

ASX Announcement 30 August 2017

WIDE NICKEL, COBALT & SCANDIUM INTERCEPTS AT QUICKSILVER

Figure 1 – Bagged drill samples from recent aircore at Quicksilver

HIGHLIGHTS

- G88's maiden aircore drilling program over the Garard prospect on the Quicksilver Nickel-Cobalt-Scandium project is now complete
- Systematic drilling on 400 x 100 metre centres has returned wide intercepts of nickel, cobalt and scandium mineralisation
- Intercepts* include:

QAC010 16 m	n @ 1.73% Ni,	<mark>۵.10% Co ۵</mark>	41 gpt Sc	from 36 m
-------------	---------------	-------------------------	-----------	-----------

- Incl. 8 m @ 2.16% Nickel from 40 m
- QAC015 12 m @ 0.16% Co, 0.58% Ni & 32 gpt Sc from 32 m
 - Incl. 4 m @ 0.26% Cobalt from 40 m

QAC019 55 m @ 63 gpt Scandium from Surface

*Assays are from 4 m composites, resample pending.

- Infill RC drilling is scheduled to begin in early September to facilitate estimation of resource in Q4 of 2017
- The 'Exploration Targets'* for Garard prospect are projected as:

20-30 Million Tonnes @ 0.1-0.2% Cobalt & 0.5-1.0% Nickel

30-60 Million Tonnes @ 45-75 gpt Scandium

*Please note that the potential quantity and grade of the Exploration Targets proposed for the Garard prospect are conceptual in nature as there has been insufficient exploration, to date, to allow the estimation of a Mineral Resource as defined by the 2012 JORC Code. In addition, it is uncertain if further exploration will result in the estimation of a Mineral Resource.

ASX: G88

CAPITAL STRUCTURE

Total shares on issue: 51.83m Unlisted Issued Options: 8.5m Market Cap @ 16c: \$8.3 million

CORPORATE DIRECTORY

Mr Rhod Grivas Non-Executive Chairman

> Mr Tim Putt Managing Director

Dr Koon Lip Choo Non-Executive Director

Mr Phillip Grundy Non-Executive Director

CONTACT DETAILS

1B/ 205-207 Johnson St, Fitzroy, Victoria, 3065
T: +61 (0) 3 9191 0135
F: +61 (0) 3 8678 1747

ACN 614 538 402

www.goldenmileresources.com.au

Golden Mile Resources (ASX: G88) ("Golden Mile" or "**Company**") is pleased to announce that the Company has completed its 'maiden' aircore drilling program over the Garard prospect (Figure 2) in the southern Quicksilver Nickel-Cobalt-Scandium project area.

Wide spaced aircore drilling has been completed on 400 x 100 metre centres, on north-south drill lines, across more than 1,500 metres of strike, in order to test the depth and continuity of mineralisation throughout the Garard prospect.

Drilling has returned wide intercepts of nickel, cobalt and scandium mineralisation across the target area, with **Reverse Circulation ('RC') drilling now scheduled to commence in September** to infill on the aircore drilling and test several key target areas at depth. This infill drilling will also test the proposed 'Exploration Target' for the Garard prospect and should allow the estimation of a JORC resource for the prospect prior to the close of 2017.

Quicksilver Project – Maiden Aircore Drilling Program over the Garard prospect

The Quicksilver nickel-cobalt-scandium project is located in the South-West Mineral Field of Western Australia. The project is composed of one granted Exploration Licence (E 70/4641 – 100% Golden Mile) covering 15 km of prospective stratigraphy. Previous exploration has highlighted an extensive nickel-cobalt surface anomaly over the Garard prospect (Figure 2), which covers over 2,400 metres of strike, located in the southern portion of the Quicksilver project.

The Garard prospect area has now been **systematically drill tested for the first time**, with aircore drilling undertaken on 400 x 100 metre centres to blade refusal^{*} – hole depths varied however, on average, drilling returning wide intercepts of nickel, cobalt and scandium mineralisation.

*A number of aircore holes hit refusal before reaching target depth, due to hard silicified and ferruginised bands within the weathering profile, in some cases ending in mineralisation. RC drilling planned for September will allow complete testing of the profile in these areas.

