

Norton Gold Fields Ltd ("Norton" or the "Company") provides an update on exploration activities, reflecting its exploration strategy to better exploit the potential of the Company's extensive landholdings around Kalgoorlie.

HIGHLIGHTS

Subsequent to Norton recent acquisition of Bullabulling Gold Limited (formerly ASX:BAB), the Company now provides a consolidated mineral resource inventory inclusive of both the Paddington and Bullabulling Projects comprising a total Measured, Indicated and Inferred Mineral Resource of :

229Mt at 1.35g/t Au, containing 9.96Moz, including 134Mt at 1.57g/t Au (6.75Moz) for the Paddington Project 95Mt at 1.05g/t Au (3.22Moz) for the Bullabulling Project

Resource Development drilling programs during the September 2014 quarter included a total of 22,858.8m in 138 drill holes comprising reverse circulation (RC), surface and underground diamond core drill holes.

Drilling is well advanced at the Racetrack Prospect, the first stage of the Company's strategic plan to evaluate refractory resources. Highlights include confirmation of strong depth potential in the central resource area, recognition of a newly interpreted sub-vertical high grade mineralised structure, and identification of supergene oxide resource potential in addition to primary refractory mineralisation. Significant down-hole results include :

Primary
8.0m @ 10.6g/t Au from 203m
6.69m @ 6.30g/t Au from 108m
7.0m @ 5.04g/t Au from 152m
3.36m @ 13.9g/t Au from 141.6m
8.2m @ 5.0g/t Au from 121.8m
Supergene
10m @ 15.1g/t Au from 62m
6m @ 5.58g/t Au from 41m

About Norton

Norton Gold Fields Limited (ASX:NGF) is an established mid-tier gold producer. In CY2013, Norton produced approximately 172,739 ounces of gold from its open cut and underground operations at Paddington, near Kalgoorlie in Western Australia. The Company holds extensive granted mining and exploration leases in the pre-eminent Kalgoorlie goldfields, with a land package of 766km². Norton's Vision is to be a leading long term gold producer and to achieve this has adopted a business model that seeks to attain sustainable and increased production within a strict cost control environment.

Underground diamond drilling of the Bullant Main Lode has returned encouraging results which suggest resource and reserve extension at depth. Significant down-hole intercepts from the program to date include :

> 4.60m @ 10.3g/t Au from 121.0m 5.25m @ 7.50g/t Au from 98.55m 2.5m @ 14.4g/t Au from 68.1m 4.0m @ 7.80g/t Au from 65.7m

A series of programs in the Mount Pleasant camp aimed at testing targets for new high grade veins has commenced. Significant down-hole results to date include :

Quarters 040 Vein

3m @ 33.2g/t Au from 220m

Tuart 060 Hangingwall Vein

3m @ 9.20g/t Au from 133m

Two drill holes collared on the floor of the Black Flag pit and aimed at a target in the footwall of the Black Flag West Vein at depth, have both intersected shallower, previously defined mineralisation including down-hole results of :

5m @ 164g/t Au from 0m (including 1m @ 815g/t Au from 0m) 16m @ 1.92g/t Au from 13m 17m @ 1.37g/t Au from 43m

Analytical results have been received from previously completed diamond drill holes distributed along the Bullabulling Trend. The holes had been planned in well-defined resource areas in order to provide ore material for metallurgical testwork. Significant down-hole results include :

6m @ 1.82g/t Au from 19m

9m @ 4.00g/t Au from 29m

Table 1: Paddington Resource Statement:Mineral Resource as at 30 September 2014

	Project Area		Measured			Indicated			Inferred			Total		
	Project Area	DEFOSI	Mt	Au g/t	Ounces	Mt	Au g/t	Ounces	Mt	Au g/t	Ounces	Mt	Au g/t	Ounces
>>)/	Havana				4.29	1.69	233,000	0.26	1.73	14,000	4.55	1.69	247,000
	Golden Cities	Federal				3.74	1.92	231,000	2.99	2.1	202,000	6.73	2.0	433,000
		Jakarta				1.77	1.15	65,000	0.42	1.02	14,000	2.19	1.13	79,000
		Enterprise OP				11.46	1.68	620,000	4.89	1.22	192,000	16.35	1.55	812,000
	1	Enterprise UG				1.77	3.05	174,000	0.88	2.55	72,000	2.65	2.88	246,000
	Ora Banda	Enterprise West				0.07	0.87	2,000	1.11	1.15	41,000	1.18	1.13	43,000
()		North Sandalwood							1.64	1.24	65,000	1.64	1.24	65,000
\bigcirc	/	Sleeping Beauty							0.62	1.36	27,000	0.62	1.36	27,000
		Tom Allen							0.91	1.7	50,000	0.91	1.7	50,000
20		Mt Pleasant				0.67	2	43,000	0.57	2.39	44,000	1.24	2.18	87,000
())	Racetrack				2.58	1.83	152,000	5.58	2.26	404,000	8.15	2.12	556,000
	/	Royal Standard North							0.30	1.43	14,000	0.30	1.43	14,000
217		Blue Gum				0.12	1.77	7,000	0.24	1.42	11,000	0.36	1.53	18,000
92)	Homestead UG	0.13	19	79,000	0.11	14.9	54,000	0.10	15.1	49,000	0.34	16.5	182,000
	Į	Golden Kilometre							0.76	4.17	102,000	0.76	4.17	102,000
)	Quarters 040				0.11	2.31	8,000	0.05	1.3	2,000	0.16	2.0	10,000
	Mt Pleasant	Tuart OC				3.44	1.66	184,000	1.11	2.04	73,000	4.55	1.75	256,000
		Tuart UG				0.12	7.19	28,000	0.79	6.27	159,000	0.91	6.39	187,000
]	Marlock				0.08	1.65	4,000	1.04	2.07	69,000	1.12	2.04	74,000
	1	Natal							0.38	2.46	30,000	0.38	2.46	30,000
$(U\rangle$)	Golden Flag				0.06	1.21	2,000	0.13	1.77	7,000	0.19	1.6	10,000
		Black Flag OC				0.05	1.4	2,000	0.11	2.6	9,000	0.17	2.21	12,000
	1	Black Flag UG							0.04	8.75	10,000	0.04	8.75	10,000
]	Rose Dam South							0.54	1.22	21,000	0.54	1.22	21,000
\square		Rose				0.39	1.26	16,000	0.50	1.13	18,000	0.89	1.19	34,000
())	Lady Bountiful				1.84	1.75	104,000	0.13	2.15	9,000	1.98	1.78	113,000
	Lady Bountiful	Lady Bountiful Extended							4.25	1.72	235,000	4.25	1.72	235,000
2/n)	Liberty West							0.54	1.94	34,000	0.54	1.94	34,000
92	Mulgarrie	Mulgarrie				1.27	2.19	89,000	1.39	2.21	99,000	2.65	2.2	188,000
\mathcal{L}	<u> </u>	Mulgarrie Well							0.40	1.45	19,000	0.40	1.45	19,000
	-	Janet Ivy				6.37	0.97	199,000	3.93	1.05	132,000	10.30	1.0	331,000
		Janet Ivy - Low Grade				1.99	0.55	35,000	1.32	0.55	23,000	3.31	0.55	58,000
Y	/	Navajo Chief				12.29	1.0	394,000	3.17	1.08	110,000	15.46	1.01	504,000
\square		Navajo Chief - Low grade				11.22	0.59	214,000	2.67	0.59	51,000	13.89	0.59	265,000
\bigcirc) Din duli	Fort William				0.23	2.2	16,000	1.78	1.26	72,000	2.00	1.37	88,000
	Binduli	Fort Scott				0.32	2.08	22,000	0.13	1.83	8,000	0.45	2.01	29,000
		Apache							0.63	1.67	34,000	0.63	1.67	34,000
\square	1	Ben Hur (1,2,3)				3.60	1.2	139,000	5.68	2.08	381,000	9.29	1.74	520,000
		Pitman South							0.10	2.2	7,000	0.10	2.2	7,000
\bigcirc		Walsh							0.22	1.69	12,000	0.22	1.69	12,000
\square	/		0.10	6.00	20.000	0.01	F 64	435.000	0.20	1.85	12,000	0.20	1.85	12,000
П		Bullant UG	0.10	6.33	20,000	0.84	5.01	135,000	1.25	5.46	220,000	2.19	5.33	375,000
	Carbina	Wattlebird				1.89	1.36	83,000	0.06	1.47	3,000	1.95	1.37	85,000
	carbine	watt's Dam							0.34	1.68	18,000	0.34	1.68	18,000
		Matt's Dam South				1.55	1.00	E0 000	0.66	1.39	30,000	0.66	1.39	30,000
		гогратуту	<u> </u>			1.00	1.09	36,000	0.08	1.25	27,000	2.54	1.14	٥٥,000
		Stockpillon (as at 20/00/2014)	2.00	0.0	60.000	0.20	0.00	0.000	0.02	0.00	20.000	2.00	0.70	07.000
		Total Mineral Resource	2.00	1.8	169 000	0.30 74 74	1.38	3,321 000	56 41	1.00	3.256 000	3.99 134 05	1.57	6.746 000

Note: Apparent arithmetic inconsistencies are due to rounding Depletion of mining areas to 30 June 2014

Table 2: Bullabulling Resource Statement: Mineral Resource as at 30 September 2014

		DEPOSIT -	Measured		Indicated			Inferred			Total			
	Project Area		Mt	Au g/t	Ounces	Mt	Au g/t	Ounces	Mt	Au g/t	Ounces	Mt	Au g/t	Ounces
		Bullabulling Trend				68.53	0.99	2,181,000	23.08	1.21	898,000	91.61	1.05	3,079,000
	Bullabulling	Gibraltar							3.74	1.14	137,000	3.74	1.14	137,000
\frown		Total Mineral Resource				68.53	0.99	2,181,000	26.82	1.20	1,035,000	95.35	1.05	3,216,000

Note: Apparent arithmetic inconsistencies are due to rounding

Table 3: Norton – Consolidated Resource Statement: Mineral Resource as at 30 September 2014

\cap	DROJECT		Measure	ed	Indicated			Inferred			Total		
Ľ	PROJECT	Mt	Au g/t	Ounces	Mt	Au g/t	Ounces	Mt	Au g/t	Ounces	Mt	Au g/t	Ounces
	Paddington	2.91	1.8	169,000	74.74	1.38	3,321,000	56.41	1.8	3,256,000	134.05	1.57	6,746,000
$ \ge$	Bullabulling				68.53	0.99	2,181,000	26.82	1.20	1,035,000	95.35	1.05	3,216,000
	Total Mineral Resource	2.91	1.8	169,000	143.27	1.19	5,502,000	83.23	1.6	4,291,000	229.40	1.35	9,962,000

J	Ta	ıble 4: Pc	ıddington	Ore Rese	erve as at	31 Decen	nber 2013	3	
DEPOSIT	Proven				Probable			Total	
DEPOSIT	Mt	Au g/t	Ounces	Mt	Au g/t	Ounces	Mt	Au g/t	Ounces
Federal				1.73	1.8	100,000	1.73	1.8	100,000
Enterprise				9.70	1.84	575,000	9.70	1.84	575,000
Golden Flag				0.55	1.55	28,000	0.55	1.55	28,000
Green Gum				0.09	1.59	5,000	0.09	1.59	5,000
Mulgarrie				0.82	2.23	59,000	0.82	2.23	59,000
Janet Ivy				2.39	1.11	85,000	2.39	1.11	85,000
Fort Scott				0.23	1.67	12,000	0.23	1.67	12,000
Wattle Bird				0.49	1.47	23,000	0.49	1.47	23,000
Lady Bountiful				0.65	1.89	39,000	0.65	1.89	39,000
Tuart				0.83	1.9	50,000	0.83	1.9	50,000
Homestead U/G	0.10	8	26,000	0.14	6.36	28,000	0.24	7.04	55,000
Stockpiles	1.21	1	37,000	0.08	1.2	3,000	1.29	0.96	40,000
Inventory (GIC)									3,000
Total Ore Reserve	1.32	1.49	63,000	17.69	1.77	1,007,000	19.01	1.75	1,073,00

Mineral Resource Update

Total Measured, Indicated and Inferred Mineral Resources for Norton as at 30 September 2014 are 229Mt at 1.35g/t Au (9.96Moz). This figure includes 134Mt at 1.57g/t Au (6.75Moz) from the Paddington Project and 95Mt at 1.05g/t Au (3.22Moz) from the newly acquired Bullabulling Project.

By way of comparison, total Measured, Indicated and Inferred Mineral Resources for Norton as at 30 December 2013 were 134Mt @ 1.61g/t Au (6.94Moz).

Status changes between the current statement and that reported previously are summarized below. Variances in the resource position include :

Acquisition of the Bullabulling Project

Resource modelling updates at Bullant Underground, Homestead Underground, Racetrack, Tuart (Open Cut & Underground), and Black Flag (Open Cut & Underground)

Mining depletion at:

- Homestead Underground (including Black Flag west)
- Bullant Underground
- Enterprise
- Golden Flag
- Green Gum
- Change in reporting area allocation between Mt Pleasant and Racetrack

Some exclusion of previously reported Mt Pleasant resource due to economic factors

No Ore Reserve update has been conducted, Ore Reserves tabulated are as reported at 30 December 2013.

Mineral Resource Modelling Parameters

Resource models have been compiled using a number of modelling and estimation methodologies including Multiple Indicator Kriging (MIK), Ordinary Kriging (OK) and Inverse Distance Squared (ID2). Methodologies have been selected to best suit mineralisation styles which range from high grade narrow veins through to broad pervasive alteration or stockwork mineralised zones. In most cases validation models have been completed using alternate modelling techniques. Statistical analysis and variography of mineralised composites are utilised to control the estimation process. Estimation top-cut grades are based on statistical analysis of the relevant mineralisation domains. Lower reporting cut-off grades are based on break-even cut-off grades in similar deposits which have been mined by the Paddington Operation.

Drilling data utilised in resource models includes a combination of reverse circulation (RC), surface diamond core, underground diamond core, and underground development face sampling. All sample analyses has been conducted at reputable analytical laboratories and data has been validated and subjected to internal quality control processes.

Drill spacing generally reflects the level of mineralisation continuity. As a guide, well defined mineralised areas with a nominal drill spacing of 20m x 20m qualify as Indicated classification status, with broader spaced drilling for Inferred classification status. Measured classification is applied to grade control drilled or underground developed mineralised material.

Applied bulk densities are derived from measurements on diamond core or rock samples, and validated by comparison with similar lithological ore types from elsewhere within the project area (the Paddington Operation has been active since 1984 and has exploited a broad range of ore types in that period). Bulk density is coded by weathering type in each deposit to reflect oxide, transitional and primary ore characteristics.

Geological models are developed and continuously updated utilising feedback from mining and milling operations.

Details on updated resource models are documented in the appended JORC 2012 Table 1 compilations. A resource parameter summary is shown below in Table 5.

Project Area	DEPOSIT	Modelling Methodology	Lower cut-off grade (g/t)	Top cut grade (g/t)
	Havana	ОК	0.8	15
Golden Cities	Federal	ОК	0.8	20 and 60
	Jakarta	MIK	0.6	NA
	Enterprise OP	MIK	0.7	NA
	Enterprise UG	OK	1.5	nıl
Ora Banda	Enterprise West	ОК	0.7	10
	North Sandalwood	ОК	0.7	nil - 12.5
	Sleeping Beauty	ОК	0.7	6-15
	Tom Allen	ОК	0.7	8 and 10
	Mt Pleasant	ОК	1.0	10-70
	Racetrack	ID2	0.8	Various
	Royal Standard North	ID2	0.8	8
	Blue Gum	ОК	0.7	17
	Homestead UG	OK + ID2	3.5	nil & 50-200
	Golden Kilometre	ОК	0	40
	Quarters 040	ОК	0.7	17
	Tuart OC	ОК	0.7	nil, 10, 30 and 37
ivit Pleasant	Tuart UG	ОК	3.0	28, 30 and 40
	Marlock	ОК	0.7	10 and 25
	Natal	ОК	0.8	25 & 60
	Golden Flag	ОК	0.7	10 & 20
	Black Flag OC	ОК	0.7	5. 15 and 20
	Black Flag UG	ID2	3	nil and 30
	Bose Dam South	OK	0.7	nil
	Bose	OK	0.7	12
	Lady Bountiful		0.7	30
Lady Bountiful	Lady Bountiful Extended	0K	0.8	10-100 mostly 20-30
Eddy Dountinu	Liberty West	OK	0.8	8 <i>A</i> -11 8
	Mulgarrie	MIK	0.7	ΝΔ
Mulgarrie	Mulgarrie Well	MIK	0.7	NA
	lanot lw	MIK	0.7	NA
	Janet Iwy Low Grado	MIK	0.0	NA
	Navaia Chief	MIK	0.3-0.0	NA
	Navajo Chief Low grade	MIK	0.7	NA
		MIK OK	0.3-0.7	10
Binduli		OK OK	0.8	10
ыпаш	Fort Scott	UK Castianal nalvaanal	0.8	15-20
	Apache		1.0	/
	Ben Hur (1,2,3)	UK	0 & 0.6	20
	Pitman South	Sectional polygonal	1.0	10
	Walsh	Sectional polygonal	1.0	7
	Walsh North	Sectional polygonal	1.0	7
	Bullant UG	ОК	3.0	Various 20-50
	Wattlebird	MIK	0.7	Various
Carbine	Matt's Dam	ID2	0.7	6-8
	Matt's Dam South	ID2	0.7	15-22
	Porphyry	ОК	0.8	5.5
Bullahulling	Bullabulling Trend	MIK (e-type) and OK	0.5	Various where applicable
Zanavaning	Gibraltar	MIK (e-type) and OK	0.5	Various where

Table 5: Resource Parameter Summary

Norton Gold Fields – Kalgoorlie Overview

Norton recently completed the acquisition of Bullabulling Gold Limited. Norton acquired a relevant interest in more than 90% of Bullabulling shares on 15 September 2014, and moved to compulsorily acquire the remaining shares. Bullabulling has been delisted from the ASX and ceased trading on AIM on 9 October 2014.

The Bullabulling Project located to the west-southwest of Kalgoorlie, will complement Norton's current operations in the Paddington Project area located to the north and northwest of Kalgoorlie. The combined package will cover an area of 766 square kilometres and host a global Measured, Indicated and Inferred resource inventory of 9.96Moz.

Paddington Project

Norton's Paddington tenement package covers a highly prospective area of 577 square kilometres within the Kalgoorlie Goldfields region (Figure 1). Paddington projects currently contain a Measured, Indicated and Inferred Mineral Resource inventory of 6.75Moz of gold, including a Proven and Probable Ore Reserve of 1.07Moz of gold (as at 30 December 2013). The 3.3Mt per annum Paddington processing plant is centrally located within the tenement package.

Geology of the Kalgoorlie region consists of Archaean greenschist facies mafic to ultramafic volcanics and intrusives with later intermediate to felsic volcanics, volcaniclastics and sediments. Gold mineralisation occurs in a number of different settings which typically include the interaction of structural pathways with stratigraphically and rheologically reactive host rocks. Ore bearing alteration assemblages typically comprise ankerite-sericite-albite-silica-biotite-pyrite-pyrrhotite.

Open cut ore mining is in progress at the Enterprise Deposit (Ora Banda Project) where the bulk of mill feed ore is being sourced, supplemented by the small Wattlebird open cut mine, and by ore stockpiles from previously mined satellite open cut operations. Underground mining is in progress at the Homestead Underground Mine (Mount Pleasant Project), which includes the Black Flag West Vein, and at the Bullant Underground Mine (Carbine-Bullant Project).

Bullabulling Project

The Bullabulling Gold Project is located 70km west-southwest of Kalgoorlie and consists of the Bullabulling Line and Gibraltar gold deposits. The Bullabulling tenement package covers a total area of 189 square kilometres (Figures 1 and 2). Norton's initial Measured, Indicated and Inferred Mineral Resource inventory is estimated at **95.4Mt at 1.05g/t Au (3.22Moz)**.

Previous mining in the Bullabulling area occurred historically in the early 1900s, modern open cut mining in the mid-1980s through to the mid-1990s, and the most recent phase of laterite mining up to 2010.

Gold mineralisation within the main Bullabulling Line occurs in a series of stacked north-south trending shear zones which dip shallowly to the west and extend over a strike length of 8km. The mineralised zones can be up to several hundred metres thick and extend down-dip up to 500m.

The mineralised sequence traces folded stratigraphy to the south, with the Gibraltar deposit lying on extensions to the southeast of the main Bullabulling Line.

The deposits are hosted by an Archaean amphibolite facies greenstone package with the dominant lithologies being mafic to ultramafic meta-volcanics and volcaniclastics, and felsic schists derived from sediments and felsic to intermediate volcanics and volcaniclastics. Mineralisation is associated with calc-silicate (diopside-carbonate-quartz-pyrite-pyrrhotite) and biotite alteration assemblages.

Development options for the Bullabulling Project are currently being evaluated.

Figure 2 : Bullabulling Project

Resource Development & Exploration

Drilling programs during the September 2014 quarter totalled 22,858.8m from 138 drill holes, and comprised 10,289m of Reverse Circulation (RC) from 89 drill holes, 5,595.9m of surface diamond core from 6 diamond only and 36 diamond tail drill holes, and 6,974.4m of underground core from 43 drill holes.

Resource development expenditure for the quarter was \$3.42M. Drilling programs are summarised in Table 6 below.

Table 6: Summary of Resource Development & Exploration Work Programs

Project	Activity	Project Description
Mount Pleasant Project : Homestead Underground – Near Mine Exploration Targets	12 UG diamond drill holes for 2,557.5m	Exploration evaluation
Mount Pleasant Project : Racetrack Prospect	15 RC drill holes & 47 RC pre-collars for 5,878m 6 surface diamond drill holes & 36 diamond tails for 5,595.9m of core	Resource definition & extension
Carbine-Bullant Project : Bullant Underground – Main Lode	31 UG diamond drill holes for 4,416.9m	Resource definition & grade control
Mount Pleasant Project : Tuart T060 HW Prospect	9 RC drill holes for 1,899.5m	Resource definition
Mount Pleasant Project : Tuart Q040 Prospect	5 RC drill holes for 564m	Resource definition and extension
Mount Pleasant Project : Golden Road Prospect	2 RC drill holes for 339m	Resource definition
Mount Pleasant Project : Black Flag Prospect	2 RC drill holes for 390m	Resource definition
Mulgarrie Project : Mulgarrie East Prospect	6 RC drill holes for 828m	Exploration evaluation
Binduli Project : Binduli North Prospect	3 RC drill holes for 390m	Exploration evaluation
TOTAL	138 drill holes for 22.858.8m	

Figure 3: RC drilling at the Racetrack Prospect

Figure 4: Diamond drilling at the Racetrack Prospect

Bullant Underground Mine, Carbine-Bullant Project

The Bullant Underground Mine is situated along the Zuleika Shear Zone, a prospective regional north-northwest trending structure. The Shear Zone is a broad ductile to brittle structural corridor contained within a mafic unit in the mine area. The Shear Zone dips sub-vertically to steep east dipping.

Mineralisation occurs in up to four lodes (labelled the Main, East, West and Cross lodes) and is associated with biotite-silica-pyrite altered basalt and minor local quartz veining. Both the Main and East lodes remain open at depth.

Drilling programs are systematically evaluating key resource upside areas at a nominal 40m x 40m spacing. A program reported last period targeted northern extensions of the East Lode, and during the current period drilling progressed to depth extensions of the Main Lode.

Combined underground resource development and grade control programs have recorded an advance of 4,416.9m from 31 diamond core drill holes. Significant down-hole results include :

BUGD1022	1.5m @ 15.7/t Au from 121.4m
BUGD1023	2.45m @ 6.96g/t Au from 107.05m
BUGD1025	4.6m @ 10.3g/t Au from 121.0m
BUGD1026	1.4m @ 8.82g/t Au from 72.2m
BUGD1029	1.3m @ 18.1g/t Au from 115.7m
BUGD1030	1.45m @ 7.46g/t Au from 82.25m
BUGD1032	5.25m @ 7.50g/t Au from 98.55m
BUGD1033	1.4m @ 9.24g/t Au from 71m
BUGD1036	1.0m @ 11.3g/t Au from 76.7m
BUGD1037	2.5m @ 14.4g/t Au from 68.1m
BUGD1040	4.0m @ 7.80g/t Au from 65.7m
BUGD1041	2.0m @ 11.5g/t Au from 91.1m
BUGD1043	1.5m @ 10.2g/t Au from 75.5m
BUGD1049	1.2m @ 13.8g/t Au from 108.0m

All analytical results are appended in Table 7. A long section figure showing the location of recent results in presented below in Figure 5.

Results are confirming strong depth potential of the Main Lode – previously interpolated from very sparse deeper drilling. More northerly drilling results are expected to increase in tenor, consistent with a shallow north plunge interpretation.

The current program will define mineralisation to a level 100m below the deepest level of preexisting development (5715 level) in the southern-central Main Lode area, and up to 200m deeper in the northern Main Lode area. A higher confidence resource in these deeper areas will provide a basis for longer term reserve delineation.

