

ASX ANNOUNCEMENT ASX Code: BDR

20 June 2016

HIGH GRADE TAP AB1 TROUGH LODE CONTINUES TO GROW

 High-grade Trough Lode mineralisation confirmed and extended under the Tap AB1 pit. Best results include:

F01884	13 m @ 9.81 g/t from 85 m including 7 m @ 16.67 g/t from 85 m
F01887	48 m @ 5.13 g/t from 77 m and 31 m @ 1.25 g/t from 129 m
F01892	4 m @ 3.26 g/t from 149 m and 50 m @ 3.22 g/t from 168 m
F01883	13 m @ 5.70 g/t from 114 m
F01957	34 m @ 3.71 g/t from 38 m
F01891	83 m @ 2.99 g/t from 87 m including 22 m @ 6.69 g/t from 101 m
F01888	21 m @ 6.02 g/t from 28 m including 7 m @ 13.94 g/t from 30 m and 24 m @ 1.36 g/t from 54 m
F01889	47 m @ 3.54 g/t from 54 m including 13 m @ 9.53 g/t from 60 m
F01930	50 m @ 7.65 g/t from 137 m including 21 m @ 17.16 g/t from 165 m

Beadell Resources Limited ("**Beadell**" or "the **Company**") is pleased to announce the receipt of new drilling results from the Tap AB1 Trough Lode at its Tucano mine in Brazil (Figures 1-3, Table 1).

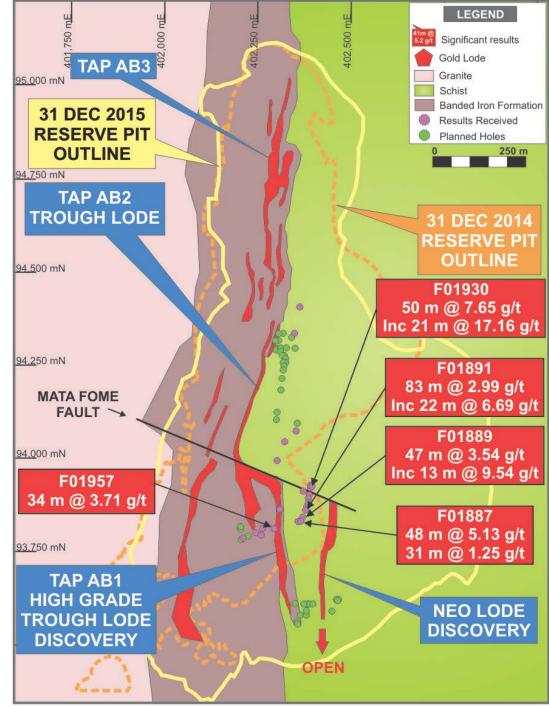


Figure 1. Tap AB plan showing location of drill results at Tap AB1 Trough Lode.

Results from 25 new holes (4,677m) have been received from RC drilling at the Tap AB1 High Grade Trough Lode and are presented as downhole intercepts in Table 1. Mineralisation is hosted in an elongated shoot developed over 150-200 strike metres with a down dip extent of approximately 100 m. Average thickness of mineralization is approximately 20 m and the shoot remains open down plunge to the north.

The longsection presented in Figure 2 illustrates the extent of Trough Lode mineralisation intersected to date in the Tap AB1 and Tap AB2 pit areas. The Mata Fome Fault was previously interpreted to have offset the Trough Lode between the pits. However the new high grade intercept in F01930 (**50 m @ 7.65 g/t**) and a previously reported intercept in hole F01934 (**17 m @ 3.59 g/t**) suggests that either the Mata Fome Fault dips north (as indicated in Figure 2) or that the Trough Lode continues through the Mata Fome Fault. Both interpretations are positive for the down plunge potential of the Tap AB1 Trough Lode to continue to grow with further drilling.

The up-plunge projection of the Tap AB1 Trough Lode remains lightly drilled in the south with excellent potential to extend high grade mineralisation close to surface. Access to this area has been re-established and drilling commenced last week. The current program will also test potential for extensions of the Neo Lode mineralization south along strike (Refer Beadell news release dated 12 August 2015).

