

ASX ANNOUNCEMENT ASX Code: BDR

1 August 2016

HIGH GRADE EXPLORATION RESULTS CONTINUE

Tap AB1 Trough Lode high grade oxide results:

F02049	14 m @ 6.56 g/t from 94 m and 26 m @ 11.61 g/t from 118 m to BOH
F02060	10 m @ 4.59 g/t from 48 m and 32 m @ 6.07 g/t from 68 m including 4 m @ 31.91 g/t from 78 m

Tap AB2 Trough Lode high grade oxide results:

 F02015
 31 m @ 14.02 g/t from 95 m including 14 m @ 26.45 g/t from 97 m

 F02023
 25 m @ 9.92 g/t from 122 m including 6 m @ 37.11 g/t from 124 m

Tap AB Sul high grade results indicate new lode potential:

F01970 27 m @ 2.78 g/t from 69 m

• Duckhead Main Lode results in fresh rock below oxide open pit reserve:

FVM56048 m @ 11.62 g/t from 66 m including
3 m @ 87.79 g/t from 97 m and 4 m @ 49.1 g/t from 124 mFVM56110 m @ 13.81 g/t from 81 m

Beadell Resources Limited ("**Beadell**" or "the **Company**") is pleased to announce the receipt of new high grade drilling results from the Tap AB and Duckhead Mine areas at its 100% owned Tucano mine in Brazil (Figures 1-3, Table 1).

The exploration program at Tucano continues to deliver significant high grade results. Importantly we are now seeing high grade results from numerous parts of the existing mine corridor.

Figure 1. Tap AB - Tap D plan showing location of new drill results

TAP AB1 Trough Lode

Ongoing resource definition and extension drilling of the high grade Tap AB1 Trough Lode continues to improve and grow the mineralised envelope within and below the reserve pit limit.

A significant result below the reserve open pit was intersected of **14 m** @ **6.56 g/t** from 94 m and **26 m** @ **11.61 g/t** from 118 m to BOH, including **9 m** @ **27.92 g/t** from 126 m. The Tap AB1 Trough Lode remains open down plunge to the north where further drilling is planned. The bottom of oxidation in this lode has yet to be reached.

An exceptional resource definition result was also intersected, drilled west to east, intersecting **10 m** @ **4.59 g/t** from 48 m and **32 m** @ **6.07 g/t** from 68 m including **4 m** @ **31.91 g/t** from 78 m.

Other results include a recently discovered new lode (Tap AB1 Central Lode) wholly within the banded iron formation ("BIF") west of the Tap AB1 Trough Lode (Figure 1). Results include **13 m @ 4.30 g/t** from 64 m and **24 m @ 3.16 g/t** from 72 m. This new zone is likely to be a parallel BIF hosted lode as occurs in others areas of the Tap AB orebody. Drilling is ongoing and the discovery of another lode within the mine corridor consolidates our belief that the whole Tucano mining lease is underexplored.

Tap AB2 Trough Lode

Resource definition drilling of the Tap AB2 Trough Lode continues to enhance the resource below the open pit reserve. Oxide results of **31 m** @ **14.02 g/t** from 95 m including **14 m** @ **26.45 g/t** from 97 m and **25 m** @ **9.92 g/t** from 122 m including **6 m** @ **37.11 g/t** from 124 m bode well for future resource/reserve additions and the likely deepening of the open pit. Additional drilling is being planned.

Figure 2. Tap AB1 & 2, AB Sul composite longsection showing location of new results

Tap AB Sul

Tap AB Sul is located 500 m south of the Tap AB1 Trough Lode on the same BIF contact. Previous drilling in this area had identified strong gold mineralisation disrupted by cross cutting pegmatite sills. A significant new result has been received of **27 m @ 2.78 g/t** from 69 m and remains open at depth. Follow up drilling is being planned.

Duckhead

A drilling program has just been completed from the current base of the Duckhead pit comprising 25 holes for 2,233 m. The drilling was designed to finalise all grade control to the bottom of the current pit out back and test below the current open pit reserve for extensions of the high grade Main Lode. The final portion of the existing Duckhead pit is currently being mined.

High grade results have been received on the eastern footwall zone of the Main Lode suggesting that the predominant plunge of the Main Lode at depth is in this direction. A stand out result of **48 m @ 11.62 g/t** from 66 m including **3 m @ 87.69 g/t** from 97 m and **4 m @ 49.1 g/t** from 124 m is located 60 m below the base of the current open pit cutback. This result and others in this area including **10 m @ 13.81 g/t** from 81 m are hosted within fresh rock. These are the first indications that a significant high grade lode exists in fresh rock below the Duckhead pit. If the high grades that have been found in the steeply dipping highly oxidised zones at Duckhead continue in the fresh rock at depth then there exists the potential for a very high grade underground development. Additional drilling is being planned.

Figure 4. Duckhead Main Lode longsection showing location of new drill results.