Figure 5: Bullant Main Lode – Schematic Long Section showing recent drilling results

Homestead Underground Mine, Mount Pleasant Project

Underground mining at Homestead is active in two main north trending, shear hosted mineralised veins labelled VN01 and VN03, and within the adjacent oblique trending Black Flag West Vein. The Black Flag West Vein is the dominant underground ore source at Homestead.

Exploration drilling programs have recorded 2,557.5m of diamond coring from 12 underground drill holes. Drilling has targeted conceptual near-mine targets including the potential for repetitions of the Black Flag West Vein to the north and south, and other structural targets based on current knowledge.

Two RC drill holes for 339m have also been completed from the floor of the Black Flag pit, targeting a footwall lode of the Black Flag West Vein. Both drill holes have intersected near surface mineralisation in the Black Flag Fault Zone – a broad zone of quartz-carbonate breccia with marginal biotite-carbonate-pyrite alteration. The Black Flag Fault is located on the eastern margin of the east-west trending Black Flag West Vein system, and effectively terminates south-eastward continuity of the vein.

Significant down-hole intercepts from the programs include :

Homestead – Near Mine Targets					
HUD1053	2m @ 7.73g/t Au from 14m				
HUD1063	1m @ 4.31g/t Au from 389m				

Black Flag/ Black Flag West					
	16m @ 1.92g/t Au from 13m				
r/MrC1274	3m @ 2.68g/t Au from 172m				
	5m @ 164g/t Au from 0m				
	(including 1m @ 815g/t Au from 0m)				
PMPC1295	6m @ 1.37g/t Au from 10m				
	7m @ 1.11g/t Au from 29m				
	17m @ 1.37g/t Au from 43m				

A full list of all drilling results for both areas is included in Tables 8 (Homestead) and 9 (Black Flag). Plans showing the relative location of the underground diamond drill holes in the near-mine exploration program are depicted in Figures 6 and 7. Figure 8 shows collar locations of the Black Flag RC drill holes. Figure 9 below shows a schematic long section of the Black Flag West Vein.

Drill hole PMPC1295 (5m @ 164g/t Au from 0m, including 1m @ 815g/t Au from 0m) was collared directly on the Back Flag Vein. The ore material in the floor of the pit is already included in current Black Flag resource models and the new results are not expected to have a material impact.

The Mt Pleasant camp is a structurally complex area with known mineralised shear and extensional veins on several different orientations. Historical drilling has targeted the north-south trending Black Flag Fault and Homestead Shear Zone corridors by east-west oriented drilling not optimal to identification of oblique mineralised structures.

The oblique 140 degree trending Black Flag West Vein was a recent (2012) discovery, and up to the end of September 2014, had produced **276,927t @ 8.98g/t Au containing 79,960oz**. Several smaller cross-cutting structures have also been identified.

Upside resource potential in other cross cutting mineralised structures is considered high, and programs to test other targets are continuing.

Figure 9: Black Flag West Prospect – Schematic Long Section (main vein)

Tuart Prospect, Mount Pleasant Project

The Tuart deposit comprises a series of high grade quartz-carbonate-sulphide brecciated or laminated veins hosted within mafic volcanics. Supergene oxide mineralisation is developed in the regolith immediately above and/or adjacent to the primary veins. Mineralisation covers a broad area located to the northwest of the Homestead underground mine, and immediately west of the historically mined Quarters open pit and underground mine.

The greater Tuart resource area captures five main primary mineralised veins on varying orientations along with overlying and adjacent supergene oxide mineralisation. The primary veins are labelled the Tuart 060, 115 and 080 Veins, the Quarters 040 Vein, and the Golden Swan 090 Vein.

Recent drilling programs have targeted mineralisation in the hangingwall of the Tuart 060 Vein, and the Quarters 040 Vein, both aimed at identifying high grade mineralisation capable of underground exploitation.

Significant down-hole results received from the programs to date include:

Tuart 060 Hangingwall Vein				
PMPC1296	2m @ 2.15g/t Au from 90m			
PMPC1297	1m @ 9.27g/t Au from 134m 3m @ 3.46g/t Au from 140m 3m @ 2.20g/t Au from 153m 1m @ 7.55g/t Au from 209m			
PMPC1310	1m @ 5.93g/t Au from 55m 3m @ 4.48g/t Au from 186m			
PMPC1311	2m @ 2.13g/t Au from 82m			
PMPC1315	4m @ 3.73g/t Au from 224m			

Quarters 040	
PMPC1289	3m @ 33.2g/t Au from 220m

All analytical results are appended in Tables 10 and 11 (Tuart 060 Hangingwall Vein and Quarters 040 respectively). Drilling location plans for Tuart 060 and Quarters 040 are appended in Figures 10 and 11 respectively. A schematic cross section showing drill hole PMPC1289 is depicted below in Figure 12.

A global Indicated and Inferred Mineral Resource estimate of **5.46Mt @ 2.53g/t Au (443,000oz)** has been defined at the Tuart Prospect. The estimate includes a shallower component for open pit evaluation comprising **4.55Mt @ 1.75g/t Au (256,000oz)** at a 0.8g/t cut-off grade, and a deeper component for underground mining evaluation comprising **911kt @ 6.39g/t Au (187,000oz)** at a 3.0g/t cut-off grade.

Figure 12: Quarters 040 Prospect – Schematic Cross Section

Golden Road Prospect, Mount Pleasant Project

The Golden Road Prospect is located immediately west of the Homestead underground mine, and is hosted by a northeasterly trending mineralised structure which has previously been exploited by a small oxide open pit (now backfilled).

The Golden Road structure is currently being evaluated for high grade underground potential. Two (2) RC drill holes have been completed for 339m.

Results from the two holes include a down-hole intercept of :

PMPC1316 1m @ 7.17g/t Au from 152m

Drilling results are appended in Table 12, and a drilling location plan is shown in Figure 13.

Results outline the structural trend. Structural and stratigraphic interpretation will determine if any remnant high grade potential remains.

Racetrack Prospect, Mount Pleasant Project

The Racetrack deposit is located in the Southern Mount Pleasant camp and is composed of a series of north-westerly dipping mineralised lodes over a 2km strike extent. The shallow oxide extensions of mineralisation have been previously exploited, remnant sulphide mineralisation is refractory in nature. Historic metallurgical testwork indicates a high flotation recovery of sulphide hosted gold mineralisation, and effective recovery of gold through one of the oxidation processes, namely pressure oxidation, biological oxidation or ultra-fine grind oxidative leach. If justifiable, development of a future refractory processing stream will provide Paddington with an opportunity to increase longer term production.

A program of resource definition infill and extensional drilling is underway, advance for the September quarter is 5,878m of RC in 15 RC only drill holes and 47 RC pre-collars, and 5,595.9m of diamond core in 6 diamond only and 36 diamond tail drill holes.

Significant RC-Diamond tail down-hole intercepts from the program include :

PMPC1270	3.2m @ 3.39g/t Au from 261.8m
PMPC1288	0.92m @ 8.55g/t Au from 158.2m
PMPD0071	10m @ 15.1g/t Au from 62m
PMPD0071A	0.54m @ 18.0g/t Au from 188.56m 4m @ 4.36g/t Au from 239m 2.8m @ 2.11g/t Au from 310m
PMPD0072A	3.5m @ 1.49g/t Au from 104m
PMPD0073A	4m @ 4.67g/t Au from 197m
PMPD0074	1m @ 10.7g/t Au from 126m 3.7m @ 6.13g/t Au from 209.3m
PMPD0075	1.3m @ 8.48g/t Au from 186.7m 8m @ 10.6g/t Au from 203m
PMPD0076	6m @ 1.94g/t Au from 227m 5.25m @ 2.16g/t Au from 239.3m
PMPD0077	2.45m @ 4.50g/t Au from 103m 6.69m @ 6.30g/t Au from 108m 0.87m @ 8.77g/t Au from 143.5m
PMPD0078	2m @ 13.3g/t Au from 163m
PMPD0079	4m @ 6.68g/t Au from 130m 7m @ 5.04g/t Au from 152m
PMPD0080	3m @ 3.05g/t Au from 73m
PMPD0081	2.2m @ 2.98g/t Au from 286.8m 0.58m @ 16.1g/t Au from 326.5m
PMPD0083	2m @ 3.55g/t Au from 71m 10m @ 1.04g/t Au from 91m 7m @ 2.87g/t Au from 104m 8m @ 1.92g/t Au from 303m
PMPD0084	5m @ 5.45g/t Au from 115m 1.9m @ 9.51g/t Au from 159m 2.15m @ 15.1g/t Au from 166.5m
PMPD0088	5.02m @ 4.68g/t Au from 133m
PMPD0089	4.41m @ 6.69g/t Au from 134.6m
PMPD0090	3.36m @ 13.9g/t Au from 141.64m 3m @ 4.59g/t Au from 148m 4m @ 2.87g/t Au from 159m
PMPD0094	2m @ 3.57g/t Au from 38m
PMPD0095	8.2m @ 5.0g/t Au from 121.8m 1.67m @ 3.9g/t Au from 153.3m
PMPD0096	13m @ 1.32g/t Au from 47m
PMPD0102	6m @ 1.67g/t Au from 47m

	PMPC1269	2m@3./6g/t Au from 12/m	
	PMPC1272	8m @ 1.79g/t Au from 105m	
	PMPC1274	4m @ 1.58g/t Au from 83m	
_	PMPC1276	2m @ 3.17g/t Au from 70m	
	PMPC1277	9m @ 1.62g/t Au from 60m	
))	PMPC1279	7m @ 2.75g/t Au from 54m 2m @ 2.96g/t Au from 118m	
	PMPC1283	6m @ 5.58g/t Au from 41m 2m @ 5.04g/t Au from 51m	
	PMPC1284	2m @ 7.05g/t Au from 28m 4m @ 6.33g/t Au from 103m	
2	PMPC1286	3m @ 3.42g/t Au from 80m	
5	PMPC1298	5m @ 5.40g/t Au from 122m	
	PMPC1299	2m @ 3.32g/t Au from 135m	
	PMPC1302	6m @ 1.37g/t Au from 76m 7m @ 5.06g/t Au from 86m	
ý	PMPC1305	6m @ 4.14g/t Au from 144m 4m @ 3.62g/t Au from 160m	
	PMPC1307	3m @ 2.90g/t Au from 66m	
	PMPC1318	3m @ 1.58g/t Au from 45m	
A full list of drilling re	esults for RC-dia	mond tails and RC only drill holes is apper	nded in Tables 13 and
14 respectively	A drilling locatio	on plan is shown in Figure 14 Schemat	ic cross sections are
depicted below in	Figures 15 and		
	ingoios io ana		

Significant RC only down-hole intercepts from the program include :

Based on recent and ongoing RC and diamond drilling, Racetrack has a currently defined Indicated and Inferred Mineral Resource of 8,154,000t @ 2.12g/t Au (556,000oz) – see resource update section, this report. A potential higher grade underground mineralisation component is yet to be defined and will ultimately add to resource inventory.

Main and accessory ore lodes all remain open at depth. Additional upside areas include a newly interpreted high grade sub-vertical lode in the western resource area, adjacent supergene oxide resource potential, and strike extensions along the Black Flag Fault to the north of the Woolshed South Extended pit.

Another resource update will be completed at the end of CY2014.

Figure 16: Racetrack Prospect – Schematic cross section, western mineralised area

Figure 17: Racetrack Prospect – Mineralised core

Mulgarrie East Prospect, Mulgarrie Project

The Mulgarrie Project is located 20km directly east-northeast of the Paddington mill, and 30km by road. The project has produced 136,000oz of gold from previous mining activity including high grade historic exploitation of 7,000t @ 22g/t Au (5,400oz).

An area located immediately east of the Mulgarrie resource has been tested by six (6) RC drill holes and 828m. The program was aimed at assessing prospectivity of a structural/ stratigraphic target, in addition to potential for palaeochannel hosted gold mineralisation.

Results from the program (down-hole intercepts) include:

PMGC0054	1m @ 2.83g/t Au from 59m
PMGC0061	1m @ 3.61g/t Au from 106m

All drilling results from the program are appended in Table 15. A drilling location plan is appended in Figure 18.

Mulgarrie has an Indicated and Inferred Mineral Resource estimate of 2.65Mt @ 2.20g/t Au (188,000oz), and a Probable Ore Reserve of 816,000t @ 2.23g/t Au (59,000oz).

Binduli North Prospect, Binduli Project

The Binduli North Prospect is a conceptual exploration target located 30km south of Paddington within the highly prospective Binduli camp. Low-level anomalous regional aircore drilling results occur in the same stratigraphic package as the Navajo Chief-Centurion-Ben Hur mineralised trend.

Three (3) RC drill holes have been completed for 390m. No significant results were returned however drilling did intersect a broad interval of albite-sericite-pyrite altered porphyry. Evaluation of results is continuing. Drill hole details are appended in Table 16, and a drill hole location plan is shown in Figure 19.

Two styles of mineralisation are present at Binduli; the first a high grade suphide replacement mineralisation style associated with mudstone and coarse grained volcaniclastic conglomerate, and the second generally comprising large, low grade porphyry associated deposits.

Bullabulling Project

A diamond core drilling program comprising 1383.1m of PQ and HQ core in 10 holes distributed along the Bullabulling Trend was completed and reported during the June quarter. The program was designed to provide information and sample for metallurgical testwork and for geotechnical study.

Significant down-hole results from sampled core intervals include :

BJM012	9.4m @ 2.84g/t Au from 83.6m
	6m @ 1.82g/t Au from 19m
BJM024	9m @ 4.0g/t Au from 29m
	9.9m @ 1.11g/t Au from 56.1m
BJM037	2.6m @ 9.05g/t Au from 7m
BJM041	3m @ 7.05g/t Au from 35m
	11m @ 1.0g/t Au from 86m
BJ/V\U40	5m @ 1.92g/t Au from 98m

All new drilling results are appended in Table 17. A drilling location plan is appended in Figure 20.

Project evaluation work is in progress.

Table 7: Bullant Main Lode – Significant UG Diamond Drilling Results (long section view showing drill hole pierce points depicted in Figure 5)

Hole ID	ZUL East	ZUL North	ZUL RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
BUGD1019	22996.2	6131.6	5705.1	-18.3	244.5	107.3	73.65	74.7	1.05	6.34
BUGD1020	22997.0	6130.0	5704.9	-41.5	249.4	124.2	91.25	92.0	0.75	5.76
BUGD1021	22996.5	6131.3	5703.9	-51.0	233.4	166.3	132.65	133.3	0.65	5.09
BUGD1022	22996.2	6132.2	5703.9	-58.4	261.0	155.5	121.4	122.9	1.5	15.7
BUGD1023	22996.6	6130.3	5704.7	-25.6	215.6	188.6	107.05	109.5	2.45	6.96
BUGD1024	22996.9	6130.1	5704.5	-27.8	205.6	236.3	155.45	156.0	0.55	4.85
BUGD1025	22996.2	6199.0	5694.7	-53.4	235.1	155.4	121.0	125.6	4.6	10.3
BUGD1026	22996.4	6199.1	5694.2	-10.6	248.4	93	72.2	73.6	1.4	8.82
BUGD1027	22995.8	6199.4	5695.4	-58.0	267.1	152.4				NSR
BUGD1028	22995.2	6199.7	5695.0	-45.7	267.1	123.6	17.3	18.3	1.0	4.21
BUGD1029	22995.9	6200.3	5694.5	-52.5	299.5	161.2	115.7	117.0	1.3	18.1
							120.0	121.0	1.0	3.68
BUGD1030	22996.2	6201.6	5694.2	-36.2	299.5	119.4	82.25	83.7	1.45	7.46
BUGD1031	22996.2	6201.7	5694.3	-10.8	299.5	101.4				NSR
BUGD1032	22989.5	6291.2	5681.9	-55.2	257.3	137.3	54.7	55.1	0.4	10.7
							98.55	103.80	5.25	7.50
BUGD1033	22989.4	6291.2	5682.4	-35.7	257.3	99	71.0	72.4	1.4	9.24
BUGD1034	22989.0	6291.1	5683.3	-2.6	257.3	83.4	56.55	57.1	0.55	4.52
BUGD1035	22989.6	6292.4	5682.0	-51.2	293.1	146.5	82.0	83.0	1.0	3.77
							102.0	103.0	1.0	3.82
BUGD1036	22989.3	6292.6	5682.4	-31.2	257.3	108.5	76.7	77.7	1.0	11.3
BUGD1037	22989.3	6292.9	5683.2	-51.2	293.1	96.05	48.70	49.25	0.55	6.43
							68.1	70.6	2.5	14.4
BUGD1038	22983.5	6378.0	5669.9	-49.3	254.6	140.5	94.3	94.8	0.5	3.52
BUGD1039	22983.2	6378.0	5670.5	-24.8	254.6	107.5	72.0	73.0	1.0	4.90
BUGD1040	22983.0	6377.9	5671.6	7.5	254.6	98.5	65.7	69.7	4.0	7.80
BUGD1041	22983.4	6379.4	5669.9	-47.5	286.1	149.5	91.1	93.1	2.0	11.5
BUGD1042	22983.2	6379.2	5671.6	-23.3	286.1	110.5	76.5	77.0	0.5	5.1
							94.9	95.5	0.6	4.59
BUGD1043	22983.6	6380.2	5669.9	6.9	286.1	110.4	75.5	77.0	1.5	10.2
BUGD1044	22983.4	6380.3	5670.5	-38.6	309.6	141.0				NSR
BUGD1045	22983.4	6380.3	5671.5	-18.3	309.6	136.0	92.3	92.6	0.3	7.22
BUGD1046	22983.6	6379.0	5669.7	5.4	309.6	122.4				NSR
BUGD1047	22983.6	6380.2	5669.6	-64.0	286.1	215.0	125.0	133.0	8.0	5.95
		-					164.0	165.0	1.0	6.92
BUGD1049	22979.4	6550.1	5645.8	18.3	225.3	143.4	21.45	21.9	0.5	4.15
							102.5	103.0	0.5	9.49
							108.0	109.2	1.2	13.8
Analysis by 30g Fi Results compilec Maximum of 2m i	ire Assay 1 by using a 3.5 Internal dilutio	g/t cut-off gra n, minimum int	de, no top-cu erval of 0.3m	t grade						

NSR - No significant results

Table 8: Homestead Near Mine Targets – Significant UG Diamond Drilling Results

Hole ID	MGA East	MGA North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
HUD1052	330,288.1	6,619,826.4	56.4	-22.5	93.2	252				NSR
HUD1053	330,288.1	6,619,826.4	56.4	-22.5	86.1	252	14	16	2	7.73
HUD1054	330,288.1	6,619,826.4	56.4	22.8	91.3	147				NSR
HUD1059	330,447.9	6,619,999.9	105.6	0	60.5	183				NSR
HUD1060	329,930.5	6,619,771.8	28.0	14.1	282	114.1				NSR
HUD1061	329,930.5	6,619,771.8	28.0	24	317	80.2				NSR
HUD1062	330,072.8	6,619,925.1	26.5	6.5	187	329.9	86	87	1	5.18
HUD1063	329,933.6	6,619,808.0	27.5	-10	7	395.8	389	390	1	4.31
Analysis by 3	0g Fire Assay									
Results comp	Results compiled by using a 3.5 g/t cut-off grade, no top-cut grade									
Maximum of	2m internal c	dilution, minimum i	nterval of	0.3m						

Figure 6: Homestead Near Mine Targets- Drill hole location plan

Figure 7: Homestead Near Mine Targets – Drill hole location plan – Black Flag South

Table 9: Black Flag/ Black Flag West - Significant RC Drilling Results

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPC1294	330,583.2	6,619,866.6	312.1	-73	264	186	13	29	16	1.92
							52	53	1	1.28
							81	82	1	2.68
							89	90	1	0.86
							102	103	1	3.55
							167	168	1	0.84
							172	175	3	2.68
PMPC1295	330,591.8	6,619,866.9	312.0	-83	264	204	0	5	5	164
							10	16	6	1.37
							23	24	1	1.12
							29	36	7	1.11
							43	60	17	1.37
							91	92	1	1.29
							95	96	1	1.68
							100	101	1	1.80
							186	187	1	1.35
							195	196	1	1.19
Analysis by 30g F Results compiled Maximum of 2m	ire Assay d by using a 0.8 internal dilution	g/t cut-off grad n, minimum inte	de, no top- rv al of 1.0	-cut grade m						
NISP No signific	ant regults									

Figure 8: Black Flag/ Black Flag West – Drill hole location plan

Table 10: Tuart 060 Hangingwall Vein – Significant RC Drilling Results

Hole ID	MGA East	MGA North	RL	Dip	Azi	Depth	From (m)	To (m)	H Width(I	Grade g/t Au
PMPC1296	329,830.3	6,621,741.4	375.5	-60	150	186	18	19	1	0.82**
							48	50	2	1.29
							90	92	2	2.15
							98	99	1	1.01
PMPC1297	329,810.8	6,621,777.2	374.9	-60	150	216	111	113	2	1.80
							134	135	1	9.27
							140	143	3	3.46
							153	156	3	2.20
							209	210	1	7.55
							213	216	3	1.14
PMPC1309	329,787.4	6,621,757.1	374.8	-60	150	222	107	108	1	3.51
							133	136	3	9.20
							139	140	1	1.17
PMPC1310	329,807.3	6,621,720.4	375.9	-60	150	198	4	5	1	0.82**
							17	19	2	0.95**
							49	50	1	2.41
							55	56	1	5.93
							113	114	1	0.90
							186	189	3	4.48
PMPC1311	329,782.5	6,621,703.9	376.4	-53	150	145	82	84	2	2.13
							91	92	1	1.20
PMPC1312	329,770.5	6,621,723.5	375.7	-60	150	219	81	82	1	2.43
							116	117	1	1.05
							171	172	1	0.80
PMPC1313	329,741.6	6,621,715.7	375.6	-53	150	228	221	222	1	0.85
PMPC1314	329,725.1	6,621,747.1	374.3	-56	150	246	0	1	1	2.00**
							214	215	1	0.84
PMPC1315	329,832.5	6,621,797.2	375.3	-60	150	240	20	21	1	1.23**
							120	122	2	1.13
							135	136	1	1.11
							141	142	1	2.51
							154	157	3	1.10
							180	181	1	2.73
							224	228	4	3.73
							239	240	1	1.40
Analysis by 30g Results compile Maximum of 2m NSR - No signific ** - Tailings	Fire Assay ed by using a 0.8 n internal dilutio cant results	g/t cut-off grade n, minimum inter	e, no top-c val of 1.0m	ut grade						

Figure 10: Tuart 060 Hangingwall Vein – Drill hole location plan

Hole ID	MGA East	MGA North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPC1289	329,519.8	6,620,735.0	351.9	-60	0	228	45	46	1	1.12
							220	223	3	33.2
PMPC1290	329,449.4	6,620,804.8	351.9	-60	90.0	156	90	91	1	1.43
PMPC1291	329,249.6	6,620,705.4	352.9	-60	180.0	60	39	43	4	0.79
PMPC1292	329,229.7	6,620,744.7	352.6	-60	180.0	60				NSR
PMPC1293	329,269.7	6,620,745.4	352.5	-60	180.0	60				NSR
Analysis by 30	g Fire Assay									
Results compi	led by using a	0.8 g/t cut-off gro	ide, no top	-cut grade	•					
Maximum of 2	m internal dilu?	ution , minimum int	erval of 1r	n						
NSR - No signi	ficant results									

Table 12:	Golden	Road -	Significant	RC	Drilling	Results
-----------	--------	--------	-------------	----	----------	---------

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au	
PMPC1316	329,907.2	6,620,018.0	351.9	-53	145	177	42	43	1.0	0.84	
							152	153	1.0	7.17	
							157	159	2.0	2.31	
PMPC1317	329,908.2	6,620,016.5	351.9	-61	145	162	97	98	1.0	0.96	
							130	133	3.0	1.19	
Analysis by 30g	g Fire Assay										
Results compil	ed by using a 0.3	8 g/t cut-off grad	de, no top-	cut grade							
Maximum of 2	Maximum of 2m internal dilution, minimum interval of 1.0m										
NSR - No signif	icant results										

Table 13: Racetrack Prospect-Significant RC-Diamond Tail Drilling Results

Hole ID	MGA East	MGA North	RL	Dip	Azi	Depth	Precollar Depth	From (m)	To (m)	DH Width(m	Grade g/t Au
PMPC1270	330,879.3	6,618,402.3	350.8	-60	146	289	180	88	89	1	1.22
								94	96	2	1.83
								108	109	1	1.54
								112	120	8	0.86
								129	130	1	0.89
								261.8	265	3.2	3.39
PMPC1282	330,204.4	6,617,932.9	347.4	-60	146	284.2	126	28	32	4	1.11
								199	200	1	3.98
PMPC1285	330,936.8	6,618,534.9	351.1	-60	146	222.2	102	152	153	1	4.59
								161	162	1	1.66
								174	175	1	4.78
								206	207	1	1.44
								211	212	1	4.03
								217	218	1	2.08
PMPC1288	331,434.8	6,618,651.0	367.8	-60	146	201.2	150	61	62	1	2.79
								75	76	1	2.19
								82	83	1	0.85
								87	88	1	1.70
								119	120	1	0.82
								158.18	159.1	0.92	8.55
PMPC1303	330,928.7	6,618,509.7	351.2	-60	146	329.1	123	77	78	1	0.84
PMPD0071A	330,989.7	6,618,454.3	350.0	-60	146	312.8	0	96	97	1	1.25
								103	104	1	1.52
								116	117	1	3.05
								131	131.3	0.3	2.22
								188.56	189.1	0.54	18.0
								210	211	1	2.80
								219	223	4	1.51
								235	236	1	1.75
								239	243	4	4.36
								247	248	1	3.30
								258.9	259.5	0.6	5.00
								310	312.8	2.8	2.11
PMPD0072A	330,791.8	6,618,313.7	347.8	-55	146	273.7	0	104	107.5	3.5	1.49
								147	148	1	1.18
								213	214	1	4.64
								240	240.5	0.5	1.65
PMPD0073A	330,873.2	6,618,341.7	348.7	-55	146	285.7	77.5	84	85		2.59
								197	201	4	4.67
								212	213	1	1.11
PMPD0074	330,947.6	6,618,370.9	347.9	-56	146	241	144	69	/0		1.83
								110	112	2	1.31
								118	119		1.02
								126	127		10.7
								198	199.4	1.4	2.85
								209.3	213	3./	6.13
1					I	1	1	219	220		1.35

Results compiled by using a 0.8 g/t cut-off grade, no top-cut grade

Maximum of 2m internal dilution, minimum interval of 0.3m

Table 13: Racetrack Prospect - Significant RC-Diamond Tail Drilling Results (Cont.)

