

17 May 2017

Significant results from further infill drilling at Kebigada, Giro Gold Project

Kebigada

- The current phase of resource infill drilling at Kebigada has been completed and all outstanding samples submitted to SGS laboratory in Mwanza, Tanzania
- A total of 48 RC holes for 6,073.8m and 13 diamond holes for 3,675.5m were completed
- Results reported for a further 2 diamond holes and 7 RC holes at Kebigada
- Best results include:
 - GRRC230: 46m at 3.09g/t Au from 99m including 15m at 7.36g/t Au from 101m
 - GRRC233: **106m at 1.24g/t Au from 4m** including 15m at 2.44g/t Au from 6m

and 7m at 2.51g/t Au from 51m

- GRRC235: **37m at 1.85g/t Au from 4m** including **2m at 14.71g/t Au** from 28m
- GRDD023: **19m at 1.90g/t Au from 14m** including **7m at 4.26g/t Au** from 18m and 67m at 1.27g/t Au from 95m including **7m at 3.05g/t Au** from 123m
- Results for the final 2 diamond holes and 12 RC holes to be reported within 2 weeks
- Kebigada maiden resource on track for release in June
- Amani to commence a shallow RC drilling program to follow up on high-grade soil anomalies in the immediate surrounds at Kebigada. Significant new discoveries will be followed up with further drilling to delineate potential satellite resources which could add materially to the Kebigada resource
- Planning commenced for further infill and metallurgical testwork drilling programmes required for pre-feasibility and feasibility studies at Kebigada

Amani Gold Limited (ASX: ANL, Amani) reports the completion of the 50m line interval, infill drilling programme which commenced mid-February 2017 at Kebigada on its Giro Gold Project in the Moto Greenstone Belt, NE Democratic Republic of Congo (DRC). A total of 48 RC drill holes for 6,073.8m and 13 diamond drill holes for 3,675.5m were completed during the programme. The number of metres was increased from the planned 3,500m for each of the diamond and RC drill programmes to follow up on new areas of mineralisation identified in the infill drilling. Results for the remaining holes with samples currently in the laboratory are expected within two weeks. The Company is on track to release its maiden mineral resource estimate at Kebigada in June.

Chairman Klaus Eckhof stated: "We are pleased to have successfully completed the infill drilling programme at Kebigada in good time and we now eagerly await release of the mineral resource which was delayed pending additional infill drilling. All indications are that sufficient resources will be defined to sustain a robust mining operation at Giro. The good grades reported throughout the period of infill drilling further boost our confidence that a strong resource will be defined in the Kebigada maiden resource estimation."

Kebigada

Results are reported for a further two diamond holes and seven RC infill holes at Kebigada. All results are summarised in Table 1 and shown in Figures 1-4.

Significant results included:

• GRRC230: 46m at 3.09g/t Au from 99m including 15m at 7.36g/t Au from 101m

(Line 400N)

• GRRC233: **106m at 1.24g/t Au from 4m** including 15m at 2.44g/t Au from 6m

and 7m at 2.51g/t Au from 51m (Line 950N)

• GRRC235: **37m at 1.85g/t Au from 4m** including **2m at 14.71g/t Au** from 28m

(Line 750N)

• GRDD023: **19m at 1.90g/t Au from 14m** including **7m at 4.26g/t Au** from 18m

and 67m at 1.27g/t Au from 95m including 7m at 3.05g/t Au from 123m

(Line 550N)

Hole GRRC230 was drilled 50m SW of GRRC217 on Line 400N. GRRC217 reported (ASX release dated 10 April 2017) exceptional results of **36m at 6.56g/t Au** from 14m including **14m at 15.15g/t Au** from 15m and **65m at 7.73g/t Au** from 74m including **44m at 10.69g/t Au** from 85m and confirmed that high grade mineralisation extends further SW and down-dip and remains open to depth as shown in Figure 2. Drill hole GRRC230 reported a significant result of **46m at 3.09g/t Au** including **15m at 7.36g/t Au** and ended in mineralisation. A diamond drill hole has been planned on Line 400N, undercutting GRCC230, to test this high-grade lode at depth in order to ascertain the true width and depth extension plus provide information on the structural controls to the high grade mineralisation.

Hole GRCC233 returned a broad intercept of 106m at 1.24g/t Au including 15m at 2.44g/t Au, typical of the eastern zone which has a strong lithological control on mineralisation. The zone consists of a fractured intrusive with pyrite stringers and has a strong IP chargeable response over several hundred metres, and mineralisation remains open further to the east.

