

September 6<sup>th</sup> 2016

**ASX Release** 

# Kidman Resources Limited ABN 88 143 526 096

#### Corporate Details: ASX Code: KDR

#### Issued capital:

310.9M\* ordinary shares 47.45 listed options (KDRO)

#### Substantial Shareholders:

Capri Holdings (10.7%\*)
Acorn Capital (8.4%\*)
\*Subject to completion of the placement announced on Aug 17th

#### Directors:

Non-Executive Chairman:

Peter Lester

Managing Director:

Martin Donohue

Non-Executive Director:

Brad Evans

Chief Financial Officer (CFO):
Jason Eveleigh

#### Company Secretaries:

Justin Mouchacca Melanie Leydin

#### Contact Details:

Kidman Resources Limited Suite 3, Level 4 12 - 20 Flinders Lane Melbourne Victoria 3000 Australia

Tel: +61 (0)3 9671 3801 Fax: +61 (0)3 9671 3523

#### Email:

info@kidmanresources.com.au

#### Website:

www.kidmanresources.com.au

# High-grade assays over very wide intersections confirm Earl Grey is a major lithium discovery

#### **Highlights**

- First hole drilled by Kidman at its Earl Grey lithium discovery in WA returns 93m at 1.53% Li<sub>2</sub>O (KEGR001)
- Five subsequent holes have each intersected pegmatite over total widths ranging from 60m to 93m; these intersections start from a depth of 41.9m; assays pending
- Earl Grey spodumene mineralised pegmatite now outlined over 700m down dip extent and 400m along strike with an estimated average true width of ~80m
- Earl Grey pegmatite remains open along strike and both up and down dip
- Drilling continuing around the clock, moving up-dip on 100m line spacing's towards the outcropping pegmatite 1.5km south of KEGR001
- Latest results show interval grades of up to 3.28% Li<sub>2</sub>O, this follows assays
  of up to 2.5% Li<sub>2</sub>O from five historical drill holes
- Kidman is now targeting a maiden lithium resource estimate in the December quarter, 2016
- Earl Grey pegmatite sits on a granted Mining Lease and is just one of several known pegmatites within the project area

Kidman Resources Limited ("**Kidman**") (ASX: KDR) is pleased to advise that fresh drilling results have confirmed that its Earl Grey lithium deposit near Southern Cross in WA is a major discovery of significant size showing high-grade mineralisation.

The latest results, which come from the first hole drilled at Earl Grey by Kidman, contain 93m at 1.53%  $Li_2O$ . This includes:

- 8m @ 2.33% Li<sub>2</sub>O from 211m to 219m;
- 13m @ 2.19% Li<sub>2</sub>O from 235m to 248m; and
- **14.7m @ 2.01% Li<sub>2</sub>O** from 278m to 292.7m including a strongly mineralised of **3m @ 3.28% Li<sub>2</sub>O** from 278m to 281m.

Assays from the 93m wide Earl Grey pegmatite intercept in KEGR001 (refer Figure 1) have returned sample grades of up to 4.22% Li<sub>2</sub>O and several highly-mineralised broad zones.

As a result of this drilling, the Earl Grey spodumene mineralised pegmatite has now been outlined over a down dip extent of 700m and a strike length of 400m (refer Figure 2) with an estimated average true width of ~80m. Early Grey remains open up-dip, down-dip and along strike. The recent drilling has also highlighted that the mineralised pegmatite flattens out, suggesting it joins with the outcrop located in the south of the mining lease (see figure 2). A new programme of work is due for approval in the coming week so this new interpretation can be drill tested.

Two rigs are drilling around the clock with the program moving up-dip to the south on 100m line spacing. Pegmatite outcrops have been located about 1.5km south of the most northerly hole drilled so far (KEGR001). Drilling is now aimed at establishing whether this outcrop is part of the Earl Grey pegmatite which would suggest a strike length of over 1,500m (refer Figure 3).

Earl Grey is part of Kidman's Mt Holland Gold-Lithium Project. Earl Grey lies within a granted Mining Lease.

Five holes drilled at Earl Grey as part of a gold exploration program by Mt Holland's previous owners were assayed recently by Kidman for lithium. They returned exceptionally high-grade assays of up to 2.5%  $Li_2O$  (see ASX release dated July 15, 2016).

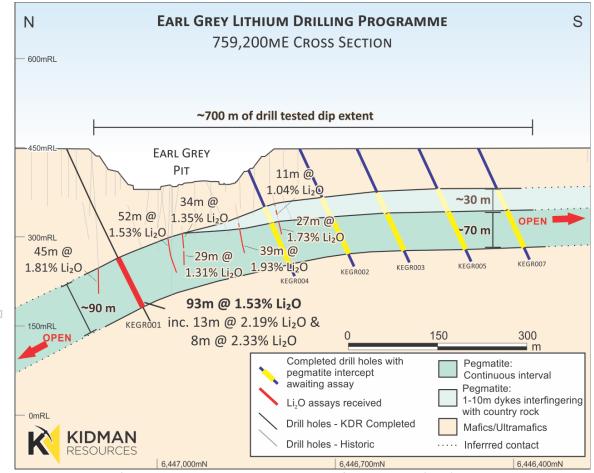



Figure 1: Cross section of the Earl Grey pegmatite with intercepts from KEGR001 (93m), recently completed holes and resampled historical RC drill holes.

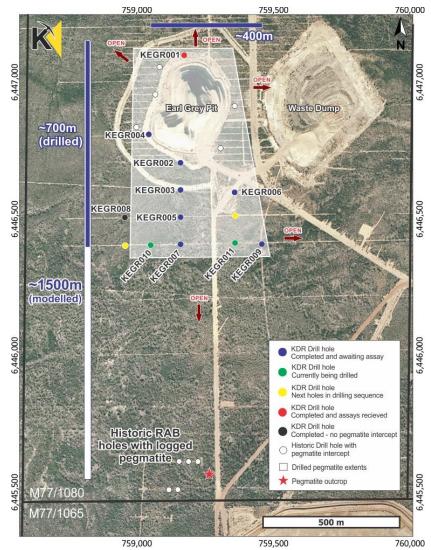



Figure 2: Surface plan of drill programme designed and underway to delineate the extent of the mineralised pegmatite on Mining Lease M77/1080.

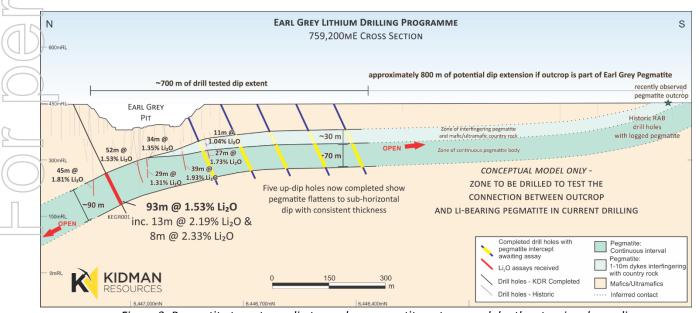



Figure 3: Pegmatite targets up-dip towards a pegmatite outcrop and depth extension down-dip.

#### **Kidman Background**

Kidman is a diversified resource company which owns the Burbanks Gold Mine near Coolgardie in WA. Production commenced in the September quarter of 2015.

Kidman also owns the Mt Holland gold field near Southern Cross in WA (see ASX Announcement 18th December for further details of the project). The company intends to revise the existing gold resource at Mt Holland with a significant RC and Diamond drilling program, followed by an update to the feasibility study undertaken by previous operators. The company is now also drilling to further test the highly prospective Lithium targets within the Mt Holland tenement package and has entered into an MOU to potentially process Lithium ores at the Lake Johnston 1.5Mtpa concentrator owned by Poseidon Nickel.

Kidman also owns advanced exploration projects in the Northern Territory (Home of Bullion – Cu, Au, Pb, Zn, Ag/Prospect D - Ni, Cu) and New South Wales.

In New South Wales the company has the Crowl Creek Project which is host to numerous projects such as Murrays (Au) Blind Calf (Cu, Au) and Three Peaks (Cu, Pb, Ag).

The company also owns the Brown's Reef project in the southern part of the Cobar Basin (Zn, Pb, Ag, and Cu)

For further information on the Company's portfolio of projects please refer to the website at:

#### Media:

Paul Armstrong / Nicholas Read Read Corporate 0421 619 084

Martin Donohue
Managing Director
info@kidmanresources.com.au
+61 3 9671 3801

#### Competent Persons Statement

#### Exploration:

The information in this release that relates to sampling techniques and data, exploration results, geological interpretation and exploration targets has been reviewed by Mr L Sawyer M.App.Sc. Mr Sawyer is not an employee of the company, but is employed by Geos Mining as a contract consultant. Mr Sawyer is a member of the Australian Institute of Geoscientists, he has sufficient experience with the style of mineralisation and type of deposit under consideration, and to the activities undertaken, to qualify as a competent person as defined in the 2012 edition of the "Australian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves" (The JORC Code). Mr Sawyer consents to the inclusion in this report of the contained technical information in the form and context as it appears.

#### Cautionary Statement:

Readers should use caution when reviewing the exploration and historical information results presented and ensure that the Modifying Factors described in the 2012 edition of the JORC Code are considered before making an investment decision. Potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource, and that it is uncertain if further exploration will result in the determination of a Mineral Resource.

Information in this report may also reflect past exploration results, and Kidman's assessment of exploration completed by past explorers, which has not been updated to comply with the JORC 2012 Code. The company confirms it is not aware of any new information or data which materially affects the information included in this announcement.

## **Appendix 1**

TABLE 1: DRILL HOLE DETAILS

|               | Mt Holland, Western Australia |                       |               |                    |             |                    |                       |  |  |  |  |  |
|---------------|-------------------------------|-----------------------|---------------|--------------------|-------------|--------------------|-----------------------|--|--|--|--|--|
| Drill<br>Hole | Easting<br>GDA94 (m)          | Northing<br>GDA94 (m) | AHD RL<br>(m) | Inclination<br>(o) | Azimuth (o) | Total length (m) # | Location /<br>Deposit |  |  |  |  |  |
| KEGR001       | 759,217                       | 6,447,150             | 448           | -67                | 174         | 325.6              | Earl Grey             |  |  |  |  |  |
| KEGR002       | 759,200                       | 6,446,760             | 449           | -65                | 180         | 213.5              | Earl Grey             |  |  |  |  |  |
| KEGR003       | 759,200                       | 6,446,664             | 449           | -65                | 180         | 229                | Earl Grey             |  |  |  |  |  |
| KEGR004       | 759,085                       | 6,446,862             | 451           | -55                | 128         | 282.8              | Earl Grey             |  |  |  |  |  |
| KEGR005       | 759,200                       | 6,446,560             | 449           | -65                | 180         | 220.4              | Earl Grey             |  |  |  |  |  |
| KEGR006       | 759,400                       | 6,446,663             | 447           | -65                | 180         | 218                | Earl Grey             |  |  |  |  |  |
| KEGR007       | 759,199                       | 6,446,460             | 450           | -65                | 180         | 201.9              | Earl Grey             |  |  |  |  |  |
| KEGR008       | 759,000                       | 6,446,558             | 450           | -65                | 180         | 253                | Earl Grey             |  |  |  |  |  |
| KEGR009       | 759,501                       | 6,446,464             | 450           | -65                | 180         | 214                | Earl Grey             |  |  |  |  |  |
| KEGR010       | 759,399                       | 6,446,463             | 450           | -65                | 180         | 187                | Earl Grey             |  |  |  |  |  |

<sup>&</sup>lt;sup>#</sup> includes reverse circulation (RC) pre-collar drilling to 181 m, followed by diamond core drilling to final depth.