Hole ID	MGA East	MGA North	RL	Dip	Azi	Depth	Precollar Depth	From (m)	To (m)	DH Width(m	Grade g/t Au
PMPD0075	330,987.0	6,618,384.5	348.2	-53	146	243	150	62	63	1	0.92
								113	117	4	1.33
								138	139	1	2.82
								186.7	188	1.3	8.48
								193	194	1	0.90
								203	211	8	10.6
PMPD0076	330,967.3	6,618,419.2	349.4	-60	146	297.1	126	1	2	1	7.49
								60	61	1	1.01
								78	79	1	1.07
								94	95	1	2.21
								104	105	1	1.74
								108	111	3	1.40
								130	130.6	0.6	1.72
								137	138	1	7.00
								158	159	1	0.80
								181	182	1	1.70
								196	197	1	5.09
								227	233	6	1.94
								234.72	237	2.28	1.12
								239.3	244.55	5.25	2.16
PMPD0077	331,289.9	6,618,545.1	349.8	-55	146	207	102	41	42	1	1.37
								103	105.45	2.45	4.50
								108	114.69	6.69	6.30
								143.5	144.37	0.87	8.77
								194.36	194.77	0.41	3.18
PMPD0078	331,280.4	6,618,586.1	351.1	-55	146	206.91	102	115	115.3	0.3	1.80
								140	141	1	1.34
								163	165	2	13.3
PMPD0079	331,259.9	6,618,548.4	349.9	-55	146	209.9	90	121.8	122.8	1	1.60
								130	134	4	6.68
								152	159	7	5.04
PMPD0080	330,990.4	6,618,526.6	351.2	-60	146	351.3	150	50	51	1	1.74
								73	76	3	3.05
								91	93	2	1.12
								100	101	1	0.84
								112	113	1	0.88
								136	137	1	1.67
								160	161	1	4.80
								225.7	226	0.3	0.90
								294	299.5	5.5	1.71
PMPD0081	331,078.8	6,618,608.6	351.0	-55	146	327.1	162	83	88	5	1.55
								95	96	1	2.74
								264	264.51	0.51	1.33
								286.8	289	2.2	2.98
						1		306 50	2071	0.58	14.1

Results compiled by using a 0.8 g/t cut-off grade, no top-cut grade

Maximum of 2m internal dilution, minimum interval of 0.3m

Table 13: Racetrack Prospect-Significant RC-Diamond Tail Drilling Results (Cont.)

Hole ID	MGA East	MGA North	RL	Dip	Azi	Depth	Precollar Depth	From (m)	To (m)	DH Width(m	Grade g/t Au
PMPD0082	330,262.4	6,618,070.5	347.3	-60	146	300.3	150	26	28	2	1.38
								31	35	4	1.40
								223	225	2	1.39
								248	251.38	3.38	0.74
								255	261	6	0.74
								292	293	1	1.23
PMPD0083	331,127.3	6,618,682.1	357.2	-60	146	333.1	168	1	2	1	1.09
								71	73	2	3.55
								81	86	5	0.73
								91	101	10	1.04
								104	111	7	2.87
								303	311	8	1.92
PMPD0084	331,398.3	6,618,629.6	367.8	-55	146	240.1	126	16	17	1	1.36
								71	72	1	0.91
								111	112	1	2.85
								115	120	5	5.45
								159	160.9	1.9	9.51
								166.45	168.6	2.15	15.1
								223	225	2	1.22
PMPD0086	331330.6	6618585.7	358.6	-60	146	228.4	78	119	120	1	1.59
								146	148	2	1.43
								151	156.3	5.3	4.17
								181	182	1	7.60
								190	191	1	1.08
								203	204	1	1.13
PMPD0088	331,240.9	6,618,501.0	349.6	-70	146	171.3	84	117	117.45	0.45	3.29
								133	138.02	5.02	4.68
PMPD0089	331,241.5	6,618,500.0	349.5	-55	146	189.2	78	66	67	1	1.54
								109	110	1	5.48
								129	130	1	3.23
								134.55	138.96	4.41	6.69
PMPD0090	331,219.2	6,618,498.1	349.3	-70	146	330.65	72	141.64	145	3.36	13.9
								148	151	3	4.59
								159	163	4	2.87
								271.98	273	1.02	0.99
PMPD0093	331,217,1	6.618.464.8	349.1	-55	146	189.3	78	63	65	2	1.16
		-,,			-			69	70	1	1.55
								101	101.3	0.3	1.10
PMPD0094	331.303.0	6,618.555.7	350.9	-55	146	180.1	72	39	40	1	4.35
	,	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						79	79.5	0.5	5.47
								101.07	105	3.93	19.8
								107.54	108	0.46	1.61
								140.28	141	0.72	7.50
Analysis by 30a	Fire Assav			•	•	•			:		

Results compiled by using a 0.8 g/t cut-off grade, no top-cut grade

Maximum of 2m internal dilution, minimum interval of 0.3m

Table 13: Racetrack Prospect-Significant RC-Diamond Tail Drilling Results (Cont.)

Hole ID MGA East MGA North RL Dip Azi Depth Precollar Depth From (m) To (m) DH Width(m) Grade g/t Au 47 48 3.57 PMPD0095 331,276.6 6,618,560.2 350.2 -60 146 194.6 78 121.8 130 8.2 5.0 153.33 155 1.67 3.90 181 182 1.76 1 2 0.87 6,618,431.5 349.2 1 PMPD0096 331,005.4 -55 146 260 66 47 60 13 1.32 P<u>MPD0097</u> 57 58 1.96 330,986.1 6,618,421,1 349.4 -60 146 270 78 1 79 80 1.30 330,914.1 234.2 1 PMPD0098 6,618,455.0 349.7 -60 146 102 331<u>,386.8</u> 17 18 1.16 PMPD0101 6,618,607.9 367.1 -55 146 190 84 1 9 10 1.05 PMPD0102 331,364.0 6,618,605.2 367.1 -70 146 190 72 23 24 0.80 1 47 53 6 1.67 57 58 1 3.96 62 65 3 1.08 1.06 45 46 PMPD0103 331,364.7 6,618,604.3 367.1 -55 146 190 72 19 1.14 20 PMPD0106 331.347.8 6,618,581.7 359.1 -70 140 180 48 58 59 2.23 331,306.6 6,618,585.0 358.4 146 190 PMPD0109 -60 66 59 60 1.16 90 PMPD0111 330,783.2 6,618,284.6 347.6 -46 155 220 73 74 1.03 35 2.01 34 PMPD0112 330,781.4 6,618,283.8 347.6 -54 156 312 72 6,618,620.1 356.1 49 50 3.01 PMPD0113 331,476.8 146 142 60 -60 Analysis by 30g Fire Assay Results compiled by using a 0.8 g/t cut-off grade, no top-cut grade Maximum of 2m internal dilution, minimum interval of 0.3m NSR - No significant results

Hole ID	MGA Fast	MGA North	RI	Din	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade a/t Au
PMPD0071	330.991.9	6.618.450.4	349.7	-60	146	150	45	46	1	3.08
	000,771	0,010,10011	0.777				40	70	10	15.1
							<u> </u>	77	10	2 30
							102	104	2	1.09
							102	104	1	1.07
	330 791 8	6 6 18 313 7	347.8	-55	146	150	120	/3	1	1.14
1 MII D0072	000,771.0	0.010.010./	0.140	-55	140	150	75	76	1	2 11
							97	98	1	5.05
							101	103	2	7.15
PMPD0073	330.872.0	6.618.343.1	348.7	-55	146	150	33	36	3	1.73
	000,0, 210		0.00				67	72	5	1.56
							87	88	1	0.98
							112	113	1	2.46
PMPC1268	330,910.7	6,618,427.0	349.6	-60	146	157	56	57	1	0.85
							67	68	1	4.26
							111	115	4	1.57
							125	130	5	0.99
							135	136	1	1.08
							142	143	1	1.53
PMPC1269	330,889.2	6,618,459.9	349.9	-60	146	138	68	69	1	0.94
							96	97	1	1.25
							102	107	5	1.05
							115	116	1	1.21
							127	129	2	3.76
PMPC1271	330,938.7	6.618.458.4	349.8	-60	146	156	61	64	3	1.49
							106	107	1	0.97
							126	127		1.38
				10		1.50	3	132		1.0/
PMPC12/2	331,046.0	6,618,586.0	351.1	-60	146	150	3/	38		1.25
							101	102		1.36
DMDC1070	220.022.0	((10 000 0	2.40.1	(0	1.47	100	105		8	1./9
PMPC12/3	330,933.0	6,618,392.8	348.1	-60	146	120	67	/3	4	1.24
							<u>88</u>	0/	1	0.80
PMPC1274	331 101 6	6 6 18 651 1	351.2	-40	146	138	75	70	1	1.00
1 /011 C12/4	551,101.0	0,010,004.4	JJ1.Z	-00	140	150	70	//	1	1.70
							83	8/	4	1.58
							9/	99	2	1.52
	200 775 0	((10 110 0	240.0	10	147	100	102	104	2	1.87
PMPC12/5	327.//5.8	6,618,112.0	<u>348.8</u>	-60	146	152	20	20	1	INSK
FMFC12/6	330,103./	0,01/,/27.9	34/.3	-60	146	150	57 57	<u>کې</u> ۲0	1	1.55
							5/	<u>30</u> 25	1	1.20
							<u>64</u> 70	00 70		2.17
							<u> </u>	<u>//</u>	1	0.1/ 0.45
Analysis by 30a	Fire Assav				I	L	04	00	I I	2.00
Results compile	ed by using a 0.8	a/t cut-off arad	e no top-	cut arade						
Maximum of 2m	n internal dilutio	n minimum inter	val of 1 Or	n						
NSR - No signific	cant results	,								

Table 14: Racetrack Prospect – Significant RC Drilling Results

Table 14: Racetrack Prospect – Significant RC Drilling Results (Cont.)

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPC1277	330,000.6	6,617,878.6	347.7	-60	146	90	60	69	9	1.62
							82	83	1	1.08
PMPC1278	330,174,5	6.617.767.3	347.1	-60	146	120				NSR
PMPC1279	330,147.1	6,617,808.7	347.3	-60	146	162	47	48	1	1.76
							54	61	7	2.75
							72	74	2	1.41
							78	79	1	1.14
							87	88	1	1.64
							118	120	2	2.96
							149	151	2	1.76
PMPC1280	330,137.3	6,617,779.3	347.3	-60	146	162	35	36	1	1.85
							65	66	1	1.25
							151	152	1	1.14
PMPC1281	330,188.7	6.617.818.1	347.2	-60	146	198	94	97	3	1.35
PMPC1283	330,182.3	6,617,967.1	347.3	-60	146	90	41	47	6	5.58
							51	53	2	5.04
							82	83	1	1.18
PMPC1284	331.511.8	6.618.607.7	349.4	-60	146	132	28	30	2	7.05
							92	93	1	3.44
							103	107	4	6.33
PMPC1286	331,208.3	6.618.426.3	347.8	-60	146	162	80	83	3	3.42
PMPC1287	331.084.7	6.618.735.7	357.2	-60	146	198	69	70	1	1.07
							162	163	1	0.81
							170	171	1	0.84
							175	176	1	1.18
							183	184	1	1.26
PMPC1298	331,455.0	6.618.618.2	357.5	-60	146	162	46	47	1	4.59
							122	127	5	5.40
PMPC1299	331,486.7	6.618.644.9	357.5	-60	146	180	24	25	1	1.57
							36	37	1	1.55
							135	137	2	3.32
							156	157	1	0.82
							168	169	1	3.08
PMPC1300	331.203.4	6.618.413.4	347.1	-70	146	144	113	114	1	2.38
PMPC1301	331,204.4	6.618.412.1	346.9	-55	146	144	59	60	1	0.93
							71	75	4	1.41
							110	111	1	0.89
							133	134	1	2.24
PMPC1302	330.962.6	6.618.456.5	350.0	-60	146	114	76	82	6	1.37
							86	93	7	5.06
PMPC1304	330,232.9	6,617,778.0	347.0	-60	146	114	13	14	1	5.69
							36	37	1	1.25
							42	43	1	0.80

Maximum of 2m internal dilution, minimum interval of 1.0m

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPC1305	330,190.1	6,617,840.0	347.2	-60	146	168	75	76	1	3.13
							104	105	1	2.25
							144	150	6	4.14
							160	164	4	3.62
PMPC1306	330.209.5	6.617.739.9	347.1	-60	146	114				NSR
PMPC1307	330,186.5	6,617,774.8	347.2	-60	146	138	53	54	1	1.43
							66	69	3	2.90
PMPC1308	331,106.2	6,618,685.9	357.3	-60	146	108	102	103	1	0.81
							106	107	1	0.80
PMPC1318	330,203.7	6,617,971.0	347.5	-70	150	60	41	42	1	0.98
							45	48	3	1.58
							56	59	3	1.13
PMPC1319	330,176.2	6,617,978.4	347.4	-70	150	66	50	52	2	1.43
PMPC1320	330,123.5	6.617.990.2	347.5	-70	150	72	44	46	2	6.83
PMPC1321	330,096.5	6,617,956.7	347.5	-70	150	78	43	45	2	12.6
							55	56	1	1.28
							73	74	1	1.09
PMPC1322	330,069.9	6.617.922.2	347.5	-70	150	54	40	42	2	7.42
PMPC1323	330,020.5	6,618,006.2	347.8	-60	150	102	57	58	1	0.84
PMPC1324	330,036.1	6,618,019,9	347.7	-60	150	102	50	51	1	1.94
PMPC1325	329,987.6	6,617,984.9	347.8	-60	150	96	1	2	1	1.52
							60	61	1	0.84
Analysis by 30g	Fire Assay									
Results compile	ed by using a 0.8	3 g/t cut-off grad	e, no top-o	cut grade						
	a tall a second attracts	and the second sec								

Table 14: Racetrack Prospect – Significant RC Drilling Results (Cont.)

Maximum of 2m internal dilution, minimum interval of 1.0m NSR - No significant results

Table 15: Mulgarrie East – Significant RC Drilling Results

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	H Width(Grade g/t Au			
PMGC0052	357,554.4	6,638,984.2	365.4	-60	352	96				NSR			
PMGC0053	357,562.0	6,638,922.8	365.2	-60	352	90				NSR			
PMGC0054	357,569.9	6,638,861.5	365.1	-60	352	204	59	60	1	2.83			
PMGC0055	357,577.9	6,638,799.6	364.8	-60	352	174	88	89	1	1.71			
PMGC0056	357,587.8	6,638,744.1	364.7	-60	352	144				NSR			
PMGC0061	357,518.9	6,638,790.8	364.6	-60	352	120	106	107	1	3.61			
Analysis by 30g F	ire Assay												
Results compiled	d by using a 0.8	8 g/t cut-off grad	de, no top	-cut grade									
Maximum of 2m	Maximum of 2m internal dilution , minimum interval of 1 m												
NSR - No signific	ant results												

Figure 18: Mulgarrie East – Drill hole location plan

Table 16: Binduli North Prospect-Significant RC Drilling Results

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au			
PJIC309	342,164.3	6,594,788.7	345.9	-60	50.0	150				NSR			
PJIC310	342,080.1	6,594,732.4	346.3	-60	50.0	120				NSR			
PJIC311	342,009.4	6,594,655.4	346.7	-60	50.0	120				NSR			
Analysis by 50)g Fire Assay												
Results comp	Results compiled by using a 0.7 g/t cut-off grade, no top-cut grade												
Maximum of 2	Maximum of 2m internal dilution, minimum interval of 0.3m												

Histor Drilling Deliver Drilling Deliver

Figure 19: Binduli North Prospect – Drill hole location plan

Hole_ID	AMG_East	t AMG_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
BJM009	299777.6	6566481.0	428.7	-68	270	145.9	82.0	86.0	4.0	0.96
BJM012	299927.6	6566817.8	431.5	-66	270	204.0	35.0	41.0	6.0	0.95
							83.6	93.0	9.4	2.84
BJM015	299687.2	6566929.5	430.6	-70	270	83.5	50.1	52.8	2.7	1.60
BJM018	299737.3	6567198.8	434.8	-77	270	97.9	42.4	45.0	2.6	1.24
							66.0	68.0	2.0	1.18
BJM019	299788.1	6567275.6	435.2	-67	90	156.7	27.6	31.6	4.0	1.28
							133.0	138.0	5.0	0.99
BJM024	299992.3	6568233.8	452.0	-64	270	140.0	19.0	25.0	6.0	1.82
							29.0	38.0	9.0	4.00
BJM032	299858.13	6570778.97	434.64	-60	90	139.9	56.1	66.0	9.9	1.11
							68.4	71.0	2.6	0.96
							136.1	139.7	3.6	1.75
BJM033	299845.81	6570574.23	437.1	-60	90	120.2	79.0	81.0	2.0	2.85
BJM035	299713.2	6567823.4	441.2	-60	90	170.0	125.0	129.0	4.0	1.98
BJM037	299925.7	6568075.4	449.5	-79	90	135.0	7.0	9.6	2.6	9.05
							35.0	37.6	2.6	1.08
							109.0	111.0	2.0	0.52
BJM039	299969.4	6569501.3	446.4	-57	90	75.0	27.0	30.0	3.0	0.53
							31.0	33.0	2.0	1.10
							33.3	36.0	2.7	2.14
BJM041	299689.2	6566424.5	428.3	-75	270	174.9	35.0	38.0	3.0	7.05
							159.0	164.0	5.0	1.08
BJM045	299753.4	6567152.6	435.2	-75	90	110.2	35.0	37.0	2.0	0.64
BJM046	299689.6	6567476.2	436.8	-71	90	131.7	19.0	25.0	6.0	1.46
							38.0	40.0	2.0	0.59
							41.0	44.0	3.0	1.12
							86.0	97.0	11.0	1.00
							98.0	103.0	5.0	1.92
BJM047	299710.5	6564432.4	419.7	-60	90	90.0	37.0	39.0	2.0	1.71
							42.7	47.0	4.4	1.26
							50.0	57.0	7.0	0.85
BJM049	299905.6	6571048.6	431.2	-50	90	135.6	45.0	47.0	2.0	1.29
							47.2	51.0	3.8	1.03
							52.0	56.0	4.0	1.17
							60.0	63.7	3.7	1.28
							69.0	72.0	3.0	0.90
Results com Maximum o	piled by using f 2m internal c	a 0.5g/t cut-o dilution, minimu	ff grade, n m interv al	o top-cu of 2m	t grade					

Table 17: Bullabulling Project – Significant Diamond Drilling Results

Figure 20: Bullabulling Project – Drill hole location plan

			_	
Table	18:	Paddington	Tenement	Listing

	Tenement	Status	Holders	Project	Anniversary	Term	Expiry	Area
	G24/11	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	02-Sep-14	21 Years (Renew ed)	01-Sep-30	9.295 HA
	G24/12	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	02-Sep-14	21 Years (Renew ed)	01-Sep-30	3.7815 HA
	G24/19	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	17-Oct-14	21 Years (Renewed)	16-Oct-31	4.803 HA
	G24/20	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	17-Oct-14	21 Years (Renewed)	16-Oct-31	6.115 HA
\square	G24/3	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	17-Mar-15	21 Years (Extended)	16-Mar-28	4.8005 HA
	G24/38	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	23-Aug-15	21 Years	22-Aug-15	8.814 HA
	G24/8	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	25-Nov-14	21 Years (Renewed)	24-Nov-30	4.503 HA
65	G24/9	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	25-Nov-14	21 Years (Renewed)	24-Nov-30	6.1985 HA
	L16/48	Live	PADDINGTON GOLD PTY LIMITED	CARBINE ZULEIKA	07-Apr-15	5 Years (Renew ed)	06-Apr-17	15 HA
20	L16/74	Live	PADDINGTON GOLD PTY LIMITED	CARBINE ZULEIKA	07-Mar-15	21 Years	06-Mar-24	30 HA
UJ.	L16/87	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	CARBINE	20-Aug-15	21 Years	19-Aug-33	14 HA
	L16/89	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	CARBINE	03-Sep-14	21 Years	02-Sep-33	5 HA
	L16/90	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	CARBINE	03-Sep-14	21 Years	02-Sep-33	18 HA
	L24/109	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	20-Sep-14	5 Years (Renewed)	19-Sep-18	0.04 HA
	L24/110	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	20-Sep-14	5 Years (Renew ed)	19-Sep-18	1.4 HA
GDI	L24/111	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	25-Oct-14	5 Years (Renew ed)	24-Oct-18	0.04 HA
(LU)	L24/112	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	22-Dec-14	5 Years (Renew ed)	21-Dec-18	0.35 HA
	L24/119	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	10-Apr-15	5 Years (Renew ed)	09-Apr-19	17 HA
	L24/125	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	14-Jun-15	5 Years (Renew ed)	13-Jun-19	5.5 HA
	L24/135	Live	PADDINGTON GOLD PTY LIMITED	MT PLEA SANT	28-Mar-15	5 Years (Renewed)	27-Mar-16	7.8 HA
	L24/136	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	28-Mar-15	5 Years (Renew ed)	27-Mar-16	8.25 HA
	L24/144	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	01-May-15	5 Years (Renew ed)	30-Apr-16	8.34 HA
(())	L24/145	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	01-May-15	5 Years (Renew ed)	30-Apr-16	15.2 HA
	L24/155	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	01-Oct-14	5 Years (Renew ed)	30-Sep-18	1.148 HA
	L24/163	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	15-Oct-14	5 Years (Renew ed)	14-Oct-16	45.123 HA
(1)	L24/164	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	05-Dec-14	5 Years (Renew ed)	04-Dec-16	17.82 HA
	L24/171	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	20-Aug-15	21 Years	19-Aug-33	3.28 HA
	L24/173	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	20-Jan-15	5 Years (Renew ed)	19-Jan-18	1 HA
	<u>L2</u> 4/177	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	17-Aug-15	21 Years	16-Aug-33	22 HA
	L24/178	Live	PADDINGTON GOLD PTY LIMITED	MT PLEA SANT	10-Sep-14	5 Years (Renew ed)	09-Sep-19	51 HA
	L24/179	Live	PADDINGTON GOLD PTY LIMITED	GOLDEN CITIES	17-Aug-15	21 Years	16-Aug-33	24.7 HA
	L24/180	Live	PADDINGTON GOLD PTY LIMITED	GOLDEN CITIES	17-Aug-15	21 Years	16-Aug-33	10.6 HA
	L24/19	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	23-Oct-14	21 Years	19-Oct-25	43.09 HA
	L24/196	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	04-May-15	21 Years	03-May-30	2.4172 HA
	L24/198	Live	PADDINGTON GOLD PTY LIMITED	JANET IVEY JV	11-Jan-15	21 Years	10-Jan-32	44.16 HA
	L24/199	Live	PADDINGTON GOLD PTY LIMITED	JANET IVEY JV	17-Aug-15	21 Years	16-Aug-33	2.689 HA
	L24/20	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	23-Oct-14	21 Years	19-Oct-25	1 HA
	L24/200	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	13-Sep-14	21 Years	12-Sep-33	2.6084 HA
	L24/201	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	13-Sep-14	21 Years	12-Sep-33	6.2027 HA
	L24/207	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	26-Jun-15	21 Years	25-Jun-34	14.4037 HA

	Table 18:	Paddington	Tenement	Listing	(Cont.)
--	-----------	------------	----------	---------	---------

