9                          |  |  |  |
|   | PGDD13032                                                               | 9636                      | 16725                      | 6343                                      | -60              | 66                                    | 446                            | 420.00                  | 421.00                | 1.00                            | 2.3                  | 0.7                          |  |  |  |

Table 3 - Complete table of Pegasus resource definition drill results completed inside the 31 December 2013 Resource estimation (released 23/1/2014)

|                 | P                         | EGASUS                     | DRILLING                                  | - PODE           | LODE DR                               | ILL RES                        | ULTS COI                | MPLETED               | TO DATE                         |                      |                              |
|-----------------|---------------------------|----------------------------|-------------------------------------------|------------------|---------------------------------------|--------------------------------|-------------------------|-----------------------|---------------------------------|----------------------|------------------------------|
| Drill Hole<br># | Easting<br>(Mine<br>Grid) | Northing<br>(Mine<br>Grid) | Drill hole<br>collar RL<br>(Mine<br>Grid) | Dip<br>(degrees) | Azimuth<br>(degrees,<br>Mine<br>Grid) | End of<br>hole<br>depth<br>(m) | Downhole<br>From<br>(m) | Downhole<br>To<br>(m) | Downhole<br>Intersection<br>(m) | Au<br>(gpt)<br>uncut | Est True<br>Thickness<br>(m) |
| EKD034          | 9664                      | 17124                      | 6344                                      | -60              | 84                                    | 402                            | 191                     | 192                   | 1                               | 5.97                 | 0.97                         |
| EKD035          | 9600                      | 16872                      | 6343                                      | -66              | 87                                    | 564                            | 265                     | 266                   | 1                               | 3.29                 | 0.97                         |
| EKD038A         | 9559                      | 16955                      | 6344                                      | -60              | 88                                    | 548.3                          | 290                     | 299.8                 | 9.8                             | 2.05                 | 9.51                         |
| PGCD12047       | 9609                      | 16893                      | 6343                                      | -63              | 88                                    | 521                            | 256.45                  | 257.3                 | 0.85                            | 1.2                  | 0.82                         |
| PGCD12047       | 9609                      | 16893                      | 6343                                      | -63              | 88                                    | 521                            | 259                     | 259.4                 | 0.4                             | 2                    | 0.39                         |
| PGCD12048       | 9622                      | 16965                      | 6344                                      | -66              | 99                                    | 528                            | 255.74                  | 256.45                | 0.71                            | 2.09                 | 0.69                         |
| PGDD12009       | 9618                      | 16965                      | 6343                                      | -54              | 92                                    | 426                            | 246.15                  | 250                   | 3.85                            | 3.02                 | 3.73                         |
| PGDD12059       | 9677                      | 17053                      | 6344                                      | -54              | 91                                    | 360.2                          | 137.7                   | 150.93                | 13.23                           | 11                   | 12.83                        |
| PGDD12060       | 9677                      | 17053                      | 6344                                      | -62              | 91                                    | 383.1                          | 137.75                  | 151.42                | 13.67                           | 16.4                 | 13.26                        |
| PGDD12061       | 9578                      | 17064                      | 6344                                      | -60              | 88                                    | 543                            | 228                     | 234                   | 6                               | 1.94                 | 5.82                         |
| PGDD12062       | 9569                      | 17204                      | 6344                                      | -60              | 90                                    | 549                            | 246.1                   | 250                   | 3.9                             | 1.6                  | 3.78                         |
| PGDD12063       | 9652                      | 17298                      | 6345                                      | -60              | 92                                    | 411                            | 186                     | 187                   | 1                               | 1.573                | 0.97                         |
| PGDD12063       | 9652                      | 17298                      | 6345                                      | -60              | 92                                    | 411                            | 191                     | 198                   | 7                               | 2.3                  | 6.79                         |
| PGDD12097       | 9799                      | 17030                      | 6345                                      | -55              | 91                                    | 216                            | 118.7                   | 119.26                | 0.56                            | 21.17                | 0.54                         |
| PGDD12098       | 9652                      | 17298                      | 6344                                      | -73              | 94                                    | 564                            | 201                     | 203                   | 2                               | 3.96                 | 1.94                         |
| PGDD12112       | 9763                      | 17077                      | 6344                                      | -60              | 90                                    | 243                            | 107.73                  | 109                   | 1.27                            | 12.3                 | 1.23                         |
| PGDD12113       | 9728                      | 17076                      | 6344                                      | -59              | 88                                    | 286.5                          | 124.5                   | 125.1                 | 0.6                             | 26.3                 | 0.58                         |
| PGDD12115       | 9729                      | 17036                      | 6343                                      | -59              | 91                                    | 286.8                          | 136                     | 140                   | 4                               | 2.01                 | 3.88                         |
| PGDD12121       | 9805                      | 16987                      | 6344                                      | -60              | 3                                     | 321                            | 115                     | 120                   | 5                               | 8.45                 | 4.85                         |
| PGDD12121       | 9805                      | 16987                      | 6344                                      | -60              | 3                                     | 321                            | 121.5                   | 126.5                 | 5                               | 2.2                  | 4.85                         |
| PGDD12122       | 9783                      | 17133                      | 6344                                      | -62              | 180                                   | 231                            | 126.8                   | 128.8                 | 2                               | 5.73                 | 1.94                         |

ASX: NST Page 18 of 23





|                 | Р                         | EGASUS                     | DRILLING                                  | - PODE           | LODE DR                               | ILL RES                        | ULTS COI                | MPLETED               | TO DATE                         |                      |                              |
|-----------------|---------------------------|----------------------------|-------------------------------------------|------------------|---------------------------------------|--------------------------------|-------------------------|-----------------------|---------------------------------|----------------------|------------------------------|
| Drill Hole<br># | Easting<br>(Mine<br>Grid) | Northing<br>(Mine<br>Grid) | Drill hole<br>collar RL<br>(Mine<br>Grid) | Dip<br>(degrees) | Azimuth<br>(degrees,<br>Mine<br>Grid) | End of<br>hole<br>depth<br>(m) | Downhole<br>From<br>(m) | Downhole<br>To<br>(m) | Downhole<br>Intersection<br>(m) | Au<br>(gpt)<br>uncut | Est True<br>Thickness<br>(m) |
| PGDD12125       | 9532                      | 17422                      | 6344                                      | -59              | 100                                   | 567                            | 277.8                   | 283                   | 5.2                             | 19                   | 5.04                         |
| PGDD12126       | 9718                      | 17421                      | 6346                                      | -70              | 89                                    | 369                            | 170.6                   | 171.29                | 0.69                            | 32                   | 0.67                         |
| PGDD12127       | 9603                      | 17486                      | 6346                                      | -69              | 120                                   | 573                            | 232                     | 235                   | 3                               | 2                    | 2.91                         |
| PGDD12128       | 9635                      | 17489                      | 6345                                      | -65              | 89                                    | 474                            | 208                     | 209                   | 1                               | 1.9                  | 0.97                         |
| PGDD12129       | 9603                      | 17488                      | 6347                                      | -68              | 98                                    | 551.5                          | 220                     | 221.8                 | 1.8                             | 1.33                 | 1.75                         |
| PGDD12129       | 9603                      | 17488                      | 6347                                      | -68              | 98                                    | 551.5                          | 224.55                  | 229.05                | 4.5                             | 2.05                 | 4.37                         |
| PGDD13006       | 9713                      | 17001                      | 6344                                      | -59              | 94                                    | 327                            | 172.63                  | 175                   | 2.37                            | 9.4                  | 2.30                         |
| PGDD13007       | 9568                      | 17019                      | 6344                                      | -60              | 87                                    | 509.8                          | 259                     | 263                   | 4                               | 8.76                 | 3.88                         |
| PGDD13011       | 9728                      | 17035                      | 6344                                      | -64              | 78                                    | 168.02                         | 126.22                  | 128                   | 1.78                            | 8.72                 | 6.10                         |
| PGDD13012       | 9727                      | 17035                      | 6344                                      | -57              | 79                                    | 282                            | 126                     | 132                   | 6                               | 17.2                 | 5.82                         |
| PGDD13013       | 9677                      | 17053                      | 6343                                      | -60              | 74                                    | 366                            | 159.4                   | 161                   | 1.6                             | 14.4                 | 1.55                         |
| PGDD13018       | 9694                      | 17069                      | 6343                                      | -60              | 90                                    | 375                            | 144                     | 147                   | 3                               | 11.8                 | 2.91                         |
| PGDD13019       | 9699                      | 17090                      | 6344                                      | -60              | 90                                    | 368.8                          | 162                     | 162.8                 | 0.8                             | 2.66                 | 0.56                         |
| PGDD13019       | 9699                      | 17090                      | 6344                                      | -60              | 90                                    | 368.8                          | 151                     | 158                   | 7                               | 8.64                 | 6.79                         |
| PGDD13020       | 9679                      | 17090                      | 6343                                      | -60              | 90                                    | 189.1                          | 167                     | 170                   | 3                               | 4.94                 | 2.91                         |
| PGDD13021       | 9630                      | 17049                      | 6344                                      | -61              | 88                                    | 450                            | 182.25                  | 182.8                 | 0.55                            | 2.3                  | 0.53                         |
| PGDD13021       | 9630                      | 17049                      | 6344                                      | -61              | 88                                    | 450                            | 183.4                   | 184.05                | 0.65                            | 1.59                 | 0.63                         |
| PGDD13028       | 9646                      | 17089                      | 6344                                      | -60              | 86                                    | 435                            | 188.7                   | 192                   | 3.3                             | 3                    | 3.20                         |
| PGDD13029       | 9670                      | 16968                      | 6344                                      | -62              | 75                                    | 408                            | 190.89                  | 195.8                 | 4.91                            | 2.1                  | 4.76                         |
| PGDD13030       | 9646                      | 16921                      | 6344                                      | -62              | 89                                    | 456                            | 248.9                   | 254.14                | 5.24                            | 1.99                 | 5.08                         |
| PGDD13030       | 9646                      | 16921                      | 6344                                      | -62              | 89                                    | 456                            | 259.65                  | 262                   | 2.35                            | 2.68                 | 2.28                         |
| PGDD13031       | 9606                      | 16892                      | 6343                                      | -57              | 97                                    | 489                            | 269.1                   | 272                   | 2.9                             | 1.22                 | 2.81                         |
| PGDD13031       | 9606                      | 16892                      | 6343                                      | -57              | 97                                    | 489                            | 275.7                   | 277.25                | 1.55                            | 1.3                  | 1.50                         |
| PGDD13033       | 9560                      | 17039                      | 6345                                      | -63              | 91                                    | 555                            | 236.41                  | 251.18                | 14.77                           | 1.3                  | 14.33                        |
| PGDD13034       | 9560                      | 17040                      | 6344                                      | -66              | 84                                    | 609                            | 245.2                   | 252.4                 | 7.2                             | 1.49                 | 6.98                         |
| PGRC12053       | 9771                      | 17053                      | 6344                                      | -53              | 88                                    | 252                            | 135                     | 137                   | 2                               | 1.49                 | 1.94                         |
| PGRC12054       | 9802                      | 17125                      | 6344                                      | -58              | 88                                    | 204                            | 96                      | 101                   | 5                               | 1.36                 | 4.85                         |
| PGRC12055       | 9764                      | 17128                      | 6344                                      | -63              | 89                                    | 276                            | 110                     | 111                   | 1                               | 9.98                 | 0.97                         |
| PGRC12064       | 9761                      | 17052                      | 6344                                      | -60              | 85                                    | 270                            | 106                     | 109                   | 3                               | 26.7                 | 2.91                         |
| PGRC12064       | 9761                      | 17052                      | 6344                                      | -60              | 85                                    | 270                            | 112                     | 132                   | 20                              | 1.5                  | 19.40                        |
| PGRC12099       | 9742                      | 16969                      | 6343                                      | -54              | 83                                    | 300                            | 146                     | 147                   | 1                               | 4.31                 | 0.97                         |
| PGRC12100       | 9737                      | 16968                      | 6343                                      | -64              | 88                                    | 312                            | 167                     | 168                   | 1                               | 4.98                 | 0.97                         |
| PGRCD039        | 9805                      | 17013                      | 6344                                      | -59              | 90                                    | 210                            | 106.3                   | 107.3                 | 1                               | 1.56                 | 0.97                         |
| PGRCD042        | 9816                      | 17092                      | 6345                                      | -59              | 89                                    | 180                            | 99.9                    | 101.55                | 1.65                            | 1.99                 | 1.60                         |

Table 4 - Complete drill results from the interpreted Pode Lode

ASX: NST Page 19 of 23

For the quarter ended 31 March 2014



## APPENDIX 3 - PAULSENS DRILLING INFORMATION - Released 19/2/2014

| GOLD M        | IINERAL RESOL          | JRCES  | 1        |        |        |           |        |           |        |           |        |        |            |        |            |
|---------------|------------------------|--------|----------|--------|--------|-----------|--------|-----------|--------|-----------|--------|--------|------------|--------|------------|
| As at 30 June | 2013                   | MEA    | ASURED ( | M)     | INE    | DICATED ( | l)     | (M) + (I) | INF    | ERRED (lı | nf)    | TOT    | AL (MI & I | nf)    |            |
|               | T                      |        |          | Ounces | Tonnes | Grade     | Ounces | Ounces    | Tonnes | Grade     | Ounces | Tonnes | Grade      | Ounces | Cut Off    |
|               | butable ounces         | (000s) | (gpt)    | (000s) | (000s) | (gpt)     | (000s) | (000s)    | (000s) | (gpt)     | (000s) | (000s) | (gpt)      | (000s) | Grade      |
| PAULSENS      | GOLD PROJECT           |        |          |        |        |           |        |           |        |           |        |        |            |        |            |
| Surface       |                        |        |          |        |        |           |        |           |        |           |        |        |            |        |            |
|               | Paulsens               |        |          |        | 573    | 2.5       | 47     | 47        | 169    | 2.5       | 14     | 742    | 2.5        | 61     | 1.0 gpt Au |
|               | Belvedere              |        |          |        | 168    | 3.6       | 19     | 19        | 99     | 5.2       | 16     | 267    | 4.2        | 35     | 1.0 gpt Au |
|               | Merlin                 |        |          |        |        |           |        | -         | 523    | 1.4       | 24     | 523    | 1.4        | 24     | 1.0 gpt Au |
|               | Mt Clement (20%)       |        |          |        |        |           |        | -         | 226    | 1.8       | 13     | 226    | 1.8        | 13     | 0.5 gpt Au |
| Undergrour    | nd                     |        |          |        |        |           |        |           |        |           |        |        |            |        |            |
|               | Upper Paulsens         | 63     | 9.7      | 20     | 98     | 13.1      | 41     | 61        | 119    | 8.0       | 31     | 280    | 10.2       | 92     | 2.5 gpt Au |
|               | Voyager UG             | 517    | 12.1     | 201    | 173    | 11.9      | 66     | 267       | 61     | 13.3      | 26     | 751    | 12.2       | 293    | 2.5 gpt Au |
| Stockpiles    |                        | 118    | 2.6      | 10     |        |           |        | 10        |        |           |        | 118    | 2.6        | 10     | 1.0 gpt Au |
| Gold in Circu | uit/Transit            |        |          | 4      |        |           |        | 4         |        |           |        |        |            | 4      |            |
| TOTAL         |                        | 698    | 10.5     | 235    | 1,012  | 5.3       | 173    | 408       | 1,197  | 3.2       | 124    | 2,907  | 5.6        | 532    |            |
| ID            | naturaine of Poperines |        |          |        |        |           |        | ·         |        |           |        |        |            |        |            |

Resources are inclusive of Reserves

<sup>1</sup>Table 1 - Paulsens Resources @ 2.5gpt Au Lower Cut-Off Underground and 1.0gpt Au Lower Cut-Off Open Pit

|            |                     |                         | <b>PAULSE</b>                          | NS RES           | OURCE D                            | EFINITION                   | I DRILLIN               | IG TITAN              |                                 |                      |                              |
|------------|---------------------|-------------------------|----------------------------------------|------------------|------------------------------------|-----------------------------|-------------------------|-----------------------|---------------------------------|----------------------|------------------------------|
| Drill Hole | Easting (Mine Grid) | Northing<br>(Mine Grid) | Drill hole<br>collar RL<br>(Mine Grid) | Dip<br>(degrees) | Azimuth<br>(degrees,<br>Mine Grid) | End of<br>hole depth<br>(m) | Downhole<br>From<br>(m) | Downhole<br>To<br>(m) | Downhole<br>Intersection<br>(m) | Au<br>(gpt)<br>uncut | Est True<br>Thickness<br>(m) |
| PDU2564    | 8713                | 50485                   | 498                                    | -35              | 8                                  | 161                         |                         |                       | NSI                             |                      |                              |
| PDU2571    | 8711                | 50486                   | 499                                    | -3               | 342                                | 131                         |                         |                       | NSI                             |                      |                              |
| PDU2591    | 8716                | 50485                   | 498                                    | -26              | 355                                | 189                         | 75.46                   | 79                    | 3.54                            | 17.6                 | 2.9                          |
| PDU2592    | 8712                | 50485                   | 498                                    | -36              | 355                                | 186                         | 178.62                  | 179.06                | 0.44                            | 2.1                  | 0.4                          |
| PDU2677    | 8706                | 50484                   | 498                                    | -49              | 275                                | 210                         |                         |                       | NSI                             |                      |                              |
| PDU2679    | 8713                | 50485                   | 498                                    | -53              | 355                                | 176                         | 76.95                   | 77.22                 | 0.27                            | 2.6                  | 0.2                          |
| PDU2687    | 8706                | 50482                   | 499                                    | -30              | 275                                | 419                         | 248.89                  | 253                   | 4.11                            | 2.0                  | 3.2                          |
| PDU2876    | 8712                | 50485                   | 498                                    | -51              | 341                                | 170                         | 82.9                    | 83.3                  | 0.40                            | 4.8                  | 0.3                          |
| PDU2876    | 8712                | 50485                   | 498                                    | -51              | 341                                | 170                         | 84.25                   | 84.63                 | 0.38                            | 2.2                  | 0.3                          |
| PDU2876    | 8712                | 50485                   | 498                                    | -51              | 341                                | 170                         | 85.93                   | 90.3                  | 4.37                            | 44.3                 | 3.2                          |
| PDU2876    | 8712                | 50485                   | 498                                    | -51              | 341                                | 170                         | 134.16                  | 139                   | 4.84                            | 11.3                 | 3.3                          |
| PDU2876    | 8712                | 50485                   | 498                                    | -51              | 341                                | 170                         | 141.5                   | 142                   | 0.50                            | 11.0                 | 0.3                          |
| PDU2876    | 8712                | 50485                   | 498                                    | -51              | 341                                | 170                         | 143.07                  | 144                   | 0.93                            | 12.9                 | 0.4                          |
| PDU2879    | 8711                | 50485                   | 498                                    | -54              | 331                                | 207                         | 85                      | 89.17                 | 4.17                            | 6.1                  | 2.8                          |
| PDU2879    | 8711                | 50485                   | 498                                    | -54              | 331                                | 207                         | 93.47                   | 96                    | 2.53                            | 7.6                  | 1.6                          |
| PDU2879    | 8711                | 50485                   | 498                                    | -54              | 331                                | 207                         | 147                     | 151.18                | 4.18                            | 5.1                  | 1.9                          |
| PDU2879    | 8711                | 50485                   | 498                                    | -54              | 331                                | 207                         | 181                     | 181.5                 | 0.50                            | 2.2                  | 0.3                          |
| PDU2879A   | 8711                | 50485                   | 498                                    | 498              | 331                                | 207                         | 84.3                    | 85.3                  | 1.00                            | 20.0                 | 0.7                          |
| PDU2879A   | 8711                | 50485                   | 498                                    | 498              | 331                                | 207                         | 90.4                    | 92                    | 1.60                            | 12.2                 | 1.0                          |
| PDU2879A   | 8711                | 50485                   | 498                                    | 498              | 331                                | 207                         | 153                     | 153.8                 | 0.80                            | 2.1                  | 0.5                          |
| PDU2881    | 8707                | 50486                   | 498                                    | -50              | 320                                | 192                         | 126.5                   | 126.8                 | 0.30                            | 4.1                  | 0.2                          |
| PDU2881    | 8707                | 50486                   | 498                                    | -50              | 320                                | 192                         | 129.6                   | 132.8                 | 3.20                            | 34.6                 | 2.5                          |
| PDU2884    | 8707                | 50486                   | 498                                    | -51              | 310                                | 215                         | 101.86                  | 103.45                | 1.59                            | 25.0                 | 1.2                          |
| PDU2884    | 8707                | 50486                   | 498                                    | -51              | 310                                | 215                         | 164                     | 174                   | 10.00                           | 7.0                  | 6.2                          |
| PDU2884    | 8707                | 50486                   | 498                                    | -51              | 310                                | 215                         | 176                     | 177                   | 1.00                            | 3.1                  | 0.6                          |
| PDU2681    | 8706                | 50483                   | 498                                    | -39              | 275                                | 210                         |                         |                       | NSI                             |                      |                              |
| PDU2875    | 8711                | 50485                   | 498                                    | -38              | 342                                | 164                         | 88.15                   | 90.46                 | 2.31                            | 18.8                 | 2.0                          |
| PDU2875    | 8711                | 50485                   | 498                                    | -38              | 342                                | 164                         | 105.6                   | 106                   | 0.40                            | 5.7                  | 0.3                          |
| PDU2875    | 8711                | 50485                   | 498                                    | -38              | 342                                | 164                         | 113.6                   | 114.9                 | 1.30                            | 9.2                  | 1.2                          |
| PDU2877    | 8711                | 50485                   | 498                                    | -33              | 330                                | 173                         | 80.85                   | 81.78                 | 0.93                            | 19.9                 | 0.8                          |
| PDU2877    | 8711                | 50485                   | 498                                    | -33              | 330                                | 173                         | 86                      | 90.3                  | 4.30                            | 7.6                  | 3.9                          |
| PDU2878    | 8711                | 50485                   | 498                                    | -47              | 330                                | 200                         | 111.83                  | 112.03                | 0.20                            | 23.5                 | 0.2                          |
| PDU2880    | 8707                | 50486                   | 498                                    | -36              | 320                                | 201                         |                         |                       | NSI                             |                      |                              |
| PDU2882    | 8707                | 50486                   | 498                                    | -36              | 310                                | 170                         | 99.92                   | 103                   | 3.08                            | 25.1                 | 2.3                          |
| PDU2882    | 8707                | 50486                   | 498                                    | -36              | 310                                | 170                         | 106.9                   | 108.42                | 1.52                            | 6.1                  | 1.1                          |
| PDU2882    | 8707                | 50486                   | 498                                    | -36              | 310                                | 170                         | 124                     | 124.62                | 0.63                            | 3.9                  | 0.5                          |
| PDU2883    | 8707                | 50486                   | 498                                    | -46              | 310                                | 210                         | 135.9                   | 138.05                | 2.15                            | 7.1                  | 1.6                          |
| PDU2888    | 8706                | 50483                   | 498                                    | -13              | 291                                | 248                         |                         |                       | NSI                             |                      |                              |
| PDU2893    | 8706                | 50483                   | 498                                    | -31              | 282                                | 294                         |                         |                       | NSI                             |                      |                              |

Table 2 - Complete table of Titan drill results since the last release 5/12/2013

|                                                                                                                                                                           | PAULSENS GRADE CONTROL DRILLING TITAN |       |     |     |     |     |       |       |      |     |                              |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|-----|-----|-----|-----|-------|-------|------|-----|------------------------------|--|--|--|
| Easting Drill Hole (Mine Northing collar RL Dip (degrees, hole depth From To Intersection (gpt)  # Grid) (Mine Grid) (Mine Grid) (degrees) Mine Grid) (m) (m) (m) (m) (m) |                                       |       |     |     |     |     |       |       |      |     | Est True<br>Thickness<br>(m) |  |  |  |
| PDU2614                                                                                                                                                                   | 8711                                  | 50485 | 498 | -44 | 341 | 134 | 99.6  | 100.6 | 1.00 | 3.1 | 0.8                          |  |  |  |
| PDU2614                                                                                                                                                                   | 8711                                  | 50485 | 498 | -44 | 341 | 134 | 106.1 | 106.3 | 0.20 | 5.1 | 0.2                          |  |  |  |
| PDU2849                                                                                                                                                                   | 8986                                  | 50443 | 494 | -15 | 13  | 38  | 26.5  | 27    | 0.50 | 2.7 | 0.3                          |  |  |  |

Table 3 – Complete table of Titan drill results since the last release 5/12/2013

ASX: NST Page 20 of 23

# For the quarter ended 31 March 2014



|                     | Easting              |                      | Drill hole         | ENS GRA          | Azimuth           | End of     | Downhole        | Downhole         | Downhole     | Au           | Est True   |
|---------------------|----------------------|----------------------|--------------------|------------------|-------------------|------------|-----------------|------------------|--------------|--------------|------------|
| Drill Hole          | (Mine                | Northing             | collar RL          | Dip              | (degrees,         | hole depth | From            | То               | Intersection | (gpt)        | Thickness  |
| #<br>PDU2722        | <b>Grid)</b><br>8705 | (Mine Grid)<br>50481 | (Mine Grid)<br>498 | (degrees)<br>-39 | Mine Grid)<br>235 | (m)<br>195 | (m)<br>126.43   | (m)<br>128.22    | (m)<br>1.79  | 25.6         | (m)<br>1.6 |
| PDU2722             | 8705                 | 50481                | 498                | -39              | 235               | 195        | 159             | 159.7            | 0.70         | 7.6          | 0.6        |
| PDU2756             | 8796                 | 50354                | 460                | -18              | 310               | 190        | 92              | 92.6             | 0.60         | 2.7          | 0.5        |
| PDU2756             | 8796                 | 50354                | 460                | -18              | 310               | 190        | 92              | 92.6             | 0.60         | 2.7          | 0.3        |
| PDU2756             | 8796                 | 50354                | 460                | -18              | 310               | 190        | 104.95          | 105.45           | 0.50         | 6.0          | 0.3        |
| PDU2757             | 8800                 | 50354                | 460                | 8                | 360               | 62         |                 |                  | NSI          |              |            |
| PDU2759             | 8796                 | 50354                | 460                | -17              | 305               | 220        | 88              | 91.46            | 3.46         | 2.9          | 3.0        |
| PDU2759             | 8796                 | 50354                | 460                | -17              | 305               | 220<br>220 | 118.87          | 119.26           | 0.39         | 3.4          | 0.4        |
| PDU2759<br>PDU2759  | 8796<br>8796         | 50354<br>50354       | 460<br>460         | -17<br>-17       | 305<br>305        | 220        | 124.6<br>176.31 | 125.19<br>176.57 | 0.59<br>0.26 | 2.4<br>16.6  | 0.6<br>0.2 |
| PDU2761             | 8796                 | 50354                | 459                | -17              | 305               | 154        | 89.67           | 90.1             | 0.43         | 5.0          | 0.2        |
| PDU2761             | 8796                 | 50354                | 459                | -24              | 305               | 154        | 93              | 95               | 2.00         | 9.2          | 1.3        |
| PDU2761             | 8796                 | 50354                | 459                | -24              | 305               | 154        | 133.2           | 133.83           | 0.63         | 2.9          | 0.3        |
| PDU2761             | 8796                 | 50354                | 459                | -24              | 305               | 154        | 112.63          | 115              | 2.37         | 14.8         | 1.3        |
| PDU2762             | 8801                 | 50354                | 461                | 21               | 18                | 71         | 67.63           | 68.2             | 0.57         | 2.5          | 2.5        |
| PDU2765             | 8796                 | 50354                | 460                | -22              | 302               | 160        | 88.87           | 89.38            | 0.51         | 3.3          | 0.5        |
| PDU2765             | 8796                 | 50354                | 460                | -22              | 302               | 160        | 132.35          | 133.25           | 0.90         | 26.1         | 0.6        |
| PDU2767             | 8797                 | 50354                | 460                | -26              | 302               | 233        | 93.3            | 93.7             | 0.40         | 2.8          | 0.4        |
| PDU2767<br>PDU2767  | 8797<br>8797         | 50354<br>50354       | 460<br>460         | -26<br>-26       | 302<br>302        | 233<br>233 | 130<br>128      | 130.76<br>128.5  | 0.76<br>0.50 | 3.9<br>8.7   | 0.7<br>0.5 |
| PDU2768             | 8796                 | 50354                | 460                | -19              | 299               | 188        | 104.5           | 104.8            | 0.30         | 19.3         | 0.3        |
| PDU2768             | 8796                 | 50354                | 460                | -19              | 299               | 188        | 119.05          | 121.9            | 2.85         | 7.6          | 1.8        |
| PDU2809             | 8923                 | 50448                | 493                | -21              | 30                | 89         | 3               | 3.69             | 0.69         | 4.2          | 0.6        |
| PDU2849             | 8986                 | 50443                | 494                | -15              | 13                | 38         | 21.2            | 22.65            | 1.45         | 17.1         | 1.1        |
| PDU2849             | 8986                 | 50443                | 494                | -15              | 13                | 38         | 10              | 10.6             | 0.60         | 6.5          | 0.3        |
| PDU2894             | 8797                 | 50354                | 459                | -15              | 333               | 159        | 61.9            | 63               | 1.10         | 3.1          | 0.9        |
| PDU2894             | 8797                 | 50354                | 459                | -15              | 333               | 159        | 88.26           | 88.51            | 0.25         | 7.1          | 0.2        |
| PDU2894             | 8797                 | 50354                | 459                | -15              | 333               | 159        | 92.86           | 93.81            | 0.95         | 7.1          | 7.1        |
| PDU2895             | 8800                 | 50353                | 460                | -25              | 333               | 177        | 101.05          | 101.3            | 0.25         | 6.2          | 0.2        |
| PDU2895             | 8800                 | 50353                | 460                | -25              | 333               | 177        | 83.1            | 83.6             | 0.50         | 18.6         | 0.5        |
| PDU2895<br>PDU2897  | 8800<br>8797         | 50353<br>50354       | 460<br>460         | -25<br>-16       | 333<br>326        | 177<br>160 | 78.45<br>67.69  | 79.2<br>68.12    | 0.75<br>0.43 | 8.9<br>3.8   | 0.7<br>0.3 |
| PDU2897<br>PDU2897  | 8797                 | 50354                | 460                | -16              | 326               | 160        | 96.7            | 98               | 1.30         | 2.8          | 1.1        |
| RDU2897             | 8797                 | 50354                | 460                | -16              | 326               | 160        | 83.14           | 83.35            | 0.21         | 9.4          | 0.2        |
| PDU2903             | 8796                 | 50353                | 460                | -23              | 315               | 109        | 101.8           | 102.2            | 0.30         | 12.2         | 0.2        |
| PDU2903             | 8796                 | 50353                | 460                | -23              | 315               | 109        | 73.15           | 73.85            | 0.70         | 2.6          | 0.5        |
| PDU2903             | 8796                 | 50353                | 460                | -23              | 315               | 109        | 94              | 100.9            | 6.90         | 18.4         | 4.8        |
| PDU2903             | 8796                 | 50353                | 460                | -23              | 315               | 109        | 77.8            | 79.65            | 1.85         | 3.1          | 1.4        |
| PDU2907             | 8859                 | 50451                | 460                | 9                | 15                | 152        | 0.92            | 1.32             | 0.40         | 3.5          | 0.4        |
| PDU2915             | 8797                 | 50354                | 460                | -2               | 305               | 131        | 101.44          | 107.1            | 5.66         | 4.3          | 3.7        |
| PDU2921             | 8796                 | 50354                | 460                | -16              | 295               | 63         |                 |                  | NSI          |              |            |
| PDU2924             | 8797                 | 50353                | 460                | -10              | 299               | 145        | 131.42          | 136.05           | 4.63         | 9.6          | 2.5        |
| PDU2924             | 8797                 | 50353                | 460                | -10              | 299               | 145        | 126.49          | 126.83           | 0.34         | 6.0          | 0.2        |
| PDU2925<br>PDU2925  | 8796<br>8796         | 50354<br>50354       | 460<br>460         | -3<br>-3         | 294<br>294        | 161<br>161 | 22.32<br>133.23 | 22.66<br>133.65  | 0.34<br>0.42 | 7.8<br>47.5  | 0.2<br>0.3 |
| PDU2925             | 8796                 | 50354                | 460                | -3<br>-3         | 294               | 161        | 113.23          | 114.18           | 0.42         | 22.8         | 0.3        |
| PDU2927             | 8796                 | 50354                | 460                | -11              | 294               | 205        | 104.65          | 106.87           | 2.22         | 10.6         | 1.8        |
| PDU2927             | 8796                 | 50354                | 460                | -11              | 294               | 205        | 168.3           | 168.52           | 0.22         | 3.1          | 0.2        |
| PDU2927             | 8796                 | 50354                | 460                | -11              | 294               | 205        | 141.43          | 142.65           | 1.22         | 5.1          | 1.0        |
| PDU2927             | 8796                 | 50354                | 460                | -11              | 294               | 205        | 151.48          | 152.2            | 0.72         | 4.5          | 0.4        |
| PDU2927             | 8796                 | 50354                | 460                | -11              | 294               | 205        | 154.54          | 156.5            | 1.96         | 7.4          | 1.4        |
| PDU2927             | 8796                 | 50354                | 460                | -11              | 294               | 205        | 130             | 131.17           | 1.17         | 3.5          | 0.9        |
| PDU2927             | 8796                 | 50354                | 460                | -11              | 294               | 205        | 133             | 133.77           | 0.77         | 18.0         | 0.5        |
| PDU2927             | 8796                 | 50354                | 460                | -11              | 294               | 205        | 143.71          | 144.75           | 1.04         | 5.7          | 0.8        |
| PDU2927             | 8796                 | 50354                | 460                | -11<br>11        | 294               | 205        | 145.35          | 145.83           | 1.48         | 3.8          | 1.1        |
| PDU2927<br>PDU2929  | 8796<br>8796         | 50354<br>50353       | 460<br>459         | -11<br>-8        | 294<br>290        | 205<br>215 | 148.28<br>155   | 149.23<br>164.12 | 1.15<br>9.12 | 18.7<br>10.5 | 0.9<br>4.9 |
| PDU2929             | 8796                 | 50353                | 459                | -6<br>-8         | 290               | 215        | 147             | 149              | 2.00         | 4.3          | 1.6        |
| PDU2930             | 8797                 | 50353                | 460                | -12              | 290               | 219        | 49              | 49.43            | 0.43         | 3.9          | 0.3        |
| PDU2930             | 8797                 | 50353                | 460                | -12              | 290               | 219        | 181.94          | 182.39           | 0.45         | 22.3         | 0.3        |
| PDU2930             | 8797                 | 50353                | 460                | -12              | 290               | 219        | 109             | 109.53           | 0.30         | 5.6          | 0.2        |
| PDU2930             | 8797                 | 50353                | 460                | -12              | 290               | 219        | 164             | 167              | 3.00         | 15.1         | 2.6        |
| PDU2930             | 8797                 | 50353                | 460                | -12              | 290               | 219        | 145             | 148.72           | 3.72         | 12.0         | 2.5        |
| PDU2930             | 8797                 | 50353                | 460                | -12              | 290               | 219        | 156.6           | 157.4            | 0.80         | 18.0         | 0.6        |
| PDU2931             | 8796                 | 50354                | 460                | -15              | 289               | 206        | 114.26          | 114.7            | 0.44         | 2.2          | 0.4        |
| PDU2931             | 8796                 | 50354                | 460                | -15              | 289               | 206        | 118.88          | 119.23           | 0.35         | 12.6         | 0.3        |
| PDU2931             | 8796                 | 50354                | 460                | -15<br>15        | 289               | 206        | 123.9           | 126              | 2.10         | 3.2          | 1.8        |
| PDU2931<br>PDU2931  | 8796<br>8796         | 50354<br>50354       | 460<br>460         | -15<br>-15       | 289<br>289        | 206<br>206 | 173<br>179.81   | 175<br>180.99    | 2.00         | 3.8<br>61.8  | 1.7<br>1.0 |
| PDU2931<br>PDU2955  | 8796                 | 50354                | 460                | -15<br>-5        | 6                 | 155        | 73.75           | 75               | 1.18<br>1.25 | 3.3          | 1.0        |
| PDU2955<br>PDU2956A | 8714                 | 50350                | 424                | -5<br>-15        | 7                 | 126        | 53.36           | 55               | 1.64         | 2.5          | 1.5        |
| PDU2956A            | 8714                 | 50350                | 423                | -15              | 7                 | 126        | 110             | 111              | 1.00         | 3.3          | 0.5        |
| PDU2957             | 8714                 | 50350                | 424                | 8                | 358               | 88         | 55              | 56               | 1.00         | 3.3          | 0.5        |
| PDU2958             | 8714                 | 50350                | 423                | -17              | 358               | 163        | 71              | 72               | 1.00         | 2.7          | 0.8        |
| PDU2959             | 8714                 | 50350                | 425                | 11               | 347               | 87         | 59              | 61               | 2.00         | 6.4          | 1.8        |
| PDU2959             | 8714                 | 50350                | 425                | 11               | 347               | 87         | 76.81           | 79.44            | 2.63         | 61.3         | 2.4        |
| PDU2959             | 8714                 | 50350                | 425                | 11               | 347               | 87         | 66              | 66.45            | 0.45         | 8.8          | 0.3        |
| PDU2959             | 8714                 | 50350                | 425                | 11               | 347               | 87         | 71.5            | 72.5             | 1.00         | 2.3          | 0.8        |
| PDU2960             | 8714                 | 50350                | 424                | -4               | 348               | 138        | 78              | 79               | 1.00         | 2.0          | 0.7        |
| PDU2960             | 8714                 | 50350                | 424                | -4               | 348               | 138        | 81.7            | 82.6             | 0.90         | 2.9          | 0.8        |
| PDU2961             | 8713                 | 50350                | 423                | -3               | 341               | 93         | 58.87           | 63               | 4.13         | 3.5          | 4.0        |
| PDU2961             | 8713                 | 50350                | 423                | -3               | 341               | 93         | 69              | 72               | 3.00         | 5.0          | 2.8        |