## **Appendix 2**

TABLE 2: SAMPLE ANALYSIS RESULTS

| Drill Hole | Sample Number        | Depth         | Depth | Lithology                     | Element                                  | Recvd Wt.      | Au              | AI203            | As               | CaO                | Co               | Cr2O3            | Cu               | Fe203            | Li2O             | K20              | MgO              | MnO                | Ni                |
|------------|----------------------|---------------|-------|-------------------------------|------------------------------------------|----------------|-----------------|------------------|------------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------|-------------------|
|            |                      | From          | To    |                               | Unit Symbol                              | kg             | ppm             | %                | %                | %                  | %                | %                | %                | %                | %                | %                | %                | %                  | %                 |
|            |                      |               |       | GeoLog                        | Analysis Method<br>Lower Detection Limit | WEI-21<br>0.02 | Au-AA26<br>0.01 | ME-ICP89<br>0.02 | ME-ICP89<br>0.01 | ME-ICP89 I<br>0.01 | 0.005            | ME-ICP89<br>0.01 | ME-ICP89<br>0.01 | ME-ICP89<br>0.01 | ME-ICP89<br>0.02 | ME-ICP89<br>0.01 | ME-ICP89<br>0.01 | ME-ICP89 I<br>0.01 | ME-ICP89<br>0.005 |
|            |                      |               |       |                               | Upper Detection Limit                    | 1000           | 100             | 100              | 10               | 70                 | 30               | 88               | 50               | 100              | 21.5             | 60               | 50               | 50                 | 30                |
| KEGR001    | MHG10437             | 181.8         | 18    | 3 Pyroxinite                  | Opper Detection Limit                    | 3.07           | 0.02            | 10.2             | 0.01             | 5.75               | 0.009            | 0.41             | <0.01            | 12.35            | 0.24             | 0.04             | 18.25            | 0.14               | 0.083             |
|            | MHG10438             | 183           |       | 4 Pyroxinite                  |                                          | 2.69           | 0.01            | 10.15            | < 0.01           | 3.97               | 0.007            | 0.34             | <0.01            | 12.05            | 0.3              | 0.04             | 17.25            |                    | 0.063             |
|            | MHG10439             | 184           |       | 5 Pyroxinite                  |                                          | 2.75           | 0.01            | 10.25            | <0.01            | 4.6                | 0.009            | 0.29             | 0.01             | 12.45            | 0.26             | 0.04             | 17.85            | 0.13               | 0.059             |
|            | MHG10440             | 185           |       | 6 Pyroxinite                  |                                          | 2.77<br>2.78   | <0.01           | 9.96             | 0.01             | 5.54<br>5.92       | 0.008            | 0.32<br>0.23     | <0.01            | 12.25<br>12.25   | 0.22<br>0.15     | 0.02<br>0.06     | 17.75            |                    | 0.066<br>0.045    |
|            | MHG10441<br>MHG10442 | 186<br>187    |       | 7 Pyroxinite<br>8 Pyroxinite  |                                          | 2.76           | 0.01<br>0.01    | 9.84<br>10.45    | <0.01<br><0.01   | 7.39               | 0.005<br>0.007   | 0.23             | 0.01<br>0.01     | 11.5             | 0.13             | 0.06             | 16.4<br>14.65    | 0.14<br>0.17       | 0.045             |
|            | MHG10442             | 188           |       | 9 Pyroxinite                  |                                          | 2.86           | <0.01           | 9.66             | <0.01            | 7.99               | 0.007            | 0.22             | 0.01             | 11.2             | 0.13             | 0.07             | 14.03            |                    | 0.043             |
|            | MHG10444             | 189           |       | 9 Pyroxinite                  |                                          | 0.07           | 1.9             | 5.99             | 0.01             | 5.07               | < 0.005          | 0.08             | 0.02             | 23.3             | 0.02             | 0.82             | 3.18             |                    | 0.025             |
| KEGR001    | MHG10445             | 189           | 19    | 0 Pyroxinite                  |                                          | 2.87           | 0.01            | 9.79             | < 0.01           | 8.4                | 0.007            | 0.22             | 0.01             | 11.55            | 0.13             | 0.05             | 14.6             |                    | 0.046             |
|            | MHG10446             | 190           |       | 2 Pyroxinite                  |                                          | 3.47           | 0.02            | 10.75            | <0.01            | 7.43               | 0.007            | 0.26             | 0.01             | 12.1             | 0.15             | 0.05             | 15.1             | 0.17               | 0.048             |
|            | MHG10447<br>MHG10448 | 191.2<br>192  |       | 2 Pyroxinite                  |                                          | 2.21<br>2.58   | 0.01<br><0.01   | 9.81<br>9.9      | <0.01<br><0.01   | 8.26<br>9.09       | 0.006            | 0.23<br>0.22     | <0.01<br><0.01   | 11.6<br>11.8     | 0.11<br>0.15     | 0.04<br>0.06     | 14.5<br>14.7     | 0.18<br>0.21       | 0.046<br>0.043    |
|            | MHG10448             | 193           |       | 3 Pyroxinite<br>4 Pyroxinite  |                                          | 2.52           | <0.01           | 10.4             | 0.01             | 9.15               | 0.008            | 0.25             | 0.01             | 12.25            | 0.15             | 0.08             | 15.45            |                    | 0.045             |
|            | MHG10450             | 194           |       | 5 Pyroxinite                  |                                          | 2.64           | <0.01           | 10.6             | <0.01            | 5.76               | 0.009            | 0.25             | <0.01            | 12.2             | 0.3              | 0.12             | 17.25            | 0.17               | 0.051             |
|            | MHG10451             | 195           |       | 3 Pyroxinite                  |                                          | 3.59           | 0.01            | 11.55            | < 0.01           | 5.46               | 0.007            | 0.27             | <0.01            | 12.15            | 0.28             | 0.1              | 17.25            | 0.17               | 0.053             |
|            | MHG10452             | 196.3         |       | 7 Pyroxinite                  |                                          | 1.82           | <0.01           | 11.2             | <0.01            | 5.81               | 0.005            | 0.25             | <0.01            | 12.55            | 0.26             | 0.13             | 17.4             |                    | 0.051             |
|            | MHG10453             | 197           |       | 8 Pyroxinite                  |                                          | 2.56           | <0.01           | 11               | 0.02             | 6.86               | 0.006            | 0.27             | 0.01             | 13.2             | 0.06             | 0.04             | 19.15            |                    | 0.047             |
|            | MHG10454<br>MHG10455 | 198<br>199.4  |       | 4 Pyroxinite<br>5 Pyroxinite  |                                          | 3.61<br>2.42   | <0.01<br><0.01  | 9.79<br>8.67     | 0.11<br>0.14     | 6.3<br>5.9         | 0.009<br><0.005  | 0.37<br>0.25     | 0.01<br><0.01    | 12.4<br>7.16     | 0.04             | 0.04<br>0.95     | 20.5<br>15.15    |                    | 0.103<br>0.074    |
|            | MHG10456             | 200.55        |       | 1 Pegmatite                   |                                          | 0.95           | <0.01           | 17.95            | 0.02             | 1.08               | <0.005           | 0.23             | 0.01             | 0.83             | <0.02            | 0.06             | 0.53             |                    | <0.005            |
|            | MHG10457             | 201           |       | 2 Pegmatite                   |                                          | 2.42           |                 | 16.1             | 0.05             | 0.27               | < 0.005          | 0.01             | <0.01            | 1.09             | 0.93             | 1.41             | 0.1              | 0.15               | <0.005            |
|            | MHG10458             | 202           |       | 3 Pegmatite                   |                                          | 2.48           |                 | 15.1             | < 0.01           | 0.24               | < 0.005          | < 0.01           | <0.01            | 0.54             | 0.97             | 3.29             | 0.03             |                    | <0.005            |
|            | MHG10459             | 203           |       | 3 Pegmatite                   |                                          | 3.13           |                 | 16.9             | 0.06             | 0.13               | < 0.005          | < 0.01           | <0.01            | 0.59             | 0.93             | 6.16             | 0.03             |                    | <0.005            |
|            | MHG10460             | 204.3         |       | 5 Pegmatite                   |                                          | 1.93           |                 | 15.7             | 0.02             | 0.2                | < 0.005          | < 0.01           | <0.01            | 0.97             | 1.66             | 1.29             | 0.03             |                    | <0.005<br><0.005  |
|            | MHG10461<br>MHG10462 | 205<br>206    |       | 6 Pegmatite<br>7 Pegmatite    |                                          | 2.57<br>2.48   |                 | 15.25<br>15.7    | 0.03<br>0.02     | 0.18<br>0.18       | <0.005<br><0.005 | <0.01<br>0.01    | <0.01<br><0.01   | 0.67<br>0.64     | 1.4<br>1.03      | 0.93<br>1.43     | 0.02<br>0.02     |                    | <0.005            |
|            | MHG10463             | 207           |       | 8 Pegmatite                   |                                          | 2.59           |                 | 15.2             | 0.01             | 0.13               | < 0.005          | <0.01            | <0.01            | 0.6              | 1.23             | 0.87             | 0.02             |                    | <0.005            |
|            | MHG10464             | 208           |       | 9 Pegmatite                   |                                          | 2.57           |                 | 16.25            | 0.02             | 0.11               | < 0.005          | 0.01             | <0.01            | 0.92             | 1.66             | 1.29             | 0.02             | 0.12               | <0.005            |
|            | MHG10465             | 209           |       | <ol> <li>Pegmatite</li> </ol> |                                          | 2.66           |                 | 15.9             | 0.04             | 0.08               | < 0.005          | 0.01             | <0.01            | 0.93             | 1.66             | 1.63             | 0.02             |                    | <0.005            |
|            | MHG10466             | 210           |       | 1 Pegmatite                   |                                          | 2.69           |                 | 14.55            | 0.03             | 0.14               | < 0.005          | 0.01             | <0.01            | 0.7              | 1.25             | 3.41             | <0.01            | 0.11               | <0.005            |
|            | MHG10467<br>MHG10468 | 211<br>212    |       | 2 Pegmatite<br>3 Pegmatite    |                                          | 2.63<br>2.56   |                 | 14.65<br>15.35   | 0.01<br>0.02     | 0.07<br>0.14       | <0.005<br><0.005 | <0.01<br>0.01    | <0.01<br><0.01   | 0.76<br>0.94     | 2.22<br>2.11     | 1.1<br>1.17      | 0.03<br>0.03     |                    | <0.005<br><0.005  |
|            | MHG10469             | 213           |       | 4 Pegmatite                   |                                          | 2.61           |                 | 15.55            | 0.04             | 0.15               | < 0.005          | <0.01            | <0.01            | 1.04             | 1.72             | 1.29             | 0.03             |                    | <0.005            |
|            | MHG10470             | 214           |       | 5 Pegmatite                   |                                          | 2.65           |                 | 16.35            | 0.01             | 0.17               | < 0.005          | 0.01             | <0.01            | 0.84             | 2.8              | 1.55             | 0.02             | 0.15               | < 0.005           |
|            | MHG10471             | 215           |       | 1 Pegmatite                   |                                          | 2.82           |                 | 15.85            | 0.02             | 0.1                | < 0.005          | 0.01             | <0.01            | 0.94             | 2.43             | 3.07             | 0.02             |                    | <0.005            |
|            | MHG10472             | 216.1         |       | 7 Pegmatite                   |                                          | 2.32           |                 | 15.7             | 0.07             | 0.15               | < 0.005          | 0.01             | <0.01            | 0.73             | 2.37             | 2.17             | 0.03             |                    | <0.005            |
|            | MHG10473<br>MHG10474 | 217<br>217.55 |       | 5 Pegmatite<br>9 Pegmatite    |                                          | 1.16<br>0.86   |                 | 15.25<br>16.35   | 0.06<br>0.01     | 0.14<br>0.1        | <0.005<br><0.005 | <0.01<br><0.01   | <0.01<br><0.01   | 0.63<br>0.43     | 2.09<br>0.84     | 1.93<br>8.64     | 0.02<br>0.03     |                    | <0.005<br><0.005  |
|            | MHG10475             | 217.9         |       | 9 Pegmatite                   |                                          | 2.59           |                 | 15.75            | 0.01             | 0.24               | <0.005           | <0.01            | <0.01            | 0.49             | 3.21             | 1.23             | 0.07             | 0.02               | <0.005            |
|            | MHG10476             | 219           |       | 0 Pegmatite                   |                                          | 2.48           |                 | 16.7             | <0.01            | 0.42               | < 0.005          | 0.01             | <0.01            | 0.73             | 0.17             | 6.76             | 0.08             |                    | <0.005            |
|            | MHG10477             | 220           |       | 3 Pegmatite                   |                                          | 3.09           |                 | 16.65            | 0.01             | 0.15               | < 0.005          | 0.01             | <0.01            | 0.49             | 0.17             | 9.66             | 0.02             |                    | <0.005            |
|            | MHG10478             | 221.3         |       | 2 Pegmatite                   |                                          | 1.71           |                 | 15.95            | 0.01             | 0.28               | <0.005           | 0.01             | <0.01            | 0.92             | 2.93             | 0.87             | 0.02             |                    | <0.005            |
|            | MHG10479<br>MHG10480 | 222<br>223.1  |       | 1 Pegmatite<br>4 Pegmatite    |                                          | 2.74<br>2.34   |                 | 15.55<br>16.2    | 0.01<br>0.01     | 0.29<br>0.36       | <0.005<br><0.005 | <0.01<br>0.01    | <0.01<br><0.01   | 0.54<br>0.4      | 1.14<br>1.49     | 2.31<br>0.87     | 0.03<br>0.05     |                    | <0.005<br><0.005  |
|            | MHG10480             | 224           |       | 2 Pegmatite                   |                                          | 2.94           |                 | 16.1             | <0.01            | 0.08               | <0.005           | 0.01             | <0.01            | 0.19             | 0.04             | 10.6             | <0.03            | 0.03               | <0.005            |
|            | MHG10482             | 225.2         |       | 6 Pegmatite                   |                                          | 2.03           |                 | 15.35            | 0.01             | 0.15               | < 0.005          | <0.01            | <0.01            | 0.51             | 1.49             | 2.37             | 0.03             |                    | <0.005            |
| KEGR001    | MHG10483             | 226           |       | 7 Pegmatite                   |                                          | 2.4            |                 | 15               | 0.01             | 0.2                | < 0.005          | 0.01             | <0.01            | 0.6              | 2.6              | 1.28             | 0.05             | 0.04               | <0.005            |
|            | MHG10484             | 227           | 228.  | 3 Pegmatite                   |                                          | 3.33           |                 | 15.35            | 0.01             | 0.39               | < 0.005          | 0.01             | <0.01            | 0.83             | 1.25             | 3.73             | 0.07             | 0.04               | <0.005            |
|            | MHG10485             | 228.3         |       | 9 Pegmatite                   |                                          | 1.88           |                 | 15.4             | 0.06             | 0.15               | < 0.005          | 0.01             | <0.01            | 0.86             | 1.29             | 2.85             | 0.05             | 0.1                | <0.005            |
|            | MHG10486<br>MHG10487 | 229<br>230    |       | 0 Pegmatite<br>1 Pegmatite    |                                          | 2.5<br>2.52    |                 | 15.25<br>15.3    | 0.03<br>0.01     | 0.27<br>0.2        | <0.005<br><0.005 | 0.01<br>0.01     | <0.01<br><0.01   | 0.8<br>0.87      | 1.51<br>0.47     | 1.43<br>2.02     | 0.17<br>0.05     | 0.08<br>0.19       | <0.005<br><0.005  |
|            | MHG10487             | 231           |       | 5 Pegmatite                   |                                          | 3.23           |                 | 15.1             | 0.01             | 0.13               | <0.005           | <0.01            | <0.01            | 0.81             | 0.47             | 2.37             | 0.05             | 0.19               | <0.005            |
|            | MHG10489             | 232.35        |       | 3 Pegmatite                   |                                          | 1.76           |                 | 15.95            | 0.04             | 0.22               | <0.005           | 0.02             | <0.01            | 1.09             | 1.79             | 3.05             | 0.02             |                    | <0.005            |
| KEGR001    | MHG10490             | 233           | 23    | 4 Pegmatite                   |                                          | 2.46           |                 | 14.95            | 0.13             | 0.22               | < 0.005          | 0.01             | <0.01            | 0.71             | 0.69             | 2.59             | 0.03             | 0.13               | < 0.005           |

Kidman Resources Limited – ASX Announcement

Page **6** of **14** 

|          | Drill Hole         | Sample Number        | Depth           | Depth | Lithology                | Element                                        | РЬ             | S             | SiO2         | TiO2           | Zn             | Cs             | Nb        | Rb           | Sn        | Ta             | Th           | U            | Pass75um    |
|----------|--------------------|----------------------|-----------------|-------|--------------------------|------------------------------------------------|----------------|---------------|--------------|----------------|----------------|----------------|-----------|--------------|-----------|----------------|--------------|--------------|-------------|
|          |                    |                      | From            | To    |                          | Unit Symbol                                    | %              | %             | %            | %              | %              | ppm            | ppm       | ppm          | ppm       | ppm            | ppm          | ppm          | %           |
|          |                    |                      |                 |       | GeoLog                   | Analysis Method                                |                |               | ME-ICP89     |                | ME-ICP89       | ME-MS91<br>0.2 |           |              |           | ME-MS91<br>0.5 |              | ME-MS91      | PUL-QC      |
|          |                    |                      |                 |       |                          | Lower Detection Limit<br>Upper Detection Limit | 0.01<br>30     | 0.01          | 0.2<br>100   | 0.02<br>83     | 0.01<br>60     | 25000          | 2500      | 0.5<br>25000 | 10000     | 2500           | 0.5<br>2500  | 0.5<br>2500  | 0.01<br>100 |
|          | KEGR001            | MHG10437             | 181.8           | 183   | Pyroxinite               | Opper Detection Limit                          | 0.01           | 0.01          | 47.9         | 0.76           | 0.02           | 65.7           | <5        | 46.2         | 5         | 1.3            | 1.2          | <0.5         | 90          |
|          | KEGR001            | MHG10438             | 183             |       | Pyroxinite               |                                                | <0.01          | 0.01          | 47.7         | 0.75           | 0.02           | 17.6           | <5        | 7.5          | <5        | <0.5           | 1            | <0.5         |             |
|          | KEGR001            | MHG10439             | 184             | 185   | Pyroxinite               |                                                | 0.01           | 0.01          | 48.3         | 0.69           | 0.03           | 13.2           | 5         | 6.3          | <5        | <0.5           | 1.2          | <0.5         |             |
| >        | KEGR001            | MHG10440             | 185             |       | Pyroxinite               |                                                | 0.01           | 0.02          | 49.2         | 0.73           | 0.02           | 6.7            | <5        | 1.6          | 5         | <0.5           | 1.2          | <0.5         |             |
|          | KEGR001            | MHG10441<br>MHG10442 | 186<br>187      |       | Pyroxinite               |                                                | 0.01<br>0.01   | 0.02<br>0.01  | 48.8<br>51.1 | 0.68<br>0.72   | 0.02<br>0.01   | 16.2<br>16.1   | 8<br><5   | 22.1<br>9.2  | <5<br>6   | 0.5<br><0.5    | 1.1<br>1.3   | 0.5<br>0.5   |             |
|          | KEGR001<br>KEGR001 | MHG10443             | 188             |       | Pyroxinite<br>Pyroxinite |                                                | 0.01           | 0.01          | 51.1         | 0.72           | 0.01           | 17.5           | <5<br><5  | 11.7         | 6         | 0.7            | 1.2          | 0.5          |             |
|          | KEGR001            | MHG10443             | 189             |       | Pyroxinite               |                                                | 0.01           | 3.47          | 56.5         | 0.34           | 0.04           | 38.1           | <5        | 71.6         | 6         | 1.7            | 2.9          | 1.1          |             |
|          | KEGR001            | MHG10445             | 189             |       | Pyroxinite               |                                                | 0.01           | 0.01          | 51.3         | 0.64           | 0.02           | 9.8            | <5        | 3.8          | 8         | <0.5           | 1            | <0.5         |             |
| _))      | KEGR001            | MHG10446             | 190             |       | Pyroxinite               |                                                | 0.01           | 0.01          | 50.5         | 0.78           | 0.02           | 13.9           | <5        | 4.9          | 11        | <0.5           | 1.3          | <0.5         |             |
|          | KEGR001            | MHG10447             | 191.2           |       | Pyroxinite               |                                                | <0.01          | 0.01          | 50.7         | 0.7            | 0.01           | 39.7           | 6         | 15.6         | 13        | <0.5           | 1.1          | <0.5         |             |
| 7.       | KEGR001<br>KEGR001 | MHG10448<br>MHG10449 | 192<br>193      |       | Pyroxinite               |                                                | <0.01          | 0.01<br><0.01 | 50.9<br>50.3 | 0.66<br>0.76   | 0.01<br>0.01   | 44.6<br>83.5   | <5        | 17.9<br>32.7 | 24<br>32  | <0.5           | 1.2<br>1.2   | <0.5<br><0.5 |             |
|          | KEGR001            | MHG10449             | 193             |       | Pyroxinite<br>Pyroxinite |                                                | <0.01<br>0.01  | 0.01          | 47.1         | 0.76           | 0.01           | 612            | <5<br><5  | 176.5        | 28        | <0.5<br><0.5   | 1.1          | <0.5         |             |
|          | KEGR001            | MHG10451             | 195             |       | Pyroxinite               |                                                | 0.01           | <0.01         | 47.3         | 0.78           | 0.01           | 396            | <5        | 140.5        | 30        | <0.5           | 1.1          | <0.5         |             |
|          | KEGR001            | MHG10452             | 196.3           |       | Pyroxinite               |                                                | 0.01           | 0.02          | 46.6         | 0.72           | 0.02           | 544            | 7         | 194.5        | 39        | <0.5           | 1.2          | 0.5          |             |
| 10       | KEGR001            | MHG10453             | 197             |       | Pyroxinite               |                                                | 0.01           | 0.03          | 42.8         | 0.81           | 0.03           | 53.2           | 7         | 18.9         | 28        | <0.5           | 1.4          | 0.6          |             |
| 7        | KEGR001            | MHG10454             | 198             |       | Pyroxinite               |                                                | 0.01           | 0.17          | 41.7         | 0.59           | 0.02           | 24.2           | <5        | 12.5         | 15        | 0.5            | 0.7          | <0.5         |             |
|          | KEGR001<br>KEGR001 | MHG10455<br>MHG10456 | 199.4<br>200.55 |       | Pyroxinite<br>Pegmatite  |                                                | <0.01<br>0.01  | 0.1<br>0.06   | 53.1<br>70.2 | 0.24<br>⊲0.02  | 0.01<br>0.01   | 1485<br>4.2    | 29<br>57  | 1110<br>12.9 | 132<br>41 | 22.5<br>47.6   | 0.7<br>2.4   | 2.3<br>5.4   |             |
|          | KEGR001            | MHG10457             | 201             |       | Pegmatite                |                                                | <0.01          | 0.07          | 75.5         | <0.02          | 0.02           | 109.5          | 101       | 1525         | 67        | 57.5           | 4            | 7.6          |             |
|          | KEGR001            | MHG10458             | 202             |       | Pegmatite                |                                                | 0.01           | 0.02          | 74.4         | <0.02          | 0.01           | 166            | 76        | 3470         | 57        | 45.9           | 2.8          | 6.6          |             |
|          | KEGR001            | MHG10459             | 203             | 204.3 | Pegmatite                |                                                | <0.01          | 0.04          | 73.8         | <0.02          | 0.01           | 219            | 92        | 5860         | 37        | 35             | 1.6          | 5.3          |             |
| (U)      | KEGR001            | MHG10460             | 204.3           |       | Pegmatite                |                                                | 0.01           | 0.07          | 77.7         | <0.02          | 0.02           | 79.5           | 75        | 1360         | 66        | 39.9           | _ 4          | 4.2          |             |
|          | KEGR001            | MHG10461             | 205             |       | Pegmatite                |                                                | <0.01          | 0.02          | 80.2         | <0.02<br><0.02 | 0.02<br>0.03   | 64.7           | 82<br>74  | 1055<br>1470 | 60<br>61  | 32<br>37.5     | 3.3<br>1.9   | 4.2          |             |
|          | KEGR001<br>KEGR001 | MHG10462<br>MHG10463 | 206<br>207      |       | Pegmatite<br>Pegmatite   |                                                | <0.01<br><0.01 | 0.03          | 76.8<br>78.1 | <0.02          | 0.03           | 111.5<br>58.3  | 85        | 936          | 56        | 28.5           | 2.4          | 2.8          |             |
|          | KEGR001            | MHG10464             | 208             |       | Pegmatite                |                                                | <0.01          | 0.02          | 79.4         | <0.02          | 0.01           | 78.5           | 96        | 1275         | 59        | 32.7           | 3.7          | 4.4          |             |
|          | KEGR001            | MHG10465             | 209             |       | Pegmatite                |                                                | <0.01          | 0.04          | 77.9         | <0.02          | 0.01           | 141.5          | 149       | 1760         | 59        | 60.3           | 3.4          | 4.1          |             |
| $\leq$   | KEGR001            | MHG10466             | 210             | 211   | Pegmatite                |                                                | 0.01           | 0.01          | 75.3         | <0.02          | 0.01           | 146            | 77        | 2800         | 82        | 41.5           | 4.3          | 6.9          |             |
| $(\cap)$ | KEGR001            | MHG10467             | 211             |       | Pegmatite                |                                                | <0.01          | <0.01         | 77.2         | <0.02          | < 0.01         | 57.7           | 95        | 1015         | 57        | 36.9           | 5.2          | 3            |             |
| 10       | KEGR001<br>KEGR001 | MHG10468<br>MHG10469 | 212<br>213      |       | Pegmatite<br>Pegmatite   |                                                | <0.01<br><0.01 | 0.02<br><0.01 | 75.5<br>75.7 | <0.02<br><0.02 | <0.01<br>0.01  | 54.3<br>51.3   | 71<br>81  | 997<br>1035  | 42<br>37  | 31.3<br>31     | 5.7<br>3.5   | 3.2<br>5.3   |             |
|          | KEGR001            | MHG10470             | 214             |       | Pegmatite                |                                                | <0.01          | 0.01          | 73.4         | <0.02          | 0.01           | 83.3           | 78        | 1425         | 63        | 50.6           | 3.2          | 4.6          |             |
| 17       | KEGR001            | MHG10471             | 215             |       | Pegmatite                |                                                | <0.01          | <0.01         | 75.9         | <0.02          | < 0.01         | 128.5          | 43        | 2390         | 57        | 24.8           | 3.2          | 4.6          |             |
| 1        | KEGR001            | MHG10472             | 216.1           |       | Pegmatite                |                                                | 0.01           | 0.03          | 74.7         | <0.02          | 0.01           | 151            | 58        | 1855         | 25        | 36.8           | 3.2          | 5.9          |             |
|          | KEGR001            | MHG10473             | 217             |       | Pegmatite                |                                                | <0.01          | 0.02          | 75.5         | <0.02          | 0.01           | 76.9           | 66        | 1220         | 17        | 25.5           | 2.4          | 2.9          |             |
| _))      | KEGR001            | MHG10474<br>MHG10475 | 217.55<br>217.9 |       | Pegmatite                |                                                | <0.01<br><0.01 | 0.01<br><0.01 | 71.4<br>77.4 | <0.02<br><0.02 | 0.01<br><0.01  | 109.5<br>41.4  | 23<br>36  | 4550<br>909  | 13<br>23  | 6.1<br>6.2     | <0.5<br><0.5 | 0.7          |             |
|          | KEGR001            | MHG10476             | 217.9           |       | Pegmatite<br>Pegmatite   |                                                | 0.01           | <0.01         | 71.9         | <0.02          | 0.01           | 229            | 194       | 4560         | 49        | 67.2           | 3.7          | 8.8          |             |
|          | KEGR001            | MHG10477             | 220             |       | Pegmatite                |                                                | <0.01          | <0.01         | 70           | <0.02          | <0.01          | 215            | 44        | 5930         | 18        | 14.8           | 0.6          | 1.7          |             |
|          | KEGR001            | MHG10478             | 221.3           |       | Pegmatite                |                                                | <0.01          | 0.02          | 76.2         | <0.02          | 0.01           | 77.7           | 54        | 1055         | 229       | 57.6           | 2.2          | 4.1          |             |
|          | KEGR001            | MHG10479             | 222             |       | Pegmatite                |                                                | 0.01           | < 0.01        | 74.4         | <0.02          | < 0.01         | 143.5          | 136       | 1745         | 28        | 50.5           | 2.1          | 2.7          |             |
|          | KEGR001            | MHG10480             | 223.1           |       | Pegmatite                |                                                | <0.01          | <0.01         | 74.7         | <0.02          | <0.01          | 53             | 250       | 623          | 18        | 64.6           | 2.6          | 3.1          |             |
|          | KEGR001<br>KEGR001 | MHG10481<br>MHG10482 | 224<br>225.2    |       | Pegmatite<br>Pegmatite   |                                                | <0.01<br><0.01 | 0.01<br><0.01 | 71<br>75.5   | <0.02<br><0.02 | <0.01<br><0.01 | 149<br>112     | 106<br>90 | 5460<br>1565 | 8<br>22   | 20.3<br>33.8   | 1.6<br>3.8   | 3.3          |             |
| L        | KEGR001            | MHG10483             | 225.2           |       | Pegmatite                |                                                | <0.01          | <0.01         | 75.7         | <0.02          | <0.01          | 75.9           | 119       | 846          | 16        | 29.3           | 3.4          | 4.9          |             |
|          | KEGR001            | MHG10484             | 227             |       | Pegmatite                |                                                | <0.01          | <0.01         | 74.7         | <0.02          | <0.01          | 101            | 113       | 2330         | 32        | 29.9           | 5.6          | 3.2          |             |
|          | KEGR001            | MHG10485             | 228.3           | 229   | Pegmatite                |                                                | <0.01          | 0.02          | 74           | <0.02          | < 0.01         | 121            | 85        | 1895         | 26        | 30.3           | 4.3          | 8.5          |             |
|          | KEGR001            | MHG10486             | 229             |       | Pegmatite                |                                                | <0.01          | 0.01          | 74.2         | <0.02          | 0.01           | 96.5           | 152       | 1115         | 30        | 45.6           | 5.5          | 6.5          |             |
|          | KEGR001            | MHG10487             | 230             |       | Pegmatite                |                                                | <0.01          | <0.01         | 74.4         | <0.02          | 0.01           | 115.5          | 62        | 1450         | 31        | 30.9           | 3.5          | 6.2          | 91          |
|          | KEGR001<br>KEGR001 | MHG10488<br>MHG10489 | 231<br>232.35   |       | Pegmatite<br>Pegmatite   |                                                | <0.01<br><0.01 | 0.01<br>0.01  | 74<br>74.4   | <0.02<br><0.02 | <0.01<br><0.01 | 122.5<br>126.5 | 80<br>57  | 1795<br>2390 | 43<br>62  | 32.6<br>60.7   | 2.9          | 3.8<br>4.8   |             |
|          |                    | MHG10499             | 233             |       | Pegmatite                |                                                | <0.01          | 0.04          | 74           | <0.02          | 0.02           | 167.5          | 143       | 2070         | 39        | 84.1           | 3.3          | 12.1         |             |
|          |                    |                      |                 |       | _                        |                                                |                |               |              |                |                |                |           |              |           |                |              |              |             |