	Tenement	Status	Holders	Project	Anniversary	Term	Expiry	Area
\gg	L24/208	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	26-Jun-15	21 Years	25-Jun-34	10.2685 HA
	L24/29	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	22-Jan-15	21 Years	19-Oct-25	9.6 HA
	L24/34	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	04-Jun-15	21 Years	19-Oct-25	14 HA
	L24/54	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	27-Oct-14	5 Years (Renew ed)	26-Oct-17	11.54 HA
	L24/63	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	23-Sep-14	5 Years (Renew ed)	22-Sep-16	27.4 HA
(\bigcirc)	L24/64	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	09-Jun-15	5 Years (Renew ed)	08-Jun-17	0.01 HA
\bigcirc	L24/65	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	09-Jun-15	5 Years (Renew ed)	08-Jun-17	4 HA
	L24/69	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	23-Jun-15	5 Years (Renew ed)	22-Jun-17	0.01 HA
65	L24/88	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	05-May-15	5 Years (Renew ed)	04-May-18	3.36 HA
UD	L26/197	Live	BELLAMEL MINING PTY LTD	Binduli	03-Dec-14	5 Years (Renew ed)	02-Dec-18	1.951 HA
20	M27/178	Live	NORTON GOLD FIELDS LIMITED	MULGARRIE	29-Dec-14	21 Years	28-Dec-14	6.8205 HA
\bigcirc	L26/202	Live	BELLAMEL MINING PTY LTD	Binduli	10-Apr-15	5 Years (Renew ed)	09-Apr-17	0.859 HA
	L26/203	Live	BELLAMEL MINING PTY LTD	Binduli	23-Jan-15	5 Years (Renew ed)	22-Jan-18	5.3476 HA
	L26/204	Live	BELLAMEL MINING PTY LTD	Binduli	13-Aug-15	5 Years (Renew ed)	12-Aug-17	20.0634 HA
	L26/247	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	04-May-15	21 Years	03-May-30	8.2888 HA
	L26/253	Live	PADDINGTON GOLD PTY LIMITED	JANET IVEY JV	17-Aug-15	21 Years	16-Aug-33	20.3 HA
	M15/1745	Live	BELLAMEL MINING PTY LTD	BINDULI	11-Dec-14	21 Years	10-Dec-33	5 HA
(D)	M16/106	Live	PADDINGTON GOLD PTY LIMITED	CARBINE ZULEIKA	15-Feb-15	21 Years (Renew ed)	14-Feb-31	542.2 HA
60	M16/150	Live	PADDINGTON GOLD PTY LIMITED	CARBINE EAST (CB ZL)	03-Aug-15	21 Years (Renew ed)	02-Aug-32	878.55 HA
	M16/156	Live	PADDINGTON GOLD PTY LIMITED	CARBINE ZULEIKA	21-Sep-14	21 Years (Renew ed)	20-Sep-32	97.72 HA
	M16/222	Live	NORTON GOLD FIELDS LIMITED	KUNDANA	12-Aug-15	21 Years	11-Aug-29	330 HA
\bigcirc	M16/23	Live	PADDINGTON GOLD PTY LIMITED	CARBINE / BALGARRIE	24-Jul-15	21 Years (Renew ed)	23-Jul-28	196.05 HA
\bigcirc	M16/243	Live	PADDINGTON GOLD PTY LIMITED	CARBINE / BALGARRIE	11-Sep-14	21 Years	10-Sep-30	200 HA
20	M16/244	Live	PADDINGTON GOLD PTY LIMITED	CARBINE EAST (CB ZL)	07-Dec-14	21 Years	06-Dec-19	178.95 HA
$\bigcirc J$	M16/374	Live	PADDINGTON GOLD PTY LIMITED	CARBINE ZULEIKA	14-May-15	21 Years	13-May-31	182 HA
	M16/396	Live	PADDINGTON GOLD PTY LIMITED	ZULEIKA	20-Apr-15	21 Years	19-Apr-31	144 HA
	M16/397	Live	PADDINGTON GOLD PTY LIMITED	ZULEIKA	20-Apr-15	21 Years	19-Apr-31	122 HA
(())	M16/398	Live	PADDINGTON GOLD PTY LIMITED	ZULEIKA	20-Apr-15	21 Years	19-Apr-31	567 HA
	M16/399	Live	PADDINGTON GOLD PTY LIMITED	ZULEIKA	20-Apr-15	21 Years	19-Apr-31	445 HA
()	M27/149	Live	NORTON GOLD FIELDS LIMITED	MULGARRIE	29-May-15	21 Years (Renew ed)	28-May-32	44.2 HA
	M27/38	Live	NORTON GOLD FIELDS LIMITED	MULGARRIE	16-Dec-14	21 Years (Renew ed)	15-Dec-28	109.75 HA
	M16/48	Live	PADDINGTON GOLD PTY LIMITED	CARBINE ZULEIKA	03-Nov-14	21 Years (Renew ed)	02-Nov-29	524.65 HA
	M16/58	Live	PADDINGTON GOLD PTY LIMITED	CARBINE ZULEIKA	09-Mar-15	21 Years (Renew ed)	08-Mar-30	292.65 HA
	M16/86	Live	PADDINGTON GOLD PTY LIMITED	CARBINE EAST (CB ZL)	18-May-15	21 Years (Renew ed)	17-May-30	437.95 HA
(())	M24/101	Live	NORTON GOLD FIELDS LIMITED	PADDINGTON OPS	17-Sep-14	21 Years (Renew ed)	16-Sep-29	864.55 HA
	M24/102	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	16-Dec-14	21 Years (Renew ed)	15-Dec-28	643.1 HA
	M24/113	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	27-May-15	21 Years (Renew ed)	26-May-29	667.35 HA
	M24/138	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	18-Sep-14	21 Years (Renew ed)	17-Sep-29	59.135 HA
	M24/148	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	02-Dec-14	21 Years (Renew ed)	01-Dec-29	448.4 HA
	M24/155	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	06-Aug-15	21 Years (Renew ed)	05-Aug-29	375.05 HA

Table 18:	Paddington	Tenement	Listing	(Cont.)
	•			• /

	Tenement	Status	Holders	Project	Anniversary	Term	Expiry	Area
\rightarrow	M24/16	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	20-Apr-15	21 Years (Renew ed)	19-Apr-25	18.5 HA
	M24/165	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	24-Dec-14	21 Years (Renew ed)	23-Dec-29	892.85 HA
	M24/166	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	09-Feb-15	21 Years (Renew ed)	08-Feb-30	433.3 HA
	M24/170	Live	PADDINGTON GOLD PTY LIMITED	GREATER ORA BANDA	03-Nov-14	21 Years (Renew ed)	02-Nov-29	819.75 HA
	M24/172	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	09-Feb-15	21 Years (Renew ed)	08-Feb-30	144.55 HA
	M24/180	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	29-Dec-14	21 Years (Renew ed)	28-Dec-29	45.755 HA
\bigcirc	M24/181	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	29-Dec-14	21 Years (Renew ed)	28-Dec-29	41.405 HA
	M24/182	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	14-Mar-15	21 Years (Renew ed)	13-Mar-30	141.15 HA
65	M24/183	Live	NORTON GOLD FIELDS LIMITED	PADDINGTON	10-May-15	21 Years (Renew ed)	09-May-30	846.5 HA
UD	M24/187	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	19-Jan-15	21 Years (Renew ed)	18-Jan-30	221.7 HA
20	M24/188	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	29-Mar-15	21 Years (Renew ed)	28-Mar-30	79.305 HA
(0)	M24/193	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	05-May-15	21 Years (Renew ed)	04-May-30	874.35 HA
	M24/194	Live	PADDINGTON GOLD PTY LIMITED	GREATER ORA BANDA	05-May-15	21 Years (Renew ed)	04-May-30	966.85 HA
	M24/20	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	20-Oct-14	21 Years (Renew ed)	19-Oct-25	533.85 HA
	M24/205	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	19-Jan-15	21 Years (Renew ed)	18-Jan-30	561.2 HA
	M24/211	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	30-May-15	21 Years (Renew ed)	29-May-30	171.9 HA
	M24/220	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	30-May-15	21 Years (Renew ed)	29-May-30	13.035 HA
	M24/223	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	14-Mar-15	21 Years (Renew ed)	13-Mar-30	136.05 HA
60	M24/227	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	27-Jul-15	21 Years (Renew ed)	26-Jul-30	77.89 HA
	M24/229	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	30-May-15	21 Years (Renew ed)	29-May-30	99.245 HA
	M24/231	Live	PADDINGTON GOLD PTY LIMITED	NEW BELLEVUE	31-May-15	21 Years (Renew ed)	30-May-30	14.575 HA
	M24/234	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	13-Jun-15	21 Years (Renew ed)	12-Jun-30	370.55 HA
\bigcirc	M24/236	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	13-Jun-15	21 Years (Renew ed)	12-Jun-30	121.85 HA
20	M24/239	Live	NORTON GOLD FIELDS LIMITED	PADDINGTON	21-Sep-14	21 Years (Renew ed)	20-Sep-30	889.6 HA
(0/)	M24/240	Live	NORTON GOLD FIELDS LIMITED	PADDINGTON	21-Sep-14	21 Years (Renew ed)	20-Sep-30	641 HA
Č	M24/251	Live	NORTON GOLD FIELDS LIMITED	PADDINGTON	25-Nov-14	21 Years (Renew ed)	24-Nov-30	878.25 HA
	M24/255	Live	PADDINGTON GOLD PTY LIMITED	NEW BELLEVUE	25-Nov-14	21 Years (Renew ed)	24-Nov-30	105.1 HA
(15)	M24/256	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	04-Nov-14	21 Years (Renew ed)	03-Nov-30	110.55 HA
QD	M24/265	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	02-Sep-14	21 Years (Renew ed)	01-Sep-30	264.3 HA
\bigcirc	M24/266	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	29-Sep-14	21 Years (Renew ed)	28-Sep-30	122.75 HA
	M24/267	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	02-Sep-14	21 Years (Renew ed)	01-Sep-30	1.775 HA
	M24/270	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	24-Oct-14	21 Years (Renew ed)	23-Oct-30	220.65 HA
(M24/271	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	15-Feb-15	21 Years (Renew ed)	14-Feb-31	104.3 HA
	M24/272	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	15-Feb-15	21 Years (Renew ed)	14-Feb-31	167.75 HA
	M24/29	Live	PADDINGTON GOLD PTY LIMITED	GREATER ORA BANDA	04-Jan-15	21 Years (Renew ed)	03-Jan-26	845.15 HA
	M24/291	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	29-Mar-15	21 Years (Renew ed)	28-Mar-31	375.1 HA
П	M24/295	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	11-Jul-15	21 Years (Renew ed)	10-Jul-31	115.95 HA
	M24/300	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	29-Mar-15	21 Years (Renew ed)	28-Mar-31	68.53 HA
	M24/302	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	08-Dec-14	21 Years (Renew ed)	07-Dec-31	985.9 HA
	M24/303	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	08-Dec-14	21 Years (Renew ed)	07-Dec-31	938.6 HA

Table 18: Paddington Tenement Listing (Cont.)

	Tenement	Status	Holders	Project	Anniversary	Term	Expiry	Area
\rightarrow	M24/304	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	28-Mar-15	21 Years (Renewed)	27-Mar-32	694.65 HA
	M24/321	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	31-Jul-15	21 Years (Renewed)	30-Jul-31	9.885 HA
	M24/333	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	30-Nov-14	21 Years (Renewed)	29-Nov-31	323 HA
	M24/357	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	19-Apr-15	21 Years (Renewed)	18-Apr-32	117.3 HA
	M24/363	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	17-Sep-14	21 Years (Renewed)	16-Sep-32	7.8405 HA
(\bigcirc)	M24/387	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	15-Oct-14	21 Years (Renewed)	14-Oct-33	58.525 HA
\bigcirc	M24/390	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	31-Jan-15	21 Years (Renewed)	30-Jan-34	842.9 HA
	M24/393	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	24-Nov-14	21 Years (Renewed)	23-Nov-34	849.95 HA
65	M24/397	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	28-Jan-15	21 Years (Renewed)	27-Jan-35	813.75 HA
UD	M24/398	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	28-Jan-15	21 Years (Renewed)	27-Jan-35	824.65 HA
20	M24/401	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT REGIONAL	15-Jan-15	21 Years (Renewed)	14-Jan-35	239.45 HA
(0)	M24/402	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	15-Jan-15	21 Years (Renewed)	14-Jan-35	276 HA
	M24/403	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	15-Jan-15	21 Years (Renewed)	14-Jan-35	571.8 HA
	M24/411	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT REGIONAL	18-Mar-15	21 Years (Renewed)	17-Mar-35	45 HA
	M24/416	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT REGIONAL	27-Aug-15	21 Years (Renewed)	26-Aug-35	201 HA
	M24/417	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT REGIONAL	07-Sep-14	21 Years (Renewed)	06-Sep-35	158 HA
	M24/422	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	15-Jun-15	21 Years	14-Jun-15	189.65 HA
(D)	M24/423	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT REGIONAL	18-Mar-15	21 Years	17-Mar-15	135 HA
60	M24/425	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	22-Dec-14	21 Years	21-Dec-15	68.07 HA
	M24/426	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT REGIONAL	30-Mar-15	21 Years	29-Mar-15	526.65 HA
	M24/428	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT REGIONAL	25-Mar-15	21 Years	24-Mar-15	183 HA
\square	M24/430	Live	PADDINGTON GOLD PTY LIMITED	W/KAL (GRANTS PATCH)	02-Jun-15	21 Years	01-Jun-15	355.05 HA
\bigcirc	M24/432	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	29-Apr-15	21 Years	28-Apr-15	6.7215 HA
20	M24/433	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	18-Mar-15	21 Years	17-Mar-15	8.3985 HA
$\bigcirc \bigcirc $	M24/437	Live	NORTON GOLD FIELDS LIMITED	PADDINGTON	14-Feb-15	21 Years	13-Feb-16	8.4385 HA
	M24/444	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMP	MT PSANT BORDER	04-Oct-14	21 Years	03-Oct-15	996 HA
	M24/445	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMP	MT PSANT BORDER	04-Oct-14	21 Years	03-Oct-15	934 HA
	M24/446	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMP	MT PSANT BORDER	04-Oct-14	21 Years	03-Oct-15	730.85 HA
	M24/447	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMP	MT PSANT BORDER	04-Oct-14	21 Years	03-Oct-15	917.7 HA
\bigcirc	M24/455	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT REGIONAL	21-Dec-14	21 Years	20-Dec-15	119 HA
	M24/473	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	21-May-15	21 Years	20-May-20	18.8 HA
	M24/494	Live	PADDINGTON GOLD PTY LIMITED	W/KAL (GRANTS PATCH)	17-Jun-15	21 Years	16-Jun-19	326.7 HA
	M24/497	Live	NORTON GOLD FIELDS LIMITED	PADDINGTON OPS	21-May-15	21 Years	20-May-20	46.85 HA
	M24/557	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	24-Oct-14	21 Years	23-Oct-18	601.5 HA
	M24/564	Live	PADDINGTON GOLD PTY LIMITED	GOLDEN CITIES	04-Nov-14	21 Years	03-Nov-18	541.6 HA
	M24/565	Live	PADDINGTON GOLD PTY LIMITED	GOLDEN CITIES	04-Nov-14	21 Years	03-Nov-18	580.55 HA
	M24/60	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	26-Aug-15	21 Years (Renew ed)	25-Aug-27	9.7125 HA
	M24/616	Live	PADDINGTON GOLD PTY LIMITED	GOLDEN CITIES	19-Feb-15	21 Years	18-Feb-19	984.1 HA
	M24/617	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	13-Nov-14	21 Years	12-Nov-23	8 HA
	M24/618	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	07-Jun-15	21 Years	06-Jun-28	692 HA

Table 18: Paddington Tenement Listing (Cont.)

	Tenement	Status	Holders	Project	Anniversary	Term	Expiry	Area
	M24/620	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT REGIONAL	13-Sep-14	21 Years	12-Sep-23	99 HA
\rightarrow	M24/645	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	22-Aug-15	21 Years	21-Aug-29	589 HA
	ivi24/677	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	22-Aug-15	21 Years	21-Aug-29	16.968 HA
	M24/687	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	23-Apr-15	21 Years	22-Apr-31	4.4 HA
	M24/703	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON REGIONAL	23-Apr-15	21 Years	22-Apr-31	8 HA
	M24/705	Live	PADDINGTON GOLD PTY LIMITEDXSTATE RESOURCES	MT PLEASANT	09-Jul-15	21 Years	08-Jul-20	4.7225 HA
\bigcirc	M24/708	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	30-Dec-14	21 Years	29-Dec-20	9.3475 HA
\bigcirc	M24/709	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	30-Jun-15	21 Years	29-Jun-20	3.2585 HA
	M24/710	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	21-Jun-15	21 Years	20-Jun-20	7.416 HA
615	M24/711	Live	PADDINGTON GOLD PTY LIMITED	GREATER ORA BANDA	11-Aug-15	21 Years	10-Aug-20	6.011 HA
	M24/712	Live	PADDINGTON GOLD PTY LIMITED	GREATER ORA BANDA	14-Mar-15	21 Years	13-Mar-21	9.709 HA
20	M24/716	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	11-Aug-15	21 Years	10-Aug-20	2.428 HA
(U/J)	M24/721	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIM	MT P'SANT BORDER	02-Aug-15	21 Years	01-Aug-32	931 HA
	M24/730	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIM	MT P'SANT BORDER	02-Aug-15	21 Years	01-Aug-32	200 HA
	M24/746	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIM	MT P'SANT BORDER	03-Aug-15	21 Years	02-Aug-32	4 HA
	M24/753	Live	PADDINGTON GOLD PTY LIMITED	GOLDEN CITIES	23-Apr-15	21 Years	22-Apr-31	61 HA
	M24/78	Live	V ISIOMED GROUP LIMITED	PADDINGTON REGIONAL	16-Dec-14	21 Years (Renew ed)	15-Dec-27	165.45 HA
	M24/79	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	28-Jan-15	21 Years (Renew ed)	27-Jan-29	9.602 HA
(nn)	M24/790	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	23-Apr-15	21 Years	22-Apr-31	8.8 HA
60	M24/791	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON OPS	23-Apr-15	21 Years	22-Apr-31	1 HA
	M24/793	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON REGIONAL	23-Apr-15	21 Years	22-Apr-31	36 HA
	M24/794	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON REGIONAL	23-Apr-15	21 Years	22-Apr-31	51 HA
\bigcirc	M24/796	Live	NORTON GOLD FIELDS LIMITED	BIG MAC	11-Apr-15	21 Years	10-Apr-24	113.35 HA
\bigcirc	M24/80	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	12-Feb-15	21 Years (Renew ed)	11-Feb-28	4.498 HA
20	M24/809	Live	PADDINGTON GOLD PTY LIMITED	GREATER ORA BANDA	20-Mar-15	21 Years	19-Mar-22	9.7135 HA
$\bigcirc \bigcirc $	M24/81	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	12-Feb-15	21 Years (Renew ed)	11-Feb-28	37.895 HA
	M24/810	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	20-Mar-15	21 Years	19-Mar-22	3.9475 HA
	M24/811	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	20-Mar-15	21 Years	19-Mar-22	5.641 HA
	M24/82	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	12-Feb-15	21 Years (Renew ed)	11-Feb-28	82.735 HA
	M24/829	Live	PADDINGTON GOLD PTY LIMITED	GOLDEN CITIES	23-Apr-15	21 Years	22-Apr-31	327 HA
()	M24/838	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	23-Apr-15	21 Years	22-Apr-31	5 HA
	M24/861	Live	NORTON GOLD FIELDS LIMITED	PADDINGTON	30-Nov-14	21 Years	29-Nov-22	7.534 HA
	M24/862	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL EXT'D	03-Sep-14	21 Years	02-Sep-28	113.1 HA
	M24/876	Live	VISIOMED GROUP LIMITED	PADDINGTON REGIONAL	22-Oct-14	21 Years	21-Oct-24	5 HA
	M24/881	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIM	MT P'SANT BORDER	02-Aug-15	21 Years	01-Aug-32	899 HA
(\bigcirc)	M24/882	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIM	MT P'SANT BORDER	02-Aug-15	21 Years	01-Aug-32	838 HA
	M26/115	Live	BELLAMEL MINING PTY LTD	Binduli	17-Mar-15	21 Years (Renew ed)	16-Mar-29	66.39 HA
	M26/235	Live	SANDHURST MINING NLNORTON GOLD FIELDS LIMITED	LAKE GIDJI	19-Apr-15	21 Years (Renew ed)	18-Apr-32	681.55 HA
	M26/243	Live	BELLAMEL MINING PTY LTD	Binduli	12-Jun-15	21 Years (Renew ed)	11-Jun-32	228.8 HA
	M26/387	Live	BELLAMEL MINING PTY LTD	Binduli	11-Dec-14	21 Years (Renew ed)	10-Dec-34	111.2 HA

Table 18: Paddington Tenement Listing (Cont.)

Status Anniversary Tenement Holders Project Expiry Area Term M26/420 Live BELLAMEL MINING PTY LTD Binduli 17-Sep-14 21 Years (Renew ed) 16-Sep-35 121.2 HA M26/430 Live BELLAMEL MINING PTY LTD Binduli 25-Oct-14 21 Years (Renew ed) 24-Oct-35 130.55 HA 20-Jan-15 21 Years BLACK CAT WELL 207.2 HA M26/445 l ive BELLAMEL MINING PTY LTD 19-Jan-16 M16/44 Live KALGOORLIE MINING COMPANY (BULLANT) PTY LTD 03-Nov-14 21 Years (Renew ed) 02-Nov-29 593.35 HA 876.4 HA M26/447 BELLAMEL MINING PTY LTD Binduli 25-Jan-15 21 Years 24-Jan-16 Live V126/468 Live BELLAMEL MINING PTY LTD Binduli 04-Nov-14 21 Years 03-Nov-18 881.6 HA M26/474 Live BELLAMEL MINING PTY LTD Binduli 04-Nov-14 21 Years 03-Nov-18 893.55 HA Live 13-Aug-15 21 Years NORTON GOLD FIELDS LIMITED LAKE GIDJI 12-Aug-28 26.3 HA M26/566 M26/587 Live MOTO GOLDMINES AUSTRALIA LIMITEDPADDINGTON C MT P'SANT BORDER 03-Aug-15 21 Years 331 HA 02-Aug-32 20-Nov-14 21 Years 19-Nov-21 295.25 HA M26/629 Live BELLAMEL MINING PTY LTD Binduli M26/679 Live BORDER RESOURCES NLPADDINGTON GOLD PTY LIMI MT PSANT BORDER 02-Aug-15 21 Years 01-Aug-32 753 HA V126/816 Live NORTON GOLD FIELDS LIMITED KALGOORLIE SMELTER 15-Jul-15 21 Years 14-Jul-31 561 HA 07-Jun-15 5 Years (Renew ed) Live NORTON GOLD FIELDS LIMITED JANET IVEY JV 06-Jun-16 23 HA 26/201 V127/171 Live NORTON GOLD FIELDS LIMITED MULGARRIE 07-Nov-14 21 Years 06-Nov-15 113.8 HA M27/185 NORTON GOLD FIELDS LIMITED 824.75 HA Live MULGARRIE 18-Jan-15 21 Years 17-Jan-16 M26/446 Live NORTON GOLD FIELDS LIMITED JANET IVEY JV 30-Nov-14 21 Years 29-Nov-15 510.35 HA M16/45 Live KALGOORLIE MINING COMPANY (BULLANT) PTY LTD CARBINE 03-Nov-14 21 Years (Renew ed) 02-Nov-29 614.85 HA Live 06-Dec-14 21 Years M27/435 NORTON GOLD FIELDS LIMITED MULGARRIE 297 HA 05-Dec-33 M27/436 Live NORTON GOLD FIELDS LIMITED MULGARRIE 06-Dec-14 21 Years 05-Dec-33 634 HA NORTON GOLD FIELDS LIMITED 746 HA M27/437 MULGARRIE 06-Dec-14 21 Years 05-Dec-33 Live P16/2000 Live PADDINGTON GOLD PTY LIMITED CARBINE ZULEIKA 02-Jul-15 4 Years 01-Jul-14 121 HA P16/2001 Live PADDINGTON GOLD PTY LIMITED CARBINE ZULEIKA 02-Jul-15 4 Years 01-Jul-14 121 HA 02-Jul-15 4 Years Live 121 HA P16/2002 PADDINGTON GOLD PTY LIMITED CARBINE ZULEIKA 01-Jul-14 16/2003 Live PADDINGTON GOLD PTY LIMITED CARBINE ZULEIKA 02-Jul-15 4 Years 01-Jul-14 70 HA 06-Apr-17 161.02 HA 16/2477 PADDINGTON GOLD PTY LIMITED CARBINE EAST (CB ZL) 07-Apr-15 4 Years (Extended) Live 16/2478 Live PADDINGTON GOLD PTY LIMITED CARBINE EAST (CB ZL) 30-Sep-14 4 Years (Extended) 29-Sep-16 200 HA Live KALGOORLIE MINING COMPANY (BULLANT) PTY LTD CARBINE 01-Jul-15 4 Years 30-Jun-15 181 HA P16/2700 Live KALGOORLIE MINING COMPANY (BULLANT) PTY LTD CARBINE 01-Jul-15 4 Years 30-Jun-15 172 HA P16/2701 25-Feb-15 4 Years (Extended) P24/4128 Live PADDINGTON GOLD PTY LIMITED W/KAL (GRANTS PATCH 24-Feb-17 50 HA P24/4253 1.9815 HA PADDINGTON GOLD PTY LIMITED PADDINGTON OPS 14-Aug-15 4 Years (Extended) 13-Aug-16 Live P24/4255 Live PADDINGTON GOLD PTY LIMITED MT PLEASANT REGIONAL 21-Aug-15 4 Years (Extended) 20-Aug-16 135 HA P24/4256 Live PADDINGTON GOLD PTY LIMITED MT PLEASANT REGIONAL 28-May-15 4 Years (Extended) 27-May-16 160 HA 28-May-15 4 Years (Extended) PADDINGTON GOLD PTY LIMITED MT PLEASANT REGIONAL 27-May-16 115 HA P24/4257 Live 24/4258 Live PADDINGTON GOLD PTY LIMITED MT PLEASANT REGIONAL 28-May-15 4 Years (Extended) 27-May-16 22 HA 21-Aug-15 4 Years (Extended) P24/4260 PADDINGTON GOLD PTY LIMITED MT PLEASANT REGIONAL 20-Aug-16 63 HA Live P24/4588 Live KALGOORLIE MINING COMPANY (BULLANT) PTY LTD CARBINE 13-Mar-15 4 Years 12-Mar-16 162 HA P24/4589 Live KALGOORLIE MINING COMPANY (BULLANT) PTY LTD CARBINE 13-Mar-15 4 Years 12-Mar-16 187 HA 13-Mar-15 4 Years P24/4590 Live KALGOORLIE MINING COMPANY (BULLANT) PTY LTD CARBINE 12-Mar-16 200 HA P24/4591 KALGOORLIE MINING COMPANY (BULLANT) PTY LTD CARBINE 13-Mar-15 4 Years 12-Mar-16 200 HA Live 196 HA P24/4592 KALGOORLIE MINING COMPANY (BULLANT) PTY LTD CARBINE 13-Mar-15 4 Years 12-Mar-16 Live P24/4593 Live KALGOORLIE MINING COMPANY (BULLANT) PTY LTD CARBINE 13-Mar-15 4 Years 12-Mar-16 48 HA P24/4594 Live KALGOORLIE MINING COMPANY (BULLANT) PTY LTD CARBINE 13-Mar-15 4 Years 12-Mar-16 138 HA 21-Apr-15 4 Years (Extended) Live BELLAMEL MINING PTY LTD 20-Apr-17 74 HA P26/3564 Binduli BELLAMEL MINING PTY LTD 21-Apr-15 4 Years (Extended) 100 HA 26/3566 Live Binduli 20-Apr-17 P26/3567 BELLAMEL MINING PTY LTD Binduli 16-Mar-15 4 Years 15-Mar-15 109 HA Live NORTON GOLD FIELDS LIMITED JANET IVEY JV 14-Aug-15 4 Years (Extended) 13-Aug-16 38 HA P26/3609 Live Live NORTON GOLD FIELDS LIMITED LAKE GIDJI 14-Aug-15 4 Years (Extended) 193 HA P26/3611 13-Aua-16 NORTON GOLD FIELDS LIMITED 14-Aug-15 4 Years (Extended) 195 HA P26/3612 Live LAKE GIDJI 13-Aug-16 118 HA P26/3613 Live NORTON GOLD FIELDS LIMITED LAKE GIDJI 14-Aug-15 4 Years (Extended) 13-Aug-16 BELLAMEL MINING PTY LTD 17-Nov-14 4 Years (Extended) 16-Nov-16 145 HA P26/3631 Binduli Live P27/1873 Live NORTON GOLD FIELDS LIMITED ALLEN WEST 22-Jan-15 4 Years (Extended) 21-Jan-18 200 HA