Commenting, Simon Jackson, CEO and Managing Director said: "Our exploration program continues to have success as we work towards our aim of increasing the quality and quantity of reserves at Tucano. The AB1 and AB2 Trough Lodes remain 100% oxide as we continue to follow the high grade mineralisation down plunge. At Duckhead, we have intersected a significant high grade extension to the Main Lode in the fresh rock. This is very exciting as it raises the possibility of future high grade underground development."

For further information please contact:

Simon Jackson | Chief Executive Officer

Greg Barrett | Chief Financial Officer

T: +61 8 9429 0800 info@beadellresources.com.au

Competent Persons Statement

The information in this report relating to Exploration Results and Mineral Resources and Ore Reserves is based on information compiled by Mr Robert Watkins who is a member of the Australasian Institute of Mining and Metallurgy and has sufficient exploration experience which is relevant to the various styles of mineralisation under consideration to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Watkins is a full time employee of Beadell Resources Limited. Mr Watkins consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Table 1

Tap AB1, AB2, AB Sul and Duckhead drill results

Target	Hole	North	East	RL	Dip	Az	From (m)	To (m)	Width (m)	Gold (g/t)
Tap AB Sul	F01970	93,230	402,316	193	-76	95	69	96	27	2.78
Tap AB1	F02009	93,790	402,219	158	-61	106	132 159	138 164	6 5	2.43 0.78
							2	6	4	2.31
							12	29	17	0.74
							70	72	2	0.89
Tap AB1	F02011	93,810	402,198	158	-59	92	136	141	5	0.76
							156	160	4	2.12
							168	181	13	0.79
							188	192	4	1.10
							6	8	2	0.79
							156	158	2	0.60
							165	168	3	3.16
Tap AB1	F02012	93,815	402,206	158	-60	76	183	198	15	1.71
							206	210	4	0.62
							242	248	6	0.82
							255-BOH	280	25	1.52
Tan AB2	E02015	0/ 270	102 316	151	-50	270	95	126	31	14.02
Тар АВ2	F02015	94,270	402,310	154	-09	270	Inc 97	111	14	26.45
							14	17	3	1.03
Tap AB2	E02023	0/ 180	102 306	153	-50	268	115	119	4	0.64
	1 02023	34,100	402,300	155	-50	200	122	147	25	9.92
							Inc 124	130	6	37.11
							50	56	6	0.57
							84	87	3	2.03
Tap AB1	F02049	93,940	402,337	154	-64	270	94	108	14	6.56
							118-BOH	144	26	11.61
							Inc 126	135	9	27.92
Tap AB1	F02050	93,880	402,312		-61	268	29	34	5	1.20
Tap AB1	F02059	93,829	402,273	153	-61	269	64	77	13	4.30
							38	40	2	1.19
	E02060	03.840	102 202	153	-58	88	48	58	10	4.59
Тар АВТ	F02000	93,040	402,293	100	-50	00	68	100	32	6.07
							Inc 78	82	4	31.91

