

Company Announcements Office

CONTACTS PO Box 52 West Perth WA 6872 Australia ABN: 96 095 684 389

PHONE +61 (08) 9295 0388 FAX +61 (08) 9295 3480 EMAIL infooffrontierresources.com.au WEBSITE www.frontierresources.com.au

ASX : FNT

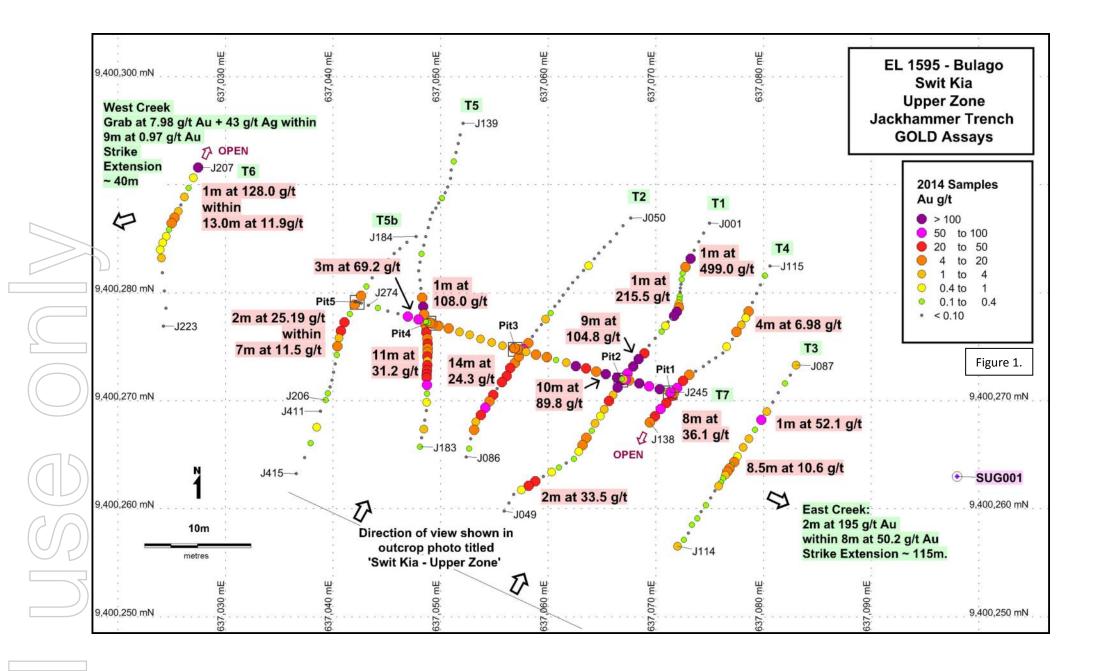
11th June 2014

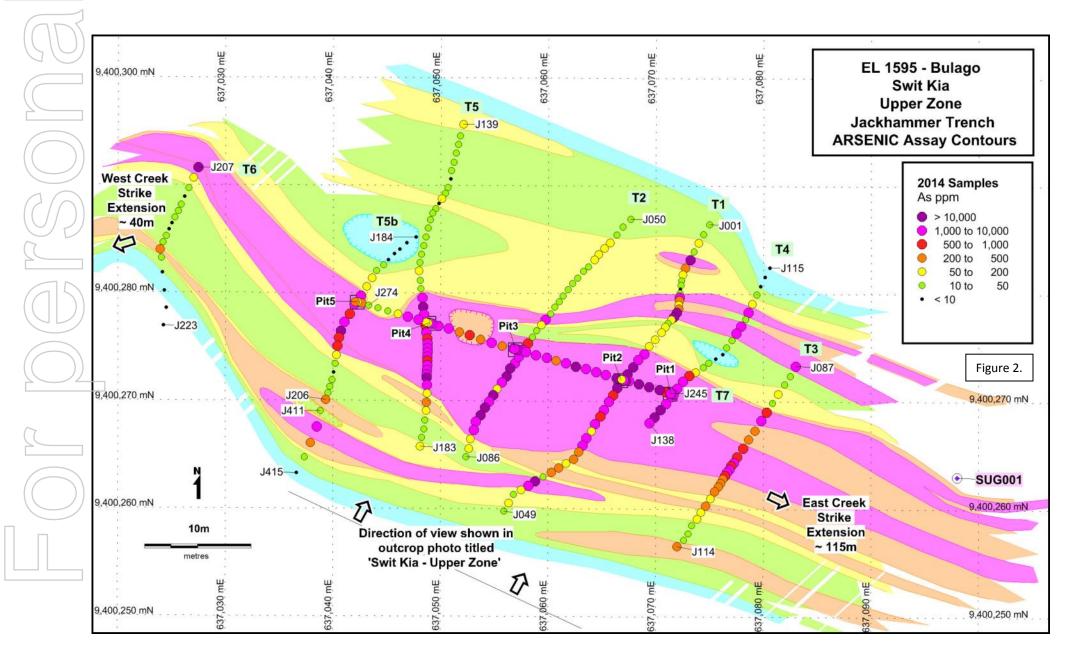
ASX Limited

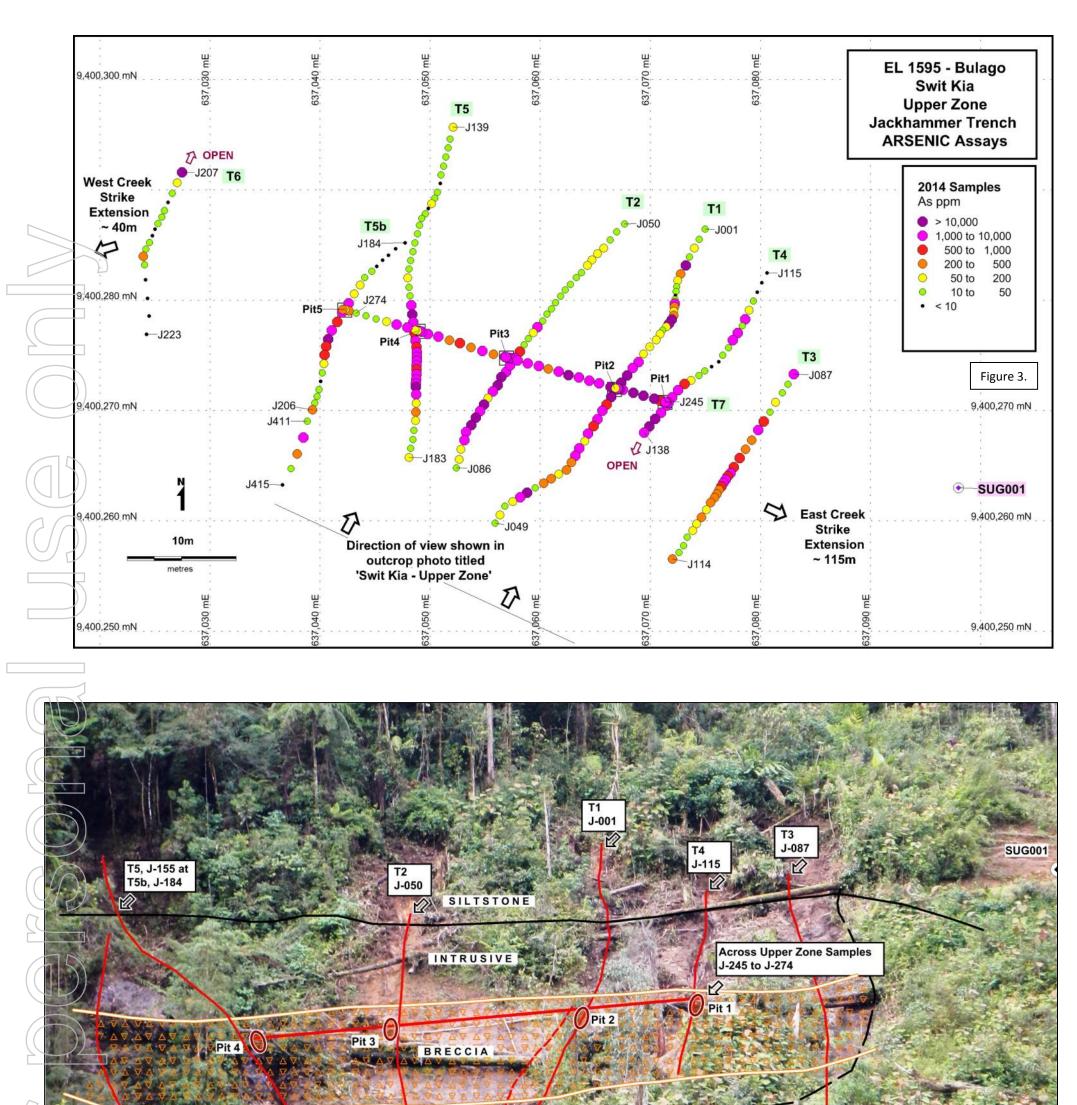
10 Jackhammer Trenches Demonstrate a +215m Strike Length of Very High to Moderate Grade Gold in the Upper Zone - Swit Kia Prospect, with Excellent Strike/Dip/Plunge/Regional Structural Repetition Potential

Frontier Resources Ltd is very pleased to announce that the exploration program that targeted high grade gold mineralisation at the Bulago EL has returned very significant weighted average and individual assay intercepts from all 10 continuous Jackhammer trenches (of excavated, cleaned outcrop /creek exposures) in the Upper Zone at the Swit Kia Prospect (formerly Suguma), Papua New Guinea.