Kidman Resources Limited – ASX Announcement

| Drill Hole         | Sample Numbe         |               | Depth | Lithology              | Element                        | Recyd Wt.    | Au             | AI203          | As            | CaO           | Co               | Cr2O3          | Cu             | Fe2O3         | Li2O          | K20           | MgO            | MnO           | Ni               |
|--------------------|----------------------|---------------|-------|------------------------|--------------------------------|--------------|----------------|----------------|---------------|---------------|------------------|----------------|----------------|---------------|---------------|---------------|----------------|---------------|------------------|
|                    |                      | From          | To    | GeoLog                 | Unit Symbol<br>Analysis Method | kg<br>WEI-21 | ppm<br>Au-AA26 | %<br>ME-ICP89  | %<br>ME-ICP89 | %<br>ME-ICP89 | %<br>ME-ICP89    | %<br>ME-ICP89  | %<br>ME-ICP89  | %<br>ME-ICP89 | %<br>ME-ICP89 | %<br>ME-ICP89 | %<br>ME ICDOO  | %<br>ME-ICP89 | %<br>ME-ICP89    |
|                    |                      |               |       | GeoLog                 | Lower Detection Limit          | 0.02         | 0.01           | 0.02           | 0.01          | 0.01          | 0.005            | 0.01           | 0.01           | 0.01          | 0.02          | 0.01          | 0.01           | 0.01          | 0.005            |
|                    |                      |               |       |                        | Upper Detection Limit          | 1000         | 100            | 100            | 10            | 70            | 30               | 88             | 50             | 100           | 21.5          | 60            | 50             | 50            | 30               |
| KEGR001            |                      | 234           |       | Pegmatite              |                                | 2.51         |                | 15.6           | 0.04          | 0.14          | < 0.005          | 0.01           | <0.01          | 0.7           | 1.16          | 3.07          | 0.03           | 0.18          | <0.005           |
| KEGR001<br>KEGR001 | MHG10492<br>MHG10493 | 235<br>236    |       | Pegmatite<br>Pegmatite |                                | 2.57<br>2.7  |                | 15.7<br>15.6   | 0.01<br>0.02  | 0.1<br>0.08   | <0.005<br><0.005 | 0.02<br>0.02   | <0.01<br><0.01 | 0.79<br>0.5   |               | 3.13<br>6.66  | 0.03           | 0.09          | <0.005<br><0.005 |
| KEGR001            | MHG10494             | 237.05        |       | Pegmatite              |                                | 2.5          |                | 15.8           | 0.02          | 0.07          | <0.005           | 0.02           | <0.01          | 0.54          |               | 4.97          | 0.03           | 0.05          | 0.012            |
| KEGR001            | MHG10495             | 238           | 239   | Pegmatite              |                                | 2.47         |                | 15.45          | 0.12          | 0.1           | < 0.005          | < 0.01         | <0.01          | 0.61          | 1.98          | 2.82          | 0.02           | 0.1           | <0.005           |
| KEGR001            | MHG10496             | 239           |       | Pegmatite              |                                | 2.56         |                | 15.7           | 0.04          | 0.1           | < 0.005          | 0.01           | <0.01          | 0.6           |               | 2.61          | 0.02           | 0.07          | <0.005           |
| KEGR001<br>KEGR001 | MHG10497<br>MHG10498 | 240<br>241    |       | Pegmatite<br>Pegmatite |                                | 2.6<br>2.79  |                | 15.8<br>15.35  | 0.05<br>0.02  | 0.17<br>0.08  | <0.005<br><0.005 | <0.01<br>0.01  | <0.01<br><0.01 | 0.66<br>0.63  | 1.53<br>1.64  | 3.51<br>3.53  | 0.03<br>0.02   | 0.08          | <0.005<br><0.005 |
| KEGR001            | MHG10499             | 242.05        |       | Pegmatite              |                                | 2.78         |                | 15.95          | 0.02          | 0.00          | <0.005           | <0.01          | <0.01          | 0.63          |               | 1.43          | 0.02           | 0.03          | <0.005           |
| KEGR001            | MHG10500             | 243           |       | Pegmatite              |                                | 2.43         |                | 15.95          | < 0.01        | 0.06          | < 0.005          | < 0.01         | <0.01          | 0.49          |               | 1.75          | 0.02           | 0.03          | <0.005           |
| KEGR001            | MHG10501             | 244           |       | Pegmatite              |                                | 2.47         |                | 16.15          | < 0.01        | 0.04          | < 0.005          | < 0.01         | <0.01          | 0.56          |               | 2.06          | 0.03           | 0.03          | <0.005           |
| KEGR001<br>KEGR001 | MHG10502<br>MHG10503 | 245<br>245.85 |       | Pegmatite              |                                | 2.22<br>1.13 |                | 15.8<br>17.3   | 0.03<br>0.05  | 0.08<br>0.17  | <0.005<br><0.005 | 0.01<br><0.01  | <0.01<br><0.01 | 0.53<br>0.51  | 2.91<br>0.43  | 1.36<br>9.95  | 0.01<br>0.03   | 0.06<br>0.02  | <0.005<br><0.005 |
| KEGR001            | MHG10504             | 246.3         |       | Pegmatite<br>Pegmatite |                                | 1.3          |                | 15.85          | 0.03          | 0.03          | <0.005           | 0.01           | <0.01          | 0.69          |               | 0.25          | 0.03           | 0.02          | <0.005           |
| KEGR001            | MHG10505             | 246.9         |       | Pegmatite              |                                | 2.46         |                | 15.75          | 0.12          | 0.11          | <0.005           | < 0.01         | <0.01          | 0.6           |               | 2.7           | 0.02           | 0.07          | <0.005           |
| KEGR001            | MHG10506             | 248           |       | Pegmatite              |                                | 2.19         |                | 15.35          | 0.07          | 0.2           | < 0.005          | < 0.01         | <0.01          | 0.5           |               | 3.52          | 0.02           | 0.04          | <0.005           |
| CKEGR001           | MHG10507             | 249           |       | Pegmatite              |                                | 2.35         |                | 15.55          | 0.02          | 0.15          | < 0.005          | 0.01           | <0.01          | 0.51          | 1.92          | 3.52          | 0.03           | 0.07          | <0.005           |
| KEGR001<br>KEGR001 | MHG10508<br>MHG10509 | 250<br>251    |       | Pegmatite<br>Pegmatite |                                | 2.52<br>2.58 |                | 15.85<br>15.25 | 0.05<br>0.02  | 0.18<br>0.24  | <0.005<br><0.005 | <0.01<br>0.01  | <0.01<br><0.01 | 0.67<br>0.54  | 0.56<br>0.34  | 3.1<br>2.73   | 0.02<br>0.03   | 0.05<br>0.07  | <0.005<br><0.005 |
| KEGR001            |                      | 252           |       | Pegmatite              |                                | 2.57         |                | 15.7           | 0.07          | 0.21          | <0.005           | < 0.01         | <0.01          | 0.8           |               | 2.84          | 0.01           | 0.07          | <0.005           |
| KEGR001            | MHG10511             | 253           | 254   | Pegmatite              |                                | 2.6          |                | 15.15          | 0.24          | 0.17          | < 0.005          | < 0.01         | <0.01          | 0.87          | 1.25          | 2.69          | 0.03           | 0.08          | <0.005           |
| KEGR001            | MHG10512             | 254           |       | Pegmatite              |                                | 2.61         |                | 15.7           | 0.04          | 0.11          | < 0.005          | < 0.01         | <0.01          | 0.93          |               | 2.42          | 0.03           | 0.08          | <0.005           |
| KEGR001<br>KEGR001 | MHG10513<br>MHG10514 | 255<br>256    |       | Pegmatite<br>Pegmatite |                                | 2.49<br>2.56 |                | 16.15<br>15.75 | 0.07<br>0.03  | 0.13<br>0.13  | <0.005<br><0.005 | <0.01<br><0.01 | <0.01<br><0.01 | 0.81<br>0.76  | 1.74<br>1.66  | 2.81<br>2.89  | 0.03           | 0.05<br>0.07  | <0.005<br><0.005 |
| KEGR001            | MHG10515             | 257           |       | Pegmatite              |                                | 2.37         |                | 15.4           | 0.05          | 0.13          | <0.005           | <0.01          | <0.01          | 0.7           | 0.62          | 3.93          | 0.03           | 0.1           | <0.005           |
| KEGR001            | MHG10516             | 258           | 258.9 | Pegmatite              |                                | 2.06         |                | 15.35          | < 0.01        | 0.11          | < 0.005          | < 0.01         | <0.01          | 0.44          | 0.26          | 7.88          | 0.02           | 0.06          | <0.005           |
| KEGR001            | MHG10517             | 258.9         |       | Pegmatite              |                                | 2.53         |                | 14.9           | 0.01          | 0.22          | <0.005           | < 0.01         | <0.01          | 0.5           |               | 4.06          | 0.04           | 0.07          | <0.005           |
| KEGR001<br>KEGR001 | MHG10518<br>MHG10519 | 260<br>260.85 |       | Pegmatite<br>Pegmatite |                                | 1.8<br>2.49  |                | 15.4<br>15.65  | 0.02<br>0.01  | 0.21<br>0.29  | <0.005<br><0.005 | <0.01<br><0.01 | <0.01<br><0.01 | 0.64<br>0.81  | 1.29<br>1.16  | 2.3<br>3.71   | 0.03<br>0.05   | 0.08<br>0.1   | <0.005<br><0.005 |
| KEGR001            | MHG10520             | 262           |       | Pegmatite              |                                | 2.12         |                | 15.5           | <0.01         | 0.06          | <0.005           | <0.01          | <0.01          | 0.44          |               | 1.1           | 0.03           | 0.02          | <0.005           |
| ⟨ KEGR001          | MHG10521             | 263           |       | Pegmatite              |                                | 1.87         |                | 15.05          | 0.01          | 0.43          | <0.005           | < 0.01         | <0.01          | 1.04          |               | 3.19          | 0.09           | 0.05          | <0.005           |
| ○KEGR001           | MHG10522             | 263.9         |       | Pegmatite              |                                | 2.36         |                | 16.75          | 0.01          | 0.29          | <0.005           | < 0.01         | <0.01          | 0.31          | 0.06          | 9.99          | 0.03           | 0.03          | <0.005           |
| KEGR001<br>KEGR001 | MHG10523<br>MHG10524 | 265<br>266.1  |       | Pegmatite              |                                | 2.36<br>1.96 |                | 16.5<br>14.9   | 0.01<br>0.01  | 0.17<br>0.21  | <0.005<br><0.005 | <0.01<br><0.01 | <0.01<br><0.01 | 0.41<br>0.66  | 0.65<br>1.49  | 8.66<br>3.52  | 0.05<br>0.07   | 0.02<br>0.04  | <0.005<br><0.005 |
| KEGR001            | MHG10525             | 267           |       | Pegmatite<br>Pegmatite |                                | 1.97         |                | 16.1           | 0.01          | 0.21          | <0.005           | <0.01          | <0.01          | 0.46          |               | 3.07          | 0.07           | 0.04          | <0.005           |
| KEGR001            | MHG10526             | 268           |       | Pegmatite              |                                | 2.23         |                | 15.1           | 0.02          | 0.25          | < 0.005          | < 0.01         | <0.01          | 0.46          |               | 1.33          | 0.02           | 0.04          | < 0.005          |
| KEGR001            | MHG10527             | 269.05        |       | Pegmatite              |                                | 1.98         |                | 15.15          | 0.02          | 0.28          | < 0.005          | < 0.01         | <0.01          | 0.76          |               | 2.48          | 0.03           | 0.11          | <0.005           |
| KEGR001<br>KEGR001 | MHG10528<br>MHG10529 | 270<br>271    |       | Pegmatite<br>Pegmatite |                                | 2.06<br>1.77 |                | 14.85<br>15.8  | 0.02<br>0.01  | 0.18<br>0.14  | <0.005<br><0.005 | <0.01<br><0.01 | <0.01<br><0.01 | 0.7<br>0.64   | 1.38<br>2.05  | 2.57<br>2.19  | 0.03           | 0.08          | <0.005<br><0.005 |
| KEGR001            | MHG10529             | 271.85        |       | Pegmatite              |                                | 1.33         |                | 15.1           | 0.01          | 0.14          | <0.005           | <0.01          | <0.01          | 0.64          |               | 2.84          | 0.03           | 0.08          | <0.005           |
| ┌ KEGR001          |                      | 272.5         |       | Pegmatite              |                                | 1.87         |                | 15.15          | 0.01          | 0.18          | < 0.005          | < 0.01         | <0.01          | 0.56          |               | 4.18          | 0.02           | 0.06          | <0.005           |
| KEGR001            | MHG10532             | 273.4         |       | Pegmatite              |                                | 1.28         |                | 15.25          | 0.01          | 0.2           | < 0.005          | < 0.01         | <0.01          | 0.87          | 1.21          | 3.01          | 0.03           | 0.1           | <0.005           |
| KEGR001<br>KEGR001 | MHG10533<br>MHG10534 | 274<br>275.3  |       | Pegmatite              |                                | 2.66<br>1.57 |                | 15<br>15.85    | <0.01<br>0.01 | 0.15<br>0.18  | <0.005<br><0.005 | <0.01<br><0.01 | <0.01<br><0.01 | 0.69<br>0.87  | 1.05<br>1.29  | 3.48<br>5.7   | 0.03<br>0.02   | 0.13<br>0.08  | <0.005<br><0.005 |
| KEGR001            | MHG10535             | 276           |       | Pegmatite<br>Pegmatite |                                | 1.88         |                | 15.6           | 0.01          | 0.15          | <0.005           | <0.01          | <0.01          | 0.57          |               | 6.77          | 0.02           | 0.02          | <0.005           |
| KEGR001            | MHG10536             | 277           |       | Pegmatite              |                                | 1.86         |                | 15.75          | 0.01          | 0.08          | <0.005           | < 0.01         | <0.01          | 0.54          | 0.65          | 7.03          | 0.02           | 0.02          | <0.005           |
| KEGR001            | MHG10537             | 278           | 278.9 | Pegmatite              |                                | 1.71         |                | 16.2           | < 0.01        | 0.15          | < 0.005          | < 0.01         | <0.01          | 0.99          |               | 1.7           | 0.08           | 0.04          | <0.005           |
| KEGR001            | MHG10538             | 278.9         |       | Pegmatite              |                                | 2.15         |                | 16.8           | 0.02          | 0.08<br>0.08  | < 0.005          | < 0.01         | <0.01          | 0.39          |               | 4.08<br>0.05  | < 0.01         | 0.01<br>0.21  | <0.005           |
| KEGR001<br>KEGR001 | MHG10539<br>MHG10540 | 280<br>281    |       | Pegmatite<br>Pegmatite |                                | 2.09<br>1.1  |                | 15<br>3.67     | <0.01<br>0.01 | 0.08          | <0.005<br><0.005 | <0.01<br><0.01 | <0.01<br><0.01 | 0.69<br>1.5   |               | 0.05          | <0.01<br><0.01 | 0.21          | <0.005<br><0.005 |
| KEGR001            | MHG10541             | 281.5         |       | Pegmatite              |                                | 1.08         |                | 14.45          | < 0.01        | 0.21          | < 0.005          | <0.01          | <0.01          | 0.96          |               | 0.69          | <0.01          | 0.21          | <0.005           |
| KEGR001            | MHG10542             | 282           | 283   | Pegmatite              |                                | 2            |                | 16.5           | 0.02          | 0.21          | < 0.005          | < 0.01         | <0.01          | 0.57          | 0.67          | 4.9           | 0.03           | 0.03          | <0.005           |
| KEGR001            | MHG10543             | 283           |       | Pegmatite              |                                | 2.06         |                | 15.6           | < 0.01        | 0.28          | < 0.005          | < 0.01         | <0.01          | 0.73          |               | 2.14          | 0.05           | 0.03          | <0.005           |
| KEGHU01            | MHG10544             | 284           | 285   | Pegmatite              | I                              | 2.08         |                | 15.35          | 0.01          | 0.14          | <0.005           | <0.01          | <0.01          | 0.61          | 2.02          | 2.32          | 0.03           | 0.04          | <0.005           |