Results for the final 2 diamond holes for 706 samples and 12 RC holes for 1,404 samples are expected within two weeks and the Company remains on track to complete its maiden mineral resource estimate at Kebigada in June.

The Company will continue drilling an additional diamond hole on Line 1200N to test an interpreted, northerly plunging, high grade chute at depth for potential underground mining operations, one diamond hole to test mineralisation along strike to current drilling at the Giro Vein prospect plus the planned diamond hole on Line 400N to follow-up exceptional grades in holes GRCC217 and GRCC230.

The planned 3,500m, shallow scout RC drilling program to follow up on high-grade soil anomalies in the immediate surrounds at Kebigada, will be revised once additional soil geochemical results have been reported. Drilling is expected to commence once the drill rig has been serviced following the just completed infill drill programme. Significant new discoveries will be followed up with further drilling to delineate potential satellite resources which could add materially to the Kebigada resource.

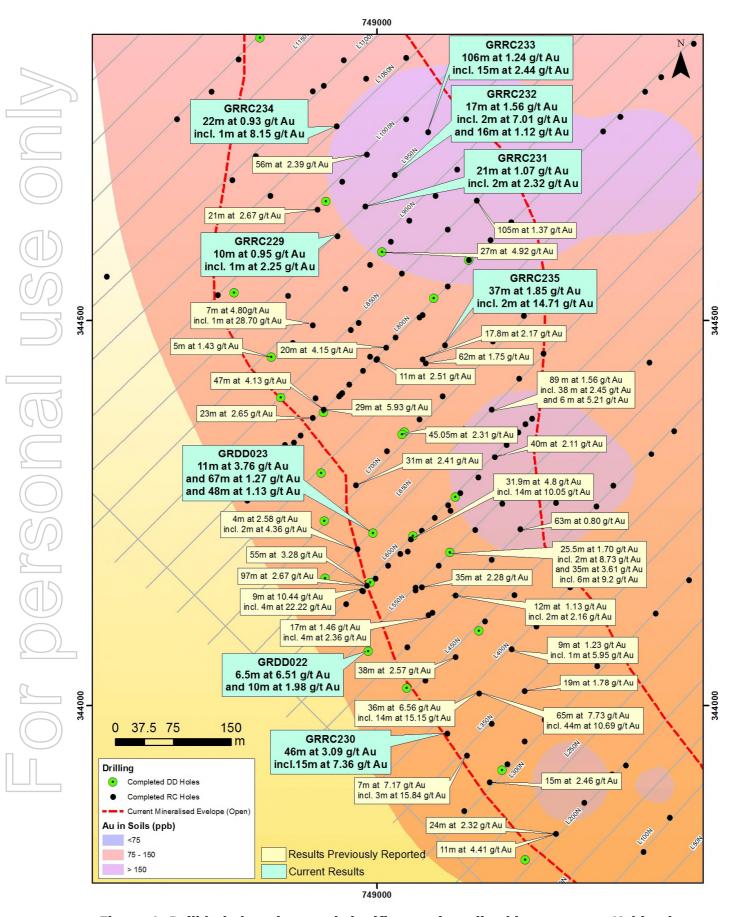


Figure 1: Drill hole locations and significant mineralised intercepts at Kebigada.