Very high grade gold mineralisation (>100 g/t) has been delineated at the Upper Zone (UZ) in silicified and altered intrusive, strongly brecciated and/or high sulphide rocks and at/near the intrusive /host siltstone contact. There were 13 different samples with >100 g/t gold, including a peak result with 1m grading 499 g/t gold.


Significant jackhammer sample length assay highlights (that do not necessarily represent true lengths) in successive trenches from east to west (Figures 1 - 5) include:


- UZ East Creek east bank with 2.0m grading 18.9 g/t gold (the only sample collected on the east bank)
- UZ East Creek west bank with 2.0m grading 195.0 g/t gold, within 8m grading 50.2 g/t gold (Figure 5)
- UZ -T3 with 2.0m grading 27.8 g/t gold, plus 5.5m of 3.07 g/t gold
- UZ -T4 with 8.0m grading 36.1 g/t gold, plus 4m of 6.98 g/t gold
- UZ -T1 with 2.0m grading 252.3 g/t gold, plus 1.5m grading 145.3 g/t gold, plus 5m grading 172.3 g/t gold, plus 14.0m grading 24.3 g/t gold
- UZ T2 with 1m grading 83.6 g/t gold, within 14m grading 24.3 g/t gold
- UZ T5 with 1m grading 108.5 g/t gold, within 11m grading 31.2 g/t gold
- UZ T5b with 2m grading 25.2 g/t gold, within 7m grading 11.5 g/t gold
- UZ -T6 with 1m grading 128.0 g/t gold, within 13m grading 11.9 g/t gold and
- UZ West Creek with a grab rock of 7.98 g/t gold, within 9m grading 0.97 g/t gold (gold grades are expected to improve as the intrusive contact is approached, as it was entirely within siltstone.


A composite total of 491.6m of sampling was completed in the Upper (410.3m) and Lower (81.3m) Zones and their strike extents (Refer to Appendix 1 for sample information and the plans/photos for location information).

The Upper Zone discussed herein, was tracked and sampled in eight north - south trenches or mineralised outcrops over a 100m strike length, plus in one approx. east - west trending trench trending partly along strike. Another trench an additional 115m further east produced an excellent strike extension, to total over 215 metres.

The Lower Gold Zone at Swit Kia was also successfully prospected and rapidly sampled over +90m of approximately E-W strike length, while being explored as the 'secondary' target. It has an eastern strike extension (called East Creek breccia), that adds 90m, to make the total known and sampled strike length of the Lower Zone = 180m. Unfortunately the western extension (in West Creek) requires further cleaning to get to a lower RL where the higher grade mineralisation is expected to be located. The Lower Zone is viewed to have excellent gold mineralisation potential based on Frontier's late-2009 reconnaissance assays and recent geological evaluation. Assays from 2014 will be released when GIS drafting of the associated plans and review has been completed.

Т5Ь

COLLUVIUM

Upper Zone photograph looking more NNE (than the plans) showing jack-hammer trench sample locations, sample numbers and generalised lithologic units.

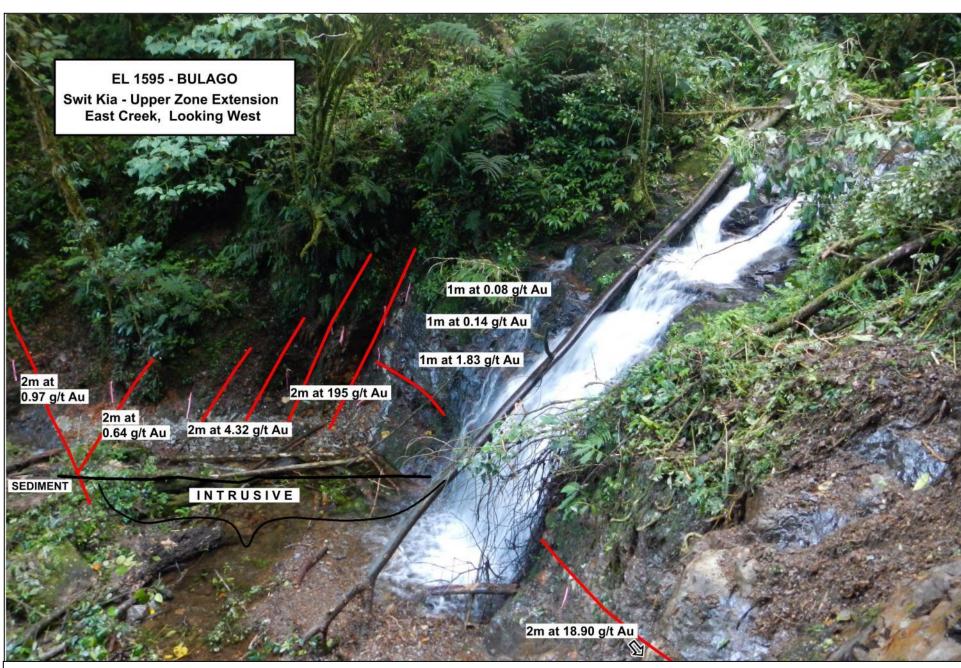


Figure 5. Upper Zone - East Creek 8.0m long trench on the west bank with intercepts of 2.0m grading 195.0 g/t gold, within 8.0m grading 50.2 g/t gold (402 grammetres gold) plus 2.0m grading 18.9 g/t gold as the only sample taken across the creek on the east bank (behind the photo). **Jack-Hammer Trench Assay Results.** The gold mineralised intercepts quoted below virtually cannot reflect true widths, as the geometry is uncertain and the samples were collected as possible 'down and/or across' the outcrops at least to some extent. The slope of the outcrop (E-W dip slope) is approximately 45 degrees, so if the mineralisation is sub-vertical or sub-horizontal and the then it would equate to about 70% of the 'down outcrop' length quoted. The true width of the mineralised zone is then related to the orientation of the sampling line and the strike of the gold mineralisation (best is perpendicular). The actual orientation of the gold mineralisation at the Swit Kia - Upper Zone is yet to be confirmed by specifically targeted drilling.

Weighted average 50 gram fire assay gold intercepts are noted below in order of the 'largest' amount of gold grading to the smallest amount. Table 1 follows it with the trenches in sequence from east to west and details of repeated 50 gram Fire, Gravimetric gold and silver- copper- zinc - lead - arsenic -antimony ICP assays.

All Upper Zone assays >0.10 g/t gold are included in Appendix 1, along with the gravimetric gold assays that were undertaken to check repeatability of high grade gold samples that contained high concentrations of arsenic. The gravimetric assays confirmed the Fire Assay results, with good repeatability and acceptable levels of variability, suggesting in future that only 50 gram Fire Assays are required.

UZ - T1 42.5m long trench approximately N-S down the outcrop with weighted internal intercepts of:

- 2.0m grading 252.3 g/t gold (505 gram-metres gold)
- Plus 1.5m grading 145.3 g/t gold (218 gram-metres gold)
- Plus 9.0m grading 104.8 g/t gold (943 gram-metres gold) incl 5m grading 172.3 g/t gold
- Plus 2.0m grading 10.6 g/t gold (21 gram-metres gold) followed by 6m of 0.27 g/t gold then
- Plus 2.0m grading 33.5 g/t gold (67 gram-metres gold).

The mineralised zone is 38.5m long down a small creek with a weighted average (no cutoff) of 45.8 g/t gold and peak gold of 1m grading 499 g/t, it contains a composite high grade weighted intercept of $\frac{20.5m \text{ grading } 85.6 \text{ g/t}}{\text{gold}}$ (for a composite total of $\frac{1,754}{20.5m}$ gram-metres gold) and corresponding composite low tenor weighted intercept of 18m grading 0.43 g/t gold.