The Tap AB1 Trough Lode discovery is of great significance to the Tucano mine. Located less than 2 km from the plant and close to existing development on the edge of the Tap AB1 open pit, the results continue to support the long held belief that the Tucano mining lease is underexplored and under drilled and that the potential for brownfields discoveries is strong. All intercepts in the Tap AB1 Trough Lode are in oxide material with drilling yet to reach the level of oxidation at depth.

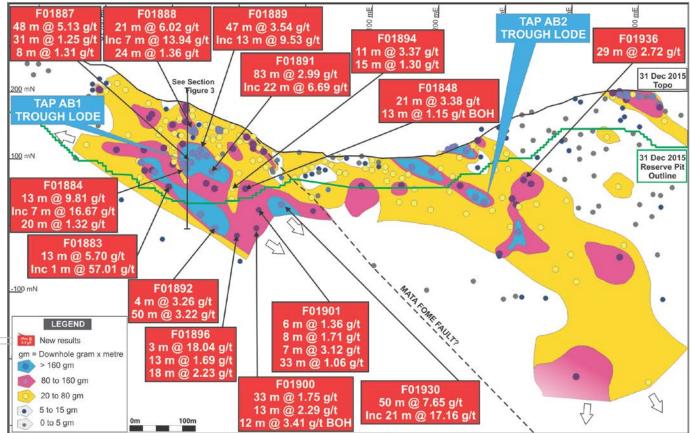


Figure 2. Tap AB1 & 2 composite longsection showing location of new results.

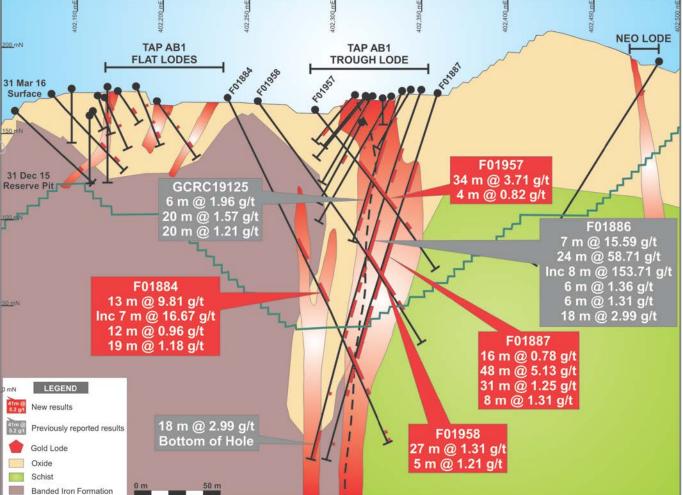


Figure 3. Tap AB1 Trough Lode cross section 93825N looking north.

For further information please contact: Simon Jackson | Chief Executive Officer Greg Barrett | Chief Financial Officer T: +61 8 9429 0800 info@beadellresources.com.au

Competent Persons Statement

The information in this report relating to Exploration Results and Mineral Resources and Ore Reserves is based on information compiled by Mr Robert Watkins who is a member of the Australasian Institute of Mining and Metallurgy and has sufficient exploration experience which is relevant to the various styles of mineralisation under consideration to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Watkins is a full time employee of Beadell Resources Limited. Mr Watkins consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Table 1 Tap AB1 Trough Lode RC drill results