ASX: NST Page 21 of 23

# For the quarter ended 31 March 2014



|                 |                           |                         | PAULSE                                 | ENS GRAI         | DE CONT                            | <b>ROL DRIL</b>             | LING VO                 | AGER 1                |                                 |                      |                              |
|-----------------|---------------------------|-------------------------|----------------------------------------|------------------|------------------------------------|-----------------------------|-------------------------|-----------------------|---------------------------------|----------------------|------------------------------|
| Drill Hole<br># | Easting<br>(Mine<br>Grid) | Northing<br>(Mine Grid) | Drill hole<br>collar RL<br>(Mine Grid) | Dip<br>(degrees) | Azimuth<br>(degrees,<br>Mine Grid) | End of<br>hole depth<br>(m) | Downhole<br>From<br>(m) | Downhole<br>To<br>(m) | Downhole<br>Intersection<br>(m) | Au<br>(gpt)<br>uncut | Est True<br>Thickness<br>(m) |
| PDU2961         | 8713                      | 50350                   | 423                                    | -3               | 341                                | 93                          | 83                      | 84.07                 | 1.07                            | 8.5                  | 1.0                          |
| PDU2964         | 8713                      | 50350                   | 424                                    | 10               | 334                                | 98                          | 89.84                   | 90.08                 | 0.24                            | 4.2                  | 0.2                          |
| PDU2964         | 8713                      | 50350                   | 424                                    | 10               | 334                                | 98                          | 76                      | 85.3                  | 9.30                            | 14.1                 | 8.8                          |
| PDU2965         | 8713                      | 50350                   | 424                                    | -2               | 334                                | 97                          | 57                      | 57.8                  | 0.80                            | 5.8                  | 0.7                          |
| PDU2966         | 8713                      | 50350                   | 424                                    | -2               | 327                                | 101                         | 78                      | 79                    | 1.00                            | 12.7                 | 0.9                          |
| PDU2966         | 8713                      | 50350                   | 424                                    | -2               | 327                                | 101                         | 88.24                   | 88.57                 | 0.33                            | 6.1                  | 0.2                          |
| PDU2966         | 8713                      | 50350                   | 424                                    | -2               | 327                                | 101                         | 83                      | 84                    | 1.00                            | 2.7                  | 0.9                          |
| PDU2969         | 8712                      | 50350                   | 424                                    | 8                | 320                                | 101                         | 80.51                   | 83.82                 | 3.31                            | 25.1                 | 2.9                          |
| PDU2969         | 8712                      | 50350                   | 424                                    | 8                | 320                                | 101                         | 86.76                   | 89.39                 | 2.63                            | 2.1                  | 1.9                          |
| PDU2970         | 8713                      | 50350                   | 424                                    | -1               | 319                                | 103                         | 79                      | 85                    | 6.00                            | 7.2                  | 4.5                          |
| PDU2970         | 8713                      | 50350                   | 424                                    | -1               | 319                                | 103                         | 92.22                   | 92.52                 | 0.30                            | 31.3                 | 0.3                          |
| PDU2970         | 8713                      | 50350                   | 424                                    | -1               | 319                                | 103                         | 96.93                   | 97.37                 | 0.44                            | 5.6                  | 0.4                          |

Table 4 - Complete table of Voyager 1 drill results since the last release 5/12/2013