UZ - T7 30.0m long trench across the outcrop approximately E-W, with internal intercepts of:

26m grading 44.9 g/t gold (1,167 gram-metres gold) - entire trench consistently mineralised

- incl 10.0m grading 89.8 g/t gold (898 gram-metres gold) incl 1.0m grading 283.5 g/t gold
- Plus 13.0m grading 4.80 g/t gold (62 gram-metres gold)
- Plus 3.0m grading 69.2 g/t gold (208 gram-metres gold)

for a composite total of <u>1,168</u> gram-metres gold.

- UZ East 8.0m long trench on the western bank of 'East Creek' with an intercept of:
 - 2.0m grading 195.0 g/t gold, within 8.0m grading 50.2 g/t gold (402 gram-metres gold) and also 2.0m grading 18.9 g/t gold --- as the only sample taken across the creek on the eastern bank.
- UZ T2 37.0m long trench approximately N-S down the outcrop with an internal intercepts of:
 14.0m grading 24.3 g/t gold (339 gram-metres gold) including low internal interval-1m of 0.17 g/t gold.
- UZ T4 24.0m long trench approximately down the outcrop N-S with internal intercepts of: 8.0m grading 36.1 g/t gold (289 gram-metres gold)

Plus 4.0m grading 6.98 g/t gold (28 gram-metres gold)- incl 1.0m grading 17.8 g/t gold for a composite total of <u>317</u> gram-metres gold.

- UZ T5 40.0m long trench approximately down the outcrop N-S with an internal intercept of: 11.0m grading 31.2 g/t gold (343 gram-metres gold).
- **UZ T6** 21.0m long trench approximately N-S down outcrop in a creek with intercepts of: 13.0m grading 11.9 g/t gold (155 gram-metres gold)
- incl 1.0m grading 128.0 g/t gold
- and 2.0m grading 8.76 g/t gold
- and 5.0m grading 0.68 g/t gold

for a composite total of <u>176</u> gram-metres gold.

UZ - T5b 23.0m long trench N-S down outcrop with an intercept of 7.0m grading 11.5 g/t gold (80 gram-metres gold).

UZ - T3 24.0m long trench N-S down the outcrop with internal intercepts of:

2.0m grading 27.8 g/t gold (56 gram-metres gold)

Plus 5.5m grading 3.07 g/t gold (17 gram-metres gold)

for a composite total of <u>73</u> gram-metres gold.

UZ - W Ck 82.0m long trench ~N-S down 'West Creek' with an intercept in host siltstone rock only of: 9m grading 0.97 g/t gold, including 2.0m grading 2.86 g/t gold

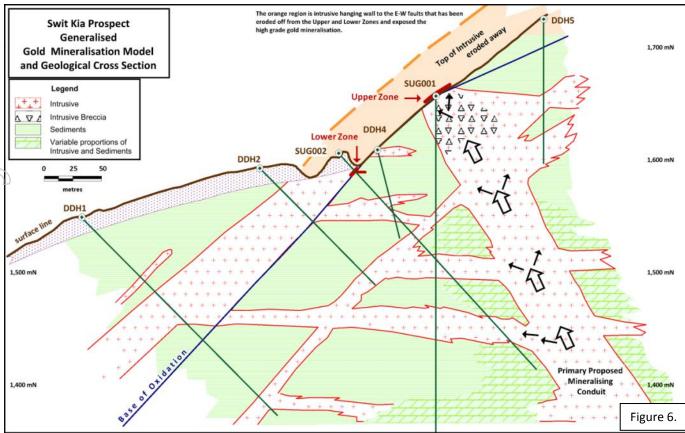
for a composite total of ~9 gram-metres gold. A grab sample from this zone also returned 8.0 g/t gold.

Table 1.

EL 1595	- Bula	go Swit K	ia Prospect	Uppe	r Zone Tr	ench Ja	ckhamm	er Samp	le Weigh	nted Ass	ays from		West
Trench		Intercept Le	ength	Average Gold (Fire Assay)	Gold (gram/ metres)	Ag	Sample	Number	Cu	Zn	Pb	As	Sb
		own op/Trench	Estimated True Width	(g/t)		(g/t)	From	То	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
UZ E Ck N-		2.0 m	1.6 m	195.0	390	39.1		J-278	1,580	16,900	9,780	22400	19.2
W Bank	withi	8.0 m	6.4 m	50.2	402	15.0	J-278	J-281	584	8,535	2,902	6161	20.8
	Gram-n	netres =		-	390								1
E Ck N- W Ba	nk	2.0 m	1.6 m	18.9	38	22.1		J-282	2,530	15,200	12,700	2230	16.0
		2.0 m	1.0 m	27.8	56	7.6	J-092	J-093	346	209	1,843	2557	3.5
UZ -T3	PLUS	5.5 m	2.8 m	3.07	17	2.4	J-095	J-102	88	1,352	534	1320	1.8
	Cumula	tive Gram-	-metres =	1	73				1		1		1
		4.0 m	2.0 m	6.98	28	17.9	J-120	J-123	131	4,142	121	2417	3.3
UZ -T4	incl	1.0 m	0.5 m	17.8	18	31.5		J-123	212	12,600	186	4030	6.0
	PLUS	8.0 m	4.0 m	36.1	289		J-131	J-138	293	948	999	2557 1320 2417	14.38
	Cumula	tive Gram-	1		317				r		1	r —	1
		2.0 m	1.0 m	252.3	505	57.0	J-005	J-006	1,533	340	2,222		19.0
	PLUS	1.5 m	0.8 m	145.3	218	40.9	J-015	J-017	517	5,220	3,441	23826	34.7
UZ -T1	PLUS	9.0 m	4.5 m	104.8	943	35.1	J-024	J-032	515	2,004	1,752	3 6780	39.0
	PLUS	2.0 m	1.0 m	10.6	21	6.9	J-036	J-037	143	2,753	493	6780	19.0
	PLUS	2.0 m	1.0 m	33.5	67	7.9	J-044	J-045	112	515	451	11785	21.0
	Cumula	tive Gram-	1		1,754			1			1	1	1
		14.0 m	7.0 m	24.3	339	10.3	J-070	J-083	149	2,593	1,228	10497	20
UZ -T2	incl	7.0 m	3.5 m	25.1	176	13.7	J-070	J-076	176	3,541	1,669	7583	14.9
	PLUS	6.0 m	3.0 m	27.3	164	7.8	J-078	J-083	133	1,690	872	15623	28.3
	Cumula	tive Gram-			339			1			1	1	1
UZ -T5		11.0 m	5.5 m	31.2	343	13.8	J-161	J-176	207	3,016	841	5969	9.6
	Gram-n	netres =			343			1			1	1	1
UZ -T5b		7.0 m	3.5 m	11.5	80	13.7	J-193	J-199	130	1,962	1,268	7695	17.1
	Gram-n	netres =			80			1		1	1	1	
		13.0 m	6.5 m	11.9	155	9.9	J-207	J-219	175	4,357	356		5.2
	incl	1.0 m	0.5 m	128.0	128	31.3		J-207	550	16,200	2,560		64.0
UZ -T6	and	2.0 m	1.0 m	8.76	18	15.2	J-213	J-214	267	9,750	351		0.0
	and	5.0 m	2.5 m	0.68	3	12.4	J-215	J-219	174	3,822	221	109	0.6
	Cumula	tive Gram-			155					a a - a			
	1 m al	26.0 m	13.0 m	44.9	1,167	22.2	J-245	J-270	248	2,878	785	7670	14.3
	incl	10.0 m	5.0 m	89.8	898	39.5	J-245	J-254	306	1,522	1,226	14961	25.8
117 77 5 147	incl	1.0 m	0.5 m	283.5	284	177.0	1 355	J-254	795	1,760	3,730	33800	63.0
UZ T7 E-W	and	13.0 m	6.5 m	4.8	62 208	6.1	J -255	J-267	119	2,734	322	2467	8.8
	and	3.0 m	1.5 m	69.2	208	34.4	J-268	J-270	613	8,023	1,317	5917	15.3
		tive Gram		0.62	1,168	2.0		1 2 2 0	77	6,480	260	22	2.0
	PLUS	2.0 m	1.0 m	0.62	1.2 0.7	3.0		J-328	72	-	366	33	3.0
Wast Crash	PLUS	2.0 m	1.0 m	0.33		14.1		J-332	244	13,400	1,240	10	-
West Creek		1.0 m	0.5 m	0.67	0.7	9.9		J-333	291	9,610	838	16	-
	PLUS	2.0 m	1.0 m	0.70	1.4	16.0		J-334	383	13,000	688	539	-
	PLUS	2.0 m	1.0 m	2.86	5.7	11.8		J-335	132	5,950	375	1540	9.0

Five shallow 'pits' or 'deeper impressions' (Table 2) were cut into the dip slope (with 20cm sample lengths), that showed the gold mineralised zone has variability (high to low gold grades) that may be relative to sample length and /or relative position in the mineralised zone. With high grades, this is expected and the pits didn't provide any additional idea of the depth extent of the mineralisation. The 4 x 25mm (1 inch) diameter and 800mm long hand holes that were drilled were unfortunately placed slightly above and missed the significantly gold mineralised horizon.