|               | Drill Hole         | Sample Number        | Depth           | Depth | Lithology              | Element                                  | Pb               | S                | SiO2            | TiO2             | Zn               | Cs             | Nb         | Rb             | Sn           | Ta             | Th             | U              | Pass75um       |
|---------------|--------------------|----------------------|-----------------|-------|------------------------|------------------------------------------|------------------|------------------|-----------------|------------------|------------------|----------------|------------|----------------|--------------|----------------|----------------|----------------|----------------|
|               |                    |                      | From            | To    |                        | Unit Symbol                              | %                | %                | %               | %                | %                | ppm            | ppm        | ppm            | ppm          | ppm            | ppm            | ppm            | %              |
|               |                    |                      |                 |       | GeoLog                 | Analysis Method<br>Lower Detection Limit | ME-ICP89<br>0.01 | ME-ICP89<br>0.01 | ME-ICP89<br>0.2 | ME-ICP89<br>0.02 | ME-ICP89<br>0.01 | ME-MS91<br>0.2 | ME-MS91    | ME-MS91<br>0.5 | ME-MS91<br>5 | ME-MS91<br>0.5 | ME-MS91<br>0.5 | ME-MS91<br>0.5 | PUL-QC<br>0.01 |
|               |                    |                      |                 |       |                        | Upper Detection Limit                    | 30               | 60               | 100             | 83               | 60               | 25000          | 2500       | 25000          | 10000        | 2500           | 2500           | 2500           | 100            |
|               | KEGR001            | MHG10491             | 234             | 235   | Pegmatite              | Opper Detection Cirin                    | <0.01            | 0.01             | 74              | <0.02            | <0.01            | 126.5          | 72         | 2530           | 55           | 38.3           | 5              | 6.6            | 100            |
|               | KEGR001            | MHG10492             | 235             |       | Pegmatite              |                                          | <0.01            | < 0.01           | 75.3            | <0.02            | <0.01            | 98.5           | 75         | 1995           | 64           | 41.3           | 4.3            | 3.3            |                |
|               | KEGR001            | MHG10493             | 236             |       | Pegmatite              |                                          | <0.01            | <0.01            | 72.9            | <0.02            | <0.01            | 179.5          | 115        | 4670           | 55           | 52.3           | 4.8            | 3.7            |                |
|               | KEGR001            | MHG10494             | 237.05          |       | Pegmatite              |                                          | <0.01            | 0.01             | 72.7            | <0.02            | <0.01            | 132            | 73         | 3420           | 49           | 30.8           | 3.8            | 4.2            |                |
|               | KEGR001            | MHG10495             | 238             |       | Pegmatite              |                                          | <0.01            | 0.02             | 75.3            | <0.02            | <0.01            | 161            | 95         | 2010           | 22           | 42.5<br>78     | 5 7            | 6.1            |                |
|               | KEGR001<br>KEGR001 | MHG10496<br>MHG10497 | 239<br>240      |       | Pegmatite<br>Pegmatite |                                          | <0.01<br><0.01   | 0.01<br>0.1      | 74.2<br>73.8    | <0.02<br><0.02   | <0.01<br><0.01   | 81.3<br>108.5  | 159<br>103 | 1720<br>2350   | 35<br>38     | 44.8           | 5.3            | 5.8<br>7.7     |                |
|               | KEGR001            | MHG10498             | 241             |       | Pegmatite              |                                          | <0.01            | <0.01            | 72.9            | <0.02            | 0.01             | 105            | 68         | 2260           | 28           | 28.2           | 3.4            | 4.4            |                |
|               | KEGR001            | MHG10499             | 242.05          |       | Pegmatite              |                                          | <0.01            | <0.01            | 75.9            | <0.02            | 0.01             | 69.7           | 74         | 1065           | 18           | 32.2           | 2.9            | 3.8            |                |
| ))            | KEGR001            | MHG10500             | 243             |       | Pegmatite              |                                          | <0.01            | <0.01            | 76.2            | <0.02            | 0.01             | 97             | 61         | 1375           | 18           | 38.6           | 2.2            | 3.7            |                |
|               | KEGR001            | MHG10501             | 244             |       | Pegmatite              |                                          | <0.01            | <0.01            | 74.9            | <0.02            | 0.01             | 101.5          | 83         | 1595           | 32           | 34.8           | 3.7            | 6              |                |
|               | KEGR001            | MHG10502             | 245             |       | Pegmatite              |                                          | <0.01            | <0.01            | 76.8            | <0.02            | <0.01            | 73.7           | 61         | 1120           | 17           | 28.3           | 2.8            | 4.4            |                |
| 115)          | KEGR001<br>KEGR001 | MHG10503<br>MHG10504 | 245.85<br>246.3 |       | Pegmatite<br>Pegmatite |                                          | <0.01<br><0.01   | 0.02<br><0.01    | 68<br>76.2      | <0.02<br><0.02   | 0.01<br><0.01    | 307<br>18.4    | 64<br>23   | 7360<br>277    | 19<br>11     | 19.2<br>5.7    | 3.1            | 3.4<br>1.7     |                |
|               | KEGR001            | MHG10504<br>MHG10505 | 246.9           |       | Pegmatite              |                                          | <0.01            | 0.03             | 72.9            | <0.02            | 0.01             | 103            | 64         | 1865           | 26           | 39.3           | 3.3            | 5.6            |                |
|               | KEGR001            | MHG10506             | 248             |       | Pegmatite              |                                          | <0.01            | 0.02             | 72.3            | <0.02            | 0.01             | 135            | 149        | 2780           | 40           | 75.2           | 6.7            | 4.9            |                |
| リリ            | KEGR001            | MHG10507             | 249             |       | Pegmatite              |                                          | <0.01            | < 0.01           | 72.9            | <0.02            | < 0.01           | 162            | 101        | 2550           | 46           | 104.5          | 2.6            | 3.8            |                |
| 7             | KEGR001            | MHG10508             | 250             | 251   | Pegmatite              |                                          | <0.01            | 0.01             | 73.8            | <0.02            | 0.01             | 127.5          | 91         | 2170           | 27           | 55.7           | 4              | 5.6            |                |
| _))           | KEGR001            | MHG10509             | 251             |       | Pegmatite              |                                          | <0.01            | 0.02             | 73.6            | <0.02            | 0.01             | 145.5          | 169        | 1920           | 34           | 80.6           | 7              | 8.7            |                |
|               | KEGR001            | MHG10510             | 252             |       | Pegmatite              |                                          | <0.01            | 0.02             | 72.9            | <0.02            | 0.01             | 125            | 144        | 2170           | 30           | 57.2           | 6              | 9.6            |                |
|               | KEGR001<br>KEGR001 | MHG10511<br>MHG10512 | 253<br>254      |       | Pegmatite<br>Pegmatite |                                          | <0.01<br><0.01   | 0.01<br><0.01    | 73.6<br>72.9    | <0.02<br><0.02   | 0.02<br>0.02     | 99.3<br>103.5  | 110<br>93  | 1885<br>1835   | 26<br>62     | 45.7<br>39.2   | 6.3<br>4.5     | 8.5<br>5.6     |                |
| =             | KEGR001            | MHG10512             | 255             |       | Pegmatite              |                                          | <0.01            | 0.02             | 76.2            | <0.02            | 0.02             | 121            | 118        | 1990           | 35           | 54.7           | 8.5            | 7.9            |                |
| $(\Box)$      | KEGR001            | MHG10514             | 256             |       | Pegmatite              |                                          | <0.01            | <0.01            | 73.8            | <0.02            | 0.01             | 122.5          | 112        | 2120           | 27           | 36             | 4.1            | 6.1            |                |
|               | KEGR001            | MHG10515             | 257             |       | Pegmatite              |                                          | <0.01            | 0.02             | 73.6            | < 0.02           | 0.01             | 160.5          | 76         | 2550           | 28           | 37.8           | 3.9            | 7.4            |                |
|               | KEGR001            | MHG10516             | 258             |       | Pegmatite              |                                          | <0.01            | <0.01            | 71.2            | <0.02            | <0.01            | 224            | 38         | 5150           | 18           | 16.1           | 1.7            | 4.4            |                |
|               | KEGR001            | MHG10517             | 258.9           |       | Pegmatite              |                                          | <0.01            | 0.01             | 73.8            | <0.02            | <0.01            | 170.5          | 85         | 2790           | 20           | 25.2           | 3.2            | 8.4            |                |
| 7             | KEGR001            | MHG10518             | 260<br>260.85   |       | Pegmatite              |                                          | <0.01            | <0.01            | 75.1            | <0.02            | 0.01             | 146.5          | 138        | 1610<br>2870   | 28<br>42     | 48.8<br>57.2   | 4.8<br>2.9     | 5.9<br>7.4     |                |
| <i>ー</i> リ    | KEGR001<br>KEGR001 | MHG10519<br>MHG10520 | 260.65          |       | Pegmatite<br>Pegmatite |                                          | <0.01<br><0.01   | 0.01<br><0.01    | 74.4<br>78.1    | <0.02<br><0.02   | 0.01<br><0.01    | 214<br>75      | 188<br>42  | 968            | 46           | 19.5           | 1.2            | 2.1            |                |
|               | KEGR001            | MHG10520             | 263             |       | Pegmatite              |                                          | <0.01            | 0.01             | 74              | <0.02            | 0.01             | 192.5          | 114        | 2550           | 52           | 25             | 2.6            | 3.1            |                |
| [[]           | KEGR001            | MHG10522             | 263.9           | 265   | Pegmatite              |                                          | <0.01            | <0.01            | 69.1            | <0.02            | <0.01            | 232            | 69         | 6870           | 17           | 17.1           | 0.9            | 3.8            |                |
|               | KEGR001            | MHG10523             | 265             |       | Pegmatite              |                                          | <0.01            | 0.06             | 69.5            | <0.02            | <0.01            | 174            | 192        | 5380           | 29           | 36.7           | 1.7            | 2.9            |                |
| 7             | KEGR001            | MHG10524             | 266.1           |       | Pegmatite              |                                          | <0.01            | <0.01            | 74.9            | <0.02            | 0.01             | 108.5          | 182        | 2100           | 32           | 37.1           | 4.2            | 3.5            |                |
| 11/2)         | KEGR001            | MHG10525             | 267             |       | Pegmatite              |                                          | <0.01            | 0.01             | 74              | <0.02            | <0.01            | 121.5          | 101        | 2080           | 20           | 21.7           | 3.1            | 2.9            |                |
|               | KEGR001<br>KEGR001 | MHG10526<br>MHG10527 | 268<br>269.05   |       | Pegmatite<br>Pegmatite |                                          | <0.01<br><0.01   | <0.01<br>0.02    | 74<br>75.1      | <0.02<br><0.02   | 0.01<br>0.01     | 99.7<br>139    | 157<br>79  | 975<br>1760    | 21<br>23     | 43.6<br>52.3   | 8.4<br>4.1     | 7.9<br>9.4     |                |
| 7             | KEGR001            | MHG10528             | 209.05          |       | Pegmatite              |                                          | <0.01            | <0.02            | 75.1            | <0.02            | 0.01             | 120.5          | 71         | 1670           | 23           | 42.3           | 2.6            | 4.7            |                |
| $\mathcal{L}$ | KEGR001            | MHG10529             | 271             |       | Pegmatite              |                                          | <0.01            | <0.01            | 75.1            | <0.02            | 0.01             | 141            | 103        | 1695           | 49           | 34             | 3.2            | 5.3            |                |
|               | KEGR001            | MHG10530             | 271.85          |       | Pegmatite              |                                          | 0.01             | <0.01            | 73.8            | <0.02            | 0.01             | 113            | 94         | 1960           | 21           | 41.8           | 5.8            | 8.9            |                |
|               | KEGR001            | MHG10531             | 272.5           | 273.4 | Pegmatite              |                                          | <0.01            | <0.01            | 72.9            | <0.02            | <0.01            | 117.5          | 99         | 3010           | 28           | 43.9           | 7              | 6.3            |                |
| =             | KEGR001            | MHG10532             | 273.4           |       | Pegmatite              |                                          | <0.01            | 0.01             | 73.8            | <0.02            | <0.01            | 174            | 76         | 2050           | 19           | 31.8           | 3.5            | 6.9            |                |
|               | KEGR001            | MHG10533             | 274             |       | Pegmatite              |                                          | <0.01            | 0.01             | 74.7<br>72.3    | <0.02<br><0.02   | 0.01<br><0.01    | 166.5<br>219   | 89<br>124  | 2480<br>3850   | 31<br>25     | 33.5<br>45.3   | 3.3<br>3.1     | 7.9<br>5.4     |                |
| =             | KEGR001<br>KEGR001 | MHG10534<br>MHG10535 | 275.3<br>276    |       | Pegmatite<br>Pegmatite |                                          | 0.01<br><0.01    | <0.01<br>0.01    | 72.3            | <0.02            | 0.01             | 178.5          | 70         | 4390           | 32           | 45.3<br>26     | 2.8            | 2.4            |                |
|               | KEGR001            | MHG10536             | 277             |       | Pegmatite              |                                          | <0.01            | 0.01             | 71.4            | <0.02            | <0.01            | 166            | 68         | 4290           | 33           | 20.4           | 2.1            | 2.4            |                |
|               | KEGR001            | MHG10537             | 278             |       | Pegmatite              |                                          | <0.01            | <0.01            | 75.5            | <0.02            | <0.01            | 77.4           | 135        | 1485           | 53           | 31             | 3.5            | 1.8            | 95             |
|               | KEGR001            | MHG10538             | 278.9           | 280   | Pegmatite              |                                          | <0.01            | 0.01             | 73.8            | <0.02            | <0.01            | 68.6           | 13         | 2520           | 6            | 6.2            | <0.5           | 0.9            |                |
|               | KEGR001            | MHG10539             | 280             |       | Pegmatite              |                                          | <0.01            | 0.01             | 77.7            | <0.02            | <0.01            | 140.5          | <5         | 47             | <5           | 1.8            | < 0.5          | 0.5            |                |
|               | KEGR001            | MHG10540             | 281             |       | Pegmatite              |                                          | <0.01            | <0.01            | 88.8            | <0.02            | <0.01            | 9.4            | 10         | 120.5          | 6            | 9.1            | 1.3            | 3.1            |                |
|               | KEGR001<br>KEGR001 | MHG10541<br>MHG10542 | 281.5<br>282    |       | Pegmatite<br>Pegmatite |                                          | <0.01<br><0.01   | 0.01<br>0.01     | 77.2<br>71.7    | <0.02<br><0.02   | <0.01<br><0.01   | 50.8<br>119    | 32<br>78   | 781<br>3440    | 32<br>52     | 44.5<br>30.8   | 4.6<br>2.3     | 5.5<br>1.9     |                |
|               | KEGR001            | MHG10542             | 283             |       | Pegmatite              |                                          | <0.01            | <0.01            | 74.7            | <0.02            | <0.01            | 62.8           | 168        | 1410           | 21           | 39.4           | 4.1            | 2.7            |                |
|               |                    | MHG10544             | 284             |       | Pegmatite              |                                          | <0.01            | <0.01            | 75.9            | <0.02            | <0.01            | 63.1           | 92         | 1400           | 20           | 20.2           | 4.3            | 2.9            |                |
|               |                    |                      |                 |       |                        | •                                        |                  |                  |                 |                  |                  |                |            |                |              |                |                |                |                |

