

T +61 8 6298 7500

F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 PO Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ASX ANNOUNCEMENT

LINDI JUMBO PROJECT - GEOLOGY

Lindi Jumbo Project Update - Final drill results

Highlights 21 December 2015

- West flank of Gilbert Arc continues to yield very high grade flake graphite
- Final 6 holes received with grades up to 38% Total Graphitic Carbon (TGC);
 - o 39m @ 15.0% TGC including 5m @ 28.3% TGC in hole LJRC017
 - o 32m @ 9.6% TGC from 11m in hole LJRC021
 - o 6m @ 14.4% TGC plus 7m @ 10.3% TGC in hole LJRC016
- Western flank of Gilbert Arc has extensive high grade zones throughout strike of more than 900m
- Resource calculation and modelling expected early January
- Metallurgical test work and flake size analysis of west flank material underway

Overview

Perth-based African-focussed junior explorer Walkabout Resources Ltd (ASX:WKT) has reported further very high grade graphite assay results for the western flank of the Gilbert Arc from its maiden RC and diamond drilling program at Lindi in south eastern Tanzania.

The high grade, visible flake graphite appears to be of sufficient quantity and continuous nature to define a discrete high grade resource. This will underpin the development plan and allow the determination of financial and operational studies and modelling.

Managing director of Walkabout Resources, Allan Mulligan commented; "This maiden drilling campaign could not have been better located than where it was. The consistent and wide high grade areas of large and jumbo flake graphite will provide an ideal base for executing our accelerated development strategy.

These results will give the Lindi Jumbo Graphite Project a huge advantage over other East African projects in that input costs should be significantly reduced by the delivery of higher grade ore to the processing facility. We remain enthusiastic about the publication of the maiden resource later this month or early January."

T +61 8 6298 7500

F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 P0 Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ASX ANNOUNCEMENT

LINDI JUMBO PROJECT - GEOLOGY

Summary

Of 22 exploration holes (19 RC and 3 Diamond), 20 were drilled within the Gilbert Arc structure. Of these, 13 were drilled along the western flank of the structure. All 13 of these holes returned wide intersections of very high grade TGC with visible jumbo flakes and these are summarised in the table below

	All holes within the Gilbert Arc west flank									
Hole Number	Elevation (RL's)	Current Depth	Graphite From	Total Graphite Intersected	Best Intersection	Widest above 5% TGC				
	m	m	m	m	m @% TGC	m @% TGC				
LJRC001	243	59	13	35	8m @ 22.7	20m @ 12.7				
LJRC006	230	67	11	16	4m @ 15.8	16m @ 10.3				
LJRC009	228	55	1	46	10m @ 16.6	30m @ 11.8				
LJRC010	214	61	7	61	8m @ 36.7	54m @ 12.7				
LJRC013	218	70	11	36	5m @ 13.6	34m @ 9.7				
LJRC014	234	65	14	24	3m @ 30.9	15m @ 14.1				
LJRC015	223	67	13	49	3m @ 31.1	41m @ 11.6				
LJRC016	230	51	3	16	6m @ 14.4	7m @ 10.3				
LJRC017	224	98	25	73	5m @ 28.3	39m @ 15.0				
LJRC021	228	54	1	54	9m @ 13.2	32m @ 9.6				
LJDD001	213	70	15	27	6m @ 35.3	20m @ 20.5				
LJDD002	224	69	9	56	3m @ 35.1	23m @ 14.4				
LJDD003	227	76	1	74	8m @ 15.0	20m @ 12.7				

Table 1: Table of all holes drilled in the western flank of the Gilbert Arc anti-form structure.

Initial in-house 3D modelling of the high grade zones on the western flank indicate good correlation and continuity of these grade shells on section and along strike between sections (See Figure 1). Other holes were drilled outside the western flank of the Gilbert Arc and while many of these have been reported on and contain significant graphite intersections, these are the highest grades and widths.

This continuity means that a high grade mining target area can be inferred that should enable a high grade run-of-mine (ROM) product to be delivered to the process plant.

Resource modelling for the calculation of the maiden JORC compliant resource has been outsourced and is well underway for an official release in the near future.

ADN: 03 113 070 370

T +61 8 6298 7500 F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 P0 Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ASX ANNOUNCEMENT

LINDI JUMBO PROJECT - GEOLOGY

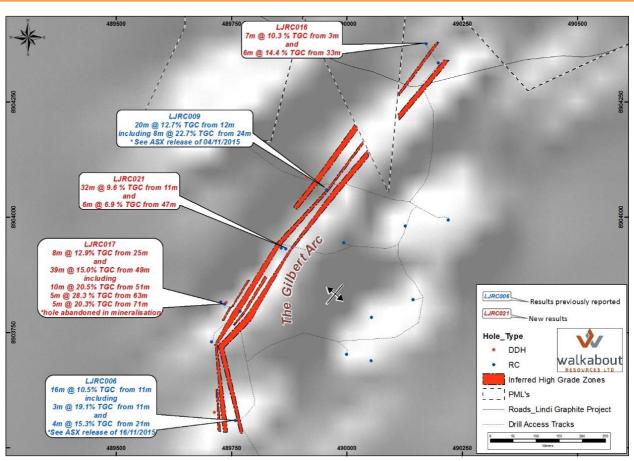


Figure 1: Map of Gilbert Arc area showing inferred continuous high grade bands of graphite material

Metallurgical Test Work

The Company has appointed metallurgical consultancy Battery Limits Pty Ltd to oversee the metallurgical test work programme. Battery Limits is well experienced at Tanzanian graphite processing and previously consulted to the Nachu Project.