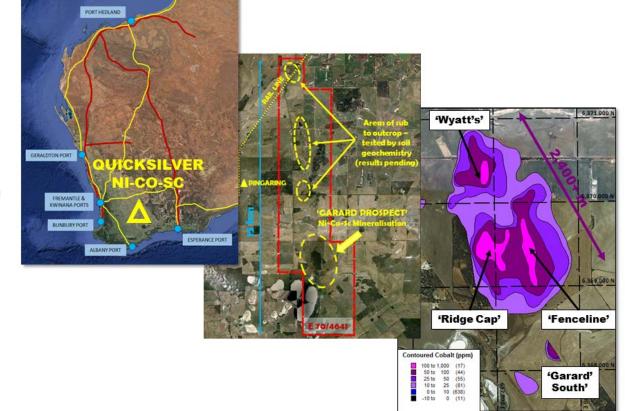


Figure 2 – Left to Right: Project location, Tenements & Prospect locations over Google Earth image and contoured cobalt surface geochemistry at Garard's

An evaluation of the mineralisation and weathering profile at the Garard prospect indicates varying styles of nickel, cobalt and scandium mineralisation within the weathering profile (Figure 3). These include an enriched zone of mineralisation in the lateritic zone, near surface, and in the saprolite zone, with drilling also indicating **nickeliferous mineralisation may extend into fresh rock.**

zone, with drilling	
38228	
, T ~	
Figure 3– A diagra A description of below:	
1. Nickel-Co	\bigcirc
Recent tra presently more tha	
Drilling connuctions connuctions.	
11 NoarS	1

	Depth Downhole	Quicksilver Generalised Profile	Cobalt (Co) %	Nickel (Ni) %	Scandium (Sc) gpt
2000	0-10m	Pisolitic Laterite ۵ Ferricrete	0.10-0.85%	0.20-1.00%	25-100 gpt
· ~ ~	10-20m	Limonite Zone	0.01-0.15%	0.10-0.50%	35-75 gpt
	₹ W07-02	Saprolite (Oxide)	0.05-0.30%	0.50-2.5%	25-100 gpt
	40-50m	Saprock	0.01-0.1%	0.25-1.5%	25-75 gpt
+11	Fre	esh Ultramafic Rock	<0.03% (?)	0.25-1.5% (?)	25-75 gpt (?)

Figure 3– A diagrammatic representation of the weathering/ oxidation profile at Quicksilver and distribution of nickel, cobalt and scandium within the profile.

A description of the important mineralisation styles, and key intercepts from drilling, is provided below:

1. Nickel-Cobalt Mineralisation

Recent trading has resulted in Cobalt and Nickel trading at record highs for 2017. **Cobalt is presently trading at more than US\$59,000/ tonne while Nickel has recently risen to more than US\$11,500/ tonne**¹.

Drilling completed to date at the Garard prospect indicates that there are two zones of nickel-cobalt mineralisation within the weathering profile, please see Figure 4 for drill hole locations.

1.1 Near Surface Cobalt Mineralisation

Significant cobalt mineralisation (>0.1%) may be found in the near surface, iron-rich pisolitic laterites & ferricrete and extend to around 10 metres depth. This style of mineralisation is more common in the southern portion of the Garard prospect, associated with areas of sub to outcropping laterite.

Cobalt-Nickel intercepts include (see Appendix 3 for full listing of significant cobalt-nickel intercepts):

QACO24	4 metres @ 0.18% Co, 0.61% Ni & 1.68% Mn*	from 4 metres
QACO25	4 metres @ 0.14% Co, 0.52% Ni & 1.27% Mn*	from Surface

*These 4 metre composite samples are subject to resample on 1 metre intervals and may yield higher grade intercepts.

Near surface, 'lateritic' intercepts by previous workers have included:

VH013	4 metres @ 0.68% Co, 0.36% Ni & 3.24% Mn	from 2 metres ³
QRB019	4 metres @ 0.23% Co, 0.98% Ni & 0.66% Mn	from 6 metres ⁴
QRC015	4 metres @ 0.36% Co & 0.45% Ni	from 9 metres ⁵

1.2 Saprolitic-Oxide Cobalt Mineralisation

Significant cobalt mineralisation has been intersected within the saprolitic oxide zone at the Garard prospect. This mineralisation extends from below the limonitic zone (~15-20 metres depth) to fresh rock.

Recent aircore drilling has returned wide intercepts of nickel, cobalt and scandium mineralisation associated with the host stratigraphy - intercepts also include a number of **significant (>1%) nickel** assays.

Cobalt-Nickel intercepts include (see Appendix 3 for full listing of significant cobalt-nickel intercepts):

QAC010	16 metres @ 0.10% Co, 1.73% Ni & 41 gpt Sc*	from 36 metres
Incl.	8 metres @ 2.16% Ni, 0.07% Co & 42 gpt Sc*	from 40 metres
QAC012	7 metres @ 0.15% Co, 0.68% Ni & 41 gpt Sc*	from 20 metres (BOH)
Incl.	3 metres @ 1.02% Ni, 0.10 % Co & 34 gpt Sc*	from 24 metres (BOH)
QAC014	12 metres @ 0.13% Co, 0.46% Ni & 35 gpt Sc*	from 16 metres
QAC015	12 metres @ 0.16% Co, 0.58% Ni & 32 gpt Sc*	from 32 metres

*These 4 metre composite samples are subject to resample on 1 metre intervals and may yield higher grade intercepts.

Oxide intercepts by previous workers have included:

QRB034	10 metres @ 0.30% Co & 1.25% Ni	from 19 metres ⁴
QRB038	10 metres @ 0.14% Co & 0.77% Ni	from 32 metres (BOH) ⁴
QRB061	7 metres @ 0.20% Co & 1.16% Ni	from 32 metres (BOH) ⁴

Anomalous grades of accessory metals are also associated with the nickel-cobalt mineralisation at the Garard prospect, including grades of up to **3.48% Manganese** (QAC015) and **1.87% Chrome** (QAC022).

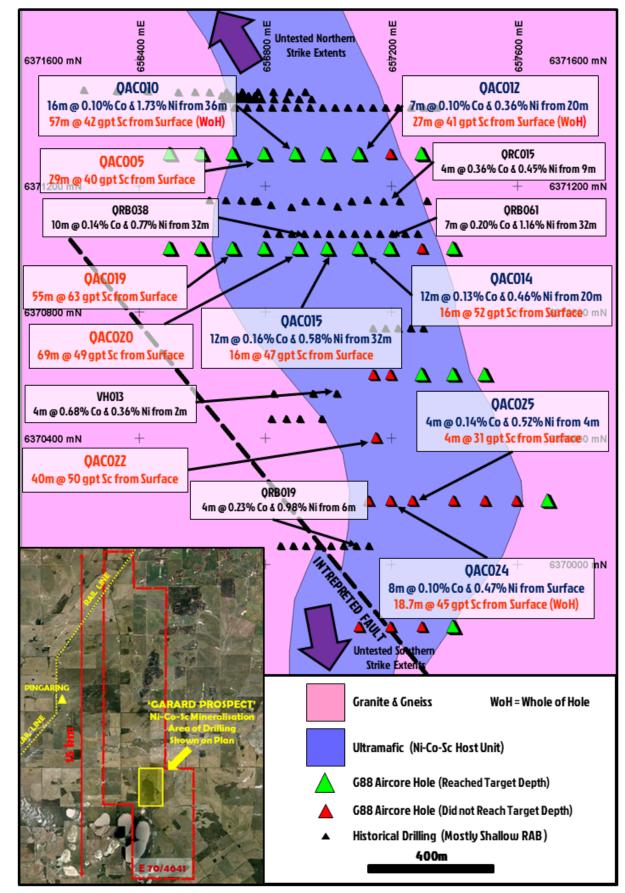


Figure 4 – Interpreted geology of the Garard prospect with drill hole locations and higher grade cobalt (>0.1% cobalt) and scandium intercepts, in addition to quoted historical intercepts.

2. Scandium Mineralisation

Scandium is becoming an increasingly valuable metal as technology advances, especially in relation to electric vehicles ('EV'). Scandium added to aluminium to produce light and strong alloys which have many applications including airframes and vehicle chassis. Scandium also has an increasing number of technological applications, including LED-type lighting.

In recent years scandium has traded between **US\$4,000-20,000 per kilogram²**, and potentially adds a significant credit to the mineralisation at Quicksilver project.

Analysis of the drilling data at shows moderate grades of scandium throughout the oxide profile at the Garard prospect, with the higher grade scandium mineralisation located in a layer above the cobalt-rich mineralisation, from surface to more than 20 metres depth. However a significant number of drill holes returned anomalous scandium mineralisation throughout the entire oxide profile, extending from surface to the bottom of hole (Figure 4).

Scandium intercepts include (see Appendix 4 for full listing of significant scandium intercepts):

QAC019	55 metres @ 63 gpt Scandium*	from Surface
Incl.	20 metres @ 77 gpt Scandium	from 12 metres
inci.	4 metres @ 100 gpt Scandium	from 20 metres
QACOZO	69 metres @ 49 gpt Scandium*	from Surface
Incl.	12 metres @ 66 gpt Scandium	from 24 metres
QACOZZ	40 metres @ 50 gpt Scandium	from Surface
QAC005	29 metres @ 40 gpt Scandium*	from Surface
inci.	4 metres @ 75 gpt Scandium	from Surface
QAC010	57 metres @ 42 gpt Scandium*	from Surface
QAC015	16 metres @ 47 gpt Scandium	from Surface
Inci.	4 metres @ 98 gpt Scandium	from Surface

*Indicates that the drill hole hosts scandium mineralisation from surface to end of hole, throughout the entire drill profile.

The distribution and grade of scandium mineralisation will continue to be evaluated as resampling commences and drilling continues.

3. Exploration Targets*

This initial phase of systematic drilling now allows an 'Exploration Target'* to be estimated for the mineralisation at the Garard prospect. These targets are based upon the results of the recent aircore drilling also taking into account the drilling by previous workers. The Exploration Targets presented are **not JORC 2012 resource estimates**, but rather an estimate of the potential tonnage and grade of mineