

Level 2, 159 Adelaide Terrace East Perth WA 6004 PO Box 3233 East Perth WA 6892 T: +61 8 9215 7888 F: +61 8 9215 7889 E: info@focusminerals.com.au

ASX ANNOUNCEMENT

22 September 2016

Focus Minerals Exploration Update

Focus Minerals Ltd ("Focus" or "the Company") is pleased to provide an update on its exploration activities. Recent exploration results have progressed Focus' exploration strategy of extending and improving current resources and discovering new ore bodies within our project areas.

At Coolgardie a total of 65 RC holes for 13,137m and five diamond holes/diamond tails for 1970.5m have been completed since the last exploration update on April 28, 2016. Highlight intersections include:

	Highlight Intersections*							
	2m @ 45.63 g/t Au from 91m and							
	1m @ 23.90 g/t Au from 146m and							
	1m @ 58.70 g/t Au from 203m in BONC134							
	2m @ 22.50 g/t Au from 203m in BONC136							
	3m @ 11.75 g/t Au from 57m and							
	1m @ 8.59 g/t Au from 70m and							
	2m @ 4.84 g/t Au from 204m in BONC142							
Bonnie Vale	2m @ 4.21 g/t Au from 52m and							
	3m @ 15.11 g/t Au from 25m in BONC146							
	3m @ 25.07 g/t Au from 268m, including							
	1m @ 51.7 g/t Au from 269m in BONC153							
	4m @ 9.60 g/t Au from 214m, including							
	1m @ 17.25 g/t Au from 214m and							
	1m @ 16.10 g/t Au from 216m in BONC158							
	2m @ 7.81 g/t Au from 264m in BONC159							
Possum	0.7m @ 11.35 g/t Au from 301.75m in TND16066							
	5m @ 3.87 g/t Au from 135m, including							
Drilliont	1m @ 9.36 g/t Au from 139m in TND16090							
Brilliant	3.58m @ 5.75 g/t Au from 302m, including							
	0.7m @ 21.1 g/t Au from 303.3m in TND16034							
Empress-	3m @ 8.17 g/t Au from 32m, including							
Perseverance	1m @ 16.9g/t Au from 33m in TND16044							
Trend	3m @ 7.27 g/t Au from 60m in TND16063							
	1m @ 8.29 g/t Au from 63m and							
Garden Gully	1m @ 10.75 g/t Au from 70m and							
	1m @ 12.05 g/t Au from 204m in TND16075							
Full significant result								

*Full significant results are reported in Table A

Since the last exploration update on April 28 2016, Focus has undertaken an aggressive brownfields exploration programme at Coolgardie focussed on Bonnie Vale and the Greater Tindals District. This work was designed to test and refine Focus' understanding of several high-priority exploration targets and to provide information required for an update to Bonnie Vale's Mineral Resource update.

- RC and Diamond Drilling at Bonnie Vale (35 RC holes completed for 9,484m; three diamond tails completed for 926.5m).
 - The Company is currently re-assessing Mineral Resource update, this work is planned for completion in October.
- RC Drilling within the Greater Tindals District (30 RC holes completed for 3,653m this year).

Drill results have been encouraging at both Bonnie Vale and Greater Tindals. Highlights from current and recent activities are presented below and a map of the locations referred to is presented in Figure 1.

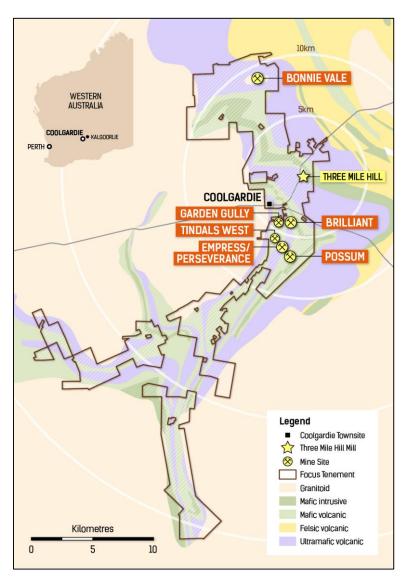


Figure 1: Coolgardie Exploration Locations

Bonnie Vale

Since the last exploration update on April 28, 2016, Focus has completed a 35 RC (9,484m) and three diamond tail (926.5m) programme at Bonnie Vale (Figure 2). The purpose of the drilling is to

test for down-dip and along-strike continuation of the Quarry Reef lode system with the aim to expand the Mineral Resource. Drill results from Bonnie Vale are very encouraging and include:

- BONC127 1m @ 6.28g/t Au from 72m
- BONC128 1m @ 5.10g/t Au from 51m and 1m @ 5.57g/t Au from 268m
- BONC131 1m @5.50g/t Au from 114m
- BONC133 1m @ 6.47g/t Au from 127m
- BONC134 2m @ 45.63g/t Au from 91m and 1m @23.9g/t Au from 146m and 1m @58.70g/t Au from 203m
- BONC136 2m @ 22.25g/t Au from 203m
- BONC139 2m @6.76g/t Au from 102m
- BONC142 3m @ 11.75g/t Au from 57m and 1 m@ 8.59g/t Au from 70m and 2 m@ 4.84g/t Au from 204m
- BONC146 2m @ 4.21g/t Au from 52m and 3m @ 15.11g/t Au from 250
- BONC151 1m @ 6.10g/t Au from 271m
- BONC153 3m @ 25.07g/t Au from 268m
- BONC158 4m @ 9.60g/t Au from 214m
- BONC159 2m @ 7.81ppm from 264m
- BONCD071 2.31m @ 5.60 g/t from 439.91m

These results show the high grade mineralization continuity to the north-west down-dip and also demonstrate the potential to define new high grade mineralisation lodes at both hanging wall and foot wall of the existing mineral resources zone (Figures 3 to 6).

The company is currently working on resources modelling and interpretation of mineralisation trend delineated in recent drilling. The updated Mineral Resource is expected to be completed in October. Additional drilling will be also planned to follow up on the potential new high grade mineralised lodes.

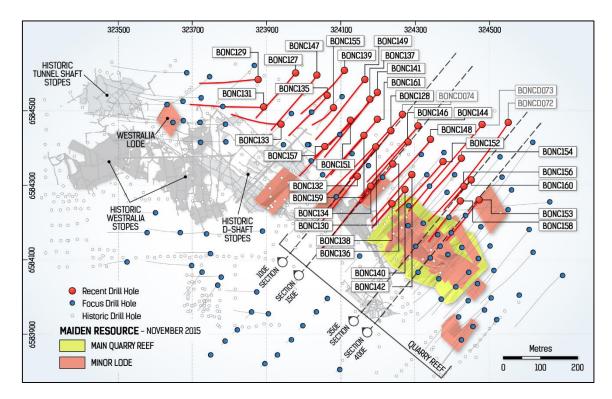


Figure 2: Bonnie Vale Plan Map

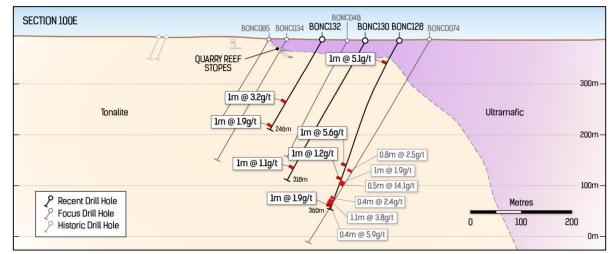


Figure 3: Bonnie Vale Section 100E

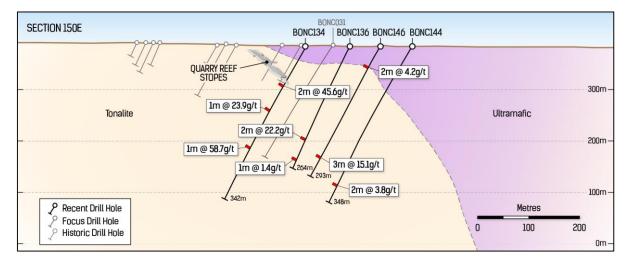


Figure 4: Bonnie Vale Section 150E

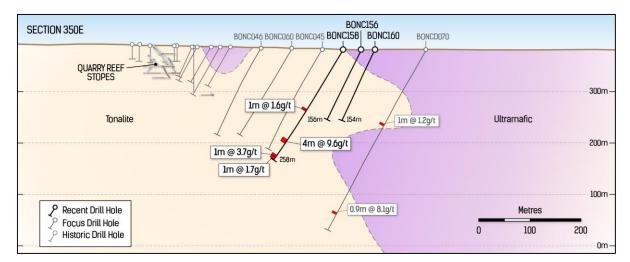


Figure 5: Bonnie Vale Section 350E

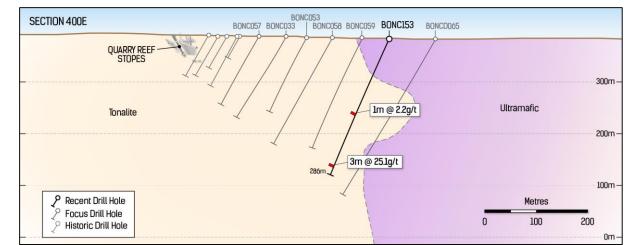


Figure 6: Bonnie Vale Section 400E

Greater Tindals Drill Programme

Since the last exploration update, a total of 30 RC holes (3,653m) and two diamond holes (1,044m) were completed within the Greater Tindals District (Brilliant; 2,300m RC: Possum; 1,044m Diamond: Garden Gully; 903m RC: Tindals West; 450m RC). The Greater Tindals District programme was in line with the current exploration strategy of expanding known Mineral Resources and testing under-explored areas within the area.

Empress-Perseverance Trend

Assay results have been received from the Empress-Perseverance trend RC drill programme previously reported (25 RC holes, 5,134m). This programme was designed to test for near-surface extensions to known lode mineralisation identified in earlier underground mining and exploration activities. Drill density and patterns are not sufficient to provide a Mineral Resource update for these project areas, however the results were generally encouraging and lode mineralisation was identified along strike and up/down dip as anticipated. Significant results from this programme include:

- TND16044 3m @ 8.17g/t Au from 32m and 2m @ 4.77g/t Au from 103m
- TND16050 1m @ 5.68g/t Au from 198m
- TND16051 5m @ 3.85g/t Au from 239m
- TND16060 1m @ 7.45g/t Au from 223m
- TND16063 3m @ 7.27g/t Au from 60m
- TND16064 1m @ 7.42g/t Au from 61m

Brilliant

At Brilliant, final results were received from the previously-reported diamond drill programme and an additional 16 RC holes have been completed to the northeast and south of the open pit. 13 RC holes completed to the northeast of the open pit were designed to test for lode extensions with the aim of upgrading the resource model in this area to potentially support additional open pit mining at Brilliant. This RC programme successfully identified lode extensions as anticipated. Significant results from Brilliant include:

- TND16032 (diamond tail) 0.92m @ 4.95g/t Au from 276.46m
- TND16034 (diamond tail) 3.58m @ 5.75g/t Au from 302m
- TND16090 5m @ 3.87g/ Au from 135m
- TND16091 1m @ 4.12g/t Au from 146m and 1m @ 4.55g/t Au from 151m
- TND16092 4m @ 2.75g/t Au from 182m and 2m @ 3.99g/t Au from 196m

Possum

At Possum, two diamond holes were completed for 1,044m to better define the controls on mineralisation at Possum. Both holes were drilled to cross the entire known mineralised system with one going east to west and the other going from west to east. Both holes provided additional information on the mineralisation controls at Possum and the information has helped refine the design of the follow-up RC programme. Significant results from the diamond programme include 0.7m @ 11.35g/t Au from 301.75m in hold TND16066.

Garden Gully and Tindals West

Thirteen RC holes (1,353m) were completed at Garden Gully and Tindals West as part of the planned regional exploration programme. Drilling at Garden Gully was designed to test for near-surface lode extensions at the historic mining centre and drilling at Tindals West tested several conceptual structural targets in an under-explored part of the Greater Tindals District. Significant results from this programme include TND16075 which intercepted 1m @ 8.29g/t Au from 63m and 1m @ 10.75g/t Au from 70m and 1m @ 12.05g/t Au from 204m

Forward Programme

Drilling at Coolgardie is ongoing and is anticipated to continue for the remainder of the year. Approximately 19,000m of RC drilling is planned for the remainder of the year at Coolgardie, including infill RC drilling at Possum, exploration RC drilling at Possum and Brilliant, follow-up RC drilling testing conceptual targets identified from the 2D seismic survey completed earlier this year and a regional exploration programme throughout the Coolgardie area. Focus anticipates updating the market later this year on these programmes and plans to have a resource update for Possum by the end of the year.

Laverton Operational Update

Exploration

Drilling has recommenced on the Karridale Project. Reverse circulation (RC) drilling was suspended in April due to abnormally wet weather conditions restricting equipment access. With improved conditions on site drilling has started on an RC drill programme estimated to include 62 holes for approximately 16,850m.

As with the earlier RC drill programme, the current phase is designed to:

- Resolve gold grade plunge distribution down dip from Karridale;
- Resolve gold grade distribution around the Boomerang mine in order to in the area;
- Confirm gold grade continuity between the Karridale and Boomerang sites; and
- Pick up the near surface positions of intermediate gold zones that are interpreted to sit between Karridale and Boomerang.

As previously announced (ASX 29 April 2016), drilling to date has confirmed that gold mineralisation at Karridale is primarily associated with multiple, stacked, shear zones, flatly dipping to the northwest. Also, the deeper mineralisation under Karridale (such as in hole KARD154) appears to be the down dip extension of mineralisation of the Boomerang mine some 600m to the southeast.

Drilling is expected to be completed in November 2016.

Possible Divestment of Jasper Hills

Focus is in discussions with multiple parties around the possible sale of the Focus' Jasper Hill Project. Jasper Hills is a small package of four mining leases totaling around 29km², located 85 km southeast of Laverton. Its size, location, and modest Mineral Resource of 156koz Au averaging 1.8g/t Au mean Jasper Hills is a low exploration priority and is unlikely to contribute towards a restart of operations at Focus' Laverton Gold Project.

Table A: Significant Intersections (COOLGARDIE)

Intersections are length-weighted averages with minimum cut-offs of 1m @ 1g/t Au

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Intersection
	(MG	A 94 Zone 51)	(m)		(MGA94)	(m)	(m)	(Au)
		BON	INIE VA	LE, COC	DLGARDI	E GOLD PRO	OJECT		
	323974	6584595	392	300	-61.15	219.3	54	55	1m @ 1.29g/t
BONC127						and	72	73	1m @ 6.28g/t
						and	80	81	1m @ 1.43g/t
	324231	6584437	386	360	-60.59	219.1	51	52	1m @ 5.10g/t
BONC128						and	268	269	1m @ 5.57g/t
00110120						and	295	296	1m @ 1.22g/t
						and	353	354	1m @ 1.93g/t
BONC130	324186	6584391	388	318	-60.41	218	291	292	1m @ 1.12g/t
BONC131	323889	6584501	391	300	-60.35	269.9	114	115	1m @ 5.55g/t
BONC132	324141	6584316	388	246	-60.13	217.98	143	144	1m @ 3.16g/t
						and	198	199	1m @ 1.99g/t
	323936	6584456	392	288	-60.67	273.4	65	66	1m @ 1.27g/t
BONC133						and	97	98	1m @ 3.03g/t
						and	127	128	1m @ 6.47g/t
	324175	6584290	388	342	-60.99	217.9	91	93	2m @ 45.63g/t
BONC134						and	146	147	1m @ 23.90g/t
						and	230	231	1m @ 58.70g/t
BONC136	324237	6584349	387	264	-63.58	220	203	205	2m @ 22.23g/t
Dentence						and	247	248	1m @ 1.40g/t
BONC137	324174	6584522	390	330	-57.86	217.8	310	311	1m @ 2.77g/t
BONC138	324233	6584242	390	138	-60.19	220.1	110	112	2m @ 1.46g/t
Dentence						and	114	115	1m @ 2.70g/t
BONC139	324107	6584601	390	348	-60.48	220	64	66	2m @ 6.77g/t
	324268	6584279	390	192	-58.7	220.1	34	35	1m @ 1.14g/t
						and	127	128	1m @ 1.34g/t
BONC140						and	136	137	1m @ 1.27g/t
Denterne						and	149	150	1m @ 1.89g/t
						and	170	171	1m @ 1.53g/t
						and	175	176	1m @ 1.80g/t
	324194	6584542	390	348	-59.67	220	87	88	1m @ 3.02g/t
BONC141						and	293	294	1m @ 1.41g/t
						and	303	304	1m @ 1.07g/t
	324284	6584319	390	246	-61.04	220.1	57	60	3m @ 11.75g/t
BONC142						and	70	71	1m @ 8.59g/t
						and	204	206	2m @ 4.84g/t
BONC144	324304	6584452	388	348	-59.95	220	311	313	2m @ 3.78g/t
BONC146	324268	6584403	389	293	-60.21	220	52	54	2m @ 4.21g/t
						and	250	253	3m @ 15.11g/t
BONC148	324338	6584416	387	330	-59.88	220	311	314	3m @ 1.25g/t
BONC151	324121	6584466	389	300	-60.13	220	262	264	2m @ 1.09g/t
DONOIDI						and	271	272	1m @ 6.10g/t
BONC152	324370	6584355	386	318	-59.53	220.5	293	294	1m @ 3.22g/t
BONC153	324471	6584258	384	286	-66.37	219.5	160	161	1m @ 2.23g/t