Geological modelling of the Swit Kia region shows a large number of factors interacting to localise gold mineralisation being:


- The Muller Anticline and the Bulago-Strickland Transfer Fault (at the regional scale), provided an excellent structural framework (flexing and faulting the sediments in various consistent orientations), that assisted in localising the 'recent' multi-phase intrusions and their gold and copper mineralisation.
- Mineralising fluids from the Bulago porphyry to the east and/or the Suguma porphyry to the west interacted in the Swit Kia region in dilational settings formed at the intersection of N-S and EW trending faults and also in proximal relatively flat lying but receptive host rocks.

Pit Number	Sample Number and Length		Average FA 50 Gold (g/t)	Ag (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	As (ppm)	Sb (ppm)
	J-224	0.2 m	18.70	4.3	130	1220	171	2180	14
	J-225	0.2 m	8.86	6.6	135	4100	655	4960	13
1	J-226	0.2 m	13.60	5.2	154	1650	663	5560	15
	J-227	0.2 m	0.35	4.2	65	337	489	1030	5
	J-228	0.2 m	0.10	1.2	57	312	328	792	3
2	J-229	0.2 m	58.60	14.3	253	4170	1830	20500	30
	J-230	0.2 m	2.03	5.8	111	5990	540	1360	6
	J-231	0.2 m	0.21	1.1	63	2680	141	131	Х
	J-232	0.2 m	0.17	3.1	74	2170	42	307	Х
	J-233	0.2 m	15.65	28.6	141	1690	338	6620	13
3	J-234	0.2 m	8.67	5.0	120	3790	278	2830	6
3	J-235	0.2 m	2.10	6.2	130	2740	507	2010	4
	J -236	0.2 m	4.42	13.1	142	4260	1520	3180	8
	J-237	0.2 m	6.72	9.8	146	1310	584	3700	5
4	J-238	0.2 m	5.69	3.2	105	1390	408	3960	6
4	J-239	0.2 m	0.26	6.4	86	2380	488	102	Х
	J-240	0.2 m	0.25	2.7	63	1660	462	126	Х
	J-241	0.2 m	0.04	Х	20	952	29	235	Х
-	J-242	0.2 m	0.03	Х	47	822	34	128	Х
5	J-243	0.2 m	0.03	0.6	42	1190	63	179	Х
	J-244	0.2 m	0.06	1.6	39	1070	89	264	3

- 3. A north dipping intrusive (that contains the consistently and strongly gold mineralised zone), with narrow very high gold grades localised mostly on its upper contact with the siltstone host.
- 4. Gold mineralised zones generally have strong to intense silicification and variable to intense brecciation and sulphide mineralisation (strong arsenic and variable zinc /silver association) and appear to be associated with the SW plunge and the dip slope (the E-W fault, not the N-S trending fault).
- 5. Conformable mineralisation in relatively flat lying sedimentary host rocks (that have specific layers more amenable to mineralising fluids) has been confirmed at the Lower Zone, but is inferred to be similar in the Upper Zone proximal to the dip slope, but obscured by the extensive brecciation.
- 6. Approximately E-W trending 'dip-slope' faults (dipping ~45° to S), with regional extent beyond EL boundaries.
- 7. Approximately N-S trending faults (dipping $\sim 45^{\circ}$ to W) with regional extent (refer to the photos in Appendix 1 to see photos of both types of structures and others).
- 8. Steeply dipping to sub-vertical faults and fractures zones occur in several orientations, often N and E-W trending (in the centre of the 'basin'), but perhaps post-mineralisation.
- 9. The intersection of the 45° dipping E-W and N-S trending faults produces a moderate to steep SW plunge. It is hypothesised that significant zones of brecciation and gold mineralisation are hosted down plunge and up/down dip at specific identifiable structural locations.

This structural setting/mineralising 'pattern' is repeated many times in the Bulago region and will be further investigated.

If you look at the cross section mineralisation model, it appears that drill hole SUG001 PRECLUDES mineralisation extending further to the east, but it is a 'matter of perspective or relative angle', as the dip slope mineralisation daylights (or is eroded off above the hole SUG001). As a comparison, think of the distortion of reality by looking at 2 fingers and rotating 90° until you only see one finger.

Chairman and Managing Director Peter McNeil M.Sc. commented: The exploration program at EL 1595 - Bulago Swit Kia Prospect Upper Zone was a resounding success with 10 excellent trench sampled assay intercepts from gold mineralised occurrences after we located, tracked laterally, cleaned, systematically jack-hammered (broken) into channels, sampled, mapped and evaluated them.

Trench 1 was sampled on a 1.0m and 0.5m down-outcrop basis and it has 5 zones for a cumulative total of 7m with >100 g/t gold (weighted average for the non-contiguous 5 zones =240 g/t gold). Trench 7 was slightly oblique to strike and it further defined the high grade zone with 10.0m grading 89.8 g/t gold (including 1.0m of 283.5 g/t) plus 3m of 69.2 g/t gold at its western end. The eastern outcrop strike extension of the Upper Zone returned 2m grading 195.0 g/t gold.

The very strongly brecciated and silica- sericite altered arsenopyrite- pyrite mineralised, E-W to ESE-WNW trending + moderate SW plunging zones are open along strike to the west and east and down dip/plunge.

The maximum strike length of the Upper Zone will be further defined with additional trenching in the eastern and western sectors of the Upper Zone to further demonstrate the continuity and grade of the high-grade gold mineralisation.

Frontier intends to demonstrate the dimensions of the high grade gold mineralisation at the Upper Zone of the Swit Kia Prospect, subject to completing a modest capital raising and when it is logistically possible. Cost effective drill testing is strongly warranted and Frontier can accomplish this task. Fortunately, enough diesel is already onsite at the Agali Airstrip residual from the OTML JV. One of the Company's small diamond core drilling rigs (that will drill to a maximum of 330m), drill gear, sampling and camp equipment is already containerised and ready to be shipped from Kimbe to Bulago.

The Landowners are pleased to have Frontier back exploring in their area and one of their two Spokesman (Andy Opene) last Friday informed me that since I left, their community has manually cut the grass for a proposed airstrip that is located much closer to the Swit Kia Prospect (and their village) than the present Agali Airstrip and importantly, without significant intervening topographic obstacles. Andy also noted that drainage ditches on the margins of the proposed airstrip will be completed this week. Frontier will seek approval for the airstrip from CASA when we resume exploration at Bulago for additional trenching and drilling and this should substantially lower our operational costs by rapidly eliminate the requirement for helicopter shuttles.

Comprehensive historic exploration information regarding Bulago was released to the ASX on 9/5/14, 1/4/14, 21/12/12, 18/10/12, 24/5/12, 17/5/12, 27/4/12, 28/2/11, 11/1/11, 15/1/10, 23/11/09, 11/9/09 & 2/9/2008 and for additional information relating to Frontier please visit our website at www.frontierresources.com.au

The Company has had email server issues for the last 3 months that have now been resolved and I apologise if any emails sent to <u>info@frontierresources.com.au</u> or web site applications to receive emails from Frontier have not been received, processed or responded to.