Т	arget	Hole	North	East	RL	Dip	Az	From	To	Width	Gol
								(m)	(m)	(m)	(g/t)
	Tasaala I a da	504040	00.040	400.007	470	04	000	118	139	21	3.38
Гар АВТ	Trough Lode	F01848	93,910	402,367	173	-61	269	Inc 133	135 158	2 13	24.6
								145 (BOH)			0.67
								28 36	30 40	2 4	1.0
) Tan AR1	Trough Lode	E01880	93,784	402,207	161	-66	89	83	40 86	3	1.3
гар Авт	I lougi Loue	F01000	93,704	402,207	101	-00	09	92	97	5	1.4
								203	208	5	0.6
								6	11	5	0.6
								45	51	6	1.0
								68	70		0.9
								91	94	2 3	1.1
								100	106	6	0.7
Tap AB1	Trough Lode	F01883	93,793	402,255	161	-67	90	114	127	13	5.7
								Inc 118	119	1	57.0
								140	143	3	0.6
								152	143	5	0.0
								162	165	3	0.6
								85		13	9.8
								oo Inc 85	98 92	7	9.0
								114	92 126	12	
											0.8
Tap AB1	Trough Lode	F01884	93,798	402,240	161	-60	59	156	176	20	1.3
	-							183	186	3	0.6
								210	224	14	0.6
								235	239	4	0.5
								245	248	3	1.2
								42	58	16	0.7
								77	125	48	5.1
Tap AB1	Trough Lode	F01887	93,830	402,359	173	-75	261	129	160	31	1.2
. 1	5		,	- ,		_	_	167	175	8	1.3
								180	183	3	0.7
								211	213	2	1.3
								28	49	21	6.0
								Inc 30	37	7	13.9
Tap AB1	Trough Lode	F01888	93 830	402 356	173	-63	270	54	78	24	1.3
. o.p= .			00,000	,				84	98	14	1.1
								130	133	3	0.5
								144 (BOH)	150	6	0.6
								54	101	47	3.5
								Inc 65	70	5	16.9
Tap AB1	Trough Lode	F01889	93,841	402,365	173	-64	271	138	140	2	0.5
	inough Loue	101003	00,041	102,000	115	0-1	211	154	160	6	1.0
								163	168	5	0.7
								187	189	2	0.6
								87	170	83	2.9
Tap AB1	Trough Lode	F01891	93,860	402,373	174	-62	266	Inc 101	123	22	6.6
								193 (BOH)	210	17	0.8
								37	42	5	0.9
								115	138	23	0.8
	Trough Lode	E01000	02 070	100 277	170	GE	264	149	153	4	3.2
гар АВТ	Trough Lode	FU1092	93,870	402,377	173	-65	264	156	160	4	0.6
								168	218	50	3.2
								222	229	7	0.6
	Trausla I . I	E04000	02.004	100.004	470	00	070	139	144	5	2.4
1 ap AB1	Trough Lode	F01893	93,881	402,381	173	-60	276	153	161	8	1.8

	Target	Hole	North	East	RL	Dip	Az	From (m)	To (m)	Width (m)	Gold (g/t)
								31	33	2	1.30
								131	142	11	3.37
	Tap AB1 Trough Lode	F01894	93,890	402,381	173	-65	270	146	161	15	1.30
								185	188	3	0.86
								6	9	3	14.04
								127	131	4	0.99
	Tap AB1 Trough Lode	F01896	93,900	402,383	172	-63	266	149	162	13	1.69
	D							186	196	10	0.73
								204	222	18	2.23
								118	122	4	0.51
2								136	138	2	0.57
	Tap AD1 Travab Lada	E04000	00.005	400.005	474	<u> </u>	070	144	177	33	1.75
(())	Tap AB1 Trough Lode	F01900	93,925	402,385	171	-68	270	180 194	184 207	4 13	0.84 2.29
\bigcirc								210	207	4	0.90
								220 (BOH)	232	12	3.41
615								147	153	6	1.36
								156	164	8	1.71
	Tap AB1 Trough Lode	F01901	93,922	402,389	171	-64	276	168	175	7	3.12
((/))			,	, ,				180	213	33	1.06
								220 (BOH)	222	2	0.81
5	Tap AB1 Trough Lode	F01903	93,995	402,298	146	-69	306	109	110	1	4.29
	Tap AB1 Trough Lode	F01904	93,994	402,297	145	-67	259	38	40	2	0.64
								26	28	2	1.61
	Tap AB1 Trough Lode	F01905	93,992	402,297	145	-61	229	79	81	2	0.58
GDI								84	91	7	1.80
(ζU)								137	187	50	7.65
	Tap AB1 Trough Lode	F01930	93,918	402,386	171	-59	296	Inc 165	186	21	17.16
								237	239	2	1.41
								33	35	2	1.61
\square	Tap AB1 Trough Lode	F01936	94,330	402,343	169	-64	267	84	87	3	0.68
\bigcirc			,	, ,				95	124	29	2.72
20								133 (BOH)	136	3	0.73
(U/J)	Tap AB1 Trough Lode	E01038	01 100	402,357	169	-63	261	34 42	38 45	4	0.54
R L	Tap ADT Hough Loue	101950	94,400	402,337	109	-03	201	62	45 65	3	0.97
								89	91	2	9.72
615	Tap AB1 Trough Lode	F01955	94,070	402,348	161	-64	238	181	187	6	0.88
UD	· · · · · · · · · · · · · · · · · · ·		,	,				192	202	10	0.84
\bigcirc								38	72	34	3.71
	Tap AB1 Trough Lode	F01957	93,810	402,289	162	-55	84	83	87	4	0.82
								96	98	2	0.64
[7	Tap AB1 Trough Lode	F01058	93,810	402,259	161	-58	80	100	127	27	1.31
2		101950	33,010	-02,203	101	-00	00	137	142	5	1.21
\bigcirc	Tap AB1 Trough Lode	F01959	93,861	402,305	156	-60	89	20	39	19	1.66
(\bigcirc)								53	64	11	0.75
	Tap AB1 Trough Lode	F01960	94,041	402,318	155	-67	259	113	114	1	11.07
	All intercepts are repo	rted as do	wnhole in		ng a 0.5 g/s)H = Botto		r cut off an	d no greater ti	han 2 m	internal dill	ution.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cu	For RC drilling the entire 1m RC samples were obtained and
techniques	channels, random chips, or specific	split by an adjustable cone splitter attached to the base of the
	specialised industry standard	cyclone (1.5kg – 6.0kg) and were utilised for both lithology

	measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	logging and assaying. For diamond core, half core is measured, logged and then cut, crushed and pulverised at the Tucano site sample preparation laboratory.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are split into single meter intervals. Certified standards were inserted every 25th sample and to assess the accuracy and methodology of the external laboratories. Field duplicates were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. A blank standard was inserted at the star of every batch. Results of the QAQC sampling were assessed on a batch by batch basis and were considered acceptable.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	1m RC samples were obtained by an adjustable cone splitter attached to the base of the cyclone (1.5kg – 6.0kg) and were utilised for both lithology logging and assaying. At the mine exploration sample preparation facility, core samples are dried at 105C, crushed to -8mm then to -2mm and split to 0.9-1kg before being pulverised to 1mm. This sample is quartered cut to between 200-400g before being pulverised to 95% passing 105µm. The final pulp is quartered again to achieve a sample of 100 - 200g and is sent to SGS laboratories in Belo Horizonte for fire assay. At the mine exploration sample preparation facility, the RC 1m samples are dried at 140C, crushed to -2mm (if aggregated) and riffle split to 1kg. The 1 kg sample is then pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to 95% passing 105µm and quarter cut to a 100-200g sample to send to SGS. Any duplicates samples of the same interval are also sent to ACME laboratories for analysis.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	A 5.5" diameter face sampling hammer was used for RC drilling. For diamond drilling NQ size core is produced.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC recovery was visually assessed, with recovery being excellent except in some wet intervals at the water table. The majority of mineralised intersection results received occurred above the water table. All core is orientated and measured for recovery
I	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC samples were visually checked for recovery, moisture and contamination. The drilling contractor utilised a cyclone and cone splitter to provide uniform sample size. The cone splitter was cleaned at the end of every rod and the cyclone cleaned at the completion of every hole.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential	Sample recoveries for RC holes were high within the mineralised zones. No significant bias is expected.
Logging	Whether core and chip samples have been geologically and geotechnically	Lithology, alteration, veining, mineralisation and weathering were logged from the RC chips and stored in Datashed.

		logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Chips from selected holes were also placed in chip trays and stored in a designated building at site for future reference. All core was orientated and geotechnically logged and recorded.
		Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the	All logging is qualitative except for density and recovery. All core photography has been completed shortly after being received at the core yard and always prior to cutting. All drill holes are logged in full.
>	Sub-sampling	relevant intersections logged.	Core holes and half core sampled from cut core.
	techniques	whether quarter, half or all core taken.	
	and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	The RC drilling utilised a cyclone and cone splitter to produce samples in the 1kg to 6kg range. Once collected the sample is dried, crushed to -2mm and split at the site sample preparation lab down to approximately 1kg prior to pulverisation.
(15)		For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The 1 kg sample is then pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to 95% passing 105µm and quarter cut to a 100-200g sample to send to SGS or to the mine chemical lab for analysis.
		Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Certified standards and blanks were inserted every 25th sample to assess the accuracy and methodology of the external laboratory (SGS), and field duplicates were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. At Tucano field duplicates were taken for diamond core but not for RC. Laboratory duplicates (sample preparation split) were completed every 20th sample
			to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Duplicate samples were also sent to a different lab (ACME Laboratories) for analysis.
		Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Filed duplicate samples are collected every 20 th samples.
		Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes (1kg to 6kg) are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style, the width and continuity of the intersections, the sampling methodology.
			Field duplicates of diamond core have routinely been collected to ensure monitoring of the sub-sampling quality. Acceptable precision and accuracy is noted in the field duplicates albeit the precision is marginally acceptable and consistent with a course gold deposit.
	Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All resource or exploration holes (prefix FD or F) gold assaying completed by external certified laboratories (SGS in Belo Horizonte and ACME laboratories) and using a 30g charge for fire assay analysis with an AAS finish. This technique is industry standard for gold and considered appropriate. All grade control hole (prefix GCRC) gold
			assaying completed at the non-certified Tucano mine site chemical laboratory using similar fire assay analysis. Selected Screen fire analysis was performed on selected intervals where coarse gold was observed. The results reported in this release were assayed at the mine site chemical laboratory and will be duplicated at SGS to ensure repeatability.
		For geophysical tools, spectrometers,	Geophysical tools not used.

		handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
	D	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified Reference Material (CRM or standards) were inserted every 25th sample to assess the assaying accuracy of the external laboratories. Field duplicates were inserted every 20th sample to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 20th sample to assess the precision of assaying. Evaluation of both the Beadell submitted standards, and the internal laboratory quality control data, indicates assaying to be accurate and without significant drift for significant time periods. Excluding obvious errors, the vast majority of the CRM assaying report shows an overall mean bias of less than 5% with no consistent positive or negative bias noted. Duplicate assaying show high levels of correlation (linear correlation >0.96) and no apparent bias between the duplicate pairs. Field duplicate sample show marginally acceptable levels of correlation (0.89 for the SGS data set, 0.96 for the Ultratrace and MinAnalytical data set but 0.61 for the KalAssay data set) and no relative bias. Each analysis batch (approx. 150 samples) is checked to ensure that the standards fall within the accepted levels of standard deviation. Where any standard exceeds 3 standard deviations or where more than one standard falls between 2 and 3 standard deviations, the entire batch is resubmitted for
		The verification of significant	analysis. The high grade intersections of core and RC have been
		intersections by either independent or alternative company personnel.	observed by several senior company personnel with extensive experience in similar gold deposit styles).
\mathbb{Q}		The use of twinned holes.	Diamond twin holes have been drilled previously showing what is considered to be normal variations in Orogenic gold mineralisation.
שו		Documentation of primary data, data	All geological logging information is entered directly into Logchief and synchronised with the Datashed database.
10		entry procedures, data verification, data storage (physical and electronic)	Other field data (e.g. sampling sheets, downhole surveys
D)		protocols.	etc.) are entered into excel spreadsheets formatted for Datashed importation. Lab assay reports are directly
5			imported into Datashed along with all QAQC data and metadata. Data importation is done by Maxwell Geoservices staff under contract by Beadell Resources. All data loading
		Discuss any adjustment to assay data.	procedures have been documented by Maxwell Geoservices. Data below the detection limit is defined with a negative value, e.g. <0.01 = -0.01.
11	data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral	Beadell drill hole collar locations were picked up by site- based authorized surveyors using Total Station Leica 407, calibrated to a base station (expected accuracy of 20mm).
		Resource estimation.	Downhole surveying was measured by the drilling contractors using a Reflex Gyro Downhole Survey Instrument for RC holes. Shallow RC holes were picked up at the collar and 2 points on the rod string using Total Station. Grade control RC holes less than ~50m depth are not down hole surveyed.
		Specification of the grid system used.	The grid system is SAD 69 Zone 22N.
		Quality and adequacy of topographic control.	Beadell Brasil Ltda Survey Staff generated a digital terrain model (DTM) from Total Station surface pickups of the Tucano deposit.