ls Ltd.									
						and	268	271	3m @ 25.06g/t
BONC155	324076	6584500	390	294	-74.39	220	0	1	1m @ 4.14g/t
	324417	6584250	385	258	-59.71	219.8	141	142	1m @ 1.59g/t
BONC158						and	214	218	4m @ 9.60g/t
BOING 156						and	249	250	1m @ 3.69g/t
						and	253	254	1m @ 1.72g/t
BONC159	324163	6584430	388	318	-59.59	220.1	264	266	2m @ 7.80g/t
BONC160	324445	6584307	385	154	-65.32	220	52	53	1m @ 1.03g/t
BONC161	324194	6584470	389	348	-60.2	220	280	281	1m @ 1.02g/t
BONCD069	324664	6584246	382	461	-54.55	265.35	407.86	408.2	0.34m @ 1.46g/t
	324526	6584368	384	402.7	-60.33	221.01	170	171	1m @ 1.24g/t
BONCD070						and	366.27	367.2	0.93m @ 8.11g/t
BONCD071	324618	6584413	382	466.6	-60.42	216.31	439.91	442.22	2.31m @ 5.59g/t
DONODOTO	324552	6584465	384	453.7	-59.64	216.38	419.88	420.15	0.27m @ 1.67g/t
BONCD072						and	430	431	1m @ 1.30g/t
201102070	324482	6584459	385	423.7	-60.72	220.72	393.5	395	1.5m @ 3.34g/t
BONCD073						and	408.8	409	0.2m @ 2.48g/t
	324268	6584488	389	468.7	-60.5	220.36	305.5	306.3	0.8m @ 2.52g/t
						and	333	334	1m @ 1.93g/t
						and	335.44	335.93	0.49m @ 14.10g
BONCD074						and	367.7	368.1	0.4m @ 2.44g/t
						and	373.7	374.8	1.1m @ 3.78g/t
						and	380	380.43	0.43m @ 5.99g/t
		GREATER T	INDALS	6 DISTRI	CT, COOL				
TND16001	326214	6570778	432	342	-60.0	292.7	66	67	1m @ 2.82g/t
	325715	6569500	428	258	-59.8	272.7	124	125	1m @ 1.83g/t
TND16002							100	129	4
						and	128	120	1m @ 2.85g/t
TND16004	325736	6569673	436	150	-60.2	and 271.2	120	2	1m @ 2.85g/t 1m @ 2.77g/t
TND16004	325736 326515	6569673 6569660	436 434	150 185	-60.2 -65.9				1m @ 2.77g/t
TND16004						271.2	1 12	2	1m @ 2.77g/t 2m @ 2.27g/t
TND16004 TND16005						271.2 275.0	1	2 14	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t
						271.2 275.0 and	1 12 20 28	2 14 22	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t
						271.2 275.0 and and and	1 12 20	2 14 22 30	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t
	326515	6569660	434	185	-65.9	271.2 275.0 and and and and	1 12 20 28 32 76	2 14 22 30 36 77	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t
						271.2 275.0 and and and	1 12 20 28 32	2 14 22 30 36	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t
TND16005	326515	6569660	434	185	-65.9	271.2 275.0 and and and and 85.8	1 12 20 28 32 76 140	2 14 22 30 36 77 146	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t
TND16005	326515	6569660	434	185	-65.9	271.2 275.0 and and and 85.8 and	1 12 20 28 32 76 140 148	2 14 22 30 36 77 146 149	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t 1m @ 1.05g/t
TND16005 TND16006	326515 	6569660 6569365	434	210	-65.9 -52.3	271.2 275.0 and and and 85.8 and and	1 12 20 28 32 76 140 148 184	2 14 22 30 36 77 146 149 185	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t
TND16005 TND16006	326515 326486 326513	6569660 6569365 6569416	434 431 432	185 210 150	-65.9 -52.3 -54.7	271.2 275.0 and and and 85.8 and and 93.1	1 12 20 28 32 76 140 148 184 58	2 14 22 30 36 77 146 149 185 59	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t 1m @ 1.05g/t 1m @ 1.51g/t 1m @ 1.53g/t
TND16005 TND16006 TND16008	326515 326486 326513	6569660 6569365 6569416	434 431 432	185 210 150	-65.9 -52.3 -54.7	271.2 275.0 and and and 85.8 and and 93.1 272.2	1 12 20 28 32 76 140 148 184 58 185 210	2 14 22 30 36 77 146 149 185 59 186	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t 1m @ 1.51g/t 1m @ 1.53g/t 1m @ 2.07g/t
TND16005 TND16006	326515 326486 326513	6569660 6569365 6569416	434 431 432	185 210 150	-65.9 -52.3 -54.7	271.2 275.0 and and and 85.8 and and 93.1 272.2 and	1 12 20 28 32 76 140 148 184 58 185	2 14 22 30 36 77 146 149 185 59 186 211	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t 1m @ 1.05g/t 1m @ 1.51g/t 1m @ 2.07g/t 1m @ 3.76g/t
TND16005 TND16006 TND16008	326515 326486 326513	6569660 6569365 6569416	434 431 432	185 210 150	-65.9 -52.3 -54.7	271.2 275.0 and and and 85.8 and and 93.1 272.2 and and	1 12 20 28 32 76 140 148 184 58 185 210 213 220	2 14 22 30 36 77 146 149 185 59 186 211 214	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t 1m @ 1.05g/t 1m @ 1.51g/t 1m @ 2.07g/t 1m @ 3.76g/t 2m @ 1.54g/t
TND16005 TND16006 TND16008	326515 326486 326513	6569660 6569365 6569416	434 431 432	185 210 150	-65.9 -52.3 -54.7	271.2 275.0 and and and 85.8 and and 93.1 272.2 and and and and	1 12 20 28 32 76 140 148 184 58 185 210 213 220 226	2 14 22 30 36 77 146 149 185 59 186 211 214 214 222 227	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 2.00g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t 1m @ 1.51g/t 1m @ 1.53g/t 1m @ 2.07g/t 1m @ 3.76g/t 2m @ 1.54g/t 1m @ 1.55g/t
TND16005 TND16006 TND16008	326515 326486 326513 326453	6569660 6569365 6569365 6569416 6571046	434 431 432 424	185 210 150 300	-65.9 -52.3 -54.7 -60.5	271.2 275.0 and and and 85.8 and and 93.1 272.2 and and and and and and	1 12 20 28 32 76 140 148 184 58 185 210 213 220 226 233	2 14 22 30 36 77 146 149 185 59 186 211 214 222 227 234	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t 1m @ 1.53g/t 1m @ 1.53g/t 1m @ 2.07g/t 1m @ 1.53g/t 1m @ 3.76g/t 2m @ 1.54g/t 1m @ 1.06g/t 1m @ 5.03g/t
TND16005 TND16006 TND16008	326515 326486 326513	6569660 6569365 6569416	434 431 432	185 210 150	-65.9 -52.3 -54.7	271.2 275.0 and and and 85.8 and and 93.1 272.2 and and and and and and	1 12 20 28 32 76 140 148 184 58 185 210 213 220 226 233 109	2 14 22 30 36 77 146 149 185 59 186 211 214 222 227 234 110	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t 1m @ 1.51g/t 1m @ 2.07g/t 1m @ 1.51g/t 1m @ 1.53g/t 1m @ 1.54g/t 1m @ 1.50g/t
TND16005 TND16006 TND16008	326515 326486 326513 326453	6569660 6569365 6569365 6569416 6571046	434 431 432 424	185 210 150 300	-65.9 -52.3 -54.7 -60.5	271.2 275.0 and and and 85.8 and and 93.1 272.2 and and and and and and and and	1 12 20 28 32 76 140 148 184 58 185 210 213 220 226 233 109 126	2 14 22 30 36 77 146 149 185 59 186 211 214 222 227 234 110 127	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t 1m @ 1.53g/t 1m @ 3.76g/t 2m @ 1.54g/t 1m @ 5.03g/t 1m @ 3.54g/t 1m @ 3.54g/t
TND16005 TND16006 TND16008	326515 326486 326513 326453	6569660 6569365 6569365 6569416 6571046	434 431 432 424	185 210 150 300	-65.9 -52.3 -54.7 -60.5	271.2 275.0 and and and 85.8 and and 93.1 272.2 and and and and and and	1 12 20 28 32 76 140 148 184 58 185 210 213 220 226 233 109	2 14 22 30 36 77 146 149 185 59 186 211 214 222 227 234 110	1m @ 2.77g/t 2m @ 2.27g/t 2m @ 1.77g/t 4m @ 1.27g/t 1m @ 1.41g/t 6m @ 1.41g/t 1m @ 1.63g/t 1m @ 1.51g/t 1m @ 2.07g/t 1m @ 1.51g/t 1m @ 1.53g/t 1m @ 1.54g/t 1m @ 1.50g/t