	Target	Hole	North	East	RL	Dip	Az	From (m)	To (m)	Width (m)	Gold (a/t)
	Tap AB1	F02086	93.850	402.287	153	-55	269	2	4	2	0.75
	1407.01	1.02000	00,000	102,201			200	18	25	7	0.61
		F00007	00.000	400.070	4 5 4	50	200	35	37	2	1.81
	Тар АВТ	F02087	93,880	402,278	154	-52	306	98	105	7	1.25
								108-BOH	114	6	0.61
	Tap AB1	F02088	93,945	402,324	153	-51	269	62	65	3	0.51
\geq	Duckhead	FVM00559	89,329	407,307	120	-64	44	46	60	14	1.73
1								66	114	48	11.62
	Duckhead	FVM00560	89,303	407,323	120	-66	47	Inc 97	100	3	87.69
								124	128	4	49.10
1	Duckhead	FVM00561	89,298	407,332	120	-61	4/	81	91	10	13.81
\backslash	Duckhead	FVM00562	89,314	407,342	120	-/1	38	34	36	2	14.28
/	Duckhead	FVM00563	89,301	407,342	120	-61	47	74	75	1	0.52
	Duckhead	FVIVI00564	89,316	407,310	121	-59	352	/4	/9	5	0.93
	Duckhead		89,315	407,300	120	-03	344	115	102	2	0.78
)	Duckhead	F V IVIUU0000	09,320	407,310	121	-/	00 57	90	102	0	9.77
			09,322	407,310	104	-33	1C 90	00 5	17	10	0.12
\setminus		GCRC19101	93,249	402,291	194	-57	00	12	10	5	0.02
/	Duckbood	GCRC19100	80,200	402,301	120	-60	90	24	27	3	0.70
ļ	Duckhead	GCRC19270	80 312	407,333	120	-60	45	30	32	2	3.88
)	Duckhead	GCRC19203	89 321	407 348	120	-00	40	52	61	9	7.13
	Duckhead	GCRC19289	89 324	407 340	121	-65	40	50	57	7	3.61
	Duokinouu	001(010200	00,024	+07,0+0	121	00		32	45	13	35.64
	Duckhead	GCRC19290	89,328	407,336	121	-50	45	Inc 32	33	1	420.28
		0.000.0000	~~~~		101			39	54	15	25.20
)	Duckhead	GCRC19291	89,327	407,335	121	-60	45	Inc 40	41	1	330.62
1	Duckhead	GCRC19293	89,319	407,313	121	-60	45	49	53	4	10.77
	Duckhead	GCRC19294	89,325	407,319	121	-60	45	37	40	3	2.02
1	Duckhead	GCRC19295	89,330	407,323	120	-60	45	26	28	2	0.80
	Duckbood	CCPC10206	80 335	107 320	101	-57	45	21	37	16	13.54
	Duckneau	0011019290	03,000	407,523	121	-57	45	46	48	2	2.23
	Duckhead	GCRC19297	89 343	407 326	120	-52	45	17	37	20	5.43
/	Duoiniouu	0011010207	00,010	107,020	120	02	10	40	43	3	1.15
	Duckhead	GCRC19298	89,349	407,325	120	-60	45	17	40	23	7.62
1								22	38	16	24.96
	Duckhead	GCRC19300	89,340	407,318	120	-57	45	Inc 24	28	4	87.12
				,					55	13	1.04
								00-DUH	62	25	4.23
2	Duckhead	GCRC19301	89,330	407,309	120	-60	45	Inc 39	42	20	58 17
								25	37	12	0.74
	Duckhead	GCRC19304	89,351	407,316	120	-65	20	50	51	1	42 25
1	Duckhead	GCRC19305	89.350	407.315	120	-58	45	24	35	11	1.81
	Duonnodu		00,000	101,010	.20	00		23	26	3	2.47
	Tap AB	GCRC19310	93,910	402,331	153	-60	270	31	33	2	4.21
			,	,				58	70	12	1.87
	TopAP	CCPC10214	02 000	102 222	150	60	070	22	25	3	0.95
	Тар АБ	GCKC19311	93,690	402,323	152	-00	270	28	32	4	1.39
	Tap AB	GCRC19313	93,880	402,322	153	-60	270	14	24	10	2.89
	Tap AB	GCRC19316	93 874	402 283	153	-50	277	62	66	4	1.48
	i up no		00,017	102,200	100	00	211	72	96	24	3.16
	Tap AB	GCRC19319	93.610	402.350	278	-50	310	35	37	2	0.76
	. orp . C		,	,			5.0	47	52	5	1.07
	Tap AB	GCRC19329	94,220	402,301	150	-51	269	/3	91	18	1.14
								INC 75	78	3	37.47

Target	Hole	North	East	RL	Dip	Az	From (m)	To (m)	Width (m)	Gold (g/t)
Tap AB	GCRC19342	93,570	402,347	278	-57	270	76	79	3	1.31

All intercepts are reported as downhole intervals using a 0.5 g/t gold lower cut off and no greater than 2 m internal dilution. BOH = Bottom of hole. Holes prefix F and GCRC are reverse circulation drill holes. Holes prefix GCPF are open hole RAB.

e	ctio	n	1	Sa	ampl	ing	Tech	nnic	ques	and	Data	

-	Criteria in thi	is section apply to all succeeding sec	ctions.)
	Criteria	JORC Code explanation	Commentary
	Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken	For RC drilling the entire 1m RC samples were obtained and split by an adjustable cone splitter attached to the base of the cyclone or riffle split separately to 1.5kg – 6.0kg and were utilised for both lithology logging and assaying. For RAB drilling the entire 1m samples were collected and split in the sample preparation laboratory. For diamond core, half core is measured, logged and then cut, crushed and pulverised at the Tucano site sample
)		as limiting the broad meaning of sampling.	preparation laboratory.
)		Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are split into single meter intervals. Certified standards were inserted every 25th sample and to assess the accuracy and methodology of the external laboratories. Field duplicates were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed
)			approximately every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. A blank standard was inserted at the start of every batch. Results of the QAQC sampling were assessed on a batch by batch basis and were considered acceptable.
)		Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling	1m RC samples were obtained by an adjustable cone splitter attached to the base of the cyclone (1.5kg – 6.0kg) and were utilised for both lithology logging and assaying. At the mine exploration sample preparation facility, core samples are dried at 105C, crushed to -8mm then to -2mm and split to 0.9-1kg before being pulverised to 1mm. This sample is quartered cut to between 200-400g before being pulverised to 95% passing 105µm. The final pulp is quartered again to achieve a sample of 100 - 200g and is sent to SGS laboratories in Belo Horizonte for fire assay. At the mine exploration sample preparation facility, the RC 1m samples are dried at 140C, crushed to -2mm (if
)		problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	aggregated) and riffle split to 1kg. The 1 kg sample is then pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to 95% passing 105µm and quarter cut to a 100-200g sample to send to SGS. Any duplicates samples of the same interval are also sent to ACME laboratories for analysis.
	Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	A 5.5" diameter face sampling hammer was used for RC drilling. A 3.5' diameter bit is used for open hole RAB drilling. For diamond drilling NQ size core is produced.
	Drill sample	Method of recording and assessing	RC recovery was visually assessed, with recovery being

recovery	core and chip sample recoveries and results assessed.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.
Logging	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential Whether core and chip samples have been geologically and geotechnically
	logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
	whether sample sizes are appropriate

and chip sample recoveries and results assessed. corealist except in some wet intervals at the water table. The majority of minarialsed intervals at the water table. The table second at the completion of every hole. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential peon geologically and geotechnically logged to a level of detail to support appropriate Minaral Resource estimation, mining studies and mealurgical studies. Ithology, alteration, veining, mineralisation and weathering were logged from the RC chips and shored in Datashed. All core was orientated and geotechnically logged and recorded. Whether logging is qualitative or quantitative in nature. Core (or costear in starb. core (or costear in samples) is due at the core yard and always prior to cutting. The total length and percentage of the sampled, roary split, etc. and whether sampled wet or dry. The RC drilling utilised a cyclone and cone splitter or iffle split. The rodue samples in the type log Regne, For copy and split at the site sample in the type do the grange. For copy sampled, cutsy split, etc. and whether sample to assess the accuracy and methodology of woild sample to assess the represidualita for analysis. Quality contr			
Measures taken to maximise sample recovery and ensure representative nature of the samples. CC samples were visually checked for recovery, moisture and cone splitter to provide uniform sample size. The cone splitter was cleaned at the end of every rod and the cyclom cleaned at the completion of every hole. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential Sample recoveries for RC holes were high within the mineralised zones. No significant bias is expected. rg Whether core and chip samples have geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metailurgical studies. Lithology, alteration, weining, mineralisation and weathering were logged from the RC chips and stored in Datashed. Chips from selected holes were also placed in chip trays ar stored in a designated building at sile for future reference. All core was orientated and geotechnically logged and metailurgical studies. The total length and percentage of the sampled, neary split, etc. and whether sampled wet or dry. All logging is qualitative except for density and recovery. Al core holes and half core sampled from cut core. whether quarter, half or all core taken. The RC drilling utilised a cyclone and cone splitter or riffle sample wet or dry. For all sample types, the nature, quality and appropriateness of the sample to tesnet to SGS or to duverisation. The 1k g sample is then pulverised to sample to assess the repeatability and variability of the gold mineralisation. At Tucano field duplicates were taken for diamod core but of for RC. Laboratory duplication (starner results for field duplicate/secord-hard is sampling. <	ery	core and chip sample recoveries and results assessed.	excellent except in some wet intervals at the water table. The majority of mineralised intersection results received occurred above the water table. All core is orientated and measured for recovery
Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential Sample recovery and grade and whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Lithology, alteration, veining, mineralisation and weathering were logged from the RC chips and stored in Datashed. Whether core and chip samples have estimation, mining studies and metallurgical studies. Lithology, alteration, veining, mineralisation and weathering were logged from the RC chips and stored in Datashed. Whether jourging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the All logging is qualitative or whether guarter, hall or all core taken. All logging is qualitative and the core sampled from cut core. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. The RC drilling utilised a cyclone and cone splitter or riffle splitter to produce samples in the 1kg to 6kg range. For op hole RAB entire 1m samples are collected and then riffle splitter to produce samples in the 1kg to 6kg range. For op hole RAB entire 1m samples are collected and then riffle splitter to produce samples in the 1kg to 6kg range. For og splitter to produce samples in the store sample to -2mm and split at the site sample preparation add own to approximately 1kg prior to pulverised to 1-2mm and split at the site sample preparation. For all sample types, the nature, quality and appropriateness of the sample to assess the repeatability and variability of the gold mineralisation. At Tucano field duplicates were inserte every 20		Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC samples were visually checked for recovery, moisture and contamination. The drilling contractor utilised a cyclone and cone splitter to provide uniform sample size. The cone splitter was cleaned at the end of every rod and the cyclone cleaned at the completion of every hole.
Image: Second		Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential	Sample recoveries for RC holes were high within the mineralised zones. No significant bias is expected.
Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. All logging is qualitative except for density and recovery. All core photography has been completed shortly after being received at the core yard and always prior to cutting. ampling if costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. All drill holes are logged in full. ampling if costean, channel, etc.) photography. Core holes and half core sampled from cut core. whether quarter, half or all core taken. The RC drilling utilised a cyclone and cone splitter or riffle splitter to produce samples in the 1kg to 6kg range. For op hole RAB entire 1m samples are collected and then riffle split. Once collected the sample is dried, crushed to -2mm and split at the site sample preparation lab down to approximately 1kg prior to pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to sample preparation technique. For all sample types, the nature, quality and appropriateness of the sample preparation technique. The 1 kg sample is then pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to 95% passing 105µm and quarter cut to a 100-200g sample to send to SSG or to the mine chemical lab for analysis. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Certified standards and blanks were inserted every 25th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Duplicate samples were also sent to a different lab (ACME Laborat	ng	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies	Lithology, alteration, veining, mineralisation and weathering were logged from the RC chips and stored in Datashed. Chips from selected holes were also placed in chip trays and stored in a designated building at site for future reference. All core was orientated and geotechnically logged and recorded
The total length and percentage of the relevant intersections logged. All drill holes are logged in full. ampling If core, whether cut or sawn and whether quarter, half or all core taken. Core holes and half core sampled from cut core. If non-core, whether ruiffled, tube sampled, rotary split, etc. and whether samples in the 1kg to 6kg range. For ophole RAB entire 1m samples are collected and then riffle splitter to produce samples in the 1kg to 6kg range. For ophole RAB entire 1m samples are collected and then riffle splitter to produce sample is dried, crushed to -2mm and split at the site sample preparation lab down to approximately 1kg prior to pulverisadion. For all sample types, the nature, quality and appropriateness of the sample preparation technique. The 1 kg sample is then pulverised to 1mm and quarter cut to to between 200 and 400g. This sample is then pulverised to send to SGS or to the mine chemical lab for analysis. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Certified standards and blanks were inserted every 25th sample to assess the accuracy and methodology of the external laboratory (SGS), and field duplicates were inserte (sample preparation split) were completed every 20th sample to assess the recetability of the gold mineralisation. At ucano field duplicates were taken to ensure that the sample is for field duplicate samples for analysis. Measures taken to ensure that the sampling. Field duplicate samples are collected every 20 th samples. Measures taken to ensure that the sample is for field duplicate/second-half sampling. Sample sizes (1kg to 6kg) are considered to be a sufficient size to accurately represent th		Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	All logging is qualitative except for density and recovery. All core photography has been completed shortly after being received at the core yard and always prior to cutting.