	Mineral	Type, reference name/number,	The Tucano Mine Corridor deposits reside in tenement
_	Criteria Minoral	JORC Code explanation	Commentary
シ.	(Criteria liste	eporting of Exploration Results d in the preceding section also apply	
	Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A site visits was completed in 2012 (Cube Consulting) to review sampling procedures and grade control practices. Th visit concluded the sampling to be at an industry standard, and of sufficient quality to carry out a Mineral Resource Estimation. A similar audit was completed in 2015 by independent consultants.
2000	Sample security	The measures taken to ensure sample security.	Samples are securely sealed and stored onsite, until delivery to Macapa via the company contracted Taxi driver, who then also delivers the samples directly to TAM airlines cargo dispatch facility for delivery to Belo Horizonte. Sample submission forms are sent with the samples as well as emailed to the laboratory, and are used to keep track of the sample batches.
		orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	interpretation of 12m spaced holes on 10m spaced lines shows a very uniform mineralised zone both along strike and down dip. The drill orientation is as close to normal to the strike of the body as possible and therefore the drill hole to mineralisation is not considered to have introduced a sampling bias. Due to the anastomosing nature of the mineralised structures varying from steeply west dipping to steeply east dipping, downhole intervals are not necessarily representative of true widths and will vary on a hole by hole basis depending on whether the structure is dipping east or west at the point of intersection.
	Orientation of data in relation to geological structure	Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	No sample compositing has been applied in the field within the mineralised zones. The majority of drilling is orientated east-west at Tucano with a ~60 degree dip, which is roughly perpendicular to the strike of the mineralisation. Due to the anastomosing nature of the mineralised structures varying from steeply west dipping to steeply east dipping, downhole intervals are not necessarily representative of true widths and will vary on a hole by hole basis depending on whether the structure is dipping east or west at the point of intersection. In areas of higher grade control drilling density, sectional
	D	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred, Indicated and Measured Mineral resources under the 2012 JORC code.
	Data spacing and distribution	Data spacing for reporting of Exploration Results.	Nominal drill hole spacing is 12m (E) by 10m (N) for grade control and a nominal 20m (E) x 40m (N) spacing for resource definition. Exploration drill spacing typically is done at 40m (E) x 80m (N).

Criteria	JORC Code explanation	Commentary
tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Tucano Mine Corridor deposits reside in tenement 851.676/1992, centrally located within the northern state of Amapa, Brazil. The current registered holder of the tenements is Beadell Brasil Ltda.

	time of reporting along with any known impediments to obtaining a licence to operate in the area.	Resources Ltd for the Tucano deposits.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Beadell Brasil Ltda acknowledges the previous operator MPBA for the initial discovery of gold at Tucano.
Geology	Deposit type, geological setting and style of mineralisation.	The Tucano deposits are structurally controlled orogenic lode type gold deposit hosted within a Banded Iron Formation unit in contact with a Clastic quartz biotite schist. The Lodes are characterised by shear parallel disseminated pyrite and pyrrhotite mineral assemblages and generally exhibit a strong oxidation profile in the regolith without any secondary dispersion other than colluvial deposits. The Neo Lode is a new style of gold mineralisation hosted solely in the clastic unit east of the main BIF sequence.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	See Table 1
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade	In the reporting of exploration results, un-cut grades are reported. The lower cut-off limit is considered to be 0.5g/t for the reporting of drill hole intercepts with no more than 2 m downhole internal dilution. Intercepts are determined using weighted average over the length of the intercept. In the instance where aggregate intercepts include shorter lengths of higher grade material, the total interval is stated first followed by the word "including", then a listing of the contained shorter high grade intercepts.
Relationship between mineralisation widths and intercept lengths	The assumptions used for any reporting of metal equivalent values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	No metal equivalents are used at Tucano. The drilling was designed to intersect the mineralisation at an angle that is roughly perpendicular to the overall strike. The mineralised intervals are generally much wider than the minimum sample interval of 1m. At TapAB1 Trough Lode the mineralisation is subvertical but anastomoses to steeply east and steeply west dipping. True width generally vary between 40-60% of the reported downhole interval although

	be a clear statement to this effect (e.g. 'down hole length, true width not known').	All drill intersections are stated as down hole lengths. Due to the anastomosing nature of the mineralisation varying from steeply east to steeply west dipping it is unreliable to try and confidently state a true width for each drill hole intercept
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See diagrams in main body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All the significant results greater than 0.5 g/t gold over at least 2m downhole have been reported in Table 1 and Tabl 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The Tucano results are from an active mining area where open pit mining is in progress. Reconciliation has been verified by mill metallurgical balance based on models usin the same drilling method for results.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially	The Tucano lodes remain open at depth and along strike in most cases and contain numerous outlying intersections that will require follow up drilling. Several diagrams have been included to highlight this aspect.