| PD02970      | 8/13          | 50350          | 424               | -1              | 319           | 103        | 92.22    | 92.52    | 0.30         | 31.3  | 0.3      |
|--------------|---------------|----------------|-------------------|-----------------|---------------|------------|----------|----------|--------------|-------|----------|
| PDU2970      | 8713          | 50350          | 424               | -1              | 319           | 103        | 96.93    | 97.37    | 0.44         | 5.6   | 0.4      |
| shle 4 – Com | nlete table c | f Voyager 1 dr | rill roculte eine | on the last rel | 0250 5/12/201 | 2          |          |          |              |       |          |
| able 4 – Com | piete table o | i voyagei i ui | iii results sind  | ce the last len | ease 3/12/201 | 3          |          |          |              |       |          |
| ))           |               |                |                   |                 |               |            |          |          |              |       |          |
| //           |               |                |                   |                 |               |            |          |          |              |       |          |
|              |               |                | PAULS             | ENS GRA         | DE CONT       | ROL DRIL   | LING VO  | AGER 2   |              |       |          |
|              | Easting       |                | Drill hole        |                 | Azimuth       | End of     | Downhole | Downhole | Downhole     | Au    | Est True |
| Drill Hole   | (Mine         | Northing       | collar RL         | Dip             | (degrees,     | hole depth | From     | То       | Intersection | (gpt) | Thickne  |
| #            | Grid)         | (Mine Grid)    | (Mine Grid)       | (degrees)       | Mine Grid)    | (m)        | (m)      | (m)      | (m)          | uncut | (m)      |
| PDU2753      | 8800          | 50354          | 460               | -21             | 342           | 147        | 104.1    | 105      | 0.90         | 9.0   | 0.8      |
| PDU2756      | 8796          | 50354          | 460               | -18             | 310           | 190        | 135.9    | 136.25   | 0.35         | 15.0  | 0.2      |
| PDU2756      | 8796          | 50354          | 460               | -18             | 310           | 190        | 138.8    | 139.45   | 0.65         | 7.4   | 0.3      |
| RDU2809      | 8923          | 50448          | 493               | -21             | 30            | 89         | 11       | 12       | 1.00         | 2.4   | 1.0      |
|              |               | 50448          |                   |                 |               |            |          |          |              |       | 1.7      |
| PDU2809      | 8923          |                | 493               | -21             | 30            | 89         | 49.45    | 52       | 2.55         | 33.2  |          |
| PDU2809      | 8923          | 50448          | 493               | -21             | 30            | 89         | 71.2     | 72       | 0.80         | 9.2   | 0.7      |
| PDU2838      | 8984          | 50444          | 494               | -8              | 340           | 95         | 3        | 5        | 2.00         | 24.0  | 1.8      |
| PDU2838      | 8984          | 50444          | 494               | -8              | 340           | 95         | 42.24    | 42.74    | 0.50         | 91.6  | 0.4      |
| PDU2839      | 8985          | 50443          | 494               | -18             | 340           | 95         | 0        | 1        | 1.00         | 2.5   | 0.9      |
| PDU2839      | 8985          | 50443          | 494               | -18             | 340           | 95         | 3        | 5        | 2.00         | 6.7   | 1.7      |
| PDU2839      | 8985          | 50443          | 494               | -18             | 340           | 95         | 17.6     | 18.3     | 0.70         | 9.0   | 0.3      |
| PDU2839      | 8985          | 50443          | 494               | -18             | 340           | 95         | 54.35    | 63.3     | 8.95         | 73.2  | 1.4      |
| PDU2839      | 8985          | 50443          | 494               | -18             | 340           | 95         | 65.8     | 66.15    | 0.35         | 63.1  | 0.2      |
|              |               |                |                   |                 |               |            |          |          |              |       |          |
| PDU2840      | 8985          | 50444          | 496               | 20              | 352           | 74         | 3.3      | 5.34     | 2.04         | 15.5  | 0.9      |
| PDU2841      | 8985          | 50443          | 495               | 12              | 352           | 77         | 2.64     | 7.2      | 4.56         | 15.1  | 0.9      |
| PDU2841      | 8985          | 50443          | 495               | 12              | 352           | 77         | 10.92    | 11.3     | 2.33         | 27.4  | 0.6      |
| PDU2842      | 8985          | 50443          | 494               | -10             | 352           | 94         | 4.91     | 5.48     | 0.57         | 29.5  | 0.3      |
| PDU2842      | 8985          | 50443          | 494               | -10             | 352           | 94         | 8        | 8.34     | 0.34         | 4.1   | 0.3      |
| PDU2842      | 8985          | 50443          | 494               | -10             | 352           | 94         | 18.81    | 19.61    | 0.80         | 6.4   | 0.4      |
| PDU2842      | 8985          | 50443          | 494               | -10             | 352           | 94         | 33       | 33.43    | 0.43         | 2.5   | 0.3      |
| PDU2842      | 8985          | 50443          | 494               | -10             | 352           | 94         | 43       | 43.99    | 0.39         | 6.0   | 0.3      |
|              |               |                |                   |                 |               |            |          |          |              |       |          |
| PDU2842      | 8985          | 50443          | 494               | -10             | 352           | 94         | 46.35    | 47       | 0.65         | 5.7   | 0.5      |
| PDU2845      | 8985          | 50443          | 495               | 12              | 3             | 89         | 2.97     | 7.32     | 4.35         | 15.8  | 1.7      |
| PDU2845      | 8985          | 50443          | 495               | 12              | 3             | 89         | 14       | 15.32    | 1.80         | 7.6   | 0.7      |
| PDU2847      | 8986          | 50443          | 494               | -17             | 2             | 92         | 0.6      | 1        | 0.40         | 2.1   | 0.4      |
| PDU2848      | 8986          | 50443          | 495               | -7              | 12            | 87         | 1.15     | 1.8      | 0.65         | 8.5   | 0.4      |
| PDU2848      | 8986          | 50443          | 495               | -7              | 12            | 87         | 4        | 7        | 3.00         | 12.0  | 2.1      |
| PDU2848      | 8986          | 50443          | 495               | -7              | 12            | 87         | 10.7     | 11       | 0.30         | 3.4   | 0.2      |
| PDU2848      | 8986          | 50443          | 495               | -7              | 12            | 87         | 19.7     | 21.15    | 1.45         | 5.3   | 1.0      |
| PDU2849      | 8986          | 50443          | 494               | -15             | 13            | 38         | 5.95     | 6.2      | 0.25         | 3.7   | 0.2      |
| PDU2849      | 8986          | 50443          | 494               | -15             | 13            | 38         | 8        | 9        | 1.00         | 2.3   | 0.5      |
| PDU2850      | 8984          | 50444          | 494               | 13              | 24            | 80         | 1.77     | 9        | 7.23         | 12.3  | 5.0      |
|              |               |                |                   |                 |               |            |          |          |              |       |          |
| PDU2850      | 8984          | 50444          | 494               | 13              | 24            | 80         | 18.82    | 19.21    | 0.39         | 3.9   | 0.2      |
| PDU2850      | 8984          | 50444          | 494               | 13              | 24            | 80         | 21       | 21.51    | 0.51         | 5.6   | 0.3      |
| PDU2851      | 8984          | 50444          | 494               | -6              | 24            | 80         | 1        | 1.63     | 0.63         | 5.9   | 5.9      |
| PDU2851      | 8984          | 50444          | 494               | -6              | 24            | 80         | 6        | 7        | 1.00         | 4.1   | 4.1      |
| PDU2851      | 8984          | 50444          | 494               | -6              | 24            | 80         | 10.26    | 10.64    | 0.38         | 5.6   | 5.6      |
| PDU2851      | 8984          | 50444          | 494               | -6              | 24            | 80         | 20.82    | 22.58    | 1.76         | 6.9   | 6.9      |
| PDU2852      | 8984          | 50444          | 494               | 10              | 33            | 81         | 1.9      | 10.53    | 8.63         | 36.8  | 2.0      |
| PDU2853      | 8984          | 50444          | 494               | -7              | 33            | 80         | 1        | 1.39     | 0.39         | 3.0   | 0.3      |
| PDU2853      | 8984          | 50444          | 494               | -7<br>-7        | 33            | 80         | 25.87    | 28.48    | 2.61         | 4.1   | 1.3      |
|              | 9060          | 50460          | 517               | -1<br>-11       |               | 70         | 20.01    | 20.40    | NSI          | 7.1   | 1.3      |
| PDU2855      |               |                |                   |                 | 325           |            |          |          |              |       |          |
| PDU2857      | 9061          | 50460          | 516               | -10             | 334           | 65         |          |          | NSI          |       |          |
| PDU2859      | 9061          | 50460          | 516               | -10             | 342           | 63         |          |          | NSI          |       |          |
| PDU2861      | 9061          | 50460          | 516               | -10             | 353           | 63         |          |          | NSI          |       |          |
| PDU2863      | 9060          | 50460          | 517               | -10             | 2             | 127        |          |          | NSI          |       |          |
| PDU2864      | 9064          | 50459          | 517               | -14             | 25            | 34         |          |          | NSI          |       |          |
| PDU2865      | 9064          | 50459          | 517               | -25             | 25            | 42         |          |          | NSI          |       |          |
| PDU2866      | 9064          | 50459          | 517               | -9              | 45            | 74         |          |          | NSI          |       |          |
| PDU2867      | 9064          | 50459          | 517               | -17             | 45            | 74         | 24.3     | 25       | 0.70         | 2.5   | 0.3      |
|              |               |                |                   |                 |               |            |          | 109      |              |       |          |
| PDU2894      | 8797          | 50354          | 459               | -15             | 333           | 159        | 107.05   |          | 1.95         | 25.7  | 1.7      |
| PDU2894      | 8797          | 50354          | 459               | -15             | 333           | 159        | 115.5    | 116      | 0.50         | 3.3   | 0.4      |
| PDU2894      | 8797          | 50354          | 459               | -15             | 333           | 159        | 138.17   | 139.55   | 1.38         | 10.0  | 1.2      |
| PDU2894      | 8797          | 50354          | 459               | -15             | 333           | 159        | 148      | 149.25   | 1.25         | 10.7  | 0.9      |
| PDU2894      | 8797          | 50354          | 459               | -15             | 333           | 159        | 151      | 151.8    | 0.80         | 2.5   | 0.6      |
| PDU2895      | 8800          | 50353          | 460               | -25             | 333           | 177        | 112.8    | 113.35   | 0.55         | 6.6   | 0.5      |
| PDU2897      | 8797          | 50354          | 460               | -16             | 326           | 160        | 117.43   | 118      | 0.57         | 8.5   | 0.5      |
| PDU2897      | 8797          | 50354          | 460               | -16             | 326           | 160        | 121      | 122      | 1.00         | 75.0  | 0.9      |
|              |               |                |                   |                 |               |            |          |          |              |       |          |
| PDU2897      | 8797          | 50354          | 460               | -16             | 326           | 160        | 125.56   | 126.3    | 0.74         | 4.6   | 0.6      |
| PDU2897      | 8797          | 50354          | 460               | -16             | 326           | 160        | 128      | 128.6    | 0.60         | 2.4   | 0.5      |
| PDU2897      | 8797          | 50354          | 460               | -16             | 326           | 160        | 174      | 174.46   | 0.46         | 6.3   | 0.4      |
|              | 8799          | 50354          | 460               | -31             | 326           | 187        | 131.48   | 131.78   | 0.30         | 2.7   | 0.2      |