Lindi Jumbo Graphite Project

Walkabout intends to fast-track the exploration and project development at Lindi Jumbo to validate the structure of the deposit, the graphite grade, concentrate product grade and flake size distribution. These results will enable the early introduction of an end-user market partner to secure product off-take and clarify operational right-sizing.

Details of Walkabout Resources' other projects are available at the Company's website, www.wkt.com.au

ENDS

For further information contact: Allan Mulligan – Managing Director +61 8 6298 7500 (T) allanm@wkt.com.au

T +61 8 6298 7500 F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 PO Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ANNOUNCEMENT

Table 1: Significant assay results for holes LJRC016 to LJRC021

	I ADIE I	. Signille	Jani ass	ay results for holes I	Total Graphitic	JINOUZ I
Hole	From (m)	To (m)	Width (m)	Lithology	Carbon TGC%	Notable Intersection TGC%
LJRC016	3	4	1	GRAPHITE SCHIST	13.0	
	4	5	1	GRAPHITE SCHIST	11.9	
	5	6	1	GRAPHITE SCHIST	12.9	7m @ 10.3% TGC
	6	7	1	GRAPHITE SCHIST	10.9	_
	7	8	1	GRAPHITE SCHIST	9.71	from 3m
	8	9	1	GRAPHITE SCHIST	8.58	
	9	10	1	GRAPHITE SCHIST	5.38	
	11	32	21	GRAPHITE SCHIST	NSI	
	33	34	1	GRAPHITE SCHIST	12.1	
	34	35	1	GRAPHITE SCHIST	25.7	
	35	36	1	GRAPHITE SCHIST	10	6m @ 14.4% TGC
	36	37	1	GRAPHITE SCHIST	0.83	from 33m
	37	38	1	GRAPHITE SCHIST	5.98	
	38	39	1	GRAPHITE SCHIST	31.5	
	39	40	1	GRAPHITE SCHIST	2.17	
	40	41	1	GRAPHITE GNEISS	5.08	
1100047	41	42	1	GRAPHITE GNEISS	1.38	
LJRC017	15	25	10	GRAPHITE GNEISS	NSI 0.41	
	25	26	1	GRAPHITE SCHIST	9.41	
	26	27	1	GRAPHITE SCHIST	16.5 12.5	
	27	28	1	GRAPHITE SCHIST	_	0 - 12 0
	28 29	29 30	1 1	GRAPHITE SCHIST	10.7	8m @ 12.9 % TG
	30	30	1	GRAPHITE SCHIST GRAPHITE SCHIST	20.0 18.2	from 25m
	31	32	1	GRAPHITE SCHIST		
	32	33	1	GRAPHITE SCHIST	2.06 13.9	
	33	49	16	DOLOMITE	NSI	
	49	50	1	GRAPHITE SCHIST	11.3	
	50	51	1	GRAPHITE SCHIST	14.1	
	51	52	1	GRAPHITE SCHIST	10.7	
	52	53	1	GRAPHITE SCHIST	27.2	
	53	54	1	GRAPHITE SCHIST	10.6	
	54	55	1	GRAPHITE SCHIST	17.8	
	55	56	1	GRAPHITE SCHIST	12.5	
	56	57	1	GRAPHITE SCHIST	23.4	
	57	58	1	GRAPHITE SCHIST	9.36	
	58	59	1	GRAPHITE SCHIST	22.4	
	59	60	1	GRAPHITE SCHIST	31.8	
	60	61	1	GRAPHITE SCHIST	39.6	
	61	62	1	GRAPHITE SCHIST	2.27	
	62	63	1	GRAPHITE SCHIST	1.95	39 m @ 15.0 % то
	63	64	1	GRAPHITE SCHIST	18.4	from 49m including
	64	65	1	GRAPHITE SCHIST	20.2	
	65	66	1	GRAPHITE SCHIST	33	10m @ 20.5% TO
	66	67	1	GRAPHITE SCHIST	38	from 51m and 5m
	67	68	1	GRAPHITE SCHIST	32.1	
	68	69	1	GRAPHITE SCHIST	7.9	28.3 % TGC from
	69	70	1	GRAPHITE SCHIST	8.6	63m and 5 m @
	70	71	1	GRAPHITE SCHIST	4.91	20.3% TGC from
	71	72	1	GRAPHITE SCHIST	15.3	
	72	73	1	GRAPHITE SCHIST	25.3	71m *hole
	73	74	1	GRAPHITE SCHIST	27.1	abandoned in
	74	75 76	1	GRAPHITE SCHIST	23.2	mineralisation
	75 76	76 77	1	GRAPHITE SCHIST	10.5	
	76 77	77	1	GRAPHITE SCHIST	4.96	
	77	78	1	GRAPHITE SCHIST	11.1	
	78	79	1	GRAPHITE SCHIST	2.16	
	79	80	1	GRAPHITE SCHIST	10.4	
	80	81	1	GRAPHITE SCHIST	10.2	
	81	82	1	GRAPHITE SCHIST	11.4	
	0.2		1	GRAPHITE SCHIST	6.84	
	82	83		CD 4 DI UTE C		
	83	84	1	GRAPHITE SCHIST	3.08	
	83 84	84 85	1 1	GRAPHITE SCHIST	2.65	
	83 84 85	84 85 86	1 1 1	GRAPHITE SCHIST GRAPHITE SCHIST	2.65 5.19	
	83 84	84 85	1 1	GRAPHITE SCHIST	2.65	

T +61 8 6298 7500

F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 PO Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ASX ANNOUNCEMENT

Hole	From (m)	To (m)	Width (m)	Lithology	Total Graphitic Carbon TGC%	Notable Intersections TGC%
LJRC018	5	37	32	GRAPHITE SCHIST	NSI	All below 5% TGC
LJRC019	9	10	1	GRAPHITE GNEISS	1.33	
	10	11	1	GRAPHITE SCHIST	4.31	
	11	12	1	GRAPHITE SCHIST	4.2	4m @ 5.9% TGC
	12	13	1	GRAPHITE SCHIST	9.24	from 10m
	13	14	1	GRAPHITE SCHIST	5.78	
	14	15	1	GRAPHITE SCHIST	1.13	
	15	16	1	GRAPHITE SCHIST	3.11	
	16	17	1	GRAPHITE SCHIST	1.62	
	17	18	1	GRAPHITE SCHIST	2.38	
	18	19	1	GRAPHITE SCHIST	5.19	
	19	20	1	GRAPHITE SCHIST	5.01	
	20	21	1	GRAPHITE BIOTITE GNEISS	3.69	
	21	22	1	GRAPHITE BIOTITE GNEISS	2.46	
	22	23	1	GRAPHITE BIOTITE GNEISS	4.0	
	23	24	1	GRAPHITE BIOTITE GNEISS	4.04	
	24	25	1	GRAPHITE BIOTITE GNEISS	4.52	
	25	26	1	GRAPHITE BIOTITE GNEISS	5.04	
	26	27	1	GRAPHITE BIOTITE GNEISS	2.3	
	27	28	1	GRAPHITE BIOTITE GNEISS	1.93	
	28	29	1	GRAPHITE BIOTITE GNEISS	4.31	
	29	30	1	GRAPHITE BIOTITE GNEISS	3.28	
	30	31	1	GRAPHITE BIOTITE GNEISS	5.25	
	31	32	1	GRAPHITE BIOTITE GNEISS	4.48	
	32	33	1	GRAPHITE BIOTITE GNEISS	1.18	
	33	34	1	GRAPHITE BIOTITE GNEISS	0.14	
	34	35	1	GRAPHITE BIOTITE GNEISS	1.43	
	35	36	1	GRAPHITE BIOTITE GNEISS	1.56	
	36	37	1	GRAPHITE BIOTITE GNEISS	4.47	
	37	38	1	GRAPHITE BIOTITE GNEISS	3.1	
	38	39	1	GRAPHITE BIOTITE GNEISS	3.85	6m @ 5.0% TGC
	39	40	1	GRAPHITE BIOTITE GNEISS	4.49	from 36m
	40	41	1	GRAPHITE BIOTITE GNEISS	8.45	
	41	42	1	GRAPHITE BIOTITE GNEISS	5.35	
	42	57	15	GRAPHITE BIOTITE GNEISS	NSI	
LJRC020	3	4	1	GRAPHITE GNEISS	9.69	
	4	5	1	GRAPHITE GNEISS	4.38	
	5	6	1	GRAPHITE GNEISS	3.56	
	6	7	1	GRAPHITE GNEISS	4.19	
	7	8	1	GRAPHITE GNEISS	3.51	10 m @ 5.0 % TGC
	8	9	1	GRAPHITE GNEISS	5.07	from 3m
	9	10	1	GRAPHITE GNEISS	4.61	
	10	11	1	GRAPHITE GNEISS	5.87	
	11	12	1	GRAPHITE GNEISS	4.87	
	12	13	1	GRAPHITE GNEISS	4.33	
	13	39	26	GRAPHITE GNEISS	NSI]

RESOURCES LTD

ASX CODE: WKT ABN: 89 119 670 370

т +61 8 6298 7500

F +61 8 6298 7501 E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 PO Box 263, West Perth WA 6872, Australia

www.wkt.com.au

A S X A N N O U N C E M E N T

LINDI JUMBO PROJECT - GEOLOGY

LIRCO21 1	Hole	From (m)	To (m)	Width (m)	Lithology	Total Graphitic Carbon TGC%	Notable Intersections TGC%
3 4 1 1 GRAPHITE GNESS 1.01 4 5 1 1 GRAPHITE GNESS 1.1 9 10 11 1 1 GRAPHITE GNESS 1.1 11 12 1 1 GRAPHITE SCHIST 7.28 112 13 1 1 GRAPHITE SCHIST 7.28 114 15 1 GRAPHITE SCHIST 3.16 115 16 1 GRAPHITE SCHIST 3.16 116 17 1 GNESS 0.15 117 18 1 GNESS 0.15 118 19 1 GRAPHITE SCHIST 12.0 119 20 1 GRAPHITE SCHIST 12.0 120 21 1 GRAPHITE SCHIST 12.0 131 22 1 GRAPHITE SCHIST 12.0 14 15 1 GRAPHITE SCHIST 12.0 15 GRAPHITE SCHIST 12.0 16 GRAPHITE SCHIST 12.0 17 18 1 GRAPHITE SCHIST 12.0 18 19 1 GRAPHITE SCHIST 12.0 19 20 1 GRAPHITE SCHIST 12.0 20 21 1 GRAPHITE SCHIST 12.0 21 1 GRAPHITE SCHIST 13.0 22 23 1 DOLOMMTE 0.59 23 24 1 GRAPHITE SCHIST 16.9 24 25 1 GRAPHITE SCHIST 16.9 25 26 1 GRAPHITE SCHIST 15.9 26 27 1 GRAPHITE SCHIST 15.9 27 28 1 GRAPHITE SCHIST 15.9 28 29 1 GRAPHITE SCHIST 15.9 29 30 1 GRAPHITE SCHIST 15.9 20 30 1 GRAPHITE SCHIST 15.9 21 32 33 1 GRAPHITE SCHIST 15.9 24 31 32 1 GRAPHITE SCHIST 15.9 25 36 37 1 GRAPHITE SCHIST 15.9 26 37 38 1 GRAPHITE SCHIST 15.9 27 38 1 GRAPHITE SCHIST 15.9 28 39 40 1 GRAPHITE SCHIST 15.9 39 40 1 GRAPHITE SCHIST 10.0 41 42 1 GRAPHITE SCHIST 10.0 41 42 1 GRAPHITE SCHIST 10.0 41 42 1 GRAPHITE SCHIST 10.0 41 44 45 1 GRAPHITE SCHIST 10.0 44 1 GRAPHITE SCHIST 10.0 45 46 1 GRAPHITE SCHIST 10.0 46 47 1 GRAPHITE SCHIST 10.0 47 48 1 GRAPHITE SCHIST 10.0 48 49 1 GRAPHITE SCHIST 10.0 49 50 1 GRAPHITE SCHIST 10.0 49 50 1 GRAPHITE SCHIST 10.0 49 50 1 GRAPHITE SCHIST 10.0 50 51 1 GRAPHITE SCHIST 1	LJRC021	1	2	1	GRAPHITE GNEISS	4.41	
4 5 1 1 GRAPHITE GNISS 1.1 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1		2	3	1	GRAPHITE GNEISS	1.12	
9 10 1 1 DOLOMITE		3	4	1	GRAPHITE GNEISS	1.01	
10		4	5	1	GRAPHITE GNEISS	1.1	
11 12 1 1 12 1 1 GRAPHITE SCHIST 2.09 1 14 15 1 GRAPHITE SCHIST 2.09 9 14 15 1 GRAPHITE SCHIST 2.09 9 3.16 16 17 1 GRAPHITE SCHIST 2.09 1 3.16 16 17 1 GRAPHITE SCHIST 2.09 1 17 18 1 GRAPHITE SCHIST 2.09 1 18 1 GRAPHITE SCHIST 2.00 1 19 20 1 GRAPHITE SCHIST 2.14 2.1		9	10	1	DOLOMITE	0.23	
12		10	11	1	GRAPHITE SCHIST	2.23	
13		11	12	1	GRAPHITE SCHIST	7.28	
14		12	13	1	GRAPHITE SCHIST	8.16	
15		13	14	1	GRAPHITE SCHIST	20.9	
16		14	15	1	GRAPHITE SCHIST	3.16	
17		15	16	1	GRAPHITE SCHIST	25.4	
18		16	17	1	GNEISS	0.15	
19		17	18	1	GNEISS	12.5	
20		18	19	1	GRAPHITE SCHIST	12.0	
20 21 1 1 GRAPHITE SCHIST 21.4 2.1 4 2.2 2.3 1 DOLOMITE 0.59 0.98 2.4 1 GRAPHITE SCHIST 0.98 2.4 2.5 1 GRAPHITE SCHIST 16.9 2.5 2.6 1 GRAPHITE SCHIST 16.9 4.0 4.1 2.7 2.8 2.9 1 GRAPHITE SCHIST 8.33 2.9 30 1 GRAPHITE SCHIST 3.64 4.15 3.1 3.2 1 GRAPHITE SCHIST 3.64 4.15 3.3 3.3 4 1 GRAPHITE SCHIST 3.3 3.3 4 1 GRAPHITE SCHIST 3.3 3.3 4 3.5 1 GRAPHITE SCHIST 5.92 3.5 3.6 3.7 1 GRAPHITE SCHIST 5.92 3.5 3.6 3.7 1 GRAPHITE SCHIST 3.3 3.3 4 3.5 1 GRAPHITE SCHIST 5.72 6.89 3.7 3.8 1 GRAPHITE SCHIST 5.72 6.89 3.7 3.8 1 GRAPHITE SCHIST 3.2.5 4.0 4.1 1 GRAPHITE SCHIST 3.2.5 4.0 4.1 1 GRAPHITE SCHIST 3.2.5 4.0 4.1 1 GRAPHITE SCHIST 3.2.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2							
21			21	1			
22 23 1 DOLOMITE			22	1			
23			23	1	DOLOMITE		
24		23					
25		24	25	1		16.9	
26 27 1 GRAPHITE SCHIST 6.08 27 28 1 GRAPHITE SCHIST 6.08 28 29 1 GRAPHITE SCHIST 8.33 29 30 1 GRAPHITE SCHIST 3.64 30 31 1 GRAPHITE SCHIST 3.64 31 32 1 GRAPHITE SCHIST 20.5 32 33 1 GRAPHITE SCHIST 8.37 33 34 1 GRAPHITE SCHIST 5.92 35 36 1 GRAPHITE SCHIST 5.72 36 37 1 GRAPHITE SCHIST 5.72 36 37 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 10.0 41 42 1 GRAPHITE SCHIST 10.0 41 42 1 GRAPHITE SCHIST 10.0 41 42 1 GRAPHITE SCHIST 10.0 43 44 1 GRAPHITE SCHIST 10.0 44 45 1 GRAPHITE SCHIST 10.04 45 46 1 GRAPHITE SCHIST 10.04 46 47 1 GRAPHITE SCHIST 10.05 47 48 1 GRAPHITE SCHIST 10.15 47 48 1 GRAPHITE SCHIST 10.15 48 49 1 GRAPHITE SCHIST 10.15 49 50 1 GRAPHITE SCHIST 10.15 50 51 1 GRAPHITE SCHIST 5.26 50 51 1 GRAPHITE SCHIST 5.26 50 51 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 10.2 53 54 1 GRAPHITE SCHIST 10.2				1			
27		26	27	1			32m @ 9 6% TGC
28							
29 30 1 GRAPHITE SCHIST 3.64 30 31 1 GRAPHITE SCHIST 4.15 31 32 1 GRAPHITE SCHIST 20.5 32 33 1 GRAPHITE SCHIST 8.37 33 34 1 GRAPHITE SCHIST 6.83 34 35 1 GRAPHITE SCHIST 5.92 35 36 1 GRAPHITE SCHIST 6.89 37 38 1 GRAPHITE SCHIST 10.0 38 39 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 10.0 43 44 1 GRAPHITE SCHIST 0.99 44 45 1 GRAPHITE SCHIST 0.99 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 0.15 48 49 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 5.26 50 51 1 GRAPHITE SCHIST 5.26							from 11m