						and	112	113	1m @ 1.24g/t
	326553	6569751	439	204	-59.9	290.1	35	36	1m @ 1.95g/t
	020000	0000701	100	204	00.0	and	95	96	1m @ 1.03g/t
						and	98	99	1m @ 1.43g/t
TND16019						and	106	107	1m @ 1.94g/t
							110	111	1m @ 1.949/t 1m @ 2.00g/t
						and	113	115	
						and		156	2m @ 2.87g/t 2m @ 3.34g/t
	326582	6569700	439	222	-61.5	and 293.1	154 114	115	1m @ 1.01g/t
	320302	0009700	439	222	-01.5		136	138	2m @ 1.82g/t
						and	143	130	1m @ 2.15g/t
TND16020						and			
						and	147	150	3m @ 1.32g/t
						and	154	155	1m @ 2.46g/t
	000504	0500000		0.1.0	50.0	and	158	159	1m @ 1.16g/t
TND16021	326594	6569629	445	216	-59.8	289.3	118	119	1m @ 1.17g/t
						and	124	126	2m @ 4.13g/t
	326620	6569685	442	207	-60.8	291.8	156	158	2m @ 1.53g/t
TND16022						and	168	176	8m @ 1.39g/t
						and	185	186	1m @ 1.27g/t
						and	189	190	1m @ 1.02g/t
TND16023	326586	6569567	452	216	-60.0	293.4	164	165	1m @ 1.07g/t
						and	187	188	1m @ 1.01g/t
TND16024	326430	6569629	429	180	-60.0	292.9	30	31	1m @ 8.99g/t
111010024						and	66	75	9m @ 8.13g/t
TND16026	326693	6569264	462	252	-59.4	252.0	178	179	1m @ 1.11g/t
						and	242	243	1m @ 5.41g/t
	326653	6569379	457	204	-60.0	245.8	99	100	1m @ 1.51g/t
						and	128	129	1m @ 2.18g/t
TND16027						and	137	138	1m @ 2.62g/t
1110 10027						and	144	145	1m @ 1.21g/t
						and	157	159	2m @ 1.47g/t
						and	162	163	1m @ 1.47g/t
TND16029	326599	6569508	449	148	-59.0	257.0	126	127	1m @ 1.88g/t
	326547	6569253	448	198	-59.9	69.9	100	101	1m @ 1.15g/t
TND16030						and	109	114	5m @ 1.24g/t
10030						and	120	121	1m @ 1.45g/t
						and	133	136	3m @ 1.21g/t
	326413	6569789	436	252	-57.4	110.0	12	13	1m @ 1.00g/t
TND16031						and	142	149	7m @ 1.50g/t
						and	153	164	11m @ 1.61g/t
	326448	6572970	405	483.2	-57.8	250.1	60	61	1m @ 2.38g/t
			-		-	and	72	73	1m @ 5.83g/t
						and	81	82	1m @ 2.37g/t
	-					and	92	93	1m @ 2.40g/t
TND16032						and	102	104	2m @ 1.29g/t
						and	102	104	1m @ 2.39g/t
						and	110	111	1m @ 2.39g/t 1m @ 1.19g/t
	1					anu	110	111	i iiii ⊎≊ i.i3u/l

	i.	l	1	1	Í	ĺ			I
						and .	294	295.6	1.6m @ 1.31g/t
						and	301.12	303.3	2.21m @ 1.84g/t
TND16033	326534	6572979	404	228	-61.6	252.3	113	114	1m @ 2.41g/t
						and	177	182	5m @ 2.79g/t
	326545	6572770	408	504.2	-57.7	252.1	52	53	1m @ 1.78g/t
						and	262.5	264.3	1.84m @ 1.27g/t
						and	302	305.6	3.58m @ 5.76g/t
TND16034						and	310	311	1m @ 1.48g/t
						and	341.05	343.7	2.66m @ 2.04g/t
						and	400.98	401.4	0.45m @ 1.06g/t
						and	468	469	1m @ 1.49g/t
TND16035	326592	6572611	417	240	-60.5	252.1	148	155	7m @ 2.28g/t
IND TOODO						and	165	168	3m @ 3.61g/t
	326314	6572253	411	252	-54.1	72.1	104	105	1m @ 1.19g/t
						and	133	134	1m @ 2.20g/t
TND16037						and	163	164	1m @ 2.24g/t
						and	172	175	3m @ 5.79g/t
TND16039	326179	6572665	410	252	-54.5	70.8	154	156	2m @ 1.98g/t
	326314	6573283	406	309.5	-60.8	270.0	146.42	146.7	0.24m @ 2.87g/t
						and	148.22	150	1.78m @ 3.74g/t
						and	182.98	183.6	0.57m @ 1.09g/t
TND16040						and	184.35	186.3	1.92m @ 1.23g/t
						and	188.4	188.9	0.5m @ 1.37g/t
						and	190.75	191.5	0.75m @ 2.70g/t
							272.17	273	0.83m @ 2.68g/t
TND16042	325903	6571273	417.5	270	-55.5	and 286.3	166	167	1m @ 4.88g/t
	325890								
TND16043		6571207	418.7	174	-56.2	287.9	114	115	1m @ 1.19g/t
	325673	6570934	424	150	-55.2	288.4	10	13	3m @ 1.18g/t
						and	15	17	2m @ 1.44g/t
TND16044						and	22	24	2m @ 2.46g/t
110010044						and	32	35	3m @ 8.18g/t
						and	100	101	1m @ 1.04g/t
						and	103	105	2m @ 4.78g/t
						and	114	116	2m @ 1.26g/t
	325602	6570797	425.6	156	-59.9	288.0	120	121	1m @ 1.12g/t
TND16045						and	125	128	3m @ 1.17g/t
						and	136	140	4m @ 2.33g/t
TND16046	325537	6570870	425.5	126	-54.1	115.7	46	48	2m @ 1.25g/t
-						and	66	68	2m @ 3.58g/t
TND16047	325492	6570756	426.3	234	-61.0	116.9	78	80	2m @ 3.36g/t
TND16048	325472	6570664	426.5	102	-51.9	110.1	101	102	1m @ 1.10g/t
TND16049	325418	6570676	427.5	270	-53.9	108.0	13	14	1m @ 2.99g/t
TND16050	325330	6570536	426.9	354	-55.6	105.6	198	199	1m @ 5.68g/t
						and	202	203	1m @ 2.78g/t
	325306	6570247	424.1	360	-58.5	103.5	239	244	5m @ 3.85g/t
TND16051						and	252	253	1m @ 1.95g/t
TND16052	325383	6570249	424	302	-65.1	102.0	175	179	4m @ 1.86g/t
TND16054	325332	6570428	424.9	252	-60.5	113.4	7	8	1m @ 2.49g/t