ASX: NST Page 22 of 23





|                |            |         |             | PAULS       | ENS GRA        | DE CONT    | ROL DRIL   | LING VO  | YAGER 2  |              |          |           |
|----------------|------------|---------|-------------|-------------|----------------|------------|------------|----------|----------|--------------|----------|-----------|
|                |            | Easting |             | Drill hole  |                | Azimuth    | End of     | Downhole | Downhole | Downhole     | Au       | Est True  |
|                | Drill Hole | (Mine   | Northing    | collar RL   | Dip            | (degrees,  | hole depth | From     | То       | Intersection | (gpt)    | Thickness |
|                | #          | Grid)   | (Mine Grid) | (Mine Grid) | (degrees)      | Mine Grid) | (m)        | (m)      | (m)      | (m)          | uncut    | (m)       |
|                | PDU2898    | 8799    | 50354       | 460         | -31            | 326        | 187        | 162.47   | 162.74   | 0.27         | 2.6      | 0.2       |
|                | PDU2904    | 8834    | 50468       | 461         | -21            | 344        | 53         | 36.59    | 37.17    | 0.58         | 10.8     | 0.6       |
|                | PDU2904    | 8834    | 50468       | 461         | -21            | 344        | 53         | 39.7     | 40.55    | 0.85         | 10.2     | 0.8       |
|                | PDU2905    | 8797    | 50354       | 460         | -37            | 315        | 200        | 163.34   | 164.05   | 0.71         | 2.2      | 0.3       |
|                | PDU2907    | 8859    | 50451       | 460         | 9              | 15         | 152        | 11       | 11.25    | 0.25         | 5.0      | 0.2       |
|                | PDU2907    | 8859    | 50451       | 460         | 9              | 15         | 152        | 17       | 17.37    | 0.37         | 3.4      | 0.3       |
|                | PDU2909    | 8859    | 50451       | 460         | -10            | 16         | 72         | 24.2     | 28       | 3.80         | 18.5     | 2.3       |
|                | PDU2910    | 8859    | 50451       | 460         | -20            | 15         | 68         | 0.8      | 2.4      | 1.60         | 2.7      | 1.5       |
| +              | PDU2910    | 8859    | 50451       | 460         | -20            | 15         | 68         | 30.8     | 32       | 1.20         | 3.4      | 1.0       |
| F              | PDU2910    | 8859    | 50451       | 460         | -20            | 15         | 68         | 32.9     | 33.3     | 0.40         | 2.2      | 0.3       |
|                | PDU2911    | 8859    | 50451       | 460         | 6              | 35         | 86         | 16.88    | 17.18    | 0.30         | 20.0     | 0.2       |
| $\perp$        | PDU2911    | 8859    | 50451       | 460         | 6              | 35         | 86         | 49       | 49.5     | 0.50         | 7.8      | 0.3       |
|                | PDU2911    | 8859    | 50451       | 460         | 6              | 35         | 86         | 54       | 55       | 1.00         | 2.4      | 0.7       |
| $\mp$          | PDU2912    | 8859    | 50451       | 460         | -2             | 35         | 91         | 29.4     | 29.73    | 0.40         | 5.3      | 0.4       |
|                | PDU2912    | 8859    | 50451       | 460         | -2             | 35         | 91         | 32.36    | 33       | 0.64         | 2.9      | 0.5       |
| +              | PDU2912    | 8859    | 50451       | 460         | -2             | 35         | 91         | 57       | 58       | 1.00         | 4.3      | 0.7       |
| +              | PDU2912    | 8859    | 50451       | 460         | -2             | 35         | 91         | 77       | 78       | 1.00         | 4.8      | 0.8       |
|                | PDU2913    | 8859    | 50451       | 460         | -12            | 35         | 86         | 41       | 42.3     | 1.30         | 5.3      | 1.0       |
| 4              | PDU2914    | 8859    | 50450       | 460         | -25            | 35         | 73         | 53.66    | 54.32    | 0.66         | 2.1      | 0.5       |
| 1              | PDU2914    | 8859    | 50450       | 460         | -25            | 35         | 73         | 64.43    | 65.03    | 0.60         | 9.5      | 0.5       |
| H              | PDU2946    | 8793    | 50454       | 444         | -5             | 351        | 130        | 11       | 13       | 2.00         | 37.2     | 1.8       |
| T              | PDU2947    | 8891    | 50454       | 461         | 7              | 22         | 90         | 0.53     | 1.14     | 0.61         | 10.7     | 0.5       |
| 1              | PDU2947    | 8891    | 50454       | 461         | 7              | 22         | 90         | 27       | 28.06    | 1.06         | 11.5     | 0.8       |
| ` <del> </del> | PDU2948    | 8891    | 50454       | 461         | -2             | 22         | 80         | 35.38    | 38.46    | 3.08         | 27.4     | 2.2       |
| 4              | PDU2948    | 8891    | 50454       | 461         | -2             | 22         | 80         | 51.7     | 53.42    | 1.72         | 30.9     | 1.2       |
|                | PDU2949    | 8891    | 50454       | 460         | -12            | 22         | 83         | 54       | 54.5     | 0.50         | 6.1      | 0.3       |
| +              | PDU2950    | 8892    | 50454       | 461         | 2              | 36         | 97         | 47       | 48       | 1.00         | 5.1      | 0.2       |
|                | PDU2950    | 8892    | 50454       | 461         | 2              | 36         | 97         | 85       | 86.58    | 1.58         | 34.3     | 0.5       |
|                | PDU2951    | 8891    | 50454       | 460         | <u>-</u><br>-7 | 37         | 81         | 68       | 68.6     | 0.60         | 6.1      | 0.2       |
|                | PDU2953    | 8892    | 50453       | 461         | 2              | 51         | 107        |          | 00.0     | NSI          | <u> </u> | 0.2       |
|                | PDU2954    | 8893    | 50453       | 461         | -8             | 51         | 100        |          |          | NSI          |          |           |
| +              | PDU2955    | 8714    | 50350       | 424         | -5             | 6          | 155        | 100.97   | 101.93   | 0.96         | 15.4     | 0.9       |
|                | PDU2955    | 8714    | 50350       | 424         | -5             | 6          | 155        | 128.65   | 129.9    | 1.25         | 12.3     | 1.0       |
| 7              | PDU2955    | 8714    | 50350       | 424         | -5             | 6          | 155        | 135.77   | 136.19   | 0.42         | 14.3     | 0.4       |
| 1              | PDU2957    | 8714    | 50350       | 424         | 8              | 358        | 88         | 74       | 75.6     | 1.60         | 5.2      | 1.4       |
| 14             | PDU2957    | 8714    | 50350       | 424         | 8              | 358        | 88         | 77       | 77.51    | 0.51         | 3.3      | 0.4       |
| F              | PDU2957    | 8714    | 50350       | 424         | 8              | 358        | 88         | 81       | 82.5     | 1.50         | 12.4     | 1.4       |
| +              | PDU2958    | 8714    | 50350       | 423         | -17            | 358        | 163        | 84.18    | 84.7     | 0.52         | 2.5      | 0.4       |
| 上              | PDU2958    | 8714    | 50350       | 423         | -17            | 358        | 163        | 86       | 86.25    | 0.25         | 5.2      | 0.2       |
|                | PDU2958    | 8714    | 50350       | 423         | -17            | 358        | 163        | 102.66   | 102.83   | 0.17         | 8.8      | 0.2       |
| 士              | PDU2960    | 8714    | 50350       | 424         | -4             | 348        | 138        | 103.7    | 104      | 0.30         | 51.5     | 0.2       |
|                | PDU2960    | 8714    | 50350       | 424         | -4             | 348        | 138        | 108      | 110      | 2.00         | 13.5     | 1.6       |
| 上              | PDU2960    | 8714    | 50350       | 424         | -4             | 348        | 138        | 120      | 121.9    | 1.90         | 6.6      | 1.5       |
| +              | PDU2960    | 8714    | 50350       | 424         | -4             | 348        | 138        | 128      | 129.62   | 1.62         | 46.0     | 0.9       |
| 1/             | PDU2964    | 8713    | 50350       | 424         | 10             | 334        | 98         | 52       | 52.89    | 0.89         | 5.8      | 0.7       |
| H              | PDU2964    | 8713    | 50350       | 424         | 10             | 334        | 98         | 68       | 69       | 1.00         | 2.3      | 0.8       |
| 7              | PDU2964    | 8713    | 50350       | 424         | 10             | 334        | 98         | 72       | 72.53    | 0.53         | 3.3      | 0.4       |
| $\vdash$       | PDU2964    | 8713    | 50350       | 424         | 10             | 334        | 98         | 73.71    | 74       | 0.29         | 5.3      | 0.2       |
|                | PDU2969    | 8712    | 50350       | 424         | 8              | 320        | 101        | 77.71    | 78       | 0.29         | 43.4     | 0.2       |
|                | 1 002303   | 0/12    | 30330       | 724         | U              | 320        | 101        | 11.11    | 10       | 0.23         | 70.4     | 0.2       |

Table 5 - Complete table of Voyager 2 drill results since the last release 5/12/2013

ASX: NST Page 23 of 23