30 31 1 GRAPHITE SCHIST 20.5 31 32 1 GRAPHITE SCHIST 20.5 32 33 1 GRAPHITE SCHIST 8.37 33 34 1 GRAPHITE SCHIST 6.83 34 35 1 GRAPHITE SCHIST 5.92 35 36 1 GRAPHITE SCHIST 5.72 36 37 1 GRAPHITE SCHIST 6.89 37 38 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 0.09 44 45 1 GRAPHITE SCHIST 0.09 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 0.15 48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 7.09 50 51 1 GRAPHITE SCHIST 5.26 50 51 1 GRAPHITE SCHIST 5.26 50 51 1 GRAPHITE SCHIST 7.09 51 52 1 GRAPHITE SCHIST 7.09 52 53 1 GRAPHITE SCHIST 7.09 53 54 1 GRAPHITE SCHIST 7.09 56 6.9% TGC 67 from 47m			-				
31 32 1 GRAPHITE SCHIST 20.5							
32							
33 34 1 GRAPHITE SCHIST 5.92 35 36 1 GRAPHITE SCHIST 5.92 36 37 1 GRAPHITE SCHIST 5.72 36 37 1 GRAPHITE SCHIST 6.89 37 38 1 GRAPHITE SCHIST 11.6 38 39 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 0.99 43 44 1 GRAPHITE SCHIST 0.99 44 45 1 GRAPHITE SCHIST 0.04 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 7.09 50 51 1 GRAPHITE SCHIST 5.26 51 52 53 1 GRAPHITE SCHIST 5.26 53 54 1 GRAPHITE SCHIST 5.3.13							
34 35 1 GRAPHITE SCHIST 5.92 35 36 1 GRAPHITE SCHIST 5.72 36 37 1 GRAPHITE SCHIST 6.89 37 38 1 GRAPHITE SCHIST 11.6 38 39 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 19.0 43 44 1 GRAPHITE SCHIST 0.99 44 45 1 GRAPHITE SCHIST 0.99 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.03 47 48 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 0.15 47 48 49 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 5.26 50 51 1 GRAPHITE SCHIST 9.96 50 51 1 GRAPHITE SCHIST 9.96 51 52 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 9.96							
35							
36 37 1 GRAPHITE SCHIST 6.89 37 38 1 GRAPHITE SCHIST 11.6 38 39 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 3.25 40 41 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 6.02 42 43 1 GRAPHITE SCHIST 0.99 43 44 1 GRAPHITE SCHIST 0.04 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 2.83 50 51 1 GRAPHITE SCHIST 6.32 51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							
37 38 1 GRAPHITE SCHIST 11.6 38 39 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 3.25 40 41 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 6.02 42 43 1 GRAPHITE SCHIST 0.99 44 45 1 GRAPHITE SCHIST 0.04 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 5.26 50 51 1 GRAPHITE SCHIST 5.26 50 51 1 GRAPHITE SCHIST 6.32 from 47m 51 52 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 9.96							
38 39 1 GRAPHITE SCHIST 10.0 39 40 1 GRAPHITE SCHIST 3.25 40 41 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 6.02 42 43 1 GRAPHITE SCHIST 0.99 43 44 1 GRAPHITE SCHIST 0.04 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 2.83 50 51 1 GRAPHITE SCHIST 6.32 51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							
39							
40 41 1 GRAPHITE SCHIST 19.0 41 42 1 GRAPHITE SCHIST 6.02 42 43 1 GRAPHITE SCHIST 0.99 43 44 1 GRAPHITE SCHIST 0.04 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 5.26 50 51 1 GRAPHITE SCHIST 5.26 50 51 1 GRAPHITE SCHIST 6.32 from 47m 51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							
41 42 1 GRAPHITE SCHIST 6.02 42 43 1 GRAPHITE SCHIST 7.02 43 44 1 GRAPHITE SCHIST 0.99 44 45 1 GRAPHITE SCHIST 0.04 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 2.83 6m @ 6.9% TGC 50 51 1 GRAPHITE SCHIST 6.32 51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							
42 43 1 GRAPHITE GNEISS 7.02 43 44 1 GRAPHITE SCHIST 0.99 44 45 1 GRAPHITE SCHIST 0.04 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 2.83 6m @ 6.9% TGC 50 51 1 GRAPHITE SCHIST 6.32 from 47m 51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							
43							
44 45 1 GRAPHITE SCHIST 0.04 45 46 1 GRAPHITE SCHIST 0.03 46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 2.83 6m @ 6.9% TGC 50 51 1 GRAPHITE SCHIST 6.32 from 47m 51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							
45							
46 47 1 GRAPHITE SCHIST 0.15 47 48 1 GRAPHITE SCHIST 7.09 48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 2.83 6m @ 6.9% TGC 50 51 1 GRAPHITE SCHIST 6.32 from 47m 51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							
47							
48 49 1 GRAPHITE SCHIST 5.26 49 50 1 GRAPHITE SCHIST 2.83 6m @ 6.9% TGC 50 51 1 GRAPHITE SCHIST 6.32 from 47m 51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							
49 50 1 GRAPHITE SCHIST 2.83 6m @ 6.9% TGC 50 51 1 GRAPHITE SCHIST 6.32 from 47m 51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							
50 51 1 GRAPHITE SCHIST 6.32 from 47m 51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							6 a 6 0 v 700
51 52 1 GRAPHITE SCHIST 10.2 52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							
52 53 1 GRAPHITE SCHIST 9.96 53 54 1 GRAPHITE SCHIST 3.13							from 47m
53 54 1 GRAPHITE SCHIST 3.13							
	0-4-10		54	1	GRAPHITE SCHIST	3.13	

Coded Colours
5 to 9.9
10 to 19.9
>20

ABN: 89 119 670 370

T +61 8 6298 7500

F +61 8 6298 7501 E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 P0 Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ASX ANNOUNCEMENT

LINDI JUMBO PROJECT - GEOLOGY

Competent Persons Statement

The information in this report that relates to exploration results and exploration targets is based on information compiled by Mr Andrew Cunningham who is a Member of the Australian Institute of Geoscientists and a Director of Walkabout Resources Ltd. Mr Cunningham has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (The JORC Code). Mr Cunningham consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendices

Lindi Jumbo Graphite Project - Drill Hole Detail

Hole Number	East	North	Dip/Azi	Elevation (RL's)	Current Depth	Graphite From	Total Graphite Intersected	Thickest Graphite Intersection	Massive Graphite Intersection	Comment
	m	m	deg	m	m	Down-hole measurements				
				RC	Drill Ho	oles				
LJRC001	490197	8904335	60/120	206.92	59	13	34	19	8	Massive graphite from 24 to 32m
LJRC002	491082	8904603	-90	205.97	68	NA	0	0	0	Off trend - Water hole
LJRC003	491264	8904918	60/145	194.53	66	28	8	7	0	Graphitic schist and biotite from 28m
LJRC004	491114	8904961	60/325	198.72	102	17	26	8	0	Graphitic schist and biotite from 17m
LJRC005	490143	8903822	60/300	190.85	70	8	21	8	0	Graphitic schist and gneiss from 8m
LJRC006	489758	8903560	60/120	198.04	67	11	30	21	28	Massive graphite with visible flakes from 11-32m and 34-41m
LJRC007	489993	8903945	-90	198.76	40	19	2	2	0	Off trend - Sporadic graphitic dolomite
LJRC008	490219	8903994	60/300	193.34	41	9	11	9	2	Massive graphite from 9-11m and graphitic schist annd gne iss
LJRC009	489956	8904060	60/120	201.33	55	1	49	36	42	Massive graphite with visible flakes from 3-9m and 17-53m
LJRC010	489768	8903796	60/120	191.63	61	7	49	36	46	Massive graphite with visible flakes from 7-23m and 29-61m
LJRC011	489999	8903703	60/300	194.59	41	5	34	34	2	Massive graphite from 9-11m then graphitic schist and gneiss
LJRC012	489657	8904163	60/320	183.32	40	3	33	33	1	Massive graphite from 3-4m then graphitic shist to 36m
LJRC013	489857	8903933	60/320	192.09	70	3	56	36	0	Graphitic schist from 3-39m then 42-53m and 57-69m
LJRC014	489816	8902790	60/145	206.40	65	3	34	34	1	1m Massive graphite from 3m then graphitic schist
LJRC015	489706	8903730	60/120	190.24	67	13	46	30	46	All intersections massive graphite with visible flakes
LJRC016	490172	8904376	60/120	200.82	51	3	17	12	12	12m of massive graphite from 30m with visible flakes
LJRC017	489735	8903812	60/120	190.00	98	15	75	47	18	Massive graphite with visible flakes from 15-33m and from 49m to EOH
LJRC018	490053	8903783	60/300	191.46	40	6	23	19	0	Graphitic schist from 6-25m with visible flakes
LJRC019	490052	8903689	60/300	194.18	61	9	42	34	5	Massive graphite from 10-15m with visible flakes
LJRC020	490126	8903981	60/300	200.06	40	3	28	19	4	Massive graphite from 15-19m with visible flakes
LJRC021	489868	8903932	60/120	192.28	54	1	46	31	33	Massive graphite from 18-22 and 23-EOH (54m)
Diamond Drill Holes										
LIDD001	489738	8903815	60/120	190.21	70	14	46	22	32	Massive graphite with visible flake from 23-33 & 48-70m & further than EOH
LIDD002	489713	8903578	60/120	195.64	69	2	53	51	26	Massive graphite with visible flakes from 36-56m and 59-65m
LIDD003	489913	8904087	60/120	198.61	76	1	67	54	48	Massive graphite with visible flakes from 2-4m, 5-10 and 31-72m
Peach co	loured sha	ding re pres	ents holes	drille d with	nin the Gilb	ert Arc targ	et area			