FRONTIER RESOURCES LTD

It MYK

P.A.McNeil, M.Sc., MAIG Chairman and Managing Director

Competent Person Statement:

The information in this report that relates to Exploration Results and Mineral Resources is based on information compiled by, or compiled under the supervision of Peter A. McNeil - Member of the Aust. Inst. of Geoscientists. Peter McNeil is the Managing Director of Frontier Resources, who consults to the Company. Peter McNeil has sufficient experience which is relevant to the type of mineralisation and type of deposit under consideration to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code of Reporting Exploration Results, Mineral Resources and Ore Resources. Peter McNeil consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

APPENDIX 1. Photographs, Assay and Sample Tables

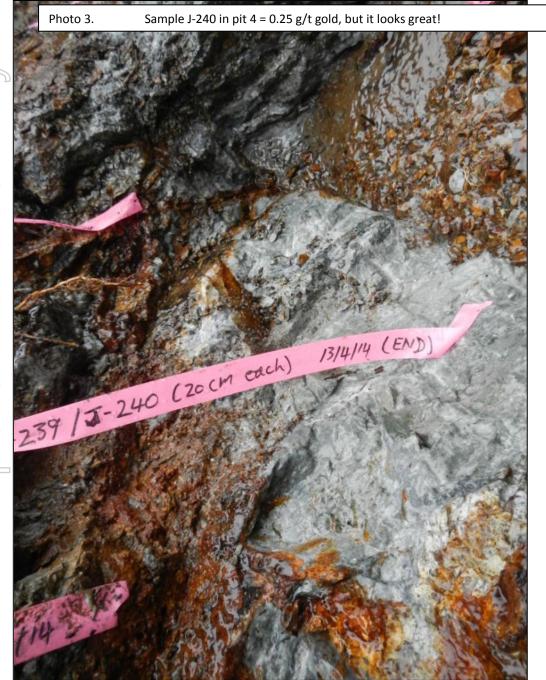


Photo 4. Sample J-031 from Trench 1, with 163.0 g/t gold in gravimetric analysis, but 38.0 g/t gold in 50 gram fire assay. This was the only significant 'anomaly' or difference between the 2 types of analyses.

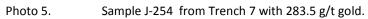


Photo 6. Sample J-246 from the start of Trench 7 (near Trench 4) with 156.0 g/t gold.

oto 7. Sample J-028 from Trench 1 with 222.0 g/t gold, crossing near Trench 7 mple J-250, with 155.5 g/t gold.

Photo 8. Pit 1 showing samples J-224-228 (18.70 to 0.10 g/t gold) and an apparent shallow SW plunge (to the left).

Photo 10. Grab Sample G002 - a magnificent hydrothermal breccia in siltstone from East Creek (with only 7.98 g/t gold + 43.2 g/t silver), that documents the western strike extension of the Upper Zone. More intensely mineralised intrusive is likely to be very nearby subsurface based on the mineralisation model.

	EL 1595 - Bulago Swit Kia Propsect Jackhammer Trenching												
Trench or pit Number	Sample Number (From)	Sample Number (To)	Length										
1	J-001	J-049	42.5 m										
2	J-050	J-086	37.0 m										
3	J-087	J-114	24.0 m										
4	J-115	J-138	24.0 m										
5	J-139	J-183	40.0 m										
5b	J-184	J-206	23.0 m										
6	J-207	J-223	21.0 m										
Pit 1	J-224	J-228	1.0 m										
Pit 2	J-229	J-232	0.8 m										
Pit 3	J-233	J-236	0.8 m										
Pit 4	J-237	J-240	0.8 m										
Pit 5	J-241	J-244	0.8 m										
7 E-W	J-245	J-274	30.0 m										
E ck N -W	J-277	J-281	9.0 m										
Eck N - E		J-282	2.0 m										
E Ck Central	J-283	J-292	10.0 m										
E Ck Central	J-293	J-297	10.0 m										
E Ck S Bx	J-298	J-300	6.0 m										
E Ck S Bx	J-301	J-308	12.0 m										
14		J-309	1.0 m										
	J-310	J-310	1.0 m										
	J-311	J-311	1.0 m										
East C reek	J-312	J-312	1.8 m										
Fault	J-313	J-313	1.0 m										
	J-314	J-314	0.8 m										
	J-315	J-315	1.0 m										
West Ck	J-316	J-357	82.0 m										
Mid Ck UZ ex	J-358	J-365	16.0 m										
LZ		J-366	0.7 m										
Central Ck	J-367	J-372	23.9 m										
LZ - 3	J-373	J-379	6.3 m										
LZ - 2	J-380	J-387	8.0 m										
LZ - 4	J-388	J-399	11.4 m										
		J-400	0.3 m										
LZ - 5		J-401	0.3 m										
		J-402	1.0 m										
LZ -6	J-403	J-404	4.0 m										
LZ - W Ck	J-405	J-406	4.7 m										
		J-407	2.0 m										
		J-408	1.0 m										
LZ - W Ck		J-409	1.5 m										
		J-410	2.0 m										
UZ 5b Ext	J-411	J-415	10.0 m										
LZ East ext		J-416	0.4 m										
LZ - 7	J-417	J-421	5.3 m										
LZ		J-422	1.0 m										
LZ - 8	J-423	J-427	5.0 m										
		J-428	1.0 m										
LZ East ext		J-429	1.5 m										
		Total=	491.6 m										