Table 19: Bullabulling Tenement Listing	Table 19:	Bullabulling	Tenement	Listing
---	-----------	--------------	----------	---------

	Tenement	Status	Holders	Project	Grant Date	Expiry Date	Area (Ha)
	M 15/1414	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	22/10/2002	24/10/2023	9.7
\rightarrow	M 15/282	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	22/03/1988	28/03/2030	218.3
	M 15/503	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	4/02/1993	7/02/2035	798.3
	M 15/552	Live	RESOLUTE PTY LTD	Bullabulling Mine	15/03/1991	20/03/2033	332.8
	M 15/554	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	15/03/1991	20/03/2033	601.7
	P 15/5673	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	13/08/2012	12/08/2016	113.7
	P 15/5674	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	13/08/2012	12/08/2016	191.8
	M 15/483	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	21/11/1989	27/11/2031	133.4
	M 15/529	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	31/07/1990	2/08/2032	251.0
	P 15/5354	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	12/04/2010	11/04/2018	9.6
	P 15/5355	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	12/04/2010	11/04/2018	9.4
(\langle / \rangle)	P 15/5356	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	29/09/2010	28/09/2014	188.5
	P 15/5357	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	29/09/2010	28/09/2014	102.6
\square	P 15/5358	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	29/09/2010	28/09/2014	102.3
	P 15/5758	Live	BULLABULLING GOLD LIMITED	Hawks Tenement	13/05/2013	12/05/2017	36.0
	P 15/5381	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	8/04/2010	7/04/2018	145.7
	P 15/5382	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	14/04/2010	13/04/2018	93.1
(D)	P 15/5383	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	14/04/2010	13/04/2018	197.3
00	P 15/5384	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	13/04/2010	12/04/2018	158.7
	P 15/5385	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	13/04/2010	12/04/2018	117.0
	P 15/5386	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	13/04/2010	12/04/2018	180.0
	P 15/5387	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	13/04/2010	12/04/2018	141.0
	P 15/5388	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	13/04/2010	12/04/2018	38.9
(())	P 15/5512	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	16/11/2010	15/11/2014	199.9
	P 15/5513	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	16/11/2010	15/11/2014	186.7
	P 15/5514	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	16/11/2010	15/11/2014	198.9
65	P 15/5515	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	16/11/2010	15/11/2014	196.4
UD	P 15/5516	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	16/11/2010	15/11/2014	198.0
\bigcirc	P 15/5533	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	30/08/2011	29/08/2015	150.1
	P 15/5535	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	30/08/2011	29/08/2015	7.3
	P 15/5567	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Sand Lease	21/10/2011	20/10/2015	47.8
<u> </u>	E 15/1263	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	19/10/2011	18/10/2016	5174.9
	E 15/1264	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	11/08/2011	10/08/2016	287.1
	E 15/1320	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	19/10/2012	18/10/2017	4024.7
	P 15/4798	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	20/07/2007	19/07/2015	194.3
	P 15/4799	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	20/07/2007	19/07/2015	197.5
	P 15/4887	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	12/03/2008	11/03/2016	190.8
	P 15/5186	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	1/04/2010	31/03/2018	165.0
	P 15/5187	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	1/04/2010	31/03/2018	190.4
	P 15/5188	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	16/06/2010	15/06/2018	178.8

Table	19: Bullabulling Ten	ement Listing (Cor	nt.)

	Tenement	Status	Holders	Project	Grant Date	Expiry Date	Area (Ha)
	P 15/5661	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	17/07/2012	16/07/2016	198.8
	P 15/5662	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	17/07/2012	16/07/2016	109.1
	P 15/5663	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	17/07/2012	16/07/2016	125.5
	P 15/5664	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	17/07/2012	16/07/2016	172.9
$\overline{\bigcirc}$	P 15/5669	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	17/07/2012	16/07/2016	192.0
\bigcirc	P 15/5538	Live	BULLABULLING GOLD (UK) LIMITED ET AL	West Bullabulling	4/03/2011	3/03/2015	162.4
	P 15/5539	Live	BULLABULLING GOLD (UK) LIMITED ET AL	West Bullabulling	4/03/2011	3/03/2015	188.2
(0)	P 15/5540	Live	BULLABULLING GOLD (UK) LIMITED ET AL	West Bullabulling	4/03/2011	3/03/2015	91.4
	P 15/5541	Live	BULLABULLING GOLD (UK) LIMITED ET AL	West Bullabulling	4/03/2011	3/03/2015	123.5
(0)	P 15/5799	Live	BULLABULLING OPERATIONS PTY LTD	North Bullabulling	27/12/2013	26/12/2017	33.0
	P 15/5800	Live	BULLABULLING OPERATIONS PTY LTD	North Bullabulling	27/12/2013	26/12/2017	108.0
	P 15/5802	Live	BULLABULLING OPERATIONS PTY LTD	South Bullabulling	27/12/2013	26/12/2017	118.0
	P 15/5848	Live	BULLABULLING OPERATIONS PTY LTD	South Bullabulling	16/06/2014	15/06/2018	129.9
GDI	P 15/5849	Live	BULLABULLING OPERATIONS PTY LTD	South Bullabulling	16/06/2014	15/06/2018	45.5
(U)	P 15/5850	Live	BULLABULLING OPERATIONS PTY LTD	South Bullabulling	2/07/2014	1/07/2018	83.3
	P 15/5851	Live	BULLABULLING OPERATIONS PTY LTD	South Bullabulling	2/07/2014	1/07/2018	150.3
	L 15/156	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/07/1991	16/07/2016	0.0
(\bigcirc)	L 15/157	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/07/1991	16/07/2016	0.0
	L 15/158	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/07/1991	16/07/2016	16.0
$(\mathcal{O}\mathcal{D})$	L 15/196	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	9/05/1995	8/05/2015	32.2
	L 15/206	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	19/11/1996	18/11/2016	50.5
(15)	L 15/218	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	13/08/2008	12/08/2013	257.2
	L 15/222	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	25/09/2009	24/09/2030	1.6
(\bigcirc)	L 15/328	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	11/07/2013	10/07/2034	17.9
	L 15/330	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/04/2013	16/04/2034	1.5
(L 15/331	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/04/2013	16/04/2034	2.5
	L 15/332	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/04/2013	16/04/2034	2.0
\bigcirc	L 15/333	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	15/02/2013	14/02/2034	10.6
Π	L 15/334	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	5/04/2013	4/04/2034	9.6
	L 15/335	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	14/06/2012	13/06/2033	9.5
	L 15/336	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	14/06/2012	13/06/2033	28.1
	L 15/339	Live	BULLABULLING OPERATIONS PTY LTD	Miscellaneous License	22/03/2013	21/03/2034	506.2

Appendices: JORC 2012 'Table 1' Compilation

JORC Code (2012) Table 1 Bullabulling Trend and Gibraltar Deposits

Section 1 – Sampling Techniques and Data

\ge	Criteria	Commentary
	1	The data used for resource estimation is based on the logging and sampling of reverse circulation (RC) and diamond drilling (DD) comprised of NQ-HQ core.
)	2010 – 2013 From each metre of RC drilling 2 kg to 5 kg chip samples were collected. The bulk of RC samples were pulverised and split to produce a 50g charge.
<u>a</u> 5		Rock chips for logging were obtained by sieving a large scoop from each bag. Washed chips were placed into appropriately labelled chip trays.
	Sampling techniques	Drill core samples were typically half HQ at 1m intervals unless sub-sampled to lithological boundaries. Core samples are crushed prior to pulverising and splitting to obtain a 30-50g charge. The charge is subject to fire assay with an aqua regia digest finish. The solution is then analysed for gold using AAS.
)	1974 – 1998 The historical database contains records for 4,586 drill holes, 48 diamond core and 4,538 RC holes.
N		Limited information is available on the logging and sampling procedures used by the previous owners of the project. All sampling is based on a nominal 1m sample interval which in the case of diamond core is adjusted so that samples do not cross lithological boundaries.
	Drilling techniques	The bulk of the drilling is RC (96.5%) with a few diamond holes (3.5%) completed for geological information, bulk density determinations and metallurgical testing. In the vicinity of the mineralisation a total of 5191 RC and DD holes were drilled to yield approximately 307,680 m of drilling. Pre-2010 drilling techniques are not well documented, but it is assumed that before the early 1990's was dominated by cross-over sub RC drilling.
	Drill sample recovery	RC recovery data was routinely collected by BGL for the bulk of recent drilling. Analysis of results yielded an average recovery of 97%. Diamond core recoveries averaged 99%.
\bigcirc)	Sample recoveries for pre-2010 drilling are not documented.
)	Geological logging was undertaken on RC chip samples recording the following characteristics lithology, oxidation strength, mineralogy, grainsize, texture, colour, vein infill and percentage, metal sulphide percentage and alteration type and strength. Geological logging, structural measurements, RQD and recovery measurements were carried out on diamond core. Diamond core was photographed wet.
	Logging	Hand held XRF determinations of lithophile elements Ni and Cr were utilised to confirm the visual identification of ultramafic or komatiitic units.
		Logging of drill hole samples was done with sufficient detail to meet the requirements of resource estimation and mining studies.
		1974 - 1998 Limited information is available on the logging procedures used by the previous owners of the project.

Criteria		Commentary		
	\mathcal{A}	2010 – 2013 A nominal 1 m sample interval was used for the RC and diamond drilling. RC samples were collected using a cone splitter to cut the sample stream and produce a 2 kg to 5 kg sample. Diamond drilling sample lengths were adjusted so that they did not cross lithological boundaries. Diamond drill hole samples are collected from half core cut using a diamond saw.		
	Sub-sampling techniques and sample preparation	RC samples were delivered by BGL road transport in purpose built cages to ALS Kalgoorlie from June 2010 to September 2012 with some overflow to ALS Perth. From January 2013 to April 2014, delivery laboratory was the Amdel Kalgoorlie facility. Field duplicates were collected every 20m on average. A proportion of pulp duplicates were re- submitted for assay and then assayed by an umpire laboratory. Standards and blanks were inserted in the sample stream at nominal 20m spacing inserted through the course of the resource drilling.		
)	1974 – 1998 A nominal 1 m sample interval was generally used for the RC and DD. Sample collection and splitting methods are not documented.		
	2010 - 2013In the period June 2010 to December 2012 samples were assayed for gold ALS facilities by ALS fire assay method Au-AA26 (50g charge 0.01 DL). RC samples from 5 pre-collars in the first 7 hole diamond drilling program (June August 2010) were assayed using ALS fire assay method Au-AA21 (30g charg 0.002 DL) and the half core samples assayed using ALS fire assay method A AA25 (30g charge 0.01ppm DL). Solutions of samples assaying >10ppm Au diluted and reanalysed using method Au-DIL. The final Au assay is selected priority Au-DIL if not then Au-AA26 if not then Au-AA25 if not then Au-AA21. the period January 2013 to April 2014 samples were assayed for gold at Bur Veritas Amdel Kalgoorlie laboratory using method FA001 (40 g charge 0.01 1974 - 1998 Limited check sampling was conducted by Resolute Limited in 1997 on som their anomalous RC intervals. Checks were by bottle roll and AAS between and Minlab analysis			
05		Quality assurance (QA) procedures and the results from any quality control (QC) sampling are not documented.		
	Verification of sampling and assaying	2010 - 2013 Snowden Group have been retained since 2010 as consultants to BGL to undertake resource estimates to inform scoping, prefeasibility and feasibility studies for the Bullabulling project. Snowden carried out a field inspection of operations at Bullabulling at commencement of RC drilling in November 2010 to verify RC sampling procedures in practice. A review of BGL field duplicates results analyses by a third party found 75% of the data had HARD of 30% or less. Snowden considers this result to be poor. A batch of 563 pulp duplicates from the November 2010 to December 2011 campaign was resubmitted by BGL to a second independent laboratory Amdel. As expected for the sample type (pulps) the level of precision was slightly better than obtained from the field duplicate analyses (72% of the data with a HARD value of less than 15%).		
		No information is available		

	Criteria	Commentary		
		The local mine grid is based on AMG Zone 51 coordinates. All 2010-2013 collars have been surveyed by Fugro or ABIMS by DGPS (accuracy +/-0.1m).		
	Location of data points	A campaign of DGPS surveys of extant historical collars was undertaken by Fugro (48 holes) and results compared with the inherited database. Results indicate that location data for historical drilling is accurate.		
		Almost all the BGL resource drilling (811 holes) has been subject to gyroscopic survey. No downhole surveys were undertaken on vertical holes Very few of the historic RC drill holes have downhole surveys and therefore rely on collar information (dip and azimuth).		
615	<u>.</u>	Historic diamond holes have downhole survey information based on optical surveys.		
		The drilling of the 7km north-south oriented segment of the Bullabulling Mineralised Trend was completed along a set of east-west trending sections. The section spacing typically ranges from 20 m to 20 m apart to 35 m by 75 m apart.		
	Data spacing and distribution	Preliminary drilling of the northwest-southeast oriented portion of the mineralised trend over a strike length of 2km was undertaken on east-west sections. From January 2013 infill drilling of the northwest-southeast oriented trend along the Gryphon-Edwards areas was completed on northeast-southwest trending sections orthogonal to the mineralised trend. The nominal section spacing was maintained at 35 m by 75m.		
		The section spacing is sufficient to establish the degree of geological and grade continuity necessary to support the resource classifications that were applied.		
	Orientation of data in relation to geological structure	The location and orientation of the Bullabulling drilling is appropriate given the strike and morphology of the mineralisation.		
	Sample Security	RC and core samples were collected from drill site and delivered by BGL to Kalgoorlie (by road 65km) either to ALS or Amdel, following standard chain of custody procedures. Core prepared for metallurgical test work was stored at site and then freighted to ALS Metallurgical facility in Perth. Pulp samples are boxed and stored at site in locked sea containers.		
	Audits and reviews	In late 2011 a review of the ALS assay data was undertaken by an independent contractor RSC Mining and Mineral Exploration (RSC) on behalf of BGL who made a number of recommendations to improve laboratory practices. Following the review the quality of the returned QC sample result improved.		

Section 3 – Estimation and Reporting of Mineral Resources

	Item	Commentary		
	Database integrity	BGL store all of their drilling information in a commercial database (GBIS). The data was provided to Snowden in Excel spread sheets. Snowden undertook a basic check of the database for potential errors as a preliminary step to compiling the resource estimate. No significant flaws were identified by Snowden.		
	Site visits	Snowden carried out a field inspection of operations at Bullabulling at commencement of RC drilling in November 2010 observing and verifying RC sampling procedures in practice. The core logging and storage facilities which were still being constructed at the time of the visit.		
	Geological interpretation	It is Snowden's opinion that the local geology is well understood as a result of work undertaken by BGL and previous workers in the area. The gold mineralisation has been interpreted by Snowden based on gold threshold grades of 0.1 g/t supplied by BGL. Pervasive amphibolite facies metamorphism and metasomatism has masked most of the original stratigraphy although komatilitic units are readily distinguishable based on metamorphogenic mineralogy (tremolite +/-antigorite and texture and high background Ni measured by portable XRF determinations). Scattered laterite and sub-cropping shallow oxide mineralisation occurs along much of the trend and thus is well defined by gold soil geochemistry (*50ppb Au contour). Banded and more massive amphibolite with shear fabrics are the main primary hosts with metakomatilite a significant minor host. Mineralisation occurs as fabric parallel anastomosing lenses marginal to the contacts between metakomatilite and surrounding amphibolite.		
		Alternative interpretations of the mineralisation are unlikely to significantly change the overall volume of gold mineralised envelope in terms of the reported classified resources.		
	Dimensions	The Bullabulling mineralisation parallels the stratigraphy over a strike length of approximately 9 km; striking approximately north-south from Bonecrusher at its north end to Edwards over approximately 7 km of strike where it dips at between 15° and 60° towards the west, averaging around 30°. Extending southeast of Edwards the mineralisation strikes northwest-southeast for approximately 2 km as defined by drilling with mineralisation dipping between 30° and 45° to the southwest. The maximum down dip extent of the Bullabulling Trend delineated by drilling is about 500 m. The Gibraltar mineralisation extends over a strike length of 2 km with maximum depth delineated of approximately 200m down dip.		
	Estimation and modelling techniques	Drillhole data was coded using the wireframe interpretations representing oxidation surfaces and primary mineralised structures (lenses) and gold bearing laterite layers. Samples were composited to 1m downhole. Statistical analysis of the domains indicated that laterite gold population is only mildly skewed while other domains show a high degree of skewness. The laterite mineralisation was estimated using conventional ordinary block kriging (no unfolding). The primary mineralisation has been estimated using a combination of unfolded ordinary and multiple indicator kriging using hard boundary domains for all domains. Where top cutting was limited to 13 or fewer samples (< 3% of the data) per domain, ordinary kriging was used to determine the final block grade. The remaining domains were estimated using multiple indicator kriging. A parent block size of 10m x 25 m by 4 m (east-west, north-south and vertical directions respectively) to reflect both the drill hole spacing and BGL's plan to mine the deposit using bulk mining methods.		

Item	Commentary		
	The estimates were validated using a visual and statistical comparison of the block grade estimates to the input drill hole composite data. The Bullabulling deposit was previously estimated in toto in September 2012 (BB0912v1) and subsequently estimates were undertaken for subsets firstly encompassing Gryphon-Edwards (south of 6564800N) based on drilling in January-February 2013 (BB0413v1) and then Dickson's-Bonecrusher (north of 656900N) based on drilling in September 2013 (BB0913v1). The Gibraltar deposit was estimated in October 2013.		
Moisture	All tonnages have been estimated as dry tonnages.		
Cut-off parameters	The gold mineralisation was reported using 0.5 g/t gold cut-off grade. The selected cut-off of 0.5 g/t is based on pit optimisation and mining optimisation studies completed by BGL that indicate a grade between 0.35 and 0.4 g/t cut-off is potentially economic to mine and process.		
Mining factors and assumptions	The deposit is currently the subject of a Feasibility Study (FS) which is considered mining, metallurgical and economic factors. It is likely the deposit will be mined using large scale open cut methods and a standard carbon in leach (CIL) operation processing about 7.5 Mt a year. Relatively large parent cell ore bocks (10 m x 25 m x 4m – Bullabulling Line and 10m x 10m x 4m – Gibraltar) reflect SMUs conducive to a large scale open cut mining operation. Subcelling goes down to $6.25m \times 2.5m \times 1m$ (Bullabulling Line) and $2.5m \times 2.5m \times 0.5m$ (Gibraltar). A FS describing the mining parameters is anticipated to be delivered in first half 2015.		
Metallurgical factors and assumptions	Metallurgical test work undertaken by BGL has revealed a relatively "clean" ore with low concentrations of deleterious elements such as mercury and arsenic. The organic carbon content and copper content is uniformly low and is unlikely to interfere with the CIL process. BGL concluded the Bullabulling Gold Project is amenable to conventional CIL processing.		
Environmental factors or assumptions	Environmental factors were considered as part of a pre-feasibility study undertaken by BGL. The outcome of the study indicated that the Bullabulling Project would most likely be assessed by the DMP as a Mining Proposal without the requirement for referral to the Environmental Protection Authority (EPA) for formal Environmental Impact Assessment (EIA).		
Density	There is sufficient historical and BGL density data (water displacement method) for a mineral resource estimate. The amphibolite hosted mineralisation is hard and competent and generally non-porous.		
Classification	The estimate have been classified as an Indicated and Inferred Mineral Resource based on the integrity of the data, spatial continuity of both the geology and the gold grades the drill hole spacing as well as the quality of the estimate. Indicated Resources (amphibolite) were flagged in the model using closed wireframe solids. The main criteria was a minimum of 75 m along strike (north-south to northwest-southeast) and 35 m (east-west or northeast- southwest) which contained a mixture of historical and new drilling results. The down dip and along strike extents of the mineralisation were typically projected 35 m past the last drill hole. In some cases this distance was shortened, more commonly where mineralisation appeared to be pinching out.		

		2
	$(\square$)
	\subseteq	.
		AU
	(1)	
		Pol
	\mathcal{C}	an
	O E	
)
_		
		1
	((1)))
		_
	(\bigcirc))
	(0/))
	<u> </u>	-
	(\mathbb{Q}))
	(\bigcirc))
	$(\bigcirc$)
	<u>()</u>)
)
)
))

Item	Commentary
	Mineralisation within 50 m of the indicated boundary was classified as Inferred. In drilled areas with no defined Indicated Amphibolite Resource, Inferred Resources were defined where two or more consecutive sections had three or more drill holes delineating the mineralisation in the along strike and down dip directions. The classified material was typically projected 50 m along strike and down dip from the last drill hole. All of the laterite mineralisation was classified as Inferred. Snowden believes the estimate appropriately reflects the view of the competent person.
Audits and reviews	The previous Snowden Mineral Resource estimate was reviewed by CSA (CSA, 2012b) and Runge Limited (October 2012). No significant issues were identified.
Relative confidence and accuracy	Past production data is available from the Phoenix and Baccus pits which were mined in the mid-1980s. Direct comparison with the Snowden model to the historic production figures is difficult as the cut-off grade being used at the time was much higher (0.7g/t versus 0.5 g/t) and was based on selective mining.