T +61 8 6298 7500

F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 P0 Box 263, West Perth WA 6872, Australia

www.wkt.com.au

<u>ASX ANNOUNCEMENT</u>

LINDI JUMBO PROJECT - GEOLOGY

JORC Code, 2012 Edition - Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	Criteria	JORC Code explanation	Commentary
	Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling (DD) was done to collect adequate samples for metallurgical and ore characterization testwork. Graphitic zones were sampled (1/2 and ¼ HQ3 core) using a diamond saw. All DD intervals were geologically logged by a suitably qualified geologist and mineralized intersects (graphitic zones) will be dispatched to Perth for testwork. Some hole were twinned adjacent to RC holes to provide additional confidence for resource work. Reverse Circulation (RC) drilling was also done and samples were split using a cone splitter into 1m samples. All primary samples as well as sample spoils are weighed and the results recorded. All RC intervals were geologically logged by a suitably qualified geologist and mineralized intersects (graphitic zones) dispatched to SGS in Mwanza Tanzania for processing. Graphite quality and rock classifications were visually determined by field geologist.
)	Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling was conducted by Kuchimba Tanzania Drilling using a SA 1300 fully hydraulic track-mounted drill rig. Core size was HQ3 (61.1mm diameter) triple tube system. Core was oriented using a Reflex ACTZ orientation tool. RC drilling was by a Hydco track mounted 450 rig using a Sullair compressor with air capacity 900CFM/350 PSI, and auxiliary Sullair air compressor with air capacity 900CFM/350 PSI and a booster with 1800CFM/1000 PSI. Drilling was conducted with a 7 ½" face sampling bit.

т +61 8 6298 7500 F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 PO Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ANNOUNCEMENT

LINDI JUMBO PROJECT - GEOLOGY

	LINDI JUNIBO PROJE	OT - OLOLOGI
	JORC Code explanation	Commentary
	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery was measured and recorded for each core run Downhole depths were validated against core blocks and drillers sheets Minor core loss was recorded in the weathered zone RC recovery was recorded by visual estimation of recovered sample bags and all sample rejects from the splitter were weighed and the weights recorded. All A and B samples were weighed to assess the accuracy of the sampling process.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drillholes were geologically logged in full by an independent geologist. All data is initially captured on paper logging sheets, and transferred to preformatted excel tables and loaded into the project specific drillhole database. The logging and reporting of visual graphite percentages on preliminary logs is semi-quantitative All logs are checked and validated by an external geologist before loading into the database. Logging is of sufficient quality for current studies.
sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond core samples were cut lengthwise using a manual core saw on site. The core was cut in half, and then one half was quartered to provide samples for metallurgical testwork and assaying respectively. Individual meter samples within graphitic zones were packed and sealed in clearly labeled plastic bags for transport to Perth at NAGROM (The Mineral Processor). All core analyses were conducted at NAGROM. Duplicate samples were inserted at the NAGROM Lab in Perth using a coarse crushed split of the specified sample interval. Coarse duplicates were inserted approximately 1:20 samples. QC measures include blanks and certified standards (1:20) over and above the internal controls at NAGROM. All sampling was carefully supervised. Ticket books were used with prenumbered tickets placed in the sample bag and double checked against the ticket stubs and field sample shoot to quard.

stubs and field sample sheet to guard

т +61 8 6298 7500 F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 PO Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ASX ANNOUNCEMENT

	Criteria	JORC Code explanation	Commentary
			 against sample mix ups. The quarter core analytical samples were separately crushed to 2mm, dried at 105°then pulverized to 95% passing 75 μm. Graphitic Carbon (TGC; CS003, 0.1% lower detection), and Total Carbon
			 analysis (TC; CS001, 0.1% detection limit) is analysed by Total Combustion Analysis. For TC and TGC, the prepared sample is
			dissolved in HCl over heat until all carbonate material is removed. The residue is then heated to drive off organic content. The final residue is combusted in oxygen with a Carbon-Sulphur Analyser and analysed for Total Graphitic Carbon
			 (TGC) and Total Carbon (TC) Reverse Circulation (RC) samples were split using a cone splitter into 1m samples. All primary samples and RC spoils were weighed and the results recorded. All samples were dry.
			 Duplicate samples were taken approximately 1:20 and were collected by spearing approximately 3kg from the representative 1m interval sample reject.
			QC measures include field duplicate samples, blanks and certified standards (1:20) over and above the internal controls at SGS.
			 All sampling was carefully supervised. Ticket books were used with pre- numbered tickets placed in the sample bag and double checked against the ticket stubs and field sample sheet to guard
I			against sample mix ups.
			 All RC intervals were geologically logged and mineralized intersects dispatched to SGS in Mwanza for sample preparation, and subsequently to Perth for assaying of pulps.
			 All samples were separately crushed and pulverized to 75% passing 2 mm, split, pulverize <1.5 kg to 85% passing 75 um. Graphitic Carbon Leco Method by
			CSA05V (0.01% lower detection and 40% upper detection limit), HNO3 leach, LECO Ash and total digest of carbon samples for multi element. The solution
			from the above DIA40Q digest is presented to an ICP-OES for the

т +61 8 6298 7500

F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 PO Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ASX ANNOUNCEMENT

LINDI JUMBO PROJECT - GEOLOGY

		LINDI JUMBO PROJE	CT - GEOLOGY
	Criteria	JORC Code explanation	Commentary
1			quantification of the elements of Interest (V) with 1 ppm lower detection limit and a 10,000ppm upper limit.
	Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	QC measures include coarse lab split duplicate samples, blanks and certified standards (1:20) over and above the internal controls at NAGROM.
)))))	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 An external geological consultant conducted a site visit in September 2015 during the drilling program to observe all drilling and sampling procedures. All procedures were considered industry standard, well supervised and well carried out. All data is initially captured on paper logging sheets, and transferred to preformatted excel tables and loaded into the project specific drillhole database. Paper logs are scanned and stored on the companies server. Original logs are stored at a secure facility in Dar es Salaam. Assay data is provided as .csv files from the laboratory and entered into the project specific drillhole database. Spot checks are made against the laboratory certificates.
	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic 	 Collar positions were surveyed to cm accuracy by an independent surveyor using an RTK Dual frequency GPS (Hi-Target V30)2 on completion of drilling with all coordinates recorded using the WGS84, SUTM Zone 37datum. Downhole surveys (dip and azimuth) were taken using a Reflex EZE TRAC

control.

taken using a Reflex EZE-TRAC

electronic multi shot instrument every 10m

т +61 8 6298 7500

F +61 8 6298 7501 E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 PO Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ASX ANNOUNCEMENT

LINDI JUMBO PROJECT - GEOLOGY

	LINDI SOMBOT ROSE	OT OLOLOGI
Criteria	JORC Code explanation	Commentary
		down the holes.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drillholes were to test pre-determined geophysical targets and are thus not on a pre-determined grid. The drilling is at exploration level in most areas with some areas having 10-70m holes spaced along sections and lines spaced between 100m and 350m apart. Additional drilling was added to enable resource calculations to be made at the end of the program. Some RC holes were diamond twinned to increase geological confidence levels. No sample compositing has been done.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Surface mapping and interpretation of the VTEM data shows that the lithologies dip between 30 and 50 degrees to both the NW and SE on the limbs of various synforms in the area. Drillholes were planned to intersect the lithology/mineralisation at right angles.
Sample security	The measures taken to ensure sample security.	 Samples were cut, labelled and sealed (tied off in calico or plastic bags) at the exploration camp. All samples selected for analyses are placed in clearly marked polyweave bags (10 per bag), and were stored securely on site before transported via a courier company to Dar es Salaam and subsquently to NAGROM in Perth. On arrival in Perth Walkabout Consultant Geologists inspected the samples and core at the lab prior to commencing analysis. Density measurements were also completed on the core using the Archimedes method.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	An external geological consultant conducted a site visit in September 2015 during the drilling program to observe all drilling and sampling procedures. All procedures were considered industry standard, well supervised and well carried

out.

т +61 8 6298 7500

F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 P0 Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ASX ANNOUNCEMENT

LINDI JUMBO PROJECT - GEOLOGY

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

(Criteria listed	d in the preceding section also apply to t	his section.)
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The drilling was located on one granted Exploration License (PL9992/2014). Walkabout is earning 70% interest in the tenure. The company is not aware of any impediments relating to the licenses or area.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 As far as the company is aware no exploration for graphite has been done by other parties in this area. Some gemstone diggings for tourmaline are present in the PL.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The project area is situated in the Usagaran of the Mozambique belt and consists of graphitic gneisses and schists interpreted to occur along the flanks of various synforms in the area with the lithological units dipping at between 30 and 50 degrees to the NW and SE.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drillhole coordinates and orientations are provided in Table 1 of this report. This statement relates to Exploration Results.

T +61 8 6298 7500

F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 PO Box 263, West Perth WA 6872, Australia

www.wkt.com.au

<u>ASX ANNOUNCEMENT</u>

		LINDI JONIDO I ROJE	01 0202001
1	Criteria	JORC Code explanation	Commentary
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All significant 1m sample results are reported individually in Table 1 without a cutoff applied where sampling has been conducted. Aggregate graphite intersections are quoted using a cutoff of 5% TGC and were averaged as all sample intervals are equal. No metal equivalent values have been reported.
)	Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The drilling is at right angles to the mapped strike of the outcropping lithologies. All intercepts are reported as down-hole lengths and are aimed at being as perpendicular to mineralisation as practical.
)	<i>Diagrams</i>	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A drillhole plan is provided in Figures 1 and 2.
)	Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All 1m sample results are reported individually
_	Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density,	 Previous announcements include; RC Drilling results from this program (ASX: 1 December 2015; 24 November; 16 November 2015; & 4 November 2015), the release of assay data related to surface "dig and grab" samples (ASX: 14 May 2015) and also to the results of

т +61 8 6298 7500 F +61 8 6298 7501

E admin@wkt.com.au

Level 3, 681 Murray St, West Perth WA 6005 PO Box 263, West Perth WA 6872, Australia

www.wkt.com.au

ANNOUNCEMENT

1	Criteria	JORC Code explanation	Commentary
1		groundwater, geotechnical and rock characteristics; potential deleterious	an Airborne VTEM Survey (ASX: 19 September 2015).
)		or contaminating substances.	 Graphite characterization Petrography results(ASX: 30 July 2015), and initial metallurgy (ASX: 3 June 2015).
)	Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Exploration drilling is complete at this time. Further drilling is planned to test targets generated through the VTEM survey and surface mapping with the aim of delineating a maiden resource.