ampling If core, whether cut or sawn and whether quarter, half or all core taken. Core holes and half core sampled from cut core. whether quarter, half or all core taken. The RC drilling utilised a cyclone and cone splitter or riffle sampled, rotary split, etc. and whether samples dread or dry. The RC drilling utilised a cyclone and cone splitter or riffle split. Once collected and then riffle split. Once collected and then riffle split. Once collected the sample is offed, crushed to -2mm and split at the site sample preparation lab down to approximately 1kg prior to pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to the sample preparation technique. For all sample types, the nature, quality and appropriateness of the sample preparation technique. The 1 kg sample is then pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to the sample to assess the accuracy and methodology of the sample to assess the accuracy and methodology of the external laboratory (SCS), and field duplicates were taken for diamond core but not for RC. Laboratory duplicate (sample preparation split) were completed every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Duplicate samples were also sent to a different lab (ACME Laboratory as field duplicate/second-half sampling. Measures taken to ensure that the sample sizes are appropriate to the grain size of the material being sampled. Sample sizes (1kg to 6kg) are considered to be a sufficient size to accurately represent the gold mineralisation based of the grain size of the material being samples. Measures taken to ensure that the sample sizes are appropriate to the grain size of		The total length and percentage of the relevant intersections logged.	All drill holes are logged in full.
If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. The RC drilling utilised a cyclone and cone splitter or riffle splitter to produce samples in the 1kg to 6kg range. For op hole RAB entire 1m samples are collected and then riffle split. Once collected the sample is dried, crushed to -2mm and split at the site sample preparation lab down to approximately 1kg prior to pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to ample preparation technique. For all sample types, the nature, quality and appropriateness of the sample preparation technique. The 1 kg sample is then pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to all sub-sampling stages to maximise representivity of samples. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Certified standards and blanks were inserted every 25th sample to assess the accuracy and methodology of the every 20th sample to assess the repeatability and variabilit of the gold mineralisation. At Tucano field duplicates were taken for diamond core but not for RC. Laboratory duplicatte (sample preparation split) were completed every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Duplicate samples are collected every 20th sample size or analysis. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Filed duplicate samples are collected every 20th sample size to accurately represent the gold mineralisation based the mineralisation style, the width and continuity of the intersections, the sampling methodology. </td <td>ampling ques</td> <td>If core, whether cut or sawn and whether quarter, half or all core taken.</td> <td>Core holes and half core sampled from cut core.</td>	ampling ques	If core, whether cut or sawn and whether quarter, half or all core taken.	Core holes and half core sampled from cut core.
For all sample types, the nature, quality and appropriateness of the sample preparation technique.The 1 kg sample is then pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to 95% passing 105µm and quarter cut to a 100-200g sample to send to SGS or to the mine chemical lab for analysis.Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.Certified standards and blanks were inserted every 25th sample to assess the accuracy and methodology of the external laboratory (SGS), and field duplicates were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. At Tucano field duplicates were taken for diamond core but not for RC. Laboratory duplicate (sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Duplicate samples were also sent to a different lab (ACME Laboratories) for analysis.Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.Filed duplicate samples are collected every 20th sample sizes (1kg to 6kg) are considered to be a sufficient size to accurately represent the gold mineralisation based of the mineralisation style, the width and continuity of the intersections, the sampling methodology.Whether sample sizes of the material being sampled.Sample sizes of diamond core have routinely been collected to ensure monitoring of the sub-sampling quality.	ample ration	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	The RC drilling utilised a cyclone and cone splitter or riffle splitter to produce samples in the 1kg to 6kg range. For open hole RAB entire 1m samples are collected and then riffle split. Once collected the sample is dried, crushed to -2mm and split at the site sample preparation lab down to approximately 1kg prior to pulverisation
Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.Certified standards and blanks were inserted every 25th sample to assess the accuracy and methodology of the external laboratory (SGS), and field duplicates were inserte every 20th sample to assess the repeatability and variability of the gold mineralisation. At Tucano field duplicates were taken for diamond core but not for RC. Laboratory duplicate (sample preparation split) were completed every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Duplicate samples were also sent to a different lab (ACME Laboratories) for analysis.Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.Filed duplicate samples are collected every 20 th samples.Whether sample sizes are appropriate to the grain size of the material being sampled.Sample sizes (1kg to 6kg) are considered to be a sufficient size to accurately represent the gold mineralisation based of the mineralisation style, the width and continuity of the intersections, the sampling methodology.		For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The 1 kg sample is then pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to 95% passing 105µm and quarter cut to a 100-200g sample to send to SGS or to the mine chemical lab for analysis.
Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.Filed duplicate samples are collected every 20 th samples.Whether sample sizes are appropriate to the grain size of the material being sampled.Sample sizes (1kg to 6kg) are considered to be a sufficient size to accurately represent the gold mineralisation based of the mineralisation style, the width and continuity of the intersections, the sampling methodology.Field duplicates of diamond core have routinely been collected to ensure monitoring of the sub-sampling quality.		Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Certified standards and blanks were inserted every 25th sample to assess the accuracy and methodology of the external laboratory (SGS), and field duplicates were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. At Tucano field duplicates were taken for diamond core but not for RC. Laboratory duplicates (sample preparation split) were completed every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Duplicate samples were also sent to a different lab (ACME Laboratories) for analysis.
Whether sample sizes are appropriate to the grain size of the material being sampled.Sample sizes (1kg to 6kg) are considered to be a sufficient size to accurately represent the gold mineralisation based of the mineralisation style, the width and continuity of the intersections, the sampling methodology.Field duplicates of diamond core have routinely been collected to ensure monitoring of the sub-sampling quality.		Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Filed duplicate samples are collected every 20 th samples.
Field duplicates of diamond core have routinely been collected to ensure monitoring of the sub-sampling quality.		Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes (1kg to 6kg) are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style, the width and continuity of the intersections, the sampling methodology.
			Field duplicates of diamond core have routinely been collected to ensure monitoring of the sub-sampling quality.

			Acceptable precision and accuracy is noted in the field duplicates albeit the precision is marginally acceptable and consistent with a course gold deposit
	Quality of	The nature quality and	All resource or exploration holes (prefix ED or E) gold
	Quality Of	appropriatoness of the assaying and	All resource of exploration noies (prenx 1 D of 1) gold
	assay uala	appropriateriess of the assaying and	in Bala Harizanta and ACME laboratoriaa) and using a 20g
	anu	aboratory procedures used and	In Beio Honzonie and ACIVIE laborationes) and using a sog
	laboratory	whether the technique is considered	charge for fire assay analysis with an AAS finish. This
	tests	partial or total.	technique is industry standard for gold and considered
			appropriate. All grade control hole (prefix GC) gold assaying
			completed at the non-certified Tucano mine site chemical
			laboratory using similar fire assay analysis.
			Selected Screen fire analysis was performed on selected
_			intervals where coarse gold was observed. The results
			reported in this release were assayed at the mine site
			chemical laboratory and will be duplicated at SGS to ensure
ノ			repeatability.
		For geophysical tools, spectrometers,	Geophysical tools not used.
		handheld XRF instruments, etc., the	
))		parameters used in determining the	
2		analysis including instrument make	
\mathcal{I}		and model, reading times, calibrations	
))		factors applied and their derivation,	
		etc.	
))		Nature of quality control procedures	Certified Reference Material (CRM or standards) were
2		adopted (e.g. standards, blanks,	inserted every 25th sample to assess the assaying accuracy
		duplicates, external laboratory checks)	of the external laboratories. Field duplicates were inserted
		and whether acceptable levels of	every 20th sample to assess the repeatability from the field
1		accuracy (i.e. lack of bias) and	and variability of the gold mineralisation. Laboratory
))		precision have been established.	duplicates were also completed approximately every 20th
2			sample to assess the precision of assaying. Evaluation of
-			both the Beadell submitted standards, and the internal
			laboratory quality control data, indicates assaying to be
			accurate and without significant drift for significant time
))			periods. Excluding obvious errors, the vast majority of the
			then 5% with no consistent positive or possitive bios noted
			Inall 5% with no consistent positive of negative bias noted.
ノ			correlation > 0.06) and no apparent bias between the
_			duplicate pairs. Field duplicate comple show marginally
			auplicate pairs. Field duplicate sample show marginally
)			acceptable levels of correlation (0.09 for the SGS data set,
ノ			the KalAssay data set) and no relative bias
			Each analysis batch (approx, 150 samples) is checked to
))			ensure that the standards fall within the accented levels of
			standard deviation. Where any standard exceeds 3 standard
			deviations or where more than one standard falls between 2
_			and 3 standard deviations, the entire batch is resubmitted for
			analysis
	Verification of	The verification of significant	The high grade intersections of core and RC have been
2	sampling and	intersections by either independent or	observed by several senior company personnel with
	assaving	alternative company personnel	extensive experience in similar gold deposit styles)
		The use of twinned holes.	Diamond twin holes have been drilled previously showing
			what is considered to be normal variations in Orogenic gold
			mineralisation.
		Documentation of primary data. data	All geological logging information is entered directly into
		entry procedures, data verification.	Logchief and synchronised with the Datashed database.
		data storage (physical and electronic)	Other field data (e.g. sampling sheets, downhole surveys
		protocols.	etc.) are entered into excel spreadsheets formatted for
			Datashed importation. Lab assay reports are directly

			imported into Datashed along with all QAQC data and metadata. Data importation is done by Maxwell Geoservices staff under contract by Beadell Resources. All data loading procedures have been documented by Maxwell Geoservices
		Discuss any adjustment to assay data.	Data below the detection limit is defined with a negative value, e.g. $<0.01 = -0.01$.
	Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Beadell drill hole collar locations were picked up by site- based authorized surveyors using Total Station Leica 407, calibrated to a base station (expected accuracy of 20mm). Downhole surveying was measured by the drilling contractors using a Reflex Gyro Downhole Survey Instrument for RC holes. Shallow RC holes were picked up at the collar and 2 points on the rod string using Total
J			Station. Grade control RC holes less than ~50m depth are not down hole surveyed.
5		Specification of the grid system used.	The grid system is SAD 69 Zone 22N.
ノ		control.	model (DTM) from Total Station surface pickups of the Tucano deposit.
J	Data spacing and distribution	Data spacing for reporting of Exploration Results.	Nominal drill hole spacing is 12m (E) by 10m (N) for grade control and a nominal 20m (E) x 40m (N) spacing for resource definition. Exploration drill spacing typically is done at 40m (E) x 80m (N) or greater. At Duckhead a 5 m (NE) x 10 m (NW) spacing is done for grade control.
		Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred, Indicated and Measured Mineral resources under the 2012 JORC code.
))		Whether sample compositing has been applied.	No sample compositing has been applied in the field within the mineralised zones.
	Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The majority of drilling is orientated east-west at Tap AB, Tap C and Urucum with a ~60 degree dip, which is roughly perpendicular to the strike of the mineralisation. Due to the anastomosing nature of the mineralised structures varying from steeply west dipping to steeply east dipping, downhole intervals are not necessarily representative of true widths and will vary on a hole by hole basis depending on whether the structure is dipping east or west at the point of intersection. The majority of drilling at Duckhead is oriented north-east with a 60 degree dip which is approximately perpendicular to both the strike and dip of the mineralisation, therefore ensuring the intercepts are close to true width.
ノ コ		It the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	In areas of higher grade control drilling density, sectional interpretation of 12m spaced holes on 10m spaced lines shows a very uniform mineralised zone both along strike and down dip. The drill orientation is as close to normal to the strike of the body as possible and therefore the drill hole to mineralisation is not considered to have introduced a sampling bias. Due to the anastomosing nature of the mineralised structures varying from steeply west dipping to steeply east dipping, downhole intervals are not necessarily representative of true widths and will vary on a hole by hole basis depending on whether the structure is dipping east or

		west at the point of intersection.
Sample security	The measures taken to ensure sample security.	Samples are securely sealed and stored onsite, until delivery to Macapa via the company contracted Taxi driver, who then also delivers the samples directly to TAM airlines cargo dispatch facility for delivery to Belo Horizonte. Sample submission forms are sent with the samples as well as emailed to the laboratory, and are used to keep track of the sample batches.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A site visits was completed in 2012 (Cube Consulting) to review sampling procedures and grade control practices. This visit concluded the sampling to be at an industry standard, and of sufficient quality to carry out a Mineral Resource Estimation. A similar audit was completed in 2015 by independent consultants.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

)	Criteria	JORC Code explanation	Commentary
)))	<i>Mineral</i> <i>tenement and</i> <i>land tenure</i> <i>status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Tucano Mine Corridor deposits reside in tenement 851.676/1992, centrally located within the northern state of Amapa, Brazil. The current registered holder of the tenements is Beadell Brasil Ltda. The Duckhead Deposit is located on the tenement 858.079/14. The holder of this tenement is Beadell Brasil Ltda.
1		The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Existing mining concession owned 100% by Beadell Resources Ltd for the Tucano deposits.
)	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Beadell Brasil Ltda acknowledges the previous operator MPBA for the initial discovery of gold at Tucano.
))	Geology	Deposit type, geological setting and style of mineralisation.	The Tucano deposits are structurally controlled orogenic lode type gold deposit hosted within a Banded Iron Formation unit in contact with a Clastic quartz biotite schist. The Lodes are characterised by shear parallel disseminated pyrite and pyrrhotite mineral assemblages and generally exhibit a strong oxidation profile in the regolith without any secondary dispersion other than colluvial deposits. The Neo Lode is a new style of gold mineralisation hosted solely in the clastic unit east of the main BIF sequence. The Tap D deposits are hosted in a carbonate unit west of the main BIF sequence.
))	Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length.	See Table 1

		If the exclusion of this information is	
		iustified on the basis that the	
		information is not Material and this	
		avaluation doos not datract from the	
		understanding of the report, the	
		Competent Person should clearly	
		explain why this is the case.	
	Data	In reporting Exploration Results,	In the reporting of exploration results, un-cut grades are
-	aggregation	weighting averaging techniques.	reported. The lower cut-off limit is considered to be 0.5a/t
	methods	maximum and/or minimum grade	for the reporting of drill hole intercents with no more than 2
_	411001000	trupportions (o.g. outting of high	m downholo internal dilution. Intercents are determined
			In downline internal dilution. Intercepts are determined
		grades) and cut-off grades are usually	using a weighted average over the length of the intercept.
_		Material and should be stated.	
_		Where aggregate intercepts	In the instance where aggregate intercepts include shorter
\mathcal{D}		incorporate short lengths of high grade	lengths of higher grade material, the total interval is stated
ノ		results and longer lengths of low grade	first followed by the word "including", then a listing of the
		results the procedure used for such	contained shorter high grade intercents
		aggregation should be stated and	sontained shorter high grade interoepts.
5		aggregation should be stated and	
))		some typical examples of such	
2		aggregations should be shown in	
		detail.	
1		The assumptions used for any	No metal equivalents are used at Tucano.
-		reporting of metal equivalent values	
77		should be clearly stated.	
9	Relationship	These relationships are particularly	The drilling was designed to intersect the mineralisation at
	hetween	important in the reporting of	an angle that is roughly perpendicular to the overall strike
	mineralisation	Exploration Results	The mineralised intervals are generally much wider than
	widtho ond	If the geometry of the mineralization	the minimum completinterval of 1m. At Top AP Trough Lode
7		In the geometry of the mineralisation	the minimum sample interval of mi. At TapAB frough Lode
	Intercept	with respect to the drill hole angle is	the mineralisation is subvertical but anastomoses to steeply
	lengths	known, its nature should be reported.	east and steeply west dipping. True width generally vary
			between 40-60% of the reported downhole interval
_			although this varies between each hole. At Tap D Sul down
_			holes intervals approximate true widths. At Duckhead the
\mathcal{D}			true width generally represent approximately 70% of the
ノ			reported downhole intervals although this varies between
5			each hole.
)		If it is not known and only the down	All drill intersections are stated as down hole lengths. Due
D		hole lengths are reported there should	to the expectementing nature of the minoralization at Tap AP
_		noie lenguis are reported, there should	Trough lade war ing from steenly east to steenly wast
_		be a clear statement to this effect (e.g.	Trough lode varying from steepiy east to steepiy west
5		aown noie length, true width not	dipping it is unreliable to try and confidently state a true
ノ		known').	width for each drill hole intercept.
\leq			
\mathcal{D}	Diagrams	Appropriate maps and sections (with	See diagrams in main body of the announcement.
		scales) and tabulations of intercepts	
		should be included for any significant	
		discovery being reported These should	
		include, but not be limited to a plan	
		view of drill hole coller locations and	
\mathcal{D}		appropriate socianal views	
ノ	Polonand	appropriate sectional views.	All the aignificant regults greater than 0.5 g/t gold area at
	Dalariced	where comprehensive reporting of all	All the significant results greater than 0.5 g/t gold over at
	reporting	Exploration Results is not practicable,	least 2m downhole have been reported in Table 1 and
		representative reporting of both low	Table 2.
		and high grades and/or widths should	
		be practiced to avoid misleading	
		reporting of Exploration Results.	
	Other	Other exploration data, if meaningful	The Tucano results are from an active mining area where
	substantive	and material, should be reported	open pit mining is in progress. Reconciliation has been
	evoloration	including (but not limited to):	verified by mill metallurgical balance based on models
	data	apploained observations: coophysical	using the same drilling method for results
	uala	geological observations, geophysical	using the same unining method for results.

	survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further v	Vork The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The Tucano lodes remain open at depth and along strike in most cases and contain numerous outlying intersections that will require follow up drilling. Several diagrams have been included to highlight this aspect.