JORC Code, 2012 Edition Table 1 Report for the Greater Mt Pleasant Resource Estimate Updates October 2014

Section 1 Sampling Techniques & Data

	Criteria	Commentary
	Criteria Sampling techniques	 Commentary Sampling completed utilising a combination of Reverse Circulation (RC) & Diamond Core (DC) holes on 20m x 20m to 80m x 80m grid spacing. Drilling & sampling has been conducted by various companies over several campaigns since 1995 & includes exploration, resource development & grade control (GC) sampling (UG & open pit RC GC). Sampling techniques are summarised from drilling & sampling manuals/reports from Centaur Mining & Exploration, AurionGold, Placer Dome Asia Pacific, Barrick & Norton Gold Fields. The drill hole locations were designed & oriented to allow for spatial spread of samples across mineralised zones & different rock types. Field-based observations from geological supervision & geological records referring to sample quality, moisture content & recovery were used as a guide to sample representative. All RC-recovered samples were passed through a splitting device (cone or riffle splitter) at 1m intervals to obtain a sample for assay, collected in an appropriately-sized calico bag. RC calico sample weights range from 2.5 to 4kg across all RC drilling campaigns (1925-2014). Bulk reject sample was also collected into a
	Drilling	 animg campaigns (1995-2014). Bulk reject sample was also collected into a plastic bag for each metre. For legacy data, spear samples composited to 4m or less were collected from the bulk samples as a first-pass sampling technique. Single metre samples were collected & submitted for assay from areas of expected mineralisation or composite anomalism. DC samples were placed into core trays at the rig & transferred to core processing facilities for logging, sawing/splitting & sampling. The DC samples are collected at nominated intervals by a Geologist from resultant half core with a minimum interval of 0.2m & a maximum of 1m.
ッ))))	techniques	 All dssdy's referred to for resource estimation (1773-2014) were collected from either RC or DC drilling using various contractors. Early legacy RC drilling may have been performed by RC hammer with a cross-over sub, drag bit or skirted tricone bit; the details are generally not specified. The most recent drilling campaigns account for around 5% of the total drilling dataset. Norton RC sampling is completed under contract by Drilling Australia using a Schramm T68SW equipped using Sullair combo-compressor (1150cfm/350psi or 900cfm/500psi) using a 5.25" or 5.5" diameter drill bit with a 5" Sandvik RE054 bottom face sampling hammer equipped with a rig mounted Metzke cone splitter. DC sampling is a combination of HQ (63.5mm diameter) and/or NQ (47.6mm
	Drill sample recovery	 additional of NG2 (50.5mm additional core sizes. DC is orientated by either a bottom of hole spear; EZI-Mark or ACE digital orientation systems. RC Drillers are advised by geologists on the ground conditions expected for each hole & instructed to adopt an RC drilling strategy to maximize sample recovery, minimize contamination & maintain required spatial position. All RC 1m sample rejects are collected into a UV resistant bag. Samples are visually logged for moisture content, qualitative estimated sample recovery & contamination. The DC samples are orientated, length measured & compared to core blocks denoting drilling depths by the drilling contractor. Any recovery issues are recorded. Sample loss or gain is reviewed at the time of drilling & feedback is provided to the drilling contractor to ensure the samples are representative

/	Norton	Gold Fields Limited
	Criteria	Commentary
	D	 DC contractor drilling methor ground condir A study of the shows no corre- minimal loss of
	Logging	All current RC appropriate le RC drilling inte

Criteria	Commentary
D	 DC contractors use a core barrel & wire line unit to recover the DC, adjusting drilling methods & rates to minimize core loss (e.g. changing rock type, broken ground conditions etc.). A study of the weights of the 1m RC sample splits & gold grades (2012-2013 drilling) shows no correlation. The drilling contractors utilised drilling techniques to ensure minimal loss of any size fraction.
Logging	 All current RC samples are geologically logged at 1m interval which is an appropriate level of detail to support a Mineral Resource estimation. Some historic RC drilling intervals were selectively logged. Currently, each interval is inspected & the following parameters are recorded: weathering, regolith, rock type, alteration, mineralisation & structure. All DC is logged for core loss, photographed, marked into 1m intervals, orientated, structurally logged, geotechnically logged & geologically logged for the following parameters: weathering, regolith, rock type, alteration, & mineralisation. Geological logging is qualitative & quantitative in nature. All recent RC holes are logged in their entirety on a 1m interval basis. Where no sample is returned due to voids or lost sample, it is logged & recorded as such. DC is also logged over its entire length & any core loss or voids are recorded.
Sub-sampling techniques & sample preparation	 Assays from DC are all half core samples. The remaining DC resides in the core tray & is archived. All RC samples were split by a cone or a riffle splitter & collected into a sequenced calico bag. For historical drilling, any wet samples that could not be riffle split initially were dried then riffle split. The sample preparation conducted by commercial laboratories involves jaw crushing to nominal <10mm (DC), a riffle split to 3.5kg as required, & pulverizing in a one stage process to >85% passing 75um. The bulk pulverized sample is then collected & approximately 200g extracted by spatula to a numbered paper bag that is used for the 30g or 50g fire assay charge. Laboratory Quality Control (QC) includes duplicate samples collected after the jaw crushing stage, & repeat samples collected after the pulverising stage to provide data confirming the appropriateness of the sample preparation technique. All sub-sampling & lab preparations are consistent with other laboratories in Australia. RC & DC samples submitted to the laboratory are sorted & reconciled against the submission documents. Routine CRM (standards & blanks) are inserted into the sampling sequence at a rate of 1:25 for standards & 1:75 for blanks or in specific zones at the Geologist's discretion. The commercial laboratories complete their own QC check. Specific diamond drilling campaigns utilised barren quartz flushes between expected mineralized sample interval(s) when pulverising. RC field duplicate data was collected routinely & for selected intervals suspected to contain mineralisation. Field duplicate samples were taken at the time of cone/riffle splitting the bulk sample at the drill rig to maintain sample support. The field duplicates are submitted for assay using the same process mentioned above, with the laboratory unaware of the duplicate nature. Some historic DC duplicates were taken by re-sampling ¼ of the remaining half core.
Quality of assay data & laboratory tests	 The assay method is designed to measure total gold in the sample. The laboratory procedures are considered appropriate for the testing of gold at this project given its mineralisation style. The technique involved using a 30g or 50g sample charge with a lead flux, which is decomposed in a furnace, with the prill being totally digested by 2 acids (HCI & HN03) before determination of gold by an AAS machine.

C	riteria	Commentary
		 No geophysical tools or other remote sensing instruments were utilised for reporting or interpretation of gold mineralisation. RC & DC samples submitted to the laboratory are sorted & reconciled against the submittein dependent of polymere to the taboratory are sorted with the submittee of the laboratory are sorted with the submittee of the su
		are inserted into the sampling sequence at a rate of 1:25 for standards & 1:75 for blanks or in specific zones at the Geologist's discretion. The commercial
		laboratories undertake their own QC checks. Specific diamond drilling campaigns utilised barren quartz flushes between expected mineralised sample interval(s) when pulverizing
		 Standard procedures are to examine any erroneous QC result (a result outside of expected statistically derived tolerance limits) & validate if required; establishing acceptable levels of accuracy & precision for all stages of the sampling &
	orification of	analytical process.
V	enilication of	 Independent vehication of significant intersections not considered indiendi. No holes were twinned
a	ssaying	 Primary logging & sampling data is sent digitally every 2-3 days from the field to the company's Database Administrator (DBA). The DBA imports the data into a relational DataShed database, observing a number a validation checks. When
)		assay results are received electronically from the laboratory, results & laboratory QAQC are also imported into the database after further validation checks. The responsible Geologist reviews the data in the database to ensure that it is correct & has merged property & that all data has been received & entered. Any
		 No adjustments or calibrations were made to any assay data used in this report.
) La d	ocation of ata points	 After drilling, drill hole collar positions are surveyed by the site-based survey department (utilising either a theodolite or differential GPS) with a precision of less than 0.2m.
)))		 Down hole surveys consist of regular-spaced Eastman single shot, & electronic multi-shot surveys (generally <30m apart down hole). A minor amount of historic drill holes only have collar surveys. Ground magnetics can affect the result of the measured azimuth reading for these survey instruments. Most relatively recent survey data consists of surveys taken with north-seeking gyro instruments, representing more recent drilling. Gyro survey measurements are obtained every
		 Recent data is collected in MGA 94 Zone 51 & AHD. Data pre-2012 was collected in AMG 84 Zone 51 & AHD.
		 Topographic control was generated from survey pick-ups of the area over the last 15 years, which have been used to generate an as-built and current Digital Terrain Model (DTM).
D &	ata spacing distribution	• The nominal drill spacing is 20m x 20m; with some areas at 40m x 40m & increasing to 80m x 80m past 0mRL. This description of data spacing refers to both the classified & unclassified portion of the deposits. Grade Control (GC) data (where applicable) is on 5m x 5m to 10m x 10m spacing. This spacing includes data that
)		 Data spacing & distribution is considered acceptable for establishing geological continuity & grade variability appropriate for classifying a Mineral Resource. This inference is based on historical mining & reconciliation data.
	viontation of	 sumples were composited to either Im or 2m down hole prior to modelling. Where practicable, drilling is griantated at a bigh angle to the dia or plurage of
ט ה	nieniaiion oi ata in	 where practicable, aniling is orientated at a night angle to the alp or plunge of the mineralisation (depending on the direction of highest gold arade continuity)
re re	elation to	This technique enables sampling to be representative of true width of the
g st	eological tructure	mineralisation.No drilling orientation & sampling bias has been recognized at this time.

Page 56

	Criteria	Commentary
	Sample security	 Samples were under the custodial chain of the company until delivered to a commercial laboratory some 30km south of the operations; upon which they were secured in a fenced compound with restricted entry. Internally, the commercial laboratories operate an audit trail tracking the samples at all times whilst in their custody. Historic samples are assumed to have been under the security of the respective tenement holders until delivered to the laboratory where they are assumed to have been under restricted access.
	Audits or reviews	 Internal reviews are completed on sampling techniques & data as part of the Norton Gold Fields continuous improvement practice. No external or third party audits or reviews have been completed.

Section 2 Reporting of Exploration Results

Criteria	Commentary
Mineral tenement & land tenure status	 The Mt Pleasant resource is located within Mining Licenses M 24/16, 79, 82, 155, 166, 227, 234, 265-266, 302, 304, 393, 433 & 710. General Purpose lease G 24/11 & Miscellaneous leases L 24/54 & 205-206 are also located within the resource area. All tenements are 100% held by Paddington Gold P/L, a wholly owned subsidiary of Norton Gold Fields P/L. Several heritage sites exist within the tenure. All leases are granted pre-Native Title. Third party royalties are applicable to these tenements & are based on production (\$/t) or proportion of net profit. All production is subject to a WA state government NSR royalty of 2.5%. The tenements are in good standing & no known impediments exist.
Exploration done by other parties	 A significant proportion of exploration, resource development & mining was completed by companies which held tenure over Mt Pleasant since the mid 1990's. Companies included: Centaur Mining & Exploration PL (1995-2001), Auriongold (2001-2002), Placer Dome Asia Pacific (2002-2005) & Barrick Kanowna (2005-2007). Results of exploration & mining activities by the afore-mentioned companies has assisted in Norton Gold Field's more recent exploration, resource development & mining in the area. Reporting of results within this release only relates to results obtained since the June 2014 Quarterly Exploration Report.
Geology	 The Mount Pleasant Resource comprises 13 individual deposits that are characterised in a geological setting. Deposits from north to south are: Golden Kilometre, Marlock, Salmon Gum, Blue Gum, Blue Gum South, Green Gum, Golden Flag, Rose, Rose Dam South, Golden Road, Woolshed, Woolshed South, Woolshed South Extended, Racetrack & Natal. The deposit types are classified as narrow vein, orogenic gold deposits within the Norseman-Wiluna greenstone sequence. The accepted interpretation for gold mineralisation is related to (regional D2-D3) deformation of the stratigraphic sequence during an Archaean orogeny event. The mineralisation is hosted within the upper-mafic rock units of the Kalgoorlie stratigraphy. The metamorphic grade is defined as lower green-schist facies. The mineralisation is located in brittle-ductile shear zones typically associated with carbonate-sericite alteration +/-sulphides. A second type of deposit is classified as Paleo-channel related gold mineralisation associated with the mechanical transport & geochemical enrichment of gold within the Tertiary material.
Drill hole Info	See Appendices 1 & 2.

NORTON GOLD FIELDS LIMITED

ata ggregation hethods elationship etween hineralisation idths & tercept engths	 All reported assay results have been length-weighted; no top cuts have been applied. Assay results are reported to a 0.8g/t Au lower cut over a minimum intersection of 1m for RC & 0.2m for DC. A maximum of 2m of internal dilution (i.e. <2m @ <0.8g/t Au) is included for reporting RC intercepts targeting the supergene mineralisation & for DDH intercepts targeting the fresh rock mineralisation. No metal equivalent values are used for reporting exploration results. Drill hole intersections are generally at a high angle to each mineralised zone. Reported down hole intersections are noted as approximately true width, or otherwise are denoted as 'true width not known'.
iagrams	See Appendix 2.
alanced porting	All results have been reported relative to the intersection criteria.
ther ubstantive xploration ata	 No other exploration data collected is considered material to this announcement. Material known to be refractory is denoted as such in the respective resource.
urther work	• Further work will include mining studies to determine if the project is economic to

d mineralised plunge directions require drill testing if mining studies project is economic.

Mineral Resources

Criteria	Commentary
Database integrity	 NGF employs SQL as the central data storage system using DataShed software as a front-end interface. User access to the database is regulated by specific user permissions, & validation checks & relational steps are part of the process to ensure data remains valid. Existing protocols maximize data functionality & quality whilst minimizing the likelihood of introducing errors at primary data collection points & subsequent database upload, storage & retrieval points. Data templates with lookup tables & fixed formatting are used for collecting primary data on field laptops. The software has validation routines & data is subsequently imported into a secure central database.
	 The sqt server adrabase is conlighted for validation mitoligh constraints, library tables, triggers & stored procedures. Data that fails these rules on import is rejected or quarantined until it is corrected. The Database is centrally managed by a Database Manager who is responsible for all aspects of data entry, validation, development, quality control & specialist queries. There is a standard suite of vigorous validation checks for all data.
Site visits	• The Competent Person for this resource estimate is a full time employee of NGF & undertakes regular site visits ensuring industry standards of the Mineral Resource estimation process from sampling through to the final block model.
	• The deposit area is an active mining area for NGF & as such, regular site visits were undertaken during this update.

Criteria	Commentary
Geological interpretation	 The confidence of the geological interpretation is based on geological knowledge acquired from open pit production data, detailed geological DC & RC logging, assay data, underground development face mapping & pit mapping. No alternate interpretations are proposed as geological confidence in each model is high. The dataset (geological mapping, RC & DC logging, assays etc.) is considered acceptable for determining a geological model. Key interpretation assumptions made for this estimation are: (1) where cross cutting relationships were not observed; & (2) the interpretation of the mineralisation past known drilling limits (extrapolated a reasonable distance considering geological & grade continuity – not more than the maximum drill spacing). The geological interpretation is considered robust & alternative interpretations are considered not to have a material effect on the Mineral Resource. As additional geological interpretation is specifically based on identifying particular lithological boundaries, geological structures, associated alteration, veining & gold content. Whilst the geological features are interpreted to be continuous, the gold distribution within them can be highly variable. This issue is mitigated by close-spaced sampling & ensuring sample & analytical quality is high. Historic mining data is also used to assist with understanding grade continuity. Geological
Dimensions	 structures post-dating the mineralisation can off-set & truncate the mineralisation affecting the geological continuity & are difficult to isolate. The Mount Pleasant resource area deposit is spatially located between 328,350mE & 335,700mE & 6,614,700mN to 6,622,600mN (MGA94 zone51). Mineralisation is observed to extend at least to 500m below the natural surface. The resource is broken into several (smaller) resource models to accommodate local scale geological & resource parameter differences. In those cases where resource model has changed since the January 2014 Mineral & Ore Reserve Statement, the deposits are described below.
	 The Black Flag resource area deposit is spatially located between 329,800mE and 330,950mE and 6,619,100mN to 6,620,200 (MGA94 zone51). Mineralisation is observed to extend at least to 300m below the natural surface. Gold mineralisation at Black Flag is located within the Black Flag Fault where the strike changes from 020° to 045° and has a vertical dip. Mineralisation has a strike extent of 700m and a dip extent of at least 290m. Mineralisation starts from surface. Supergene mineralisation (with a flat orientation) is also observed at the intersection of the Black Flag Fault and the regolith profile. Black Flag forms part of the Henning area within the Mt Pleasant resource. Gold mineralisation within the Henning area is controlled by the Black Flag Fault structure and associated structural splays. The Henning area dimensions are between 329,500mE and 330,700mE and 6,618,850mN and 6,620250mN.
	 Black Flag UG: The Black Flag resource area deposit is spatially located between 330,220mE and 330,860mE and 6,619,460mN to 6,620,140 (MGA94 zone51). Mineralisation is observed to extend at least to 250m below the natural surface. Gold mineralisation modelled for the Black Flag underground resource associated in two vein breccia complexes. The mineralised system has a strike of 640m with a steep south-east dip of 85°. Dip extent for the south-east breccia complex is 300m with vein widths from 1m to 4m.

	Criteria	Commentary
		Tuart:
	D	 The Tuart deposit is spatially located between 329,200mE and 330,100mE – running into the Quarters deposit and 6,620,400mN to 6,621,700mN (AMG84 zone51). Up to 5 gold lodes on varying orientations have been located. T060 lode: -45° towards 330°, 1km strike and 150m known dip extent T080 lode: sub-vertical dip and E-W strike, 600m strike 250m known dip extent T115 lode: -55° towards 295°, 500m strike and 250m known dip extent Q040 lode: convex dip striking ~070° then turning to 040° at Quarters, 350m dip extent Golden Swan: moderate south dip and ENE strike, know strike 400m and known dip 100m.
9		• Each lode is typically 0.5 to 2m wide true width. Bonanza intercepts are up to 4m wide (true width). Supergene mineralization is observed at the interface of the gold lodes with the regolith profile. Some gold is associated with the Tertiary material. Gold mineralization starts at 15m-25m below surface (supergene) & extends to 360m below surface (the extent of drilling).
ש 7		Grand Racetrack (including previous Racetrack and Woolshed South and Woolshed South Extended estimates):
		 Racetrack deposit is hosted in the Victorious Basalt and the underlying Bent Tree Basalt and intrusion intermediate porphyry. Racetrack is located along splay structures Racetrack Shear/fault and Woolshed fault zone associated with the Black Flag Fault. Mineralisation is observed in multiply lodes orientated 20° to 70°. Lode widths are approximately 1~8m wide. The lodes have a strike extent of 1200m & a dip extent of more than 600m. Supergene mineralisation (with a flat orientation) is also observed at the intersection of the lodes & the regolith profile. The deposit dimensions are between 328,820mE & 330,980mE & 6,617,9660mN & 6,621,300mN. Mineralisation exists at 10m below the surface extends to at least 500m below.
シ	Estimation &	Grand Racetrack: (Racetrack, Woolshed South & Woolshed South Extended):
	Estimation & modelling techniques	 Grand Racefrack: (Racefrack, Woolshed South & Woolshed South Extended): Geological domains were based on the geological interpretation & mineralised trends. 3DM wireframes created by 20m spacing sectional interpretation of the drilling dataset. Where there was geological uncertainty, domain boundaries were modelled nominal at a 0.2g/t Au lower cut for supergene mineralisation and 0.5 g/t Au for primary mineralisation. Domain boundaries were treated as hard boundaries. 2m composites were generated based on database coding from drilling hole intercepts inside domain 3DMs. The statistics for each domain were viewed & key univariate statistical indicators used to describe the nature of each. Each domain showed a positively skewed data distribution with high-grade outlier composites. Top-cuts ranging from 3g/t Au to 12g/t Au applied to domains whose coefficient of variation is above 1.70 until all domain's coefficient is below 1.70. Estimation was completed using GEOVIA Surpac software version 6.6.1, utilising the block modelling module. Estimation was completed using a linear estimation technique. Both Inverse Distance Power 3 (ID3) and Ordinary Kriging (OK) was employed for grade interpretation, ID3 is suggested for mining studies at this stage, OK is used for validation estimation purpose.

 Sample search ellipses were set based on data spacing in similar orientation to the major mineralised orientation. Minimum & maximum samples were set for each sample search based on accepted levels of grade continuity. Search distances were based on sample spacing & spatial continuity. A total of 3 search passes were conducted with progressively relaxed search criteria to accommodate the data density. No assumptions were made regarding recovery of by-products during the Mineral Resource estimate. The estimation of deleterious elements was not considered material to this style of mineralisation. Block sizes were chosen to compromise between sample spacing & orientation of mineralisation i.e. 5m(X) by 5m(Y) by 2.5m (Z), block was rotated 55 degree to parallel orientation of major mineralisation. The SMU is based on current open pit mining fleet configuration. The SMU is comparable to the block size of the resource model. No correlation between variables was necessary. The 3DM/DTM wireframes for the estimation domains, regolith & topographical files were used to constrain the resource estimate. Blocks from the block model were coded based on these volumes/surfaces by either block centroid in/out of 3DM or above/below a DTM surface. Model validation has been completed using visual & numerical methods & formal peer review sessions by key geology staff.
 Uart: Estimation was completed using a linear estimation technique - Ordinary Kriging (OK). OK is an estimation method where a single direction of continuity is modelled for each domain for a global estimate. An advantage of OK is the statistically unbiased weighting of composite samples to generate an estimate. A disadvantage is the use of this technique on variable, skewed datasets. Geological domains were based on the geological interpretation & mineralised trends. RC/DC intercepts modelled to be a minimum down hole width of 4m. 3DM wireframes created by sectional interpretation of the drilling dataset. Domain boundaries were treated as hard boundaries. 2m down hole composites for all drilling were created and subdivided into each domain using an inside/outside principle. The statistics for each domain were viewed and key univariate statistical indicators used to describe the nature of each. Each domain showed a positively skewed data distribution with high-grade outlier composites. High-grade outliers were top-cut to 20g/t Au for all domains by viewing grade distribution histograms, where the continuity of the higher-grades diminished. Spatial continuity modelling was completed on the top-cut composite datasets for each domain. Directions of continuity were similar to interpreted controls on mineralization with varying degrees of anisotropy. Sample search ellipses were set based on data spacing in similar orientations to the spatial continuity directions for each lode. Minimum and maximum samples were set for each sample search based on accepted levels of grade continuity. A total of 5 search passes were conducted with progressively relaxed search criteria to accommodate the data density for GC drilling to the widest spaced drilling at 80m x 80m. Estimation completed using Surpac V6.4.1 mining software block modelling module. Mining production data is available to be compared with the estimation result. A Multiple Indicator Kig

Criferia	Commentary
	 No assumptions were made regarding recovery of by-products during the Mineral Pesource estimate
	 The estimation of deleterious elements was not considered material to this style of mineralization
	 Block model dimensions were set to 329,000mE to 300,900mE and 6,620,200mN to 6,621,950mN and between 400mRL and -100mRL. Block sizes were chosen to compromise between sample spacing and orientation of mineralization i.e. 10m(X) by 5m(Y) by 5m (Z).
	 No selective mining units were assumed in this estimate.
	 No correlation between valiables was necessary. The 3DM/DTM wireframes for the estimation domains, regolith and topographical files were used to constrain the resource estimate. Blocks from the block model were coded based on these volumes/surfaces by either block centroid in/out of 3DM or above/below a DTM surface.
	 Statistical analysis indicated that outlier management was crucial to prevent high grade smearing that could result in overestimation of gold content (an adverse effect of using OK on a skewed dataset). Top-cutting & restricted sample search or the combination of both has been used to reduce this effect. This was defined by examining histograms, probability curves and the spatial locations of the outliers.
	 Model validation has been completed using visual and numerical methods and formal peer review sessions by key geology staff. Mineral Resource Model has been validated visually against the input composite/raw drill hole data with spot checks carried out on a number of block estimates on sections and plans.
	 Easting swath plots have been generated to check composite assay mean values for block estimates within swath windows. OK estimates have also been checked against the alternate MIK estimate & historic production data. A comparison of block volume weighted mean versus the drill hole cell declustered mean grade of the composited data was undertaken.
	Black Flag OC:
	• Estimation was completed using two linear estimation techniques - Ordinary Kriging (OK) and Inverse Distance Squared (IDS). OK is an estimation method where a single direction of continuity is modelled for each domain for a global grade estimate. IDS is an estimation technique that weights a composite based on the distance from an estimation point, irrespective of spatial location. An advantage of OK is the statistically unbiased weighting of composite samples to generate an estimate. A disadvantage is the use of this technique on variable, skowed datasets logding to conditional bigs when reporting the resource at
	 Geological domains were based on the geological interpretation and mineralised trends. Three Dimensional Model (3DM) wireframes were created by sectional interpretation of the drilling dataset. Where there was geological uncertainty, domain boundaries were modelled to a 0.3 g/t Au lower cut. Domain boundaries were treated as hard boundaries. 2m down-hole composites for all drill holes were generated and subdivided into each domain using an inside 3DM/outside 3DM principle. The statistics for each domain were viewed and key univariate statistical indicators used to describe the nature of each. Each domain showed a positively skewed data distribution with high-grade outlier composites. Top-cuts ranging from 5g/t Au to 15g/t Au were applied to both domains by viewing grade distribution histograms, where the continuity of the higher-grades diminished.