Kidman Resources Limited – ASX Announcement

| Dr    | rill Hole        | Sample Number        | Depth      | Dep | th Lithology                            | Element               | Recyd Wt.    | Au   | AI203        | As             | CaO          | Co       | Cr2O3        | Cu             | Fe203        | Li2O           | K20          | MgO          | MnO          | Ni             |
|-------|------------------|----------------------|------------|-----|-----------------------------------------|-----------------------|--------------|------|--------------|----------------|--------------|----------|--------------|----------------|--------------|----------------|--------------|--------------|--------------|----------------|
|       |                  |                      |            | To  |                                         | Unit Symbol           | kg           | ppm  | %            | %              | %            | %        | %            | %              | %            | %              | %            | %            | %            | %              |
|       |                  |                      |            |     | GeoLog                                  | Analysis Method       | WEI-21       |      | ME-ICP89     | ME-ICP89       | ME-ICP89     | ME-ICP89 | ME-ICP89     | ME-ICP89       | ME-ICP89     |                |              | ME-ICP89     | ME-ICP89     | ME-ICP89       |
|       |                  |                      |            |     |                                         | Lower Detection Limit | 0.02         | 0.01 | 0.02         | 0.01           | 0.01         | 0.005    | 0.01         | 0.01           | 0.01         | 0.02           | 0.01         | 0.01         | 0.01         | 0.005          |
|       |                  |                      |            |     |                                         | Upper Detection Limit | 1000         | 100  | 100          | 10             | 70           | 30       | 88           | 50             | 100          | 21.5           | 60           | 50           | 50           | 30             |
| KE    | EGR001           | MHG10545             | 285        |     | 286 Pegmatite                           |                       | 2.04         |      | 14.65        | < 0.01         | 0.27         | < 0.005  | < 0.01       | <0.01          | 0.71         | 0.97           | 2            | 0.05         | 0.08         | < 0.005        |
| K     | EGR001           | MHG10546             | 286        |     | 287 Pegmatite                           |                       | 2.12         |      | 15.5         | 0.02           | 0.17         | < 0.005  | < 0.01       | <0.01          | 0.86         | 2.69           | 0.82         | 0.02         | 0.02         | < 0.005        |
| KE    | GR001            | MHG10547             | 287        |     | 288 Pegmatite                           |                       | 2.03         |      | 15.5         | 0.02           | 0.1          | < 0.005  | < 0.01       | <0.01          | 0.64         | 0.77           | 6.05         | 0.03         | 0.04         | < 0.005        |
| K     | EGR001           | MHG10548             | 288        |     | 9.05 Pegmatite                          |                       | 2.21         |      | 15.85        | 0.02           | 0.13         | <0.005   | 0.02         | <0.01          | 0.61         | 1.83           | 2.16         | 0.02         | 0.03         | 0.042          |
|       | EGR001           | MHG10549             | 289.05     |     | 0.25 Pegmatite                          |                       | 2.63         |      | 16.15        | <0.01          | 0.13         | <0.005   | < 0.01       | <0.01          | 0.84         | 2.73           | 0.83         | 0.05         | 0.07         | <0.005         |
|       | EGR001           | MHG10550             | 290.25     | ,   | 291 Pegmatite                           |                       | 1.68         |      | 15.85        | 0.01           | 0.17         | < 0.005  | 0.01         | <0.01          | 0.99         | 1.57           | 4.42         | 0.02         | 0.06         | <0.005         |
|       | EGR001           | MHG10551             | 291        |     | 292 Pegmatite                           |                       | 2.23         |      | 15.1         | 0.02           | 0.17         | < 0.005  | < 0.01       | <0.01          | 0.96         | 1.31           | 2.42         | 0.03         | 0.07         | <0.005         |
|       |                  | MHG10552             | 292        |     | 92.7 Pegmatite                          |                       | 1.54         |      | 15.95        | <0.01          | 0.04         | < 0.005  | < 0.01       | <0.01          | 1.57         | 2.84           | 1.65         | 0.03         | 0.08         | <0.005         |
|       |                  | MHG10553             | 292.7      |     | 294 Pegmatite                           |                       | 2.85         |      | 15.35        | 0.02           | 0.15         | < 0.005  | 0.01         | <0.01          | 0.94         | 0.99           | 2.84         | 0.03         | 0.1          | <0.005         |
|       | GR001            | MHG10554             | 294        |     | 4.85 Pegmatite                          |                       | 1.83         |      | 16.05        | 0.01           | 0.34         | <0.005   | 0.01         | <0.01          | 0.92         | 0.17           | 1.67         | 0.12         | 0.16         | <0.005         |
|       |                  | MHG10555             | 294.85     |     | 296 Pyroxinite                          |                       | 2.76         |      | 9.15         | <0.01          | 8.83         | 0.006    | 0.23         | 0.01           | 13           | 0.3            | 1.6          | 14.85        |              | 0.037          |
|       |                  | MHG10556             | 296        |     | 297 Pyroxinite                          |                       | 2.48         |      | 9.03         | <0.01          | 7.75         | 0.006    | 0.27         | <0.01          | 13.2         | 0.34           | 2.11         | 15.7         | 0.19         | 0.05           |
| 1 6 7 | GR001            | MHG10557             | 297        |     | 298 Pyroxinite                          |                       | 2.54         |      | 7.99         | 0.02           | 7.91         | 0.007    | 0.29         | <0.01          | 11.95        | 0.19           | 1.29         | 18           | 0.18         | 0.066          |
| -01   |                  | MHG10558             | 298        |     | 299 Pyroxinite                          |                       | 2.54         |      | 5.31         | 0.06           | 6.24         | 0.006    | 0.37         | <0.01          | 9.91         | <0.02          | 0.04         | 26           | 0.17         | 0.144          |
|       |                  | MHG10559<br>MHG10560 | 299<br>300 |     | 300 Pyroxinite                          |                       | 2.44         |      | 5.93         | 0.02           | 5.37<br>4.76 | 0.009    | 0.42<br>0.43 | <0.01<br><0.01 | 10.5<br>10.7 | < 0.02         | 0.01<br>0.02 | 28.3<br>27.4 | 0.13<br>0.13 | 0.143          |
|       | EGRO01<br>EGRO01 | MHG10560             | 301        |     | 301 Pyroxinite<br>302 Pyroxinite        |                       | 2.81<br>2.37 |      | 6.01<br>7.86 | <0.01<br><0.01 | 5.05         | 0.009    | 0.43         | 0.01           | 12.2         | <0.02<br><0.02 | 0.02         | 25.5         | 0.13         | 0.139<br>0.113 |
|       |                  | MHG10562             | 302        |     | 303 Pyroxinite                          |                       | 2.38         |      | 7.41         | <0.01          | 7.61         | 0.009    | 0.42         | 0.01           | 11.55        | <0.02          | 0.02         | 24.9         | 0.17         | 0.113          |
|       |                  | MHG10562             | 303        |     | 304 Pyroxinite                          |                       | 2.30         |      | 7.63         | 0.01           | 5.57         | 0.009    | 0.42         | <0.01          | 11.55        | <0.02          | 0.02         | 25.9         | 0.19         | 0.100          |
|       |                  | MHG10564             | 304        |     | 305 Pyroxinite                          |                       | 2.42         |      | 5.67         | 0.03           | 7.01         | 0.009    | 0.37         | <0.01          | 10.4         | <0.02          | 0.01         | 28.1         | 0.16         | 0.133          |
|       | EGR001           | MHG10565             | 305        |     | 306 Pyroxinite                          |                       | 2.36         |      | 7.22         | 0.03           | 5.69         | 0.008    | 0.48         | 0.01           | 10.95        | <0.02          | 0.01         | 28.4         | 0.16         | 0.139          |
|       |                  | MHG10566             | 306        |     | 307 Pyroxinite                          |                       | 2.3          |      | 7.6          | <0.01          | 6.27         | 0.005    | 0.39         | 0.01           | 11.5         | 0.02           | 1.17         | 24           | 0.17         | 0.098          |
| 1/ \  | EGR001           | MHG10567             | 307        |     | 308 Pyroxinite                          |                       | 2.45         |      | 7.73         | 0.02           | 4.42         | 0.009    | 0.4          | 0.01           | 11           | 0.09           | 1.34         | 25.4         | 0.16         | 0.105          |
|       | EGR001           | MHG10568             | 308        |     | 309 Pyroxinite                          |                       | 2.26         |      | 6.5          | 0.09           | 2.84         | 0.009    | 0.44         | <0.01          | 10.6         | <0.02          | 0.01         | 28.3         | 0.13         | 0.145          |
|       |                  | MHG10569             | 309        |     | 10.1 Pyroxinite                         |                       | 2.68         |      | 4.67         | 0.1            | 7.01         | 0.01     | 0.36         | 0.01           | 9.18         | <0.02          | 0.01         | 31.4         | 0.16         | 0.166          |
| 76    |                  |                      |            | -   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ı                     |              |      |              | 2              |              |          |              |                |              |                |              |              |              |                |