IS LUCI.						-			
						and	14	15	1m @ 1.18g/t
						and	31	32	1m @ 1.04g/t
TND16054	325332	6570428	424.9	252	-60.5	113.4	144	145	1m @ 1.05g/t
TND16057	326088	6570659	431	324	-55.2	268.4	94	95	1m @ 1.06g/t
	325369	6570433	424.1	318	-54.9	104.0	223	224	1m @ 7.45g/t
TND16060						and	226	227	1m @ 3.65g/t
110060						and	230	234	4m @ 1.87g/t
						and	275	276	1m @ 1.14g/t
TND16061	325415	6570522	424.9	234	-53.5	105.2	32	33	1m @ 2.38g/t
	325399	6570600	426.4	288	-59.6	105.0	116	117	1m @ 2.01g/t
TND16062						and	153	155	2m @ 2.06g/t
TND16063	325462	6570358	426.1	276	-58.0	106.0	60	63	3m @ 7.27g/t
	325456	6570319	425.9	186	-64.3	106.4	54	55	1m @ 1.22g/t
TND16064						and	61	62	1m @ 7.42g/t
						and	68	69	1m @ 1.09g/t
	326673	6569665	440	539.9	-55.2	268.1	195	197.5	2.52m @ 1.17g/t
	020070	0000000		000.0	00.2	and	204	205	1m @ 1.51g/t
						and	213.85	214.6	0.75m @ 1.16g/t
						and	213.05	214.0	1m @ 1.27g/t
							264.3	265	0.7m @ 1.53g/t
TND16066						and	301.75	302.5	0.7m @ 11.35g/t
						and			
						and	398	399	1m @ 1.76g/t
						and	417	418	1m @ 3.60g/t
						and	427	428	1m @ 1.28g/t
		0500050	400	504.0	10.7	and	431	432	1m @ 1.06g/t
TND16067	326368	6569353	423	501.6	-49.7	85.6	286	288	2m @ 1.74g/t
	005500	0570007		0.07		and	317	318	1m @ 1.31g/t
	325568	6572937	419	207	-64.8	83.5	63	65	2m @ 1.50g/t
						and	131	134	3m @ 1.11g/t
						and	136	137	1m @ 1.02g/t
TND16073						and	144	145	1m @ 1.01g/t
						and	156	157	1m @ 1.15g/t
						and	174	175	1m @ 1.22g/t
						and	181	183	2m @ 1.36g/t
						and	185	187	2m @ 1.29g/t
	325689	6572955	417	222	-57.8	267.4	63	64	1m @ 8.29g/t
						and	70	71	1m @ 10.75g/t
TND16075						and	104	105	1m @ 1.23g/t
						and	106	107	1m @ 1.08g/t
						and	204	205	1m @ 12.05g/t
	326547	6572827	406.6	150	-59.1	252.1	37	38	1m @ 1.01g/t
						and	42	43	1m @ 1.53g/t
TND16087						and	78	81	3m @ 1.74g/t
						and	112	113	1m @ 1.51g/t
						and	116	117	1m @ 1.55g/t
						and	126	127	1m @ 1.55g/t
TND16090	326467	6572702	409.1	198	-60.1	255.8	135	140	5m @ 3.88g/t
10080						and	151	153	2m @ 1.27g/t

	326447	6572754	407.5	210	-60.7	255.3	146	147	1m @ 4.12g/t
TND16091						and	151	152	1m @ 4.55g/t
TNDT0091						and	163	166	3m @ 1.69g/t
						and	209	210	1m @ 3.46g/t
	326553	6572675	413	264	-59.3	256.5	182	186	4m @ 2.74g/t
TND16092						and	196	198	2m @ 4.00g/t
						and	215	218	3m @ 1.47g/t
	326688	6572529	432.4	288	-59.2	255.6	241	243	2m @ 2.02g/t
TND16093						and	263	267	4m @ 1.19g/t
						and	269	270	1m @ 1.53g/t
	326685	6572578	433	300	-55.2	255.4	246	248	2m @ 1.04g/t
TND16094						and	255	256	1m @ 1.19g/t
						and	284	285	1m @ 1.46g/t
TND16095	326602	6572558	418	210	-60.5	255.6	164	166	2m @ 2.48g/t
11010033						and	190	191	1m @ 1.52g/t
TND16096	326558	6572881	405.4	78	-59.4	247.9	40	41	1m @ 1.33g/t
TND16097	326492	6572966	404.4	200	-60.3	254.2	138	139	1m @ 1.10g/t

JORC Code, 2012 Edition – Table 1 report Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

CRITERIA	COMMENTARY
	This report relates to results for Reverse Circulation (RC) drilling and Diamond core drilling of Focus Minerals Coolgardie Project area.
	RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m basis. In total 65 holes were drilled for 13,137 m of RC and 1970.5m of diamond core.
	Core was sampled across identified zones of mineralisation by site geologists. Diamond core sample widths varied between a minimum of 0.2m and a maximum of 1m.
	RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole using a bullseye level.
Coolgardie Gold Project	At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75μ m.
	The samples were then prepared for fire assay.
	When visible gold was observed in RC chips, this sample was then flagged by the supervising geologist for the benefit of the laboratory.
	The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration.
	The core was cut in half using an Almonte automatic core saw, with half-core samples submitted to Kalgoorlie assay laboratories for fire assay analysis by a 50g charge AAS finish. All RC drilling was completed using a face sampling hammer. The diamond drilling was
	completed by NQ2/HQ size diamond core.
Drilling techniques	All holes were surveyed upon completion of drilling using a north-seeking gyroscope and all holes were surveyed open-hole.
	All drill core was oriented by the drilling contractor using an Ezy-mark system.
	Sample recovery was recorded by a visual estimate during the logging process.

IS Ltd.	
Drill sample	All samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust.
recovery	Study of sample recovery versus gold grade does not indicate a bias in the gold grade caused by any drop in sample recovery.
	The core samples were oriented, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted and recorded in the drilling database.
	All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present.
Logging	The logging information was recorded into acQuire format using a Toughbook notepad and then transferred into the company's drilling database once the log was complete.
	Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present.
	Samples from RC holes were archived in standard 20m plastic chip trays.
	The entire length of all holes are logged.
	Core samples were taken from half core, cut using an Almonte automatic core saw.
	The remainder of the core was retained in core trays tagged with a hole number and metre mark.
	RC samples were cone split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag.
	Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths below the water table.
	Sample condition was recorded (wet, dry or damp) at the time of sampling and recorded in the database.
	The samples were collected in a pre-numbered calico bag bearing a unique sample ID.
	Samples were crushed to $75\mu m$ at the laboratory and riffle split (if required) to a maximum 3kg sample weight.
Sub-sampling techniques and sample	Gold analysis was determined by a 30g or 50g fire assay with an AAS Finish with detection limits between 0.01 and 100 ppm Au.
preparation	The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation.
	Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion.
	For all the drilling projects other than Bonnie Vale FML inserts 3 standards and takes 5 duplicates for every 100 samples for RC drilling.
	For Bonnie Vale RC drilling FML inserts 4 standards and selects about 20% mineralized samples (>1 g/t) to re-analyse for the gold using the residual pulps.
	Field duplicates were collected from the cone splitter on the rig for RC samples at a frequency of one duplicate every 20 samples.
	Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out.
	The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration.
	The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample.
Quality of assay	The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample.
data and laboratory tests	No geophysical tools, spectrometers or handheld XRF instruments were used on dril samples.
	1 '

	The QA/QC process described above was sufficient to establish acceptable levels o accuracy and precision.							
	All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances.							
	Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process.							
Verification of	Normally if old historic drilling was present, twinned holes are occasionally drilled to test the veracity of historic assay data; however no twinned holes were drilled during this program.							
sampling and assaying	Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project.							
	No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations. All drill collars were surveyed after completion, using a DGPS instrument.							
Location of data	Down-hole surveys were completed using a north-seeking gyroscope at the end of the eac							
points	RC drilling locations were determined by hand_held GPS, with a nominal accuracy of +/-5m in Northing and Easting. After finishing the drilling hole locations were picked up by DGPS with accuracy of +/-20cm.							
	Drill spacing across the Coolgardie prospects varied depending on the exploration stage that the drill target currently existed.							
Data spacing and distribution	Drilling varied from wide spaced exploration RC drilling to precisely placed RC and diamond tails designed to define mineral resources.							
	Sample compositing has not been applied to the reporting of exploration results.							
Orientation of data	Drilling was designed based on known geological models, field mapping, verified historica data, cross-sectional interpretation and 3D geology modelling.							
in relation to geological structure	Where achievable, drill holes oriented at right angles to strike of deposit, with dip optimised for drill capabilities and the dip of the ore body. No orientation and sampling bias has been recognised in the drilling data to date.							
	All samples were reconciled against the sample submission with any omissions or variation reported to FML.							
Sample security	All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel on a semi-daily basis.							
Audits or reviews	A review of sampling techniques was carried out by Roredata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence.							

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.) Criteria Coolgardie Gold Project Mineral tenement and land tenure status All drilling was conducted on tenements 100% owned by Focus Minerals Limited or its subsidiary companies Focus Operations Pty Ltd. All tenements are in good standing. There are currently no registered Native Title claims over the Coolgardie project areas.

Exploration done by other parties	Exploration at Coolgardie dates to the late 1800s. Modern exploration within the Coolgardie Project area includes several generations of drilling (RAB, AC, RC and diamond), airborne and ground geophysical surveys, surface and underground mapping, prospecting and open pit/underground mining.									
Geology	Bonnie Vale mineralisation is historically contained within large (300m strike length) planar reef structures on or near the contact of the Bonnie Vale Tonalite and an overlying ultramafic volcanic succession. FML exploration activities are designed to test for potential extensions to these structures down dip and along strike. Mineralisation at Tindals is typically associated with deformed silicified diorite dykes within a highly sheared and folded succession of ultramafic and mafic volcanic rocks. Diorite dykes are variably folded and sheared along with the host units, and gold mineralisation is typically related to brittle deformation of the competent dykes. FML exploration activities are designed to test for along strike and down dip extensions of known lode systems as well as testing under-tested analogous settings in the district. Brilliant contains gold mineralisation on sheared basalt-ultramafic contacts and also within silicified intrusive diorite bodies conformable to the stratigraphy, dipping steeply to the WSW. Brilliant is an advanced brown-fields project.									
	Hole ID	Easting	Northing	RL	Depth	Azimuth	Dip	Tenements		
Drillhole Information	BONC127 BONC128 BONC129 BONC130 BONC131 BONC132 BONC133 BONC133 BONC133 BONC134 BONC135 BONC136 BONC137 BONC138 BONC139 BONC139 BONC139 BONC140 BONC140 BONC141 BONC142	323974 324231 323874 323874 324186 323889 324141 323936 323936 323936 324175 324060 324237 324260 324233 324107 324268 324194 324284 324032	6584595 6584437 6584437 6584376 6584576 6584316 6584501 6584456 6584456 6584456 6584456 65844200 6584534 6584522 6584522 6584601 6584522 6584542 6584542 6584542 6584542 6584319 6584588	392 386 391 388 391 388 392 392 388 392 388 392 387 390 390 390 390 390 390	300 360 300 318 300 246 180 288 342 298 264 330 138 348 192 348 246 116	219.3 219.1 267.0 218.0 269.9 218.0 273.4 273.4 217.9 221.8 220.0 217.8 220.0 217.8 220.1 220.1 220.1 220.1 220.1 220.1	-61.2 -60.6 -60.2 -60.4 -60.4 -60.1 -60.7 -60.7 -60.7 -61.0 -60.5 -63.6 -57.9 -60.2 -60.5 -58.7 -59.7 -61.0 -66.8	M1500595 M1500595		
	BONC144 BONC145 BONC146 BONC147 BONC148 BONC149 BONC150 BONC151 BONC152 BONC153 BONC154 BONC155 BONC155	324304 324161 324268 324031 324338 324160 324076 324121 324370 324471 324471 324422 324076 324428	6584452 6584576 6584587 6584587 6584577 6584500 6584500 6584355 6584258 6584258 6584365 6584289	388 390 389 391 387 390 380 389 386 384 386 386 386 386	348 66 293 312 330 348 79 300 318 286 332 294 156	220.0 211.6 220.0 217.6 220.0 219.8 220.7 220.0 220.5 219.5 219.9 220.0 220.3	-60.0 -60.2 -58.6 -59.9 -60.4 -61.2 -60.1 -59.5 -66.4 -65.8 -74.4 -63.2	M1500595		

BONC158	324445	6584307	385	36	219.8	-59.7	M1500595
BONC158	324445	6584307	385	168	219.8	-59.7	M1500595
BONC158	324445	6584307	385	234	219.8	-59.7	M1500595
BONC158	324445	6584307	385	258	219.8	-59.7	M1500595
BONC159	324163	6584430	388	318	220.1	-59.6	M1500595
BONC160	324417	6584250	385	154	220.0	-65.3	M1500595
BONC161	324194	6584470	389	348	220.0	-60.2	M1500595
TND16002	325715	6569500	428	258	272.7	-59.8	M1500958
TND16004	325736	6569673	436	150	271.2	-60.2	M1500646
TND16041	325899	6571367	418	210	290.0	-59.8	M1500646
TND16042	325903	6571273	418	270	286.3	-55.5	M1500646
TND16043	325890	6571207	419	174	287.9	-56.2	M1500646
TND16044	325673	6570934	424	150	288.4	-55.2	M1500646
TND16045	325602	6570797	426	156	288.0	-59.9	M1500646
TND16046	325537	6570870	426	126	115.7	-54.1	M1500646
TND16047	325492	6570756	426	234	116.9	-61.0	M1500646
TND16048	325432	6570664	426	102	110.9	-51.9	M1500646
TND16048	325412		420	270	108.0		
		6570676				-53.9	M1500646
TND16050	325330	6570536	427	354	105.6	-55.6	M1500646
TND16051	325306	6570247	424	360	103.5	-58.5	M1500646
TND16052	325383	6570249	424	302	102.0	-65.1	M1500646
TND16053	325495	6570409	424	24	100.0	-55.0	M1500646
TND16054	325332	6570428	425	252	113.4	-60.5	M1500646
TND16055	326052	6570691	432	198	282.1	-60.2	M1500646
TND16056	326071	6570753	434	180	283.6	-60.7	M1500646
TND16057	326088	6570659	431	324	268.4	-55.2	M1500646
TND16058	325847	6570403	393	200	278.2	-62.5	M1500646
TND16059	325626	6570393	400	12	100.0	-65.0	M1500646
TND16060	325369	6570433	424	318	104.0	-54.9	M1500646
TND16061	325415	6570522	425	234	105.2	-53.5	M1500646
TND16062	325399	6570600	426	288	105.0	-59.6	M1500646
TND16063	325462	6570358	426	276	106.0	-58.0	M1500646
TND16064	325456	6570319	426	186	106.4	-64.3	M1500646
TND16065	325502	6570407	424	12	100.0	-60.0	M1500646
TND16066	326673	6569665	440	476.2	268.1	-55.2	M1500966
TND16066	326673	6569665	440	539.9	268.1	-55.2	M1500966
TND16067	326368	6569353	423	501.6	85.6	-49.7	M1500023
TND16068	326626	6571850	425	150	255.6	-60.4	M1500646
TND16069	326571	6571767	422	250	76.8	-60.4	M1500646
TND16070	326623	6571557	424	148	74.2	-60.6	M1500646
TND16071	325488	6572793	420	168	262.2	-60.9	M1500675
TND16072	325488	6572835	422	54	250.1	-62.5	M1500675
TND16073	325568	6572937	419	207	83.5	-64.8	M1500646
TND16074	325508	6572902	421	181	260.0	-65.3	M1500675
TND16075	325689	6572955	417	222	267.4	-57.8	M1500646
TND16076	325044	6571545	432	50	90.8	-58.5	M1500646
TND16077	325019	6571381	435	50	268.9	-60.0	M1500646
TND16078	324784	6571851	436	50	83.7	-59.9	M1500646

_					-				-
	TND16079	324662	6571753	446	50	90.0	-60.0	M1500646	
	TND16080	324602	6571492	440	50	95.7	-60.9	M1500646	
	TND16081	324648	6571316	441	50	90.0	-60.0	M1500646	
	TND16082	324699	6571412	442	50	90.0	-60.0	M1500646	
	TND16083	324782	6571101	446	50	90.0	-60.0	M1500646	
	TND16084	324885	6571260	440	50	90.0	-60.0	M1500646	
	TND16085	326562	6572883	405	108	254.6	-80.2	M1500646	
	TND16086	326548	6572827	407	198	259.0	-80.3	M1500646	
	TND16087	326547	6572827	407	150	252.1	-59.1	M1500646	
	TND16088	326502	6572760	408	47	255.0	-60.0	M1500646	
	TND16089	326560	6572882	405	66	250.0	-79.4	M1500646	
	TND16090	326467	6572702	409	198	255.8	-60.1	M1500646	
	TND16091	326447	6572754	408	210	255.3	-60.7	M1500646	
	TND16092	326553	6572675	413	264	256.5	-59.3	M1500646	
	TND16093	326688	6572529	432	288	255.6	-59.2	M1500646	
	TND16094	326685	6572578	433	300	255.4	-55.2	M1500646	
	TND16095	326602	6572558	418	210	255.6	-60.5	M1500646	
	TND16096	326558	6572881	405	78	247.9	-59.4	M1500646	
	TND16097	326492	6572966	404	200	254.2	-60.3	M1500646	
Data aggregation methods	Mineralised intersections are reported at a 1.00g/t Au cut-off with a minimum reporting width of 1m, reported as length-weighted average grades.								
Relationship between mineralization widths and intercept lengths	Holes were drilled orthogonal to mineralisation as much as possible, however the exact relationship between intercept width and true width cannot be estimated exactly in all cases.								
Diagrams	Accurate collar plans are included in this announcement. 3D perspective views and schematic cross-sections are included to illustrate the distribution of grade								
Balanced reporting	Drilling results are reported in a balanced reporting style. The ASX announcement shows actual locations of holes drilled, and representative sections as appropriate.								
	Holes shown on the collar location plan which are not reported in the table of significant intercepts did not intersect reportable mineralisation.								
Other substantive exploration data	There is no other material exploration data to report at this time.								
Further work	FML anticipates additional drilling to follow up on encouraging results at Bonnie Vale and Greater Tindals.								

Forward Looking Statements

This release contains certain "forward looking statements". Forward-looking statements can be identified by the use of 'forward-looking' terminology, including, without limitation, the terms 'believes', 'estimates', 'anticipates', 'expects', 'predicts', 'intends', 'plans', 'propose', 'goals', 'targets', 'aims', 'outlook', 'guidance', 'forecasts', 'may', 'will', 'would', 'could' or 'should' or, in each case, their negative or other variations or comparable terminology. These forward-looking statements include all matters that are not historical facts. By their nature, forward-looking statements involve known and unknown risks, uncertainties and other factors because they relate to events and depend on circumstances that may or may not occur in the future, assumptions which may or may not prove correct, and may be beyond Focus' ability to control or predict which may cause the actual results or performance of Focus to be materially different from the results or performance expressed or implied by such forward-looking statements. Forward-looking statements are based on assumptions and contingencies and are not guarantees or predictions of future performance. No representation is made that any of these statements or forecasts will come to pass or that any forecast result will be achieved. Similarly, no representation is given that the assumptions upon which forward-looking statements may be based are reasonable. Forwardlooking statements speak only as at the date of this document and Focus disclaims any obligations or undertakings to release any update of, or revisions to, any forward-looking statements in this document.

Competent Person's Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Michael Guo (GM Exploration and Geology) who is a member of the Association of Professional Geoscientists of Ontario, Canada, which is a Recognised Professional Organisation (RPO). Mr Guo is employed by Focus Minerals Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Guo consents to the inclusion in this announcement of the matters based on the information compiled by him in the form and context in which it appears.

END OF RELEASE