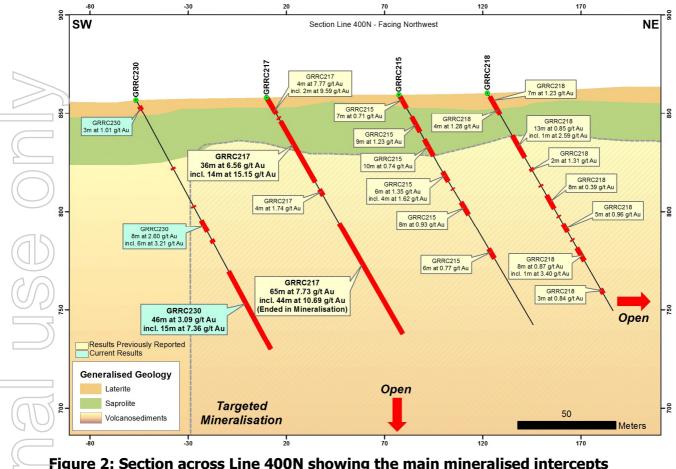


Figure 2: Section across Line 400N showing the main mineralised intercepts

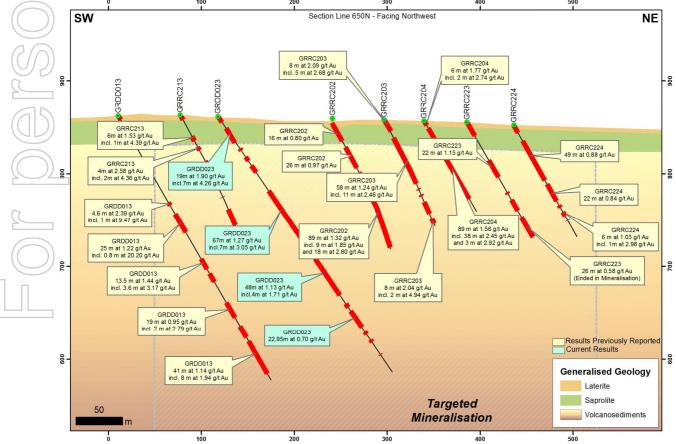


Figure 3: Section across Line 650N showing the main mineralised intercepts

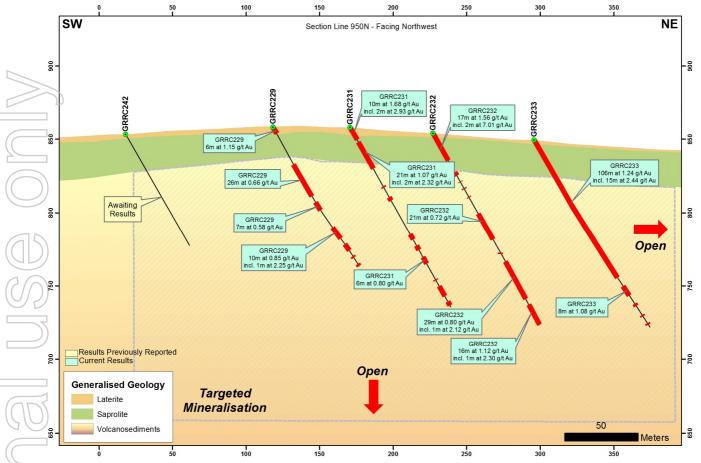


Figure 4: Section across Line 950N showing the main mineralised intercepts

Table 1: Summary of infill Diamond and RC drill holes and significant intersections received at Kebigada Shear Zone on the Giro Gold Project, DRC

Hole ID	Easting	Northing	RL	Azimuth	Dip	EOH (m)	From (m)	To (m)	Interval (m)	Grade Au g/t
GRDD022	748995	344224	862	43	-55	329.5	4	7	3	0.60 ¹
							11.2	12	0.8	0.86
							25	27.45	2.45	1.36
							32	33	1	0.56
							38	38.45	0.45	0.58
							70	76.5	6.5	6.51
						incl.	80	84.6	4.6	4.02
							83	84.6	1.6	9.95
							92	92.55	0.55	10.10
							100	103	3	0.62
							108	108.75	0.75	0.73
							115	120	5	0.28
							143	143.6	0.6	5.30
	·						149.1	149.65	0.55	1.56
							153	156.5	3.5	0.36

	Hole ID	Easting	Northing	RL	Azimuth	Dip	EOH (m)	From (m)	To (m)	Interval (m)	Grade Au g/t
							(111)		176		
								173	176	3	0.58
								182	183	1	0.61
	<u> </u>						inal	201	202.25	1.25	11.35
							incl.	201	201.5	0.5	27.60
	-						in al	205.5	225.2	19.7	0.84
							incl.	210.5	211.25	0.75	2.43
							inal	230	237.3	7.3	0.98 2.71
	<u> </u>						incl.	231 249	232 259	10	1.98
7							incl.	251	254	3	5.25
							IIICI.	309.05	310.5	1.45	1.48
							incl.	309.05	310.3	0.65	2.61
$/ \mathcal{D}$							mci.	326	327	1	0.53
	GRDD023	748989	344071	855	43	-50	330	0	7.1	7.1	1.09 ¹
)	7 10000	011072				incl.	4	5	1	3.45 ¹
							IIICI.	14	33	19	1.90
							incl.	18	25	7	4.26
							mci.	41	44.5	3.5	0.80
U)							52	58	6	0.84
								62	73	11	3.76
]						incl.	70	71	1	36.90
								78.5	79	0.5	1.30
=	<i>)</i>							95	162	67	1.27
							incl.	113	117	4	2.12
クレ	/						incl.	123	130	7	3.05
								167.5	174.4	6.9	1.15
15							incl.	168	169	1	2.54
	/							183	231	48	1.13
							incl.	185.75	188	2.25	4.42
							incl.	215	219	4	1.71
							incl.	227.2	231	3.8	1.89
	0							240.8	246.5	5.7	0.50
								250.05	273	22.95	0.70
)							278	282	4	0.63
П								288	291.6	3.6	0.59
								307	308	1	1.28
	GRRC229	748949	344609	858	43	-60	112	0	6	6	1.15 ¹
							incl.	0	1	1	2.41 ¹
								29	55	26	0.66
								59	66	7	0.58
								80	90	10	0.95
							incl.	89	90	1	2.25

Hole ID	Easting	Northing	RL	Azimuth	Dip	EOH (m)	From (m)	To (m)	Interval (m)	Grade Au g/t
							94	100	6	0.77
							104	106	2	1.38
							111	112	1	0.69 ³
GRRC230	749091	343964	856	43	-60	145	3	6	3	1.01 ¹
							39	40	1	1.6
							61	62	1	0.5
							69	77	8	2.6
/						incl.	70	76	6	3.21
							81	83	2	0.73
							99	145	46	3.09
						incl.	101	116	15	7.36
GRRC231	748985	344648	863	43	-60	140	0	10	10	1.68 ¹
<u> </u>		<u> </u>				incl.	6	8	2	2.93 ¹
							11	32	21	1.07
						incl.	18	20	2	2.32
							46	47	1	0.7
1							54	57	3	0.8
)							83	88	5	0.41
1							92	96	4	0.46
1							101	107	6	0.8
							119	120	1	0.75
)							124	132	8	0.52
							136	139	3	0.82
GRRC232	749023	344689	864	43	-60	150	0	5	5	1.48 ¹
						incl.	0	2	2	2.05 ¹
							5	22	17	1.56
)						incl.	7	9	2	7.01
							31	34	3	0.56
							38	39	1	0.71
							43	44	1	0.77
							50	51	1	0.58
							63	84	21	0.72
<u>) </u>						incl.	63	64	1	2.56
							94	95	1	0.68
							101	130	29	0.80
						incl.	127	128	1	2.12
							134	150	16	1.12
						incl.	139	140	1	2.30
GRRC233	749066	344744	861	43	-60	150	0	4	4	1.15 1
							4	110	106	1.24
						incl.	6	21	15	2.44
	<u> </u>					incl.	51	58	7	2.51

	Hole ID	Easting	Northing	RL	Azimuth	Dip	EOH (m)	From (m)	To (m)	Interval (m)	Grade Au g/t
								116	124	8	1.08
							incl.	118	119	1	3.14
	6							131	133	2	0.56
]							140	141	1	0.52
								147	148	1	0.74
	GRRC234	748948	344752	856	43	-60	150	0	7	7	0.83 ¹
								8	9	1	0.63
)							19	20	1	0.51
								29	30	1	1.24
615								34	40	6	0.6
)							57	59	2	0.61
26								73	83	10	0.55
02)							96	98	2	0.62
								103	104	1	0.97
	/							127	149	22	0.93
							incl.	135	136	1	8.15
	GRRC235	749088	344468	856	43	-60	145	0	4	4	2.58 ¹
								4	41	37	1.85
90	2						incl.	28	30	2	14.71
								47	71	24	1.12
							incl.	65	66	1	4.86
								79	86	7	0.62
	/							90	94	4	0.69
								100	101	1	0.81
	/							110	144	34	0.75

¹ - Laterite Intersections

NSR - No Significant Results

A cut-off grade of 0.5g/t Au was used with a maximum dilution of 3m within each intercept

Project Background and Potential — Giro

The Giro Gold Project comprises two exploitation permits covering a surface area of 497km² and lies within the Kilo-Moto Belt, a significant under-explored greenstone belt which hosts Randgold Resources' 17-million ounce Kibali group of deposits, lying within 30km of Giro. Kibali produced 585,946 ounces of gold in 2016 and is targeting production of 610,000 ounces for 2017, confirming a favourable mining environment in the region.

Historically, Belgian colonials mined high grade gold veins and laterite at Giro, Peteku, Douze Match, Mangote and Kai-Kai, all of which lie within an interpreted 30km structural corridor which transgresses both licenses from the SE to the NW. Initial focus was at Giro where Amani's exploration was

² - Cavity Intersected

³ - Hole Ended in Mineralisation

concentrated on drilling and geochemical sampling in the area mined historically during Belgian rule and in areas currently being mined by artisanal means. Drilling under Amani's >200ppb gold-in-soil anomaly which extends over 2,000m x 900m, defined a significant zone of mineralisation over 1,400m x 400m which is open at depths exceeding 150m. Highly significant diamond and RC drilling results included 97m at 2.56g/t Au from surface, 47m at 4.13g/t Au from 25m, incl. 29m at 5.93g/t Au from 25m and 38.1m at 2.53g/t Au from 191m including 30.6m at 3.00g/t Au from 198.5m. The Giro Prospect is cross-cut by numerous high-grade ENE-trending structures currently mined by artisanal miners and identified in the diamond drilling. One such vein at Peteku reported 4m at 21.7g/t Au.

The Company has completed soil sampling programmes for complete coverage of the corridor and is in process of sampling the remaining areas of both licences for new discovery or to assist with identifying areas to be dropped off to reduce licence fees. Highly significant soil anomalies were defined at Douze Match and Adoku where shallow scout drilling at Douze Match returned exceptional results of 2m at 196g/t Au from 12m and 15m at 255.6g/t Au from 15m, including 3m at 1,260g/t Au from 15m. Mineralisation at Douze Match is more complicated than expected and the Amani is doing follow up work to better understand controls on mineralization.

To the north, Belgian colonials mined two deposits on PE 5049 up to the end of the colonial era in the 1960s. These were the Mangote open pit where historic drilling results included 0.6m at 37g/t Au and 0.35m at 485g/t Au and the Kai-Kai underground workings. There is no record of methods used to obtain these results. Only quartz veins were sampled historically by the Belgians although recent diamond drilling reported a best intersection of 8.91m at 3.09g/t Au from 78.05m confirming potential for a broader zone of mineralisation surrounding high grade quartz veins. Both deposits are associated with a 1km long soil anomaly.

For more information contact: Klaus Eckhof Chairman Tel: +377 680 866 300

klauseckhof@monaco.mc

Peter Taylor
Investor Relations
Tel: +61 (0)412 036 231
peter@nwrcommunications.com.au

Or visit <u>www.amanigold.com</u>

Competent Person's Statement – Exploration Results

The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by Mr Klaus Eckhof, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy. Mr Eckhof is a director of Amani Gold Limited. Mr Eckhof has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr Eckhof consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the Giro Gold Project, other than the new results the subject of this report, has been previously reported by the Company in compliance with JORC 2012 in various market releases, with the last one being dated 4 May 2017. The Company confirms that it is not aware of any new information or data that materially affects the information included in those earlier market announcements.

Appendix A

		Appendix A	
Se	ection 1 Samp	2 Edition — Table 1 report Kebigada Pros ling Techniques and Data	spect
0	CRITERIA	JORC Code Explanation	Comment
	Sampling rechniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Reverse circulation drilling was used to obtain a 2kg sample for every 1m drilled which was sent to SGS accredited laboratory in Mwanza. Samples were homogenised 3 times before splitting off the 2kg sample. Sampling was carried out under strict QAQC procedures as per industry standards where certified reference materials (CRMs) of varying grades, blank samples and field duplicates are each inserted at a rate of 1 in 30 so that every 10th sample is a quality control sample. The samples were then prepared to produce a 50g subsample from each 2kg sample for fire assay with AA finish in an accredited laboratory. Diamond – Kebigada Sampling of diamond core was carried out under strict QAQC procedures as per industry standards where certified reference materials (CRMs) of varying grades, blank samples and field duplicates are each inserted at a rate of 1 in 30 so that every 10th sample is a quality control sample. Sampling was carried out according to lithological/structural boundaries having a minimum sample width of 40cm and a maximum sample width of 2m. HQ and NQ samples were split with the same half consistently submitted for assay. The samples which had an average weight of roughly 3-4kg were then crushed and split in an accredited laboratory to produce a 50g charge for fire assay with AA finish.
	Drilling echniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, 	RC – Kebigada Reverse circulation drilling of holes with an 11.1cm diameter hammer was employed to drill oriented holes. The

		GOLD
CRITERIA	JORC Code Explanation	Comment
	depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	holes were oriented with a compass. Downhole surveys were carried out every 30m.
		Diamond – Kebigada
		HQ core drilling down to fresh rock after which the hole was cased off before changing to NQ. A triple tube core barrel was used in the weathered profile after which a standard or double tube core barrel was used to ensure maximum core recovery. The holes were oriented with a compass,
		and surveyed with a Reflex digital survey single shot camera with a survey recorded every 30m. Core was orientated using a spear.
Drill sample	Method of recording and assessing core	RC – Kebigada
recovery	 and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	All samples were weighed on site to establish sample recoveries. Sample recovery was recorded in the drill logs, as well as sample loss. As poor recovery affected a minority of the
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	samples, the poor recovery was not taken into account while calculating mineralised intervals. However, intervals containing lateritic lithologies were labelled as such (see drill results Table 1). During drilling, cavities resulting in significant sample loss were encountered and recorded.
		Diamond — Kebigada
		All core is fitted and measured at the drill site and core gains or recoveries recorded against the driller's depths. Sample recovery was recorded in the drill logs, as well as sample loss. Core recoveries were generally better than
		80% in the weathered zone greater than 95% in the intermediate and fresh profile. In instances where recoveries were consistently less than 80%, holes were re-drilled. Where losses were noted in the saprolitic interval sample widths were limited to the width of the run with a maximum of 1.5m which was the length of the core barrel. As poor recovery affected a minority of the samples, the poor

recovery was not taken into account

CDITEDIA	10DC Code Euglemetics	Commont
CRITERIA	JORC Code Explanation	Comment
		while calculating mineralised intervals.
Logging	Whether core and chip samples have heep geologically and geotochnically.	RC — Kebigada
	been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. • Whether logging is qualitative or	Each metre of drill sample has been logged, recording its lithology, alteration, weathering, colour, grain size, strength, mineralisation, quartz veining and water content. The total
	quantitative in nature. Core (or costean, channel, etc) photography.	length of all drill holes was logged. Diamond – Kebigada
	The total length and percentage of the relevant intersections logged.	All core was logged geologically, geotechnically and structurally at industry standard levels. Core is marked with metre marks every metre and orientation and cut lines marked on every hole according to a fixed procedure. Logging is both qualitative and quantitative with core photographed for both wet and dry sample before being split. The total length of all drill holes was logged recording lithology, alteration, weathering, colour, grain size, strength, mineralisation and quartz veining.
Subsampling techniques	 If core, whether cut or sawn and whether quarter, half or all core taken. 	RC - Kebigada
and sample preparation	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Each metre sample was thoroughly homogenised by running the sample through the splitter 3 times before splitting off 2kg from each 1m sample,
)	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	a sample of roughly 2kg was bagged in a clear plastic bag with pre-printed sample ticket. Sampling was carried out under strict QAQC procedures as
	 Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. 	per industry standards where certified reference materials (CRMs) of varying grades, blank samples and field
) 1	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate the grain size of the material being 	duplicates are each inserted at a rate of 1 in 30 so that every 10th sample is a quality control sample. The sample bags containing 2kg of RC drill sample were sent to the SGS Laboratories in Tanzania in a sealed vehicle.
	sampled.	The final sample was crushed to >70% of the sample passing as less than 2mm. 1000g of sample was split from the crushed sample and

CRITERIA	JORC Code Explanation	Comment
		pulverised until 70% of the material could pass a 75um sieve. From this, a 50g sample was obtained for fire assay at SGS Laboratories in Tanzania.
		Crushing and pulverising were subject to regular quality control practices of the laboratory.
		Samples sizes are appropriate considering the grain size of the samples. However, in the case of lateritic lithology, a nugget effect could potentially occur. Intervals in laterites will therefore be treated separately in any resource estimations.
)		Diamond — Kebigada
		The highly weathered saprolitic zone was split using a bladed instrument. As soon as core had sufficient strength to withstand cutting using a diamond saw the cutting method was changed to the latter. All core was halved with the same half selected for sampling according to procedure. Sampling was then conducted according to geology or structure generally having a maximum sample width of 50cm for HQ core and 1m for NQ core although there were exceptions which were largely a result of core losses. Half core samples were then bagged in clear plastic bags with pre-printed sample tickets. Sampling was carried out under strict QAQC procedures as per industry standards where certified reference materials (CRMs) of varying grades, blank samples and field duplicates are each inserted at a rate of 1 in 30 so that every 10th sample is a quality control sample. The samples bags containing roughly 3-4kg of diamond core sample
		Tanzania.
		The final sample was crushed to >70% of the sample passing as less than 2mm. 1kg of sample was split

			COLD
CRITER	IA JORC Code E	xplanation	Comment
			from the crushed sample and pulverised until 70% of the material could pass a 75um sieve. From this, a 50g sample was selected for fire assay at SGS Laboratories.
			Crushing and pulverising were subject to regular quality control practices of the laboratory.
(1) (1)			Sample sizes are appropriate considering the grain size of the samples. However, in the case of lateritic lithology, a nugget effect is likely to occur. Intervals in laterites will therefore be treated separately in any resource estimations.
Quality of data and laborato	of the assaying	quality and appropriateness g and laboratory procedures ther the technique is tial or total.	RC - Kebigada The laboratory used 50g of sample and analysed samples using Fire Assay with an AA finish (accredited)
	 For geophysic handheld XRF parameters used analysis included model, reading applied and the lattice of quadopted (eg sternal labora acceptable level 	ical tools, spectrometers, instruments, etc, the ed in determining the ing instrument make and a times, calibrations factors eir derivation, etc. ality control procedures andards, blanks, duplicates, atory checks) and whether els of accuracy (ie lack of ision have been established.	method). This technique is considered an appropriate method to evaluate total gold content of the samples. Where the Au grade is above the 100g/t detection limit, the sample is re-assayed using Fire Assay gravitational method (non-accredited method). In addition to the laboratory's internal QAQC procedure, every 10th field sample comprised a blank sample, duplicate or standard sample.
			In total, 1,102 samples were submitted for assay, including 110 QAQC samples:
			- 37 certified standards with known gold content were inserted in the series. All return acceptable values.
			- 36 blank samples were inserted in the analytical series. All returned acceptable values below 0.02 g/t.
			- 37 duplicate samples were re- assayed for gold. 5 samples fell out of the 20% difference range with the original sample. These failures are being investigated.

CRITERIA	JORC Code Explanation	Comment
		Diamond – Kebigada
		The laboratory used 50g of sample and analysed samples using Fire Assay with an AA finish. This technique is considered an appropriate method to evaluate total gold content of the samples. In addition to the laboratory's internal QC procedure, every 10th field sample comprised a blank sample or standard sample.
		819 samples were submitted which included 27 blanks and 28 standards - of the 28 standards, all returned acceptable values.
		- all 27 blank samples returned acceptable values below 0.02 g/t.
		- 27 Duplicate drill core samples were also submitted, of these only 2 fell out of the 20% difference range with the original sample.
Verification of	The verification of significant intersections	RC – Kebigada
sampling and assaying	by either independent or alternative company personnel.	Log and sampling data was entered into spreadsheets, and then checked
	 The use of twinned holes. Documentation of primary data, data	for inconsistencies and stored in an Access database.
	entry procedures, data verification, data storage (physical and electronic) protocols.Discuss any adjustment to assay data.	Holes are logged by hand on printed log sheets. Logging is done according to standardised header, lithological and structural information. Data is then input into EXCEL spreadsheets
		which are then emailed to the database manager for input into Access. Data is then interrogated and all discrepancies are communicated and resolved with field teams to ensure only properly verified data is stored in the Access database.
		Diamond – Kebigada
		Log and sampling data was entered into spreadsheets, and then checked by the Exploration Manager for inconsistencies and stored in an Access database.
		No holes were twinned. Holes are logged by hand on printed log sheets. Logging is done according

CRITERIA	JORC Code Explanation	Comment
		to standardised header, lithological and structural information. Data is then input into EXCEL spreadsheets which are then emailed to the database manager for input into Access. Data is then interrogated and all discrepancies are communicated and resolved with field teams to ensure only properly verified data is stored in the Access database.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Drill hole collars were recorded with a Garmin handheld GPS with less than 10m accuracy. Hole positions are marked using tape and compass reducing relative error to less than 1metre along each drill line. The holes will be surveyed using a DGPS with centimetre accuracy. Coordinates are reported in the WGS84-UTM35N Grid system.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	RC - Kebigada The program is considered to be "infill" drilling between the 100 - 200m spaced existing drill lines. This additional drilling will reduce the drill lines spacing to between 50 - 100m, for possible resource estimation. The average depth of the RC holes is 130m Diamond - Kebigada The diamond drilling program is designed to delineate the down-dip extensions of the mineralised zones. It is envisaged to drill at least one to two diamond hole per section
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	RC and Diamond - Kebigada Drill holes were oriented perpendicularly to the interpreted strike of the mineralised zone already drill delineated by the first phase of drilling.
Sample security	• The measures taken to ensure sample security	Samples were collected under strict supervision of the Senior Exploration Geologist. Bagged samples were then

	CRITERIA	JORC Code Explanation	Comment
>> ==			labelled and sealed and stored on site in a locked dwelling for transport to the laboratory. Samples were transported to the laboratory in a sealed vehicle under supervision of a contracted logistics company.
	Audits or reviews	The results of any audits or reviews of sampling techniques and data	The Company's sampling techniques and data were reviewed and audited by MSA's resource geologist. All sampling techniques and procedures for data capture were deemed to be of industry standard and satisfactory, being supervised by the Company's senior and experienced geologists.

CRITERIA	JORC Code Explanation	Comment
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Exploitation Permits (Permis d'Exploitation), PE5046 and PE5049. These are owned by a joint venture company Giro Goldfields sarl formed between Amani Consulting sarl (65%) and Société Minière de Kilo-Moto sa (SOKIMO) (35%), both DRC registered entities. Amani Gold holds PE604 of Amani Consulting Topuro is in
xploration done by other parties	 Acknowledgment and appraisal of exploration by other parties 	The licensed area has not bee systematically explored since the er of Belgian colonial rule in 1960. Two field visits were conducted in the area the first in 2010 by the "Office do Mines d'or de Kilo-Moto" (OKIMO and the second in December 2011 by Universal Consulting SPRL, working for Amani.
		for Amani. Following a review of historical a previous exploration data, Par Resources Inc. conducted a first drilling campaign at the Giro prosp between December 2013

CRITERIA	JORC Code Explanation	Comment
		February 2014, completing 57 holes for 2,888m.
Geology	 Deposit type, geological setting and style of mineralisation. 	The geological setting is comprised mostly of volcano-sedimentary rocks from the Kibalian complex, with multiple granites and granitoid intrusions. A network of faults seems to have been reactivated at different intervals.
		Kebigada
		On the Giro prospect, the main lithologies hosting the mineralisation are saprolite, quartz veins and stringers and silicified volcanosediments. Mineralisation is
j 		associated with quartz veining and silicification of host rocks along a major NW trending shear zone. Generally higher gold grades are
		associated with greater percentages of sulphide (pyrite) and silicification.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	Drill hole collar data and main intervals are shown in Table 1 Elevation data was recorded using a
	o easting and northing of the drill hole collar	Garmin handheld GPS. Once the initial programme has been completed all drill hole collars will be surveyed with
	o elevation or RL (Reduced Level – elevation above sea level in	a DGPS to accurately establish position and elevation.
	metres) of the drill hole collar	
	o dip and azimuth of the hole	
1	o down hole length and interception depth	
7	o hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data	• In reporting Exploration Results,	RC - Kebigada
aggregation methods	weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades)	Each sample represented 1m of RC drilling.

		COLD
CRITERIA	JORC Code Explanation	Comment
	and cut-off grades are usually Material and should be stated. • Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical	To calculate assay intervals, a cut-off grade of 0.5g/t Au was used, with a maximum dilution of 3m at <0.5g/t Au. The results were weighted by length to calculate mean grades over sample intervals.
)	examples of such aggregations should be shown in detail.	Diamond – Kebigada
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Each sample generally represented 1m of diamond drilling however lithological and structural contacts are taken in consideration and intervals adjusted accordingly.
		To calculate assay intervals, a cut-off grade of 0.5g/t Au was used, with a maximum dilution of 3m at <0.5g/t Au.
		The results were weighted by length to calculate mean grades over sample intervals.
Relationship	These relationships are particularly	RC – Kebigada
between mineralisation	 important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All drill holes were inclined at -60° from horizontal
widths and intercept lengths		Generally drilling is perpendicular to the strike and dip of the mineralised zones. Down hole lengths are reported since difficulty in determining true widths from RC drilling.
		Diamond – Kebigada
		The drill holes were drilled with dips of -50° and -60° generally at -55°
		Drilling has indicated that the drill holes were drilled normal to the foliation but structural logging suggests mineralisation is associated with multiple structural orientations which makes it difficult to ascertain the true structural orientation controlling mineralisation
		True widths could not be determined as dip of mineralisation is still not clear with limited overlap in drill holes but is estimated to be 80-85% when using the dip of the regional foliation.

CRITERIA	JORC Code Explanation	Comment
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figure 1 shows the drill collar positions, Figures 2-4 are cross sections of lines with reported results. All mineralised intervals are reported in Table 1.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Results for all drill holes at Kebigada have been reported according to the data aggregation method described previously. All high grade intercepts are reported as included intervals to avoid misleading reporting.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Regional and infill soil sampling and geological mapping and sampling is ongoing on mining licences PE 5046 and 5049, with infill soil sampling ongoing where significant soil anomalies have been previously identified in the regional soil sampling programme.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Kebigada results are being assessed on an ongoing basis and additional holes planned and drilled when deemed necessary. Regional soil sampling programmes, including mapping and channel sampling of all exposures are currently underway in areas not yet sampled and infill sampling in areas where anomalous gold was identified previously on both licences (PE's 5046 and 5049).