Sample Number and Length	Average Gold (FA50 - g/t)	Gold (Gravimetric) (g/t)	Gold (FA 50) (g/t)	Gold (FA 50) (g/t)	Gold (FA 50) (g/t)	Gold (FA 50) (g/t)	Ag (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	As (ppm)	Sb (ppm)		le Numb d Length	er Aver Go (FA50	ld	Gold (Gravimetric) (g/t)	Gold (FA 50) (g/t)	Gold (FA 50) (g/t)	Gold (FA 50) (g/t)	Gold (FA 50) (g/t)	Ag (g/t)	Cu (ppm)	Zn (ppm)	Pb (ppm)	As (ppm)	Sb (ppm
J-005 1.0 m J-006 1.0 m	499.00 5.66	<u>488.00</u>	499.00 5.66	-	-	-	114.0 X	2980 86	285 395	4340 103	21600 460	38 X	J-192	3 1.0 i	n 0.1 n 9.2	11 28	-	0.11	-	-	-	X 5.5	34 103	72 1100	11 773	68 5320	X 11
J-007 1.0 m J-008 0.5 m	0.25 0.29 0.37		0.25 0.29 0.37		-	-	X X 1.9	21 23 72	335 335 1190	47 20 105	113 27 3990	X X 5	J-194 J-195	5 1.0 i	n 0.1	18	- - 27.80	5.28 0.18 20.00	22.37	- 22.00	- - 25.10	7.6 2.5 11.5	71 75 139	978 331 1760	211 138 716	2660 545 9340	6 2 26
J-012 0.5 m J-013 0.5 m J-014 0.5 m	0.14	-	0.37	- 1.40	- 1.34	-	1.9 1.1 X	60 49	1190 1270 1790	56 368	374 121	X X	J-190 J-197 J-198	7 1.0 i	n 28 .	00	30.60	20.00 28.00 1.95	-	-	-	11.3 14.8 48.6	337 113	3750 4860	4300 2590	34100 955	72 72 X
J-015 0.5 m J-016 0.5 m	4.34 317.50	- 303.00	4.34 284.00	- 317.50	- 351.00	-	13.2 87.7	121 1020	7940 4770	184 7390	377 46600	X 72	J-199 J-200	9 1.0 ı	n 13.		-	13.20 0.17	-	-	-	5.7 0.9	72 28	955 909	145 42	945 164	3 X
J-017 0.5 m J-020 0.5 m	114.00 0.54	<u>139.00</u>	114.00 0.54	-	-	-	21.9 X	411 27	2950 435	2750 17	24500 77	32 X	J-205	5 1.0 i	n 0.1	12	-	0.17 0.12	-	-	-	0.9	76 53	1210 129	31 20	46 380	X X
J-021 1.0 m J-024 1.0 m J-025 1.0 m	0.33 39.53 320.00	383.00	0.33 38.00 319.00	39.53 320.00	36.10 321.00	44.50	X 17.7 102.0	43 261 2650	438 311 3180	20 374 3930	116 2290 2910	X 8 50	J-203 J-208 J-209	3 1.0	n 0.4	48	<u>-</u>	147.00 0.48 0.15	-	<u>131.00</u> -	<u>106.00</u> -	31.3 0.9 1.6	550 87 87	16200 204 507	2560 22 86	26500 70 27	64 X X
J-026 1.0 m J-027 1.0 m	120.00 53.80	<u>117.00</u> 51.00	120.00 54.00	- 53.80	- 53.60	-	31.9 26.5	778 284	1890 2010	2120 1760	41400 24200	64 50	J-210 J-212) 1.0 i	n <u>3.0</u>)4	-	3.04 1.43	-	-	-	0.8	51 74	424 452	77 60	9 11	X X
J-028 1.0 m J-029 1.0 m	222.00 145.50	194.00 239.00	222.00 161.00	- 145.50	- 130.00	-	83.8 38.0	321 239	2310 1440	2580 2520	79800 16700	140 26	J-213 J-214	4 1.0 i	n 5. 3	32	-	12.20 5.32	-	-	-	22.4 7.9	358 176	13700 5800	457 245	23 X	X X
J-030 1.0 m J-031 1.0 m J-032 1.0 m	2.03 38.00 2.16	163.00	2.03 38.00 2.16	-	-	-	6.7 6.4 2.8	92 194 79	4380 2600 228	180 1480 1200	939 6670 1010	2 14 5	J-215 J-216 J-217	5 1.0 i	n 0.4	46		0.24 0.46 0.99	-	-	0.23 - -	4.3 4.5 22.1	94 168 308	3620 1840 6750	68 85 246	X 11 16	X X X
<u>J-033</u> 1.0 m J-034 1.0 m	0.50	-	0.50	- 3.37	- 3.20	-	2.8 10.0	88 142	376 1110	488	641 2880	3 7	J-218	3 1.0 i	n 0.5	58	-	0.58	0.58 -	0.57 -	-	7.6	188 110	1690 5210	296 411	496 23	3 X
J-035 1.0 m J-036 1.0 m	0.11 13.50	- 14.90	0.11 13.50	-	-	-	0.6	61 171	352 4620	108 546	119 5900	X 17	J-224 J-225	5 0.2 i	n <mark>8.8</mark>	86	-	18.70 8.86	-	-	-	4.3 6.6	130 135	1220 4100	171 655	2180 4960	14 13
J-037 <u>1.0 m</u> J-038 <u>1.0 m</u> J-039 <u>1.0 m</u>	7.68 0.52 0.26	<u>8.50</u> - -	7.68 0.52 0.26	-	-	-	7.4 4.8 X	115 47 25	886 577 388	440 945 60	7660 338 277	21 X X	J-220 J-220 J-220	7 0.2 i	n 0.3	35		13.60 0.35 0.10	-	-	-	5.2 4.2 1.2	154 65 57	1650 337 312	663 489 328	5560 1030 792	15 5 3
J-041 1.0 m J-042 1.0 m	0.31	-	0.31	-	-	-	X X X	36 55	816 1290	42 30	201 427	2 X	J-220 J-220	9 0.2 i	n 58.	60	49.30	59.50 2.03	58.60	57.70	-	14.3 5.8	253 111	4170 5990	1830 540	20500 1360	30 6
J-044 1.0 m J-045 1.0 m	34.70 32.25	36.60 36.70	30.60 32.70	34.70 32.25	38.80 31.80	-	8.3 7.5	87 136	437 592	625 277	17600 5970	31 11	J-232	1 0.2 i 2 0.2 i	n 0.2 n 0.1	21 17	-	0.21 0.17	-	-	-	1.1 3.1	63 74	2680 2170	141 42	131 307	X X
<u>J-046</u> <u>1.0 m</u> <u>J-057</u> <u>1.0 m</u>	0.44	-	0.44	-	-	-	0.5	83 64 32	87 224 276	35 57	56 18 18	X X X	J-233	4 0.2 i	n 8.6	67	-	15.50 8.75	15.65 8.67	15.80 -	- 8.58	28.6 5.0	141 120 130	1690 3790	338 278 507	6620 2830 2010	13 6
J-065 1.0 m J-066 1.0 m J-070 1.0 m	0.16 1.20 4.42	-	0.16 1.20 4.42			-	0.8 1.3 1.9	32 79 85	276 217 1250	14 115 182	18 1170 993	X 3 X	J-235 J-23 J-23	6 0.2 i	n 4.4	42	-	2.10 4.42 6.72	-		-	6.2 13.1 9.8	130 142 146	2740 4260 1310	507 1520 584	2010 3180 3700	4 8 5
J-071 1.0 m J-072 1.0 m	62.25 5.88	51.50 -	58.20 5.88	62.25 -	<u>66.30</u>	-	30.3 13.4	163 165	3810 3550	149 1270	1110 2490	7 9	J-23	3 0.2 i	n 5.6	69	-	5.69 0.23	- 0.26	- 0.29	-	3.2 6.4	140 105 86	1390 2380	408 488	3960 102	6 X
J-073 1.0 m J-074 1.0 m	13.80 27.55	25.80	13.80 29.70	27.55	25.40	-	10.7 20.5	206 309	5710 4720	4500 3570	4940 21000	11 41	J-240	5 1.0 i	n 55.	30	-	0.25 55.30	-	-	-	2.7 15.8	63 175	1660 882	462 568	126 2280	X 11
J-075 1.0 m J-076 1.0 m J-077 1.0 m	33.90 27.80 0.17	34.00 - -	32.20 29.40	33.90 27.80	35.60 26.20	-	5.8 13.3 1.6	127 175 59	1890 3860 1370	1400 611 284	20800 1750 136	36 X X	J-240 J-240 J-240	7 1.0 i	n 72.	07	205.00 69.10 33.10	156.00 68.80 19.80	- 72.07 19.45	- 80.40 19.10	- 67.00	119.0 22.4 2.7	736 378 119	2150 1540 1080	1100 871 480	20600 16900 12500	43 25 14
J-077 1.0 m J-078 1.0 m	38.60 4.46	44.50	35.80 4.46	38.60	41.40	-	4.9 2.6	245 71	1850 732	1630 192	33400 1180	68 6	J-240 J-250	9 1.0 1	n 6.7	70	- 182.00	6.70 137.00	-	- 174.00	-	1.7 34.5	110 120 241	2050 1560	345 1130	3460 46700	6 66
J-080 1.0 m J-081 1.0 m	83.60 28.15	86.10 33.80	74.80 27.50	83.60 28.15	92.40	- 28.80	25.1 5.8	149 95	2070 836	1200 784	26000 26900	42 39	J-252 J-252		n <mark>9.</mark> 1	11	-	95.80 9.11	-	-	-	10.6 2.1	214 68	1560 562	1170 427	9230 1410	19 4
J-082 1.0 m J-083 1.0 m J-085 1.0 m	3.24 5.80 0.20	-	3.24 5.80 0.20	-	-	-	1.6 6.8 X	78 162 43	1210 3440 151	194 1230 11	2230 4030 81	5 10 X	J-253 J-254	4 1.0 i	n 283	.50	<u>-</u> 257.00	29.90 280.00 2.65	33.20 283.50	287.00	36.50 -	9.5 177.0 8.6	214 795 146	2080 1760 1730	2440 3730 303	2730 33800 1580	7 63 5
J-085 1.0 m J-087 1.0 m J-089 1.0 m	0.20 1.70 0.13	-	0.20 1.70 0.13	-	-	-	^ 1.2 X	43 57 27	671 287	341 14	1070 40	X X X	J -25 J-25 J-25	5 1.0 i	n 0.1	13	-	0.13	-	-	-	0.6 4.6	72 103	541 921	88 520	361 7250	X 10
J-092 1.0 m J-093 1.0 m	3.53 52.10	37.60	3.53 47.40	- 52.10	- 56.80	-	1.3 13.8	99 593	116 301	535 3150	583 4530	Х 7	J-258				<u>12.10</u> -	7.71 2.63	-	-	-	4.8 4.2	217 113	1080 1290	434 516	9570 2650	16 3
J-094 1.0 m	0.15	-	0.15	-	-	-	1.1	95 46	250 316	659 38	291 263		J-260	1 1.0 i	n 3.1	13	- 6.60	8.70 3.13 1.81	-	-	-	4.6 12.5	102 132	2150 4500 2220	374 323 292	2390 316 1440	8 X 5
J-096 1.0 m J-097 1.0 m J-098 0.5 m	1.11 0.75 6.08	- 7.60	1.11 0.75 6.08	-	-	-	4.0	45 52 221	366 305 470	56 30 504	757 746 5030	5	J-262 J-263 J-264	3 1.0 i	n 3.3	37	-	3.37 1.85	- 2.07	- 2.29		2.6 9.5 2.9	85 122 62	7620	292 245 114	314 524	3 X
J-099 0.5 m J-100 0.5 m	0.29 4.29	-	0.29 4.29	-	-	-	7.8 4.0	114 88	464 1690	1500 568	756 2060	2 5	J-265	5 1.0 i	n 1.0		-	1.01 12.80	-	-	-	3.6 15.4	83 197	2690 5640	88 540	200 3200	3 9
<u>J-101 0.5 m</u> J-102 0.5 m	15.70 1.05	-	14.80 1.05	15.70 -	<u>16.60</u> -	-	8.1 3.0	162 95	8360 1920	1670 1390	2320 823	5	J-26	3 1.0 i	n 33.	50	<u>-</u> 31.40	10.20 35.50	33.50	31.50	-	5.2 19.3	108 138	3450 2180	347 592	2270 5020	7
J-103 0.5 m J-104 0.5 m J-105 0.5 m	0.20 0.24 1.58	-	0.20 0.24 1.58	-		-	4.2 2.4 1.9	138 121 122	5240 2010 1280	885 204 392	453 406 440	2 X X	J-269 J-270) 1.0 i	n 94.	75	47.90 116.00	79.30 96.40 0.16	94.75	93.10 -	-	49.2 34.7 X	450 1250 42	15900 5990 108	1870 1490 17	3410 9320 35	10 25 X
J-108 1.0 m J-110 1.0 m	0.27	-	0.27 0.19	-	-	-	X X	34 40	389 172	13 11	376 144	X X	J-270	5 1.0 i	n 0.1	14	-	0.14	-	-	-	0.6 6.7	68 404	3690 3810	97 2190	283 2130	3 7
J-111 1,0 m J-113 1.0 m	0.15	-	0.15	-	-	-	X 1.0	74 58	399 2520	46 43	44 35	X X	J-278	9 2.0 1	n 4.3	32	<u>202.00</u>	195.00 4.32	-	-	-	39.1 3.6	1580 318	16900 5260	9780 540	22400 1300	73 6
J-114 1.0 m J-116 1.0 m J-120 1.0 m	2.05 0.25 7.85	-	2.05 0.25 7.77	- - 7.85		- - 7.93	5.1 2.3 27.7	164 110 122	258 2600 2360	699 108 110	497 5 3200	X X 3	J-280 J-281 J-282	1 2.0 i	n 0.9	97	-	0.64 0.97 18.90	-			8.3 9.1 22.1	279 161 2530	4920 7060 15200	1150 139 12700	740 205 2230	2 2 16
J-120 1.0 m J-121 1.0 m J-122 1.0 m	0.66	-	0.66	-	-	-	8.2 4.1	115 76	805 802	110 104 84	3200 37 2400	X 4	J-283 J-283	3 1.0 i	n 0.1	11	-	0.11	- 0.16	- 0.17	-	X 2.7	53 46	74 720	28 51	10 129	X X
J-123 1.0 m J-125 1.0 m	17.80 0.92	-	16.80 0.92	17.80 -	18.80	-	31.5 3.7	212 54	12600 461	186 22	4030 19	6 X	J-292 J-292	2 1.0 i	n 0.6	52	-	0.23	0.24 -	-	0.24	4.1 1.9	87 65	2890 3970	126 373	384 1070	X 7
J-131 1.0 m J-132 1.0 m J-133 1.0 m	10.08 20.70 80.00	- 21.70 54.80	9.75 20.70 80.00	<u>10.08</u> - -	<u>10.40</u> - -	-	7.4 1.6 10.5	336 167 759	286 454 2000	406 397 2390	869 1570 5110	X 4 8	J-299 J-302 J-302	1 2.0 i	n 0.2	23	-	0.48 0.23 0.24	-			X 4.9 1.2	51 136 114	42 3750 3500	12 25 122	49 201 47	X X X
J-134 1.0 m J-135 1.0 m	27.25 23.75	25.00 18.50	25.90 23.50	27.25 23.75	28.60 24.00	-	4.1	363 277	572 316	1040 396	6590 3860	9 13	J-302 J-302	3 1.0 i	n 30. n 25.	60 .55	32.30 32.50	30.60 23.90	-	27.20	-	14.4 23.4	2240 3990	13100 20200	10200 17700	29000 61400	60 136
J-136 1.0 m J-137 1.0 m	88.85 28.90	86.50 29.70	83.90 30.20	88.85 28.90	93.80 27.60	-	38.1 10.5	253 85	2820 759	2410 516	26800 18700		J-305) 1.0 I	n 0.4	42	74.40	68.40 0.41	0.42	90.30	- 0.42	58.9 3.7	7230 104	514	28100 89	14	143 X
J-143 1.0 m J-143 1.0 m J-148 1.0 m	9.52 0.19 0.23	-	9.52 0.19 0.23	-			37.3 X 0.5	105 22 47	373 85 118	437 18 45	3000 20 98	8 X X	J-312 J-312 J-318	7 2.0 i	n 0.2	22		0.71 0.22 0.17	0.72 - -	0.73 - -		12.9 0.7 0.9	289 63 66	4660 147 147	177 41 37	28 134 12	5 2 X
J-148 1.0 m J-156 1.0 m J-161 1.0 m	0.23 0.13 5.10	-	0.23 0.13 5.10	-	-		0.5 X 1.8	47 18 68	118 125 752	8 223	27 1050	X 3	J-319 J-319	2.0 ו	n 0.4	14	-	0.44	-	-	-	0.3 0.7 X	83 43	260 45	209 19	12 15 12	X X X
J-162 1.0 m J-163 1.0 m	108.50 15.45	129.00 19.90	101.00 16.60	108.50 15.45	14.30	-	40.8 7.7	306 236	1860 1470	1250 540	16200 4040		J-328 J-329	3 2.0 i 9 2.0 i	n 0.6 n 0.2	5 <mark>2</mark> 21	-	0.62 0.22	- 0.21	- 0.21	- 0.21	3.0 12.9	72 94	6480 2790	366 943	33 41	3 X
J-164 1.0 m J-165 1.0 m	4.17 27.00	- 15.00	4.17 27.00	-	-	-	1.2 18.0	50 411 114	724 1140	155 577 218	757 4870 981	9	J-332	3 1.0 i	n 0.6	67	-	0.33	-	-	-	14.1 9.9	291	13400 9610 13000	838	10 16	X X X
J-166 0.5 m J-167 0.5 m J-168 0.5 m	4.74 29.00 10.20	- 34.20	4.74 27.60 10.40		- 30.40 10.00		3.3 6.3 4.6	114 113 121	1660 1800 2820	218 504 882	881 4340 2670	2 8 4	J-334 J-335 J-336	5 2.0 i	n 2. 8	36		0.70 2.86 0.16			-	16.0 11.8 X	383 132 31	13000 5950 198	688 375 45	539 1540 99	X 9 X
J-169 0.5 m J-170 0.5 m	16.00 22.30	- 15.40	16.00 22.30		-	-	6.9 6.1	149	1910 2240	445		4 9	J-338				-	0.10	-		-	X	29	171	60		X
J-171 0.5 m J-172 0.5 m	3.93 44.10	36.10	3.93 44.10	-	-	-	2.0 64.5		1440 23800		917 8890	3 19															
J-173 0.5 m J-174 0.5 m J-175 0.5 m	21.25 27.95 38.15	26.00 23.60 38.40	21.90 29.10 40.70	27.95	20.60 26.80 35.60		19.6 9.5 7.0	337 197 118	8240 4340 2590	1820	5460 6470 29400	11 10 39															
J-175 0.5 m J-176 1.0 m J-177 1.0 m	38.15 74.20 0.25	<u>38.40</u> 59.90	62.80		<u>85.60</u>	- - 0.25	7.0 17.0 0.6	77 39	2590 1810 190	823 654 17	29400 4400 61	39 8 X															
J-178 1.0 m J-181 1.0 m	0.65	-	0.65	-	-	-	X 0.5	35 30	130 131 110	17 12 6	268 20	X X															
J-183 1.0 m	0.13	-	0.13	-	-	-	Х	33	104	7	51	Х															