## Appendix 3

## JORC Code, 2012, Table 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

| Criteria                                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                       | Joke code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sampling techniques                            | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>This table relates to recent sampling of target identified diamond drill hole core of spodumene bearing pegmatite from a recent surface drill hole KEGR001 at Earl Grey Deposit (refer Figures 1 to 3 in text) undertaken by KDR at the Mt Holland project. Earl Grey is 3km north-northwest of Bounty Gold Mine. Core sample intervals selected average at 1m based on geological logging.</li> <li>A single (1) drill hole (Table 1) had sample intervals selected from them by KDR in this programme.</li> <li>Selected core sample intervals were taken from the core trays by lengthwise half core cutting method as per industry standard practice.</li> <li>Samples were forwarded to certified laboratory for analysis where they were weighed, crushed, reweighed, pulverised and split to produce a ~200g pulp subsample to use in the assay process.</li> <li>The core samples were assayed by inductively coupled plasma mass spectrometry (ICP) or mass spectrometry (MS).</li> <li>No field duplicate samples were in evidence for the reported interval.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Drilling<br>techniques                         | <ul> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air<br/>blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple<br/>or standard tube, depth of diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Drill hole KEGR001 was drilled by reverse circulation (RC) for the first 181 m pre-collar as per industry standard practice.</li> <li>From 181m to end of hole at 325.6m the hole was drilled by diamond core drilling technique as per industry standard practice.</li> <li>KEGR001 is a standard NQ2 (47.6mm) diameter core.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Drill sample recovery                          | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Drill hole KEGR001 has been geologically logged and recorded within a database by KDR.</li> <li>Selected sample intervals from drill hole KEGR001 have been logged and compiled into a database.</li> <li>Recoveries for RC pre-collar are not apparent, however are expected to be 70-90%.</li> <li>Recoveries for the drill core are in the order of 95-100%.</li> <li>Samples were selected on a basis of pegmatite intersection and high spodumene occurrence, hence are not an unbiased sample.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Logging                                        | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All information was captured by KDR personnel is imported and consolidated into a database, for interpretation, analysis, and verification purposes.  KEGR001 drill hole data includes: Geological logging over geological and alteration basis, dependent on observed changes for various parameters (e.g. lithology, mineralogy, weathering, etc.)  The geological logging is compiled with appropriate attention to detail. Industry standard practice is apparent in the detail of the logging by KDR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sub-sampling techniques and sample preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>The select core intervals were sub-sampled on a 1 meter basis within geological boundaries. Interval samples of less than 1m are restricted by geological, alteration or other notable feature boundary.</li> <li>Core samples were marked up prior to logging and sampling as per standard industry practice.</li> <li>The samples selected were cut lengthwise by diamond blade saw to give two half core lengths, this is normal industry practice.</li> <li>One half of the selected core sample was collected and bagged, marked up and forwarded to a laboratory for analysis.</li> <li>The remainder of the sample has been retained.</li> <li>A total of 328 samples over 310.1m were collected.</li> <li>The NATA accredited laboratory is registered to ISO 9001:2008 standards. They use industry best practice.</li> <li>The laboratory procedure used includes the following: <ul> <li>Sort all samples and note any discrepancies to the submittal form Record a received weight (WEI-21) for each sample,</li> <li>Crush samples to 6mm nominal (CRU-21),</li> <li>Record a crushed samples weight,</li> <li>Split any samples &gt;3.2Kg using a riffle splitter (SPL-21),</li> <li>Generate internal laboratory duplicates for nominated samples, assigning a 'D' suffix to the sample number,</li> <li>Pulverise samples in LM5 pulveriser until grind size passes 90% passing 75µm (PUL-23),</li> <li>Check pulverise size on 1:20 wet screen (PUL-QC),</li> <li>Take ~ 100g work master pulp for 0.2g sample for sodium pentoxide fusion with ICP-OES or ICP_MS finish.</li> </ul> </li> <li>The elements the samples were assayed for are: Al<sub>2</sub>O<sub>3</sub>, As, CaO, Co, Cr<sub>2</sub>O<sub>3</sub>, Cu, Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, Li<sub>2</sub>O, MgO, MnO, Ni, Pb, S, SiO<sub>2</sub>, TiO<sub>2</sub>, Zn, Cs, Nb, Rb, Sn, Ta, Th, and U. The code for the method used, the method units of measure, limits of detection are shown in Table 2, Appendix 2.</li> </ul> |
| Quality of<br>assay data<br>and                | <ul> <li>The nature, quality and appropriateness of the assaying and<br/>laboratory procedures used and whether the technique is considered<br/>partial or total.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>For the all half cut samples being reported elemental concentrations have been determined as per the outline in the proceeding item.</li> <li>No geophysical results are reported.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### laboratory For geophysical tools, spectrometers, handheld XRF instruments, No field QAQC has been supplied by KDR for the reported interval. tests etc, the parameters used in determining the analysis including It is recommended that future sampling programmes incorporate field instrument make and model, reading times, calibrations factors QAQC best practice for selected reporting intervals as used by KDR on applied and their derivation, etc. other projects. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been The verification of significant intersections by either independent or Historical drill holes have not been twinned by KDR to date. alternative company personnel. Industry standard practice is assumed for activities which occurred Verification of The use of twinned holes. prior to KDR. sampling and Documentation of primary data, data entry procedures, data Primary historical data and any re-logging / new sampling data have been compiled into the database. This database is in a process of onassaying verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. going re-evaluation and consolidation by KDR. No adjustments or calibrations to the assay data have been made. Values for Cs<sub>2</sub>O, Nb<sub>2</sub>O<sub>5</sub>, Ta<sub>2</sub>O<sub>5</sub> in the report text have been calculated by atomic weight proportion from the corresponding elemental Cs, Nb, Location of Accuracy and quality of surveys used to locate drill holes (collar and All co-ordinates are MGA94 zone 50S grid datum. down-hole surveys), trenches, mine workings and other locations Vertical regional level (RL) is assumed to be Australian height datum data points used in Mineral Resource estimation. level as the drill hole has an RL of whilst a local topographic peak at Specification of the grid system used. Mount Holland is 473 m above sea level. Quality and adequacy of topographic control. The drillhole was surveyed by hand held GPS. No re-survey of the hole collar co-ordinates has been undertaken by Data spacing for reporting of Exploration Results. The reported results are based on selective sampling of target Data spacing Whether the data spacing and distribution is sufficient to establish identified core samples (spodumene bearing pegmatite) from drill hole and the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and KEGR001at Earl Grey Gold Deposit. distribution Samples were selected on a basis of pegmatite occurrence and high classifications applied. visual spodumene occurrence, hence are not an unbiased sample. The recent assay sample spacing of hole KEGR001 alone is not Whether sample compositing has been applied. sufficient to establish a high degree of geological and grade continuity appropriate for Mineral Resource and Ore Reserve reporting. No sample compositing has been applied to the samples being reported. The reported intervals are weighted average grades over the summed thicknesses, this is normal industry practice. Historical drill hole data and surface mapping indicates a high number of pegmatite intersections in the Mt Holland Project leases (refer to ASX Announcement 15<sup>th</sup> July 2016) and occurrences in application E77/2244 to the north. It is not known if all these intersections are spodumene bearing. Orientation Whether the orientation of sampling achieves unbiased sampling of The orientation of the targeted drill holes for selective sampling is given of data in possible structures and the extent to which this is known in Appendix 1, Table 1 in the document. relation to considering the deposit type. The orientation of the drill holes in relation to the pegmatites sampled If the relationship between the drilling orientation and the orientation geological as interpreted by KDR are shown on the sections Figures 1 and 2; of key mineralised structures is considered to have introduced a initial modelling indicates the drill hole intersected the pegmatite at between near 90°, and is therefore considered a true representation of structure sampling bias, this should be assessed and reported if material. the pegmatite thickness at this locality. Discussions with KDR personnel indicated that in the main the pegmatite has a gentle westerly dip (Figure 1 and Figure 2 in text) in the drilled section but may steepen with depth. However elsewhere in the Mount Holland Project there are other pegmatite occurrences which appear to be southeast dipping and others which are near vertical. The pegmatites can be truncated by east - northeast trending fracture zones Notable sections of the sampled pegmatite interval are recorded as being highly fractured. No orientation of these fractures has been recorded. Relationship of the pegmatites and local or regional structures has not been fully established by KDR at this stage. Pegmatites may intrude along fracture zones. Sample chain of custody is managed by KDR. Sample The measures taken to ensure sample security. Samples were collected and stored on site prior to delivery to the security laboratory in Perth by KDR personnel. Whilst in storage samples are kept in a locked yard. Tracking sheets are used to track the progress of batches of samples. Audits or The results of any audits or reviews of sampling techniques and Internal review of sampling techniques as well as data handling and data validation is conducted by KDR as part of due diligence and continual reviews review of protocols. Further application of industry best practice in applying field duplicates and field standards within intervals of high interest should be addressed in future sampling programmes. Recording of LOI from sample analyses is also recommended to be included in all sample results in future programmes, as is analysis for Na<sub>2</sub>O or Na.

### SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>KDR has recently acquired 100% of MH Gold Pty Ltd the entity that owns the Mt Holland tenement package.</li> <li>There are forfeiture actions afoot in relation to some tenements in the Mt Holland tenement package.</li> <li>The author is not aware of issues which may impede KDR tenure position and understands the tenements are in good standing.</li> <li>Application E77/2244 is pending grant.</li> <li>No cultural heritage issues have been reported.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Exploration done by other parties                | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Potential first recognised in 1980 by Harmark – Au and Ni</li> <li>In 1985 Aztec conducted soil sampling of the tenement which highlighted a number of discrete zones with values ranging from 100ppb-1000ppb Au within a broad anomalous trend and significant anomalism around the future Bounty pit. The anomalies were then tested with RAB drilling.</li> <li>During 1986 further RAB and follow-up RC intersected the main body of gold (Au) mineralisation which was eventually drilled out on 20x12m. The Au mineralisation was recognised as being associated with the pyrite and pyrrhotite.</li> <li>Transient Electromagnetic surveys (TEM) were conducted over and along strike of the Bounty ore body further delineating the resource. This found that the data was dominated by a westerly dipping, near vertical semi-continuous conductive zone, which thickens to the south and extends over the length of the survey. This is associated with sulphides within and peripheral to the contacts of the Bounty horizon.</li> <li>In 1989 mining of the Bounty pit started.</li> <li>The total ore mined from the Bounty, West and North Bounty pits was 640,000t @ 5.55g/t Au or 114,000oz Au.</li> <li>Minor RAB and occasional RC drilling was undertaken north and south testing for strike extension. This effectively closed off the Au resource to the north but left it open to the south.</li> <li>In 1997 Forrestania drilled a number of holes to the east of the pit to test for potential nickel mineralisation.</li> <li>No known previous exploration focussed on lithium.</li> </ul> |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Regional Geology</li> <li>N-S trending linear greenstone stratigraphy</li> <li>E-W cross-cutting Proterozoic dykes</li> <li>Alternating peridotitc and basaltic komatiites to the east, overlain by sheared and brecciated metasediment, which in turn has a sheared upper contact with the overlying dolerite.</li> <li>Intrude by granite to the east and west.</li> <li>Local Bounty Mine Geology</li> <li>Bounty Horizon BIF (a variably deformed Fe-Am-chert formation) is the western most and youngest horizon of an ultramafic sequence of basaltic and peridotitic komatiite and associated sediments known as the Bounty sequence; strike N-S.</li> <li>Hanging wall dolerite has a mylonitised chloritic sheared contact.</li> <li>Sequence is a near-vertical, westerly dipping (75°–85°) semicontinuous horizon with discontinuities due to cross cutting fracture zones.</li> <li>Fracture zones are intruded by pegmatites and younger northnortheast trending dykes i.e. the 280m wide Proterozoic Binneringie dyke.</li> <li>Spodumene (lithium containing mineral) bearing pegmatite zonation within larger pegmatite body; typical LIT pegmatite association.</li> <li>Zonation of pegmatites within the Mt Holland project is not fully understood or has not been fully investigated at this stage.</li> <li>The current drill hole KEGR001 and the assay results indicate that the pegmatite is zoned, further work is required to better understand this zonation.</li> </ul>                                                                                                                 |
| Drillhole<br>Information                         | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:  easting and northing of the drill hole collar  elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar  dip and azimuth of the hole  down hole length and interception depth  hole length.                                         | <ul> <li>All horizontal co-ordinates are GDA94 zone 50S grid datum.</li> <li>Vertical regional level (RL) is assumed to be Australian height datum level as the surface drill holes have an RL of 448m whilst a local topographic peak at Mount Holland is 473 m above sea level.</li> <li>No resurvey of the hole collar co-ordinates has been undertaken by KDR.</li> <li>Details of the reported drill hole KEGR001 are listed in Table 1 – Appendix 1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                                                                                 | <ul> <li>If the exclusion of this information is justified on the basis<br/>that the information is not Material and this exclusion does<br/>not detract from the understanding of the report, the<br/>Competent Person should clearly explain why this is the<br/>case.</li> </ul>                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data aggregation methods                                                        | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated</li> </ul> | <ul> <li>Oxides of Cs, Nb, and Ta in text have been calculated by atomic weight proportion percentile from the elemental assay.</li> <li>Core sample intervals selected (Table 2 – Appendix 2) are based on 1m lengths within geological feature boundaries. A number of sample intervals are less than 1m due to various boundaries.</li> <li>For assay results greater that 1% Li2O a weighted average result has been reported:</li> <li>The assay results are weighted averaged to the individual sample lengths for the combined interval.</li> <li>No metal equivalent has been used.</li> <li>No top cut has been applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known')</li> </ul>                                                                                                                                                                             | The relationship between sample interval lengths to the pegmatite orientation and drill core orientation has not been fully noted at this stage. Initial modelling indicates the drill holes intersect pegmatite at near 90°. Interpretation shown in Figure1 indicates drill holes intersect the pegmatite at high angles and reflect true thickness at this locality. Drill hole KEGR001 penetrated the lower pegmatite contact at 294.85m. Pegmatite intersection is 93m in length. Further work needs to be done to define the continued trend and variability of the pegmatite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Diagrams                                                                        | <ul> <li>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</li> </ul>                                                                                                                                                                                                                                                                                                        | <ul> <li>Diagrams of the location of the drill holes have been provided as Figures 1, 2 and 3.</li> <li>These preliminary results are sufficient in numbers to only enable a preliminary interpretation of the pegmatite in section to be made. Any detailed interpretation at this stage may bias the future work.</li> <li>As further work progresses more detailed interpretation plans and sections will be added.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Balanced<br>reporting                                                           | <ul> <li>Where comprehensive reporting of all Exploration Results is<br/>not practicable, representative reporting of both low and high<br/>grades and/or widths should be practiced to avoid<br/>misleading reporting of Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                                                                    | <ul> <li>The current results reported constitute all known results for lithium mineralisation within pegmatite intersected with drill hole KEGR001 at Earl Grey Deposit.</li> <li>All sample assay results to date for the pegmatite intersection in KEGR001 are reported in Appendix 2, table 2.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Other substantive exploration data                                              | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances                                                                                                                                                                                                         | <ul> <li>Systematic sampling and multi element assaying of the pegmatites has not historically been conducted.</li> <li>This work and further ongoing drilling (results pending) is aimed at improving this situation. And to delineated further the mineralisation.</li> <li>This work confirms earlier re-assay results for selected reverse circulation drill holes which were drilled into the pegmatite at Earl Grey (ASX Announcement 15<sup>th</sup> July 2015)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Further work                                                                    | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                                                                                                                                                                           | <ul> <li>Any further sampling of spodumene pegmatite intersection from drill holes from within the Mount Holland Project undertaken by KDR will be reported in accordance with reporting standards. Results of analyses of samples outstanding, pending or future will be reported in accordance to the 2012 JORC Code.</li> <li>Drill hole KEGR001 is part of a drill campaign designed to further define the spodumene mineralisation within the pegmatite iof interest at Earl Grey locality. The drill campaign is on-going. Further results will be released when available.</li> <li>The geology, mineralogy and geochemistry of these pegmatites has not been fully determined at this stage, ongoing work is building a preliminary model and further planned work is intended to assist in addressing this matter.</li> <li>NO bulk density samples have been conducted on material (core or RC chips) to date; provision is being made to conduct some core bulk density testing of pegmatite material in the future.</li> <li>Continued project-wide geological review and database consolidation may assist in locating further historically mapped pegmatites and or others not previously identified.</li> </ul> |