	Criteria C	Commentary
	•	Sample search ellipses were set based on data spacing in similar orientation to the major mineralised orientation. Minimum and maximum samples were set for each sample search based on accepted levels of grade continuity. Search distances were based on sample spacing and spatial continuity. A total of 4 search passes were conducted with progressively relaxed search criteria to accommodate the data density from the closest to the widest spaced drilling. Estimation was completed using Surpac V6.4 mining software, utilising the block modelling module
	•	A comparison of previous resource estimates showed that the differences between the resource estimates was due to the inclusion of the recent drilling data. No assumptions were made regarding recovery of by-products during the
(15	•	Mineral Resource estimate. The estimation of deleterious elements was not considered material to this style of mineralisation.
	•	 Block sizes were chosen to compromise between sample spacing and orientation of mineralisation i.e. 5m(X) by 5m(Y) by 2.5m (Z). The Selective Mining Unit (SMU) is based on current open pit mining fleet configuration. The SMU is comparable to the block size of the resource model.
	•	No correlation between variables was necessary. The 3DM/DTM wireframes for the estimation domains, regolith and topographical files were used to constrain the resource estimate. Blocks from the block model
	•	 were coded based on these volumes/surfaces by either block centroid in/out of 3DM or above/below a DTM surface. Model validation has been completed using visual and numerical methods and formal peer review sessions by key geology staff. Mineral Resource Model has been validated visually against the input composite/raw drill hole data with spot checks carried out on a number of block estimates on sections and plans. Swath plots have been generated on section eastings to check input composited assay means for block estimates within swath windows.
$(C \cap)$	B	llack Flag UG:
		Estimation was completed using the linear estimation technique Inverse Distance Squared (IDS). IDS was selected due to the low number of composite samples for each domain to conduct a valid spatial continuity analysis. Geological domains were based on the geological interpretation and mineralised trends. Three Dimensional Model (3DM) wireframes were created by sectional interpretation of the drilling dataset. Domain boundaries were treated as hard boundaries. 2m down-hole composites for all drill holes were generated and subdivided into each domain using an inside 3DM/outside 3DM principle. The statistics for each domain were viewed and key univariate statistical indicators used to describe the nature of each. Each domain showed a positively skewed data distribution with high-grade outlier composites. Top-cuts of 30g/t Au were applied to two of the five domains. No top-cut was applied to the other three domains. Sample search criteria for estimating block grades were based on the geological interpretation of a planar, steep dipping structure for the mineralisation associated with the Black Flag Fault. Search distances were based on sample spacing and spatial continuity. Three search passes were used to estimate into the block model for each domain. Each search was progressively relaxed and reflects a lower confidence for the block grade estimate.

	Criteria	Commentary
		• Estimation was completed using Surpac V6.4 mining software, utilising the block
		modelling module.
		Comparison with the current and previous resource statements for Black Flag UG
		mineralisation shows that the two estimates do not compare. The current
\rightarrow	5	estimate has less tonnes for more grade and less ounces overall. The 2014 Black
		Flag resource update is considered to be more accurate than the 2007 update
		abe to the significant increase in aniling data, mining activity and subsequent
		 No assumptions were made regarding recovery of by-products during the
		Mineral Resource estimate
\bigcirc		 The estimation of deleterious elements was not considered material to this style
\bigcirc		of mineralisation.
		• Block sizes were chosen to compromise between sample spacing and orientation
615		of mineralisation i.e. 1m (X) by 10m (Y) by 10m (Z) with sub-cells of 0.5m x 5m x 5m.
		 No correlation between variables was necessary.
		• The 3DM/DTM wireframes for the estimation domains, regolith and topographical
(())		tiles were used to constrain the resource estimate. Blocks from the block model
00		were coded based on these volumes/surfaces by either block centroid in/out of 2DM or above (below a DTM surface)
		 Model validation has been completed using visual and numerical methods and
		formal peer review sessions by key aeology staff.
		 The Mineral Resource Model has been validated visually against the input
		composite/raw drill hole data with spot checks carried out on a number of block
GDI		estimates on sections and plans. Composite statistics were also compared to
(())		block statistics for each domain.
	Moisture	Tonnages are estimated on a dry basis.
	Cut-off	• Cut-off reporting grades are 0.7g/t Au for open-cut resources and 3.0g/t Au for
	parameters	underground. The Cut-off parameters are based on current NGF mining & milling
		costs.
	Mining factors	• The resources are likely to be mined utilising open pit mining methods.
$\mathcal{C}(\mathcal{D})$	or assumptions	Ine tresh portion of the resource is likely to be mined utilising harrow-vein
99		for production)
		 Mining methods are based on current open pit & underground mining operations
615		used by NGF.
		• The mineral resource is based on an optimisation shell using current mining,
\sim		appropriate processing costs, local geotechnical parameters at a gold price of
		A\$2,000/oz.
	Metallurgical	No assumption or tactors have been applied to the resource estimate regarding
~	factors or	the metallurgical amenability.
	assumptions	• Reasonable assumptions for merallorgical exitaction are based on processing one through the Paddinaton & the (historic) Mt Pleasant processing plants. The both
		processing plants utilise a CIP extraction process.
(())		• The fresh rock component of the gold deposits hosted within the Victorious Basalt,
		which include Racetrack, Woolshed South, and Woolshed South Extended, are
		considered refractory deposits. Ore from these deposits would be processed
		using alternative processing methods.
		• Target gold recoveries for oxide and non-refractory fresh ores are expected to
		range from 92% to 96% recovery. This range of recovery is based on processing
		 Target gold recoveries for the fresh rock component of the refractory denset
		are based on historic metallurgical test work & are expected to be 88% recovery.

	Criteria	Commentary
	Environmental factors or assumptions	 No significant environmental factors are expected to be encountered regarding the disposal of waste or tailing material. This expectation is based on previous mining & processing history of existing open pit & underground operations with the project area. Refractory ore types have a high arsenic content & require further environmental test work to determine any environmental impact from waste & process residue disposal.
	Bulk density	 Insitu-bulk densities (ISBD) applied to the resource estimate were based on systematic test work completed on hand specimens & DC for selected material types. The ISBD determination method is based on a water-immersion technique. The ISBD test work reconciles against production tonnages from historic & current mining operations within the project area. Samples that were porous were sealed & accounted for in the bulk density calculation.
	Classification	 The models & associated calculations utilised all available data & are depleted for known workings as of July 1 2014. NGF follows the JORC classification system with individual block classification being assigned by statistical methods & visually taking into account the following factors: Drill spacing & orientation; Classification of surrounding blocks; Confidence of certain parts of the geological model; and Portions of the deposit likely to be viably mined.
))		 The classification result reflects the view of the Competent Person.
	Audits or reviews	• The Mineral Resource has not been externally audited. An internal Norton Gold Fields peer review has been completed as part of the resource classification process.
	Discussion of relative accuracy/ confidence	 The Mineral Resources have been reported in accordance with the guidelines of the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources & Ore Reserves & reflects the relative accuracy of the Mineral Resources estimate. The Competent Person deems the process to be in line with industry standards for resource estimation & therefore within acceptable statistical error limits. The statement relates to global estimates of tonnes & grade for likely separate open pit & underground mining scenarios. Historic production data was used to compare with the resource estimate (where appropriate) & assisted in defining geological confidence & resource classification categories.

Appendix 1: Table of exploration results - RC & RC_DD Recent Drilling for Racetrack Deposit

NORTON GOLD FIELDS

LIMITED

Hole ID	East	North	RL	Dip	Azimuth	Depth (m)	From (m)	To (m)	Interval (m)	Grade a/t Au
							69	73	4	1.24
PMPC1273	330933.0	6618392.8	348.1	-60	146	120	88	89	1	0.80
		001007210			1.10	. 20	95	96	1	1.00
							76	77	1	1.70
							83	87	4	1.58
PMPC1274	331101.6	6618654.4	351.2	-60	146	138	97	99	2	1.52
							102	104	2	1.89
PMPC1275	329775.8	6618112.0	348.8	-60	146	132	NSI			
							38	39	1	1.55
							57	58	1	1.20
PMPC1276	330103.7	6617729.9	347.3	-60	146	150	64	65	1	1.32
							70	72	2	3.17
							84	85	1	2.65
							60	69	9	1.62
PMPC12//	330000.6	661/8/8.6	34/./	-60	146	90	82	83	1	1.08
PMPC1278	330174.5	6617767.3	347.1	-60	146	120	NSI			
	330147.1	6617808.7			146	162	47	48	1	1.76
							54	61	7	2.75
							72	74	2	1.41
PMPC1279			347.3	-60			78	79	1	1.14
							87	88	1	1.64
							118	120	2	2.96
							149	151	2	1.76
	330137.3	6617779.3	347.3	-60	146	162	35	36	1	1.85
PMPC1280							65	66	1	1.25
							151	152	1	1.14
PMPC1281	330188.7	6617818.1	347.2	-60	146	198	94	97	3	1.35
BMBC 1292	220204 4	4417022.0	2171	40	144	204.2	28	32	4	1.11
F/MFC1282	550204.4	001/732.7	347.4	-00	140	204.2	199	200	1	3.98
							41	47	6	5.58
PMPC1283	330182.3	6617967.1	347.3	-60	146	90	51	53	2	5.04
							82	83	1	1.18
							28	30	2	7.05
PMPC1284	331511.8	6618607.7	349.4	-60	146	132	92	93	1	3.44
							103	107	4	6.33
							152	153	1	4.59
PMPC1285	330034 8	6618534.9	351.1	-40	146	222.2	161	162	1	1.66
1 MI C1203	330936.0		551.1	-00			174	175	1	4.78
							206	207	1	1.44

NORTON GOLD FIELDS

LIMITED

Hole ID	East	North	RL	Dip	Azimuth	Depth	From	То	Interval	Grade
						(m)	(m)	(m)	(m)	g/t Au
PMPD0072A							104	107.5	3.5	1.49
	330791.8	66183137	347.8	-55	146	273 7	147	148	1	1.18
	000771.0	0010010./	547.0		140	2/0./	213	214	1	4.64
							240	240.5	0.5	1.65
			349.7				33	36	3	1.73
	330872.0	44193431		-55	146	150	67	72	5	1.56
1 100 5	330072.0	0010040.1	540.7			150	87	88	1	0.98
							112	113	1	2.46
							84	85	1	2.59
PMPD0073A	330873.2	6618341.7	348.7	-55	146	285.7	197	201	4	4.67
							212	213	1	1.11
							69	70	1	1.83
				-56	146		110	112	2	1.31
							118	119	1	1.02
PMPD0074	330947.6	6618370.9	347.9			241	126	127	1	10.7
							198	199.4	1.4	2.85
							209.3	213	3.7	6.13
							219	220	1	1.35
0.100.0075			348.2	-53	146		62	63	1	0.92
	330987.0	6618384.5					113	117	4	1.33
						0.40	138	139	1	2.82
PMPD0075						243	186.7	188	1.3	8.48
							193	194	1	0.90
							203	211	8	10.6
	330967.3	6618419.2	349.4	-60	146		1	2	1	7.49
							60	61	1	1.01
							78	79	1	1.07
							94	95	1	2.21
							104	105	1	1.74
							108	111	3	1.40
DI (DD 007 (007.1	130	130.6	0.6	1.72
PMPD0076						297.1	137	138	1	7.00
							158	159	1	0.80
							181	182	1	1.70
							196	197	1	5.09
							227	233	6	1.94
							234.72	237	2.28	1.12
							239.3	244.55	5.25	2.16
							41	42	1	1.37
PMPD0077	331289.9	6618545.1	349.8	-55	146	207	103	105.45	2.45	4.50
							108	114.69	6.69	6.30

NORTON GOLD FIELDS

LIMITED

Hole ID	East	North	RL	Dip	Azimuth	Depth	From	То	Interval	Grade
						(m)	(m)	(m)	(m)	g/t Au
							133	134	1	2.24
PMPC1302	330962.6	6618456.5	350.0	-60	146	114	76	82	6	1.37
	000702.0	0010100.0	000.0	00	110		86	93	7	5.06
							13	14	1	5.69
PMPC1304	330232.9	6617778.0	347.0	-60	146	114	36	37	1	1.25
							42	43	1	0.80
					144		75	76	1	3.13
PMPC1305	330100 1	4417840.0	247.0	40		149	104	105	1	2.25
1/01/01/000	550170.1	0017040.0	547.2	-00	140	100	144	150	6	4.14
							160	164	4	3.62
	22010/ E	//1777/0	247.0	10	1.4.4	114	53	54	1	1.43
FMFC1307	330106.5	001///4.0	347.Z	-60	140	114	66	69	3	2.90
	22110/ 0	//10/05.0	257.2	(0	1.47	120	102	103	1	0.81
PMPC1308	331106.2	6618683.9	357.3	-60	146	138	106	107	1	0.80
PMPC1303	330928.7	6618509.7	351.2	-60	146	329.1	77	78	1	0.84
PMPD0085	330912.2	6618349.6	348.1	-55	146	254.5				assays pending
PMPD0086	331330.6	6618585.7	358.6	-60	146	228.4				assays pending
PMPD0087	330935.3	6618357.5	348.0	-55	146	240				assays pending
PMPD0088	331240.9	6618501.0	349.6	-70	146	171.3				assays pending
	331241.5	6618500.0	349.5	-55	146		66	67	1	1.54
						189.2	109	110	1	5.48
PMPD0089							129	130	1	3.23
							134.55	138.96	4.41	6.69
	331219.2	6618498.1	349.3	-70	146		141.64	145	3.36	13.9
D. (DD 0000						330.65	148	151	3	4.59
PMPD0090							159	163	4	2.87
							271.98	273	1.02	0.99
							63	65	2	1.16
PMPD0093	331217.1	6618464.8	349.1	-55	146	189.3	69	70	1	1.55
							101	101.3	0.3	1.10
PMPD0094	331303.0	6618555.7	350.9	-55	146	180.1	38	40	2	3.57
PMPD0095	331276.6	6618560.2	350.2	-60	146	194.6	47	48	1	3.57
1111 20070	0012/0.0	0010000.2	000.2		1.10	17110	1	2	1	0.87
PMPD0096	331005.4	6618431.5	349.2	-55	146	260	47	60	13	1.32
	330986.1	6618421.1	349 4	-60	146	270	57	58	1	1 96
PMPD0098	3309141	6618455.0	349 7	-60	146	234.2	79	80	1	1 30
PMPD0101	331386.8	6618607.9	367.1	-55	146	190	17	18	1	1 16
	001000.0	0010007.7	507.1		140	170	9	10	1	1.10
		6618605.2		-70	146		23	24	1	0.80
PMPD0102	331364.0		367.1			190	17	52	4	1 47
								55	0	3.04
							57	30	I	3.70

Hole ID	East	North	RL	Dip	Azimuth	Depth (m)	From (m)	To (m)	Interval (m)	Grade g/t Au
							62	65	3	1.08
PMPD0103	331364.7	6618604.3	367.1	-55	146	190	45	46	1	1.06
PMPD0106	331347.8	6618581.7	359.1	-70	140	180	19	20	1	1.14
PMPD0109	331306.6	6618585.0	358.4	-60	146	190	58	59	1	2.23
	220702.0	//1000//	247/		1 5 5	220	59	60	1	1.16
FMFDUTTI	330763.2	0010204.0	347.6	-40	155	220	73	74	1	1.03
PMPD0112	330781.4	6618283.8	347.6	-54	156	312	34	35	1	2.01
PMPD0113	331476.8	6618620.1	356.1	-60	146	142	49	50	1	3.01

Appendix 2: A map showing the collar locations of the recent RC & RC_DD drilling at Racetrack

Drillhole collars Historic Drilling Ó Racetrack Structure surface trace Supergene mineralisation outline 1000 metre Racetrack RC/RC_DD Drilling Location plan
JORC Code, 2012 Edition – Table 1 Bullant Underground

Section 1 Sampling Techniques and Data

NORTON GOLD FIELDS

(Criteria in this section apply to all succeeding sections.)

LIMITED

Criteria	Commentary
Sampling techniques	 Sampling completed utilising a combination of Diamond Core holes (DC), Face Sampling (FS) and Reverse Circulation (RC) holes. The drill hole locations were designed to allow for spatial spread of samples across mineralized zones and different rock types. Face sampling was performed on most of the faces from development drives. Drilling and sampling has been conducted by various companies since 1980 including BHP Gold Mines; Newcrest Mining; Centaur; Goldfields Group; Aurion Gold; Placer Dome; Barrick; and Kalgoorlie Mining Company (KMC) and recently by Norton Gold Fields (Norton). Drilling includes exploration, resource development and grade control sampling (DC for underground and RC for open pit). All RC recovered samples were passed through a splitting device (cone or riffle splitter) at 1m intervals to obtain sample for assay, which was collected in an appropriately sized calico bag. Target RC calico sample weights range from 2.5 to 4kg across all RC drilling campaigns. Bulk reject sample was also collected into a plastic bag for each metre. Spear samples, composited to 4m or less, were collected from the bulk samples as a first-pass sampling technique. Single metre samples were collected and submitted for assay from areas of expected mineralisation or composite anomalism. DC samples were placed into core trays at the rig before being bought to the core yard for processing.
Drilling techniques	 The dataset used for the Bullant resource estimate is a combination of historic data dating back to the 1980's which includes reverse circulation and surface diamond drill holes; and new data consisting mostly of underground collared diamond drill holes and face samples from the development levels. In the latest estimates 609 RC holes were used (20%), 592 DC holes (20%) and 1747 face sampling strings (60%). The RC diameter used is unknown. The DC comprises 11% NQ2 (47.6mm diameter core sizes), and 89% of unknown diameter. The RC drilling predominantly confined to the upper limits of the deposit including open pit grade control. All the historic holes used in the estimation were assumed to have been processed and sampled in a similar fashion to the added KMC and Norton holes. Recent DC holes were oriented. The recent drilling campaigns accounts for 7% of the total DC drilling dataset.
Drill sample recovery	 RC Drillers are advised by geologists on the ground conditions expected for each hole and instructed to adopt an RC drilling strategy to maximize sample recovery, minimize contamination and maintain required spatial position All RC 1m samples are collected into a UV resistant bag. Samples are visually logged for moisture content, estimated sample recovery and contamination.

Criteria	Commentary
	 Sample loss or gain is reviewed at the time of drilling and feedback is provided to the drilling contractor to ensure the samples are representative. All samples sent to the laboratory are weighed and monitored to ensure that they are representative. DC contractors use a core barrel and wire line unit to recover the DC, adjusting drilling methods and rates to minimize core loss. The DC samples are orientated, length measured and compared to core blocks denoting drilling depths by the drilling contractor. Any recovery issues are recorded. All recoveries are record in the geology Geotechnical Logging sheet. Core recovery where recorded was on average 96%.
Logging	 All drill hole data was geologically logged using codes set up for direct computer input. Hole ID, interval, rock type, changes in shear intensity and changes in alteration type or the occurrence of quartz veining were recorded. All development faces were logged before sampling. Geological logging was both qualitative and quantitative in nature. All core was photographed after logging (and before cutting) using a digital camera. Geotechnical information was collected from selected DC holes. Information collected includes RQD and fracture frequency. Historical RC samples were also geologically logged. The following parameters were recorded: weathering, rock type, alteration, mineralization and structure.
Sub-sampling techniques and sample preparation	 Diamond core samples were collected at intervals nominated by a geologist from half core or whole core with a minimum interval of 0.1m and a maximum of 1.1m. Face samples were collected by channel sampling with minimum sampling interval of 0.1m and maximum of 1.3m. Sample intervals always conform to the logged lithological boundaries. Core which was halved for sampling was split using diamond saw, half was sampled and assayed, the remaining half resides in the core tray and is archived. Samples collected from DC are placed into pre-numbered bags and sent to the lab. The remainder of the core is stored in the core yard at the Bullant mine site or at the Panglo core storage facility. Samples were taken to a commercial laboratory for assay. Historically Amdel, Analabs and Genalysis laboratories were used. All recent samples (since 2010) were sent to SGS laboratory in Kalgoorlie. All RC samples were split by a splitting device to collect sample. Recent RC samples have undergone splitting in a three-stage riffle splitter to achieve app. 3kg of sample for each down-hole metre. Historically first pass composite (<4m) sampling was used which utilised a spear sample collected from the bulk sample. Recently all 1m reduced samples were placed in pre-numbered calico bag and sent for assay. Samples submitted to the laboratory were sorted and reconciled against the submission documents.

Criteria	Commentary
	 The sample preparation technique for all samples followed industry best practice, by accredited commercial laboratories. The technique and practices are deemed appropriate for the type and style of mineralization. Between 2010 and 2012 the geochemical samples were dried at 100°C. Dried samples were crushed in Jaw Crusher then split in riffle splitter if they were above 4kg and pulverized to minimum 90% passing 75µm in LM5 pulveriser. 200g sample was scooped out and reduced to 50g sub sample, which entered the Fire Assay process. Since mid-2012 entire dried sample is crushed to -2mm in Boyd Crusher and then rotary split to obtain 1kg sample which was pulverized in LM2 pulveriser to 85% passing 75µm. A 200g pulp sample was scooped from LM2 out of which the catch weight sample of 30g was scooped for the Fire Assay. Laboratory Quality Control (QC) includes duplicate samples collected after the jaw crushing stage, and repeat samples collected after the pulverising stage to provide data confirming the appropriateness of the sample preparation technique. All sub-sampling & lab preparations are consistent with other laboratories in Australia & are satisfactory for the intended purpose.
Quality of assay data and laboratory tests	 The assay method was designed to measure total gold in the sample. The laboratory procedures are appropriate for the testing of gold at this project given its mineralization style. The Fire Assay charge of 30g was fused with a lead flux then decomposed in a furnace with the prill being totally digested by 2 acids (HCI and HN03) before measurement of the gold content by an Atomic Absorption Spectrometer. Samples were submitted in 78 sample batches including QC samples. Routine Certified Reference Material (CRM) - standards and blanks were inserted into the sampling sequence at a rate of 1:25 for standards and 1:75 for blanks and also submitted around expected zones of mineralization. The commercial laboratories completed their own QC check. Since 2012, barren flushes have been utilized between expected mineralized sample intervals when pulverizing DDH samples. Historic RC drilling Quality Control procedures are poorly documented. A Centaur Mining and Exploration Ltd report states that Assay QC was performed for Duplicate and Replicate pulp assays; Re-split and composite assays; Standard assay checks; Fire Screen assays and Empire assays. Any erroneous QC results were examined and validated if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. If there were any issues with any given CRM, the samples associated with the CRM were immediately re-assayed. Therefore all CRM data and their associated samples satisfy a gross tolerance before being accepted in the database.
Verification of sampling and assaying	 No holes were twinned. Duplicate face sampling was performed on 10 faces during 2010-2012 data collection campaign. There was close correlation of two sample sets. Primary data was sent digitally every 2-3 days from the field to NGF's Database Administrator (DBA). The DBA imports the data into the commercially available and industry accepted Data Shed database software. Assay results were merged when received electronically from the laboratory. The responsible geologist reviewed the data in the database to ensure

Norton Gold Fields

LIMITED

Criteria	Commentary
	that it was correct and has merged properly and that all data has been received and entered. Any variations that were required are recorded permanently in the database.No adjustments or calibrations were made to any assay data used in this report
Location of data points Collars	 Drill holes collars were surveyed by surveyors using a Leica Total Station, Model TS15. This instrument measures distances to an accuracy of ± 0.005m. Collar position was validated in Surpac software against planned co-ordinates and underground development pick-ups. All recent surface and underground data was collected in mine grid based on local Zuleika grid. It is not specified in the database what grid was used for collection of historic data (pre 2010). Various grids have been used over the wide spread of companies involved, therefore it is likely that data has undergone some level of transformation between grids. Topographic control was generated from comprehensive survey pick-ups of the area over the last 30 years. The magnetic declination for Kalgoorlie has a five year moving average of +0.108 degrees.
Location of data points Down Hole Surveys	• Most of historic drill holes used in the project were surveyed using various magnetic based methods (Multi-shot or Single- shot cameras). 81 holes were surveyed with a north-seeking gyro instrument. There also are 4 short (40 metres) DC holes and 4 short (23 metres) RC holes which were surveyed using a Maxibore instrument. Unfortunately for 4 DC holes and 2,238 RC holes the survey method was not recorded. All recent holes were surveyed by magnetic methods.
Data spacing and distribution	 The drill spacing for the Main Lode Indicated resource varies between 50 metres in the close to surface portion of underground deposit to between 16 metres and 40 metres at depth, on average 25m in the northern deeps, 40 metres in the deeps south. The drill spacing for the Indicated resource in East Lode varies between 20 metres to 40 metres. The average distance to the samples used is generally below 50 metres. Data spacing and distribution are considered acceptable for establishing geological continuity and grade variability appropriate for classifying a Mineral Resource. The length of samples used for resource estimation was generally 1m with some samples shorter due to sampling to geological boundaries. A few samples were 2 metres and greater, due to original 4 metres compositing when collecting sample for assay. The samples were therefore composited to 1m down-hole interval.
Orientation of data in relation to geological structure	 All care was taken to achieve the best possible angle of intersection. Availability of drill sites however, and presence of pits causes many drill holes to intersect the ore body at acute angles. All FS sampling was performed across the mineralised veins. No drilling orientation and sampling bias has been recognized at this time.
Sample security	 Historical samples are assumed to have been under the security of the respective tenement holders until delivered to the laboratory where samples were expected to have been under restricted access. Samples were all under the security of Norton until delivered to the analytical laboratory in Kalgoorlie where they were in a

Criteria	Commentary
	secured fenced compound with restricted entry.
Audits or reviews	 Internal reviews were completed on sampling techniques and data as part of the Norton continuous improvement practice No external or third party audits or reviews have been completed.

NORTON GOLD FIELDS

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

LIMITED

Criteria	Commentary
Mineral tenement and land tenure status	 The Bullant mine is located on tenement M16/44 and M16/45 held by Kalgoorlie Mining Company (Bullant) Pty Ltd. On the 7 August 2013, Norton Gold Fields Limited (Norton) completed an off-market takeover offer for all fully paid ordinary shares in Kalgoorlie Mining Company Limited (KMC). Norton acquired Paddington Gold Pty Limited (Paddington) from Barrick Australia Ltd in August 2007. Paddington is the Operating Manager of the KMC tenements. The mine is located 20 Kilometres south-west of Ora Banda and 65 Kilometres north-west of Kalgoorlie. Access from Kalgoorlie is north via the sealed Menzies Highway, then west along the Broad Arrow to Ora Banda Road, then south via the unsealed Bullant access road. The tenements M16/44 and M16/45 are located in the Coolgardie Mineral Field within the Kunanalling District and are found on the Ora Banda 1:50,000 Map Sheet. Tenements are in good standing and there are no known impediments.
Exploration done by other parties	• A significant proportion of exploration, resource development and mining was completed by companies which have held tenure over the Bullant deposit since 1980. Companies included: BHP Gold Mines; Newcrest Mining; Centaur; Goldfields Group; Aurion Gold; Placer Dome; Barrick; and Kalgoorlie Mining Company (KMC). Results of exploration and mining activities by the above mentioned companies' aid in current resource development. In the current Bullant resource over 80% of all data is legacy data.
Geology	• The Bullant project is located in the western margin of the regionally extensive Norseman-Wiluna Belt, lying within the Coolgardie Domain of the Kalgoorlie Terrane. The geology of the Bullant area is dominated by the Bolshevic syncline which comprises a sequence of folded mafic and ultramafic rocks and interflow sediments constrained by the Zulieka Shear Zone in the east and by the Kunanalling Shear Zone in the west. The gold mineralisation at the Bullant project is hosted in four main reefs which include Main Lode, East Lode, West Lode and Cross Lode. The Main and East lodes to date have hosted the majority of the gold mineralisation mined at the project, and are hosted in biotite altered Bent Tree basalt.
Drill hole Information	See appendix 1
Data aggregation methods	• All reported assay results have been length-weighted, no top cuts have been applied. Assay results are reported above a 3.5g/t Au lower cut.

Criteria	Commentary
	 A maximum of 2m of internal dilution is included for reporting intercepts. Minimum reported interval is 1.0m for RC and 0.3m for DC intercepts. No metal equivalent values are used for reporting exploration results
Relationship between mineralization widths and intercept lengths	 The DC holes were drilled to achieve the best possible angle of intersection. Drill hole intersections vary due to infrastructure issues and drill rig access. Many drill holes intersect the ore body at acute angles. All Face sampling was performed across the mineralised veins and are representing approximate true width.
Diagrams	See appendix 2
Balanced reporting	All results have been reported relative to the intersection criteria.
Other substantive exploration data	No other exploration data collected is considered material to this announcement.
Further work	• Further work at Bullant deposit will include additional resource development drilling and updating geological models.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	Commentary
Database integrity	 Database used for the resource estimation of Bullant deposit is a combination of a number of historic databases inherited mainly from Barrick Australia, new drilling conducted by KMC between 2010 and 2012, and drilling by Norton in 2014. An examination of historical drilling information, QAQC verification and database management was undertaken in 2012. Face sampling data was merged into the drill hole database. The main database that was inherited from Barrick was combined with a number of grade control databases and exploration databases that covered both of KMC's tenements. Norton geological data is stored in SQL server databases. The SQL databases are hosted on site at Paddington and managed by Paddington personnel. User access to the database is regulated by specific user permissions and validation checks to ensure data remains valid. DataShed software has been implemented as a front-end interface to manage the geological database.
	• Existing protocols maximize data functionality and quality whilst minimizing the likelihood of error introduction at primary data collection points and subsequent database upload, storage and retrieval points. Data templates with lookup tables and fixed formatting are used for collecting primary data on field laptops. The software has validation routines and data is subsequently imported into a secure central database.

Criteria	Commentary
	 The SQL server database is configured for validation through parent/child table relationships, required fields, logical constraints and referenced library tables. Data that fails these rules on import is rejected or quarantined until it is corrected. Historic data has been merged into the main SQL database, PGMshed. The current resource estimates used MS Access subsets of data created from SQL database. To validate this datasets hole traces were visually (on screen) examined to identify missing or incorrect survey and collar location information in the Bullant Mine area. A visual validation was carried out on all data once it had been into the 3D visualisation software Surpac. Hole traces were visually (on screen) examined to identify missing or incorrect survey and collar location information in the area.
Site visits	 The Competent Person for this update is a full time employee of Norton and undertakes regular site visits ensuring industry standards of the Mineral Resource estimation process from sampling through to final block model. The deposit area is an active mining area for Norton and as such regular site visits were undertaken during this update. An independent geological consultant has reviewed the project area in 2012 which included a site visit.
Geological interpretation	 The high confidence of the geological interpretation is based on geological knowledge acquired from detailed geological DC and RC logging, assay data, underground development backs and face mapping and pit mapping. The Bullant deposit has been interpreted by KMC to have six mineralised zones which have been wireframed in Vulcan software as closed solids. These zones were sometimes split by the west dipping fault and cross fault. Solids representing mineralised envelopes were built from points snapped directly to drill hole intersection. The underground development mapping was also utilized to aid in understanding of geometry of mineralised zones and faults. The six mineralised zones interpreted were. Main Lode East Lode West North Lode West Deep Lode Cross Lode A down-hole gold grade cut off of 1 g/t was used for creating wireframes. The geological interpretation is considered robust.
	 All Vulcan wireframes were imported to Surpac software and updated using the recent sampling results before updating the block model.

Criteria	Commentary
	• The dataset (geological mapping, RC and DC logging, assays etc.) is considered acceptable for determining a geological model.
Dimensions	 The Bullant Main and East lodes have a continuous strike of over 1,000 metres with depth extensions reaching 800 metres below surface. Each lode is typically 1.5 to 6 metres wide true width. The Bullant deposit is spatially located between 22,850mE and 23,100mE and between 5,300mN to 6,750mN (Zuleika local grid).
Estimation and modeling techniques	 Geological domains were based on the geological interpretation. Three dimensional wireframes were created from points snapped to drill hole and face sampling intercepts. Domain boundaries were treated as hard boundaries. The choice of compositing technique took into account several criteria including: The thickness of the ore zones (between 1.5 and 6 metres thick - 2.5 metre on average) Samples were of unequal support (10 centimetres to a meter and up to 4 metres in RC holes) Variable data spacing - from 3 metres by 15 metres to 80 metres by 80 metres for vein intercepts Short-scale grade and geometry variability The length of samples used for resource estimation was generally 1m with some samples shorter due to sampling to geological boundaries. A few samples were 2 metres and greater due to original 4 metres compositing when collecting sample for assay. The samples were therefore composited to 1m down-hole interval. The statistics for each domain were viewed and key univariate statistical indicators used to describe the nature of each. Each of the population of the composite data from the Bullant mineralised domains was positively skewed and showed number of high grade outliers, which is typical of the most of mineral deposits. Top-cuts were determined by way of viewing grade distribution histograms and probability plots to determine what grade separated the outliers from the population. The following factors were taken into account Caefficient of Variation (CV) of samples should be reduced to preferably no more than 1.4 Preferably 95% of the mean should be maintained Variance should be reduced as much as possible considering the above factors High-grade outliers were top-cut to 20g/t and 30g/t Au in Main Lode 22g/t and 35g/t Au in Cast Lode 41g/t; 31g/t and 11g/t Au in West Lode 26g/t Au in cross Lode Spothal continuity was examined for each domain.

NORTON GOLD FIELDS

Criteria	Commentary
	 investigation was conducted on the top-cut composite datasets. Ordinary Kriging method of grade estimation was used utilising the variogram models. The variogram models were generally kept similar to those used for the Bullant modelling in late 2012. A total of 3 search passes were conducted with progressively relaxed search criteria to accommodate the data density from face sampling to the widest spaced drilling at 80m x 80m. Block model dimensions, block sizes and sub-blocking was chosen after a careful examination of the extents of mineralisation, general shape of mineralised veins and distribution of data points Parent block size: 5m(X) by 10m(Y) by 10m(Z) Sub-blocking: 1.25m(X) by 2.5m(Y) by 2.5m(Z) Blocks in the block models were coded based on the interpreted solids by block centroid in or out of solids. Domain coding was used to control grade estimation process. No correlation between variables was necessary. Estimation completed using Surpac mining software. Standard block model validation has been completed using visual methods by peer review by key geology staff and by comparing with previous estimate. Mineral Resource Model has been validated visually against the input composite/raw drill hole data with sufficient spot checks carried out on a number of block estimates on sections and plans. "Weathering" variable was created and assigned values to represent various stages of oxidation near surface.
Moisture	Tonnages were estimated on a dry basis
Cut-off parameters	• Cut-off of 1g/t Au was used for creating solids for mineralised veins. Gold grade was also estimated into surrounding waste to aid in accurate calculation of diluting grades for Ore Reserve estimations.
Mining factors or assumptions	 The models were depleted for known workings. Mining methods are based on previous underground mining operation at Bullant. The resource was mined utilizing narrow-vein underground mining methods (jumbo for development, sub-level long-hole open stoping with backfill for production).
Metallurgical factors or assumptions	 No assumption or factors have been applied to the resource estimate regarding the metallurgical amenability. Ore from Bullant underground was processed through the Paddington mill. No assumptions were made regarding recovery of by-products during the Mineral Resource estimate. The estimation of deleterious elements was not considered material to this style of mineralization.
Environmental factors or assumptions	• No significant environmental factors are expected to be encountered regarding the disposal of waste or tailing material. This expectation is based on previous mining and milling of the Bullant deposit.
Bulk density	• The density data for Bullant deposit has been compiled by Placer Dome, Barrick and KMC (2010-2012) using diamond drilling and stock pile sampling.

Criteria	Commentary
	 To determine bulk density of each sample a gravimetric method (Archimedes Principal) has been used, where samples are first weighted in air, then in water and a bulk density is calculated. The moisture content was also determined from stock pile sampling. Each sample of approximately 10kg was after collection sealed in a plastic bag before being sent to the laboratory. Collected information was used to confirm the density of fresh rock at Bullant being 2.78t/m³. Density values assigned to block model cells were as follows: Oxide 1.85t/m³ Transitional 2.3t/m³ Fresh rock 2.8t/m³
Classification	 For this update Norton maintained KMC classification from the previous, late 2012 estimate. KMC followed the JORC classification system with individual block classification based on statistical methods taking into account the following factors: Confidence of certain parts of the geological model supported by Level of geological understanding Drill spacing and orientation Confidence in data quality Measured category was assigned to resource around mine development. Indicated category to resource where distance between data points was not bigger than 40 metres. Inferred category to resource estimated using a higher data point's separation.
Audits or reviews	• The continuity analysis and kriging parameters used to estimate gold grade into resource model were reviewed by independent geology consultant – Haren Consulting in late 2012.
Discussion of relative accuracy/ confidence	 The Mineral Resources has been reported in accordance with the guidelines of the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and reflects the relative accuracy of the Mineral Resources estimate. The Competent Person deems the process to be in line with industry standards for resource estimation and therefore within acceptable statistical error limits. The statements relates to global estimates of tonnes and grade for underground mining extraction. Production data was used to compare with the resource estimate (where appropriate) and assisted in defining geological confidence and resource classification categories

Appendix 1: Table of exploration results – Bullant Diamond Core

	Hole ID	ZUL East	ZUL North	ZUL RL	Dip	Azimuth	Depth (m)	From (m)	To (m)	DH Width (m)	Grade (g/t au)
	BUGD1001	23057.0	6295.0	6085.3	-66	215.7	171.0	98.5	99.4	0.9	13.7
	\sim							114.0	115.0	1.0	3.90
	BUGD1002	23057.4	6294.3	6085.6	-46	199.7	141.0	19.0	21.0	2.0	6.97
	0							67.0	72.0	5.0	7.09
	BUGD1003	23056.5	6295.4	6085.4	-62	238.2	119.6	19.4	20.2	0.8	4.03
\square	·							66.4	68.8	2.4	4.90
	BUGD1004	22056.2	6205 2	6087.8	525	234.8	82.0	25.8	20.3	0.5	7.08
	D00D1004	23030.5	0295.5	0007.8	55.5	234.0	02.9	41.0	46.7	1.7	10.3
615								78.25	81.70	3.45	4.41
(QD))							116.0	117.0	1.0	3.83
	BUGD1005	23057.0	6307.7	6085.3	-73.5	245.2	165.0	121.6	122.5	0.90	5.16
(()))					_		130.0	134.0	4.0	5.14
								148.0	152.0	4.0	5.15
)							35.0	36.5	1.5	5.6
	Í							56.3	57.8	1.5	9.4
	BUGD1006	23056.8	6308.8	6085.3	-68	280	125.6	68.8	70.5	1.8	7.8
								99.0	100.4	1.5	5.0
	5							117.7	118.7	1.0	5.1
60)							37.8	40.6	2.8	8.67
$(\square$	BUGD1007	23056.6	6308.8	6085.6	-47	280.2	69.1	64.0	66.0	2.0	8.85
		22050.0	C200.0	C007.0	47 5	202.0	47.5	19.0	20.6	1.6	8.06
\square	BUGD1008	23056.6	6308.8	6087.8	17.5	282.8	47.5	31.8	34.7	2.9	11.6
)							19.0	20.0	1.0	17.8
26								32.3	33.0	0.7	55.2
\mathbb{O}	BUGD1009	23056.7	6308.9	6090.3	52	284.4	80.3	40.2	41.0	0.8	5.27
\mathcal{L}	1							45.0	49.0	4.0	6.54
								54.3	67.0	12.7	11.2
		22057 4	C200 4	C005 4	C0 F	200.0	170 5		08.1	2.1	0.45
	BOGDIOIO	23057.4	6309.4	6085.4	08.5	308.8	173.5	75.45	77.45	2.0	24.2
)							81.0	91.0	10.0	8.91
	BUGD1011	23057.5	6310.0	6085.7	-51	324.2	152.6	05.0 95./	96.4	1.0	5.0 11 3
~	BUGD1012	23057 3	6310.1	6086 1	-30	322.7	101 5	68 3	71 3	3.0	6.88
<u> </u>	BUGD1012	23057.0	6310.5	6087 5	9	323.1	90.0	64.9	65.7	0.8	4 27
\square	BUGD1014	23057.1	6310.5	6089.2	35	325.6	111.0	0115	00.7	0.0	NSR
(\bigcirc)		2000712	001010			01010		123 5	130.0	65	11.4
	BUGD1015	23057.8	6310.2	6085.9	-42	335.9	239.6	228.6	229.3	0.7	5 1
	BUGD1016	23057 7	6310 5	6086 5	-19	335 4	167.6	111 3	115 3	4.0	9.5
	BUGD1017	23057.6	6310.5	6087.2	6	333.5	152.4	100.0	102.0	2.0	14 1
	BUGD1018	23057.6	6310.6	6088.7	31	334.8	176.6	128.1	128.9	0.8	9.21
	BUGD1010	22007.0	6131.6	5705 1	_18.2	244 5	107.2	73 65	74.7	1.05	634
		22330.2	6120.0	5703.1	-10.5 /1 F	244.3	107.5	01 25	02.0	0.75	5.34
	BUGD1020	22997.0	0130.0	5704.9	-41.5	249.4	124.2	91.25	92.0	0.75	5.76
	BUGD1021	22996.5	6131.3	5703.9	-51.0	233.4	166.3	132.65	133.3	U.65	5.09

			•								
	BUGD1022	22996.2	6132.2	5703.9	-58.4	261.0	155.5	121.4	122.9	1.5	15.7
	BUGD1023	22996.6	6130.3	5704.7	-25.6	215.6	188.6	107.05	109.5	2.45	6.96
	BUGD1024	22996.9	6130.1	5704.5	-27.8	205.6	236.3	155.45	156.0	0.55	4.85
	BUGD1025	22996.2	6199.0	5694.7	-53.4	235.1	155.4	121.0	125.6	4.6	10.3
\geq	BUGD1026	22996.4	6199.1	5694.2	-10.6	248.4	93	72.2	73.6	1.4	8.82
	BUGD1027	22995.8	6199.4	5695.4	-58.0	267.1	152.4				NSR
	BUGD1028	22995.2	6199.7	5695.0	-45.7	267.1	123.6	17.3	18.3	1.0	4.21
	BUGD1029	22995.9	6200.3	5694.5	-52.5	299.5	161.2	115.7	117.0	1.3	18.1
$(\bigcirc$								120.0	121.0	1.0	3.68
	BUGD1030	22996.2	6201.6	5694.2	-36.2	299.5	119.4	82.25	83.7	1.45	7.46
615	BUGD1031	22996.2	6201.7	5694.3	-10.8	299.5	101.4				NSR
QD	BUGD1032	22989.5	6291.2	5681.9	-55.2	257.3	137.3	54.7	55.1	0.4	10.7
RA	<u>)</u>							98.55	103.80	5.25	7.50
92	BUGD1033	22989.4	6291.2	5682.4	-35.7	257.3	99	71.0	72.4	1.4	9.24
	BUGD1034	22989.0	6291.1	5683.3	-2.6	257.3	83.4	56.55	57.1	0.55	4.52
	BUGD1035	22989.6	6292.4	5682.0	-51.2	293.1	146.5	82.0	83.0	1.0	3.77
	1							102.0	103.0	1.0	3.82
	BUGD1036	22989.3	6292.6	5682.4	-31.2	257.3	108.5	76.7	77.7	1.0	11.3
UU	BUGD1037	22989.3	6292.9	5683.2	-51.2	293.1	96.05	48.70	49.25	0.55	6.43
\square								68.1	70.6	2.5	14.4
	BUGD1038	22983.5	6378.0	5669.9	-49.3	254.6	140.5	94.3	94.8	0.5	3.52
	BUGD1039	22983.2	6378.0	5670.5	-24.8	254.6	107.5	72.0	73.0	1.0	4.90
	BUGD1040	22983.0	6377.9	5671.6	7.5	254.6	98.5	65.7	69.7	4.0	7.80
(0)	BUGD1041	22983.4	6379.4	5669.9	-47.5	286.1	149.5	91.1	93.1	2.0	11.5
<u> </u>	BUGD1042	22983.2	6379.2	5671.6	-23.3	286.1	110.5	76.5	77.0	0.5	5.1
615	<u></u>							94.9	95.5	0.6	4.59
QD	BUGD1043	22983.6	6380.2	5669.9	6.9	286.1	110.4	75.5	77.0	1.5	10.2
\square	BUGD1044	22983.4	6380.3	5670.5	-38.6	309.6	141.0				NSR
	BUGD1045	22983.4	6380.3	5671.5	-18.3	309.6	136.0	92.3	92.6	0.3	7.22
~	BUGD1046	22983.6	6379.0	5669.7	5.4	309.6	122.4				NSR
2	BUGD1049	22979.4	6550.1	5645.8	18.3	225.3	143.4	21.45	21.9	0.5	4.15
\square		_	-		_		_	102.5	103.0	0.5	9.49
	/							108.0	109.2	1.2	13.8

Norton Gold Fields

September 2014 Quarterly Exploration Report

Corporate Directory

Board & Senior Management Jinghe Chen Non-Executive Chairman

Dianmin Chen Managing Director

& Chief Executive Officer

Anne Bi Non-executive Director

Xuelin Cai Non-executive Director

Noel White Non-executive Director

Mark Braghieri General Manager Bullabulling Project

Terry Moylan General Manager Projects & Business Development

Steven Phan Chief Financial Officer

Peter Ruzicka General Manager Exploration

Guy Simpson General Manager Technical Services

Cullum Winn General Manager Paddington Operations

Company Secretary

Richard Jones General Counsel / Company Secretary

Media Relations

Warrick Hazeldine / Annette Ellis Purple Communications Tel: +61 (8) 6314 6300

ASX Listed Share Capital

931,850,665 million ordinary shares

Presentation and Rounding

Unless stated otherwise, all dollars shown are Australian dollars.

YTD

YTD means 2014 calendar year to date

Competent Persons Statement

The information in this report that relates to Mineral Resources is based on information compiled by Peter Ruzicka and Brad Daddow for Paddington, and Richard Sulway for Bullabulling. The information in this report that relates to Mineral Reserves is compiled by Guy Simpson and Elizabeth Jones. Exploration drilling results have been compiled by Peter Ruzicka.

Peter Ruzicka, Guy Simpson and Elizabeth Jones are all members of the Australasian Institute of Mining and Metallurgy and full-time employees of Norton Gold Fields Limited. Brad Daddow is a member of the Australian Institute of Geoscientists and a full-time employee of BM Geological Services PL, a consulting group to Norton Gold Fields Limited. Richard Sulway is a member of the Australasian Institute of Mining and Metallurgy, and a full-time employee of Snowden, a consulting group to Norton Gold Fields Limited.

Guy Simpson, Elizabeth Jones, Peter Ruzicka, Brad Daddow and Richard Sulway all have sufficient experience relevant to the styles of mineralisation and types of deposits which are covered in this report, and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Guy Simpson, Elizabeth Jones, Peter Ruzicka, Brad Daddow and Richard Sulway all consent to the inclusion in this report of matters based on their information in the form and context in which it appears.

Mount Morgan Project

The information in this report that relates to Mineral Resources of the Mount Morgan Mine project was prepared in accordance with the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code") and is based on, and fairly represents, supporting information and documents prepared by Troy Lowien, Resource Geologist, of consultants Coffey Mining Pty Ltd, who is a Member of The Australian Institute of Minina and Metallurgy ("AUSIMM") and has a minimum of five years of experience in the estimation, assessment and evaluation of Mineral Resources of this style and is the Competent Person as defined in the JORC Code. Troy Lowien conducted the geological modelling, statistical analysis, variography, grade estimation and report preparation. This report accurately summarises and fairly reports his estimations and he has approved and consented to the resource report in the form and context in which it appears. This information was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported.

Paddington Ore Reserve and Mineral Resource statement (gold) as at 30 September 2014

Reserve	Mt	g/t	Moz
Proven	1.32	1.49	0.06
Probable	17.69	1.77	1.01
Total	19.01	1.75	1.07
Resource	Mt	g/t	Moz
Resource Measured	Mt 2.91	g/t 1.80	Moz 1.69
Resource Measured Indicated	Mt 2.91 74.74	g/t 1.80 1.38	Moz 1.69 3.32
Resource Measured Indicated Inferred	Mt 2.91 74.74 56.41	g/t 1.80 1.38 1.80	Moz 1.69 3.32 3.26

Bullabulling Mineral Resource statement (gold) as at 30 September 2014

Resource	Mt	g/t	Moz
Measured	-	-	-
Indicated	68.53	0.99	2.18
Inferred	26.82	1.20	1.03
Total	95.35	1.05	3.22

Norton Gold Fields Consolidated Mineral Resource statement (gold) as at 30 September 2014

Resource	Mt	g/t	Moz
Measured	2.91	1.80	1.69
Indicated	143.27	1.19	5.50
Inferred	83.23	1.60	4.29
Total	229.40	1.35	9.96

Mount Morgan Mineral Resource statement (gold) as at 31 December 2012

	Mt	g/t	Moz
Indicated	2.487	1.59	0.127
Inferred	5.861	1.07	0.199
Total	8.348	1.23	0.326

Principal Office

Level 36, Exchange Plaza 2 The Esplanade, Perth WA 6000 Australia Tel +61 (0) 8 9263 9700 Fax +61 (0) 8 9263 9777

Postal Address

PO Box 5762 St Georges Terrace PERTH WA 6831 Australia www.nortongoldfields.com.au

Share Registry

Link Market Services Level 15, 324 Queen Street Brisbane QLD 4000 Tel 1300 554 474 (within Australia) Tel +61 1300 554 474 (overseas) Please direct shareholding enquiries to the share registry