The following information is provided to comply with the JORC Code (2012) requirements for the reporting of the previous exploration and drilling results for Exploration Licence 1595 in Papua New Guinea.

			CODE 2012							
		Section 1 Sampli	ng Techniques and Data							
Criteria		Explanation	Commentary							
Sampling techniques	0	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Samples locations were surveyed (averaged) utilising a handheld GPS with reference to topographic maps etc. Logging of outcrop and grab rock samples normally included mineralisation, lithology, weathering alteration, structure, texture. Sampling protocols and QAQC are as per industry best practice procedures.							
)	0	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Standard industry practice sampling procedures were followed.							
	0	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay') In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Swit Kia channel samples were collected in multiple metre, single metre and parts of metres relative to the intensity of mineralisation and alteration exhibited. They were driven to Lae for sample preparation in Papua New Guine by Laboratory SGS Australia Pty Ltd and analysis in Townsville by fire assay (50g charge) for gold and ICP for copper, molybdenum, silver, lead, zinc, arsenic, antimony and other elements. Gravimetric gold analysis was subsequently undertaken for samples with high concentrations of arsenic, that may have (but didn't apparently) interfered with the process. Samples were collected in calico bags for despatch to the laboratory Sample preparation was in 3-5kg pulverising mills, followed by splitting to a 140g pulp which was analysed by 50 gram Fire Assay an Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry Multi-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids. 							
Drilling techniques	0	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling.							
Drill sample recovery	0	Method of recording and assessing core and chip sample recoveries and results assessed	No drilling.							
)	0	Measures taken to maximise sample recovery and ensure representative nature of the samples.	No drilling.							
	0	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drilling.							
Logging	0	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	No drilling.							

		1		
		0	Whether logging is qualitative or	No drilling.
			quantitative in nature. Core (or costean,	
			channel, etc) photography.	No drilling
		0	The total length and percentage of the relevant intersections logged	No drilling.
-	Sub-sampling	0	If core, whether cut or sawn and whether	No drilling.
	techniques and sample	0	quarter, half or all core taken.	No drining.
	preparation	0	If non-core, whether riffled, tube sampled,	No drilling.
\geqslant		0	rotary split, etc and whether sampled wet or dry.	no unining.
		0	For all sample types, the nature, quality	No drilling.
		0	and appropriateness of the sample preparation technique.	i vo urining.
		0	Quality control procedures adopted for all	No drilling.
)	U	sub-sampling stages to maximise representivity of samples.	
4				
15)	0	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate /second-half	No drilling.
1			sampling.	
Ŋ)	0	Whether sample sizes are appropriate to the grain size of the material being	No drilling.
-	2		sampled.	
	Quality of assay data and laboratory	0	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is	Assaying techniques utilised can be considered to be appropriate. For the ICP analyses, the technique is considered to be 'total'.
	tests		considered partial or total.	Accentable levels of accuracy and precision have been established
Ø		0	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of	Acceptable levels of accuracy and precision have been established with duplicate and repeat analyses. Gravimetric analysis was undertaken for samples with high concentrations of arsenic, that may have interfered with the process (but didn't apparently).
			bias) and precision have been established.	No such to sla
)	0	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and	No such tools
7,])		model, reading times, calibrations factors	
			applied and their derivation, etc.	
	Verification of	0	The verification of significant intersections	Verified by P.McNeil and mapped / verified by Consultant Geologist
15	sampling and assaying		by either independent or alternative company personnel.	Ken Igara.
4	/	0	The use of twinned holes.	No holes have been twinned
\sum)	0	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	Primary data was collected manually then loaded into the database.
		0	storage (physical and electronic) protocols. Discuss any adjustments to assay data.	No adjustments or calibrations have been made to any assay data.
\sum	Location of data points	0	Accuracy + quality of surveys used to locate drill holes (collar + down-hole surveys), trenches, mine workings and	Not applicable. A hand held GPS (averaged) was used to determine collar locations.
1			other locations used in Mineral Resource	
		0	estimation. Specification of the grid system used.	Man datum is AGD 066
		ō	Quality and adequacy of topographic control.	Map datum is AGD 066. 40m contours from 1:100,000 plans, 10m from SRTM contours.
	Data spacing and	0	Data spacing for reporting of Exploration Results.	Refer to the attached plans for data spacing of exploration results.
	distribution	0	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied	The data spacing and distribution is insufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation

	0	Whether sample compositing has been applied.	No sample compositing has been applied.
Orientation of data in relation to geological	0	Whether the orientation of sampling achieves unbiased sampling of possible structures to the extent this is known, considering the deposit type.	The orientation of sampling achieves unbiased sampling of possible structures to the extent to which this is known, considering the deposit type and outcrop available to sample.
structure	0	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported.	The relationship between the drilling orientation and the orientation of key mineralised structures is NOT considered to have introduced any sampling bias, but has constrained the possible mineralised region.
Sample security	0	The measures taken to ensure sample security	Samples were retained by Company personnel until they were despatched at the Lae laboratory. There are no issues with sample security.
Audits or reviews	0	The results of any audits or reviews of sampling techniques and data.	No specific audits or reviews of sampling techniques and data have been undertaken.

\bigcup_{i}	Criteria		Explanation	Commentary
	Mineral tenement and land tenure status	0	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Exploration Licence 1595 - Bulago is located in Papua New Guinea's Hella Province. There no agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental issues associated with the EL.
				The PNG National government under the Mining Act of 1992 currently has the right to acquire up to 30% of any project at the time of granting of a mining lease for the 'sunk cost'.
		0	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and FNT will seek renewal in July 2014. No known impediments exist apart from the geographic isolation and the necessity for creating and maintaining good relationships with local landowners.
	Exploration done by other parties	0	Acknowledgment and appraisal of exploration by other parties.	Exploration in the region was initiated in the late 1960s as part of a PNG porphyry copper deposit search. It was explored for gold initially in the early 1980's, with little work since 1987 and prior to FNT.
	Geology	0	Deposit type, geological setting and style of mineralisation.	High grade intrusive -epithermal related gold and porphyry copper-gold - molybdenum targets.
	Drill hole information	0	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	No drilling.
\bigcirc			Easting and northing of the drill hole collar	No drilling.
	_		Elevation or RL (Reduced Level- elevation above sea level in metres) of the drill hole collar	No drilling.
			Dip and azimuth of the hole	No drilling.
			Down hole length and interception depth	No drilling.
			Hole length	No drilling.
		0	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the	No drilling.

Competent Person should clearly explain

why this is the case.

Data anosti		In an action Fundamentics, Describe succeds it	Tables of your lie is alread about size a surgestion of south 11
Data aggregation methods	0	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Tables of results included show data aggregation if applied in trench/channel samples etc. No top cuts have been applied. They are continuous samples and so are stated as continuous weighted assay results (length x grade summed for each sample / sum of total length).
		Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail	Is this occurs, it is stated in the text.
	0	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are reported.
Relationship between mineralisation	0	These relationships are particularly important in the reporting of Exploration Results.	Well understood
widths & intercept lengths	0	If the geometry of the mineralisation with respect to drill hole angle is known, its nature should be reported.	The 'down outcrop or downhole sampled lengths have been reported because the geometry of the mineralisation with respect to the sampling orientation has not been properly constrained.
D	0	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	0	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps, sections and tabulations of intercepts are included.
Balanced reporting	0	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of Exploration Results has been previously released.
Other substantive exploration data	0	Other exploration data, if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances	All meaningful exploration data has been included.
Further work	0	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Drilling is dependent on subsequent capital raising.
	0	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Appropriate plans will be included, as possible in a later release documenting future work.

	Frontier Resources Ltd Exploration Licence Information													
	Licence No.	Date From	Date To	Ownership	'Reduced' Area (SQ.KM)	Latitudinal Sub Blocks	Current Area (SQ КМ)	Latitudinal Sub Blocks						
Bulago River	EL 1595	7/07/2012	6/7/2014	100% Frontier Gold PNG Ltd	100	30	140	42						
Mt Andewa	EL 1345	13/08/2012	12/8/2014	100% Frontier Copper PNG Ltd	100	30	117	35						
Mt Likuruanga	EL 1351	13/08/2012	12/8/2014	100% Frontier Copper PNG Ltd	100	30	123	37						
East New Britai	n EL 1592	21/03/2013	20/3/2015	100% Frontier Copper PNG Ltd	100	30	493	148						
Central New Brit	ain EL 1598	21/03/2013	20/3/2015	100% Frontier Copper PNG Ltd	100	30	347	104						
Leonard Schult	z EL 1597	13/02/2013	12/2/2015	10% Deferred Carried to BFS Frontier Gold PNG Ltd - FrontRunner Exploration Ltd JV	To be relinquished	47	590	177						
Cethana	EL 29/2009	13/09/2010	12/09/2015	10% Free Carried to BFS Frontier -Torque Mining Ltd JV	109		109	NA						
River Lea	EL 42/2010	3/04/2011	2/04/2016	10% Free Carried to BFS Frontier -Torque Mining Ltd JV	9		9	NA						
Narrawa Creel	c RL 3/2005	12/05/2006	12/05/2014	10% Free Carried to BFS Frontier -Torque Mining Ltd JV	2.8		2.8	NA						
Stormont Mine	e ML 1/2013	3/11/2013	13/08/2018	5% Nett Profits Interest Frontier -Torque/BCD Mining Ltd JV	0.13		0.13	NA						
		Total Reduce	d PNG Area =	500 SQ KM	621	SQ KM	1,931	SQ KM						

1. The Papua New Guinea Mining Act of 1992 stipluates that ELs are granted for renewable 2 year Terms (subject to Work and Financial Commitments)

2. The PNG Government maintains the right to purchase up to 30% project equity at "Sunk Cost" if/when a Mining Lease is granted.

3. BFS = Completion of a positive and hence "Bankable" Feasibility Study into the viability of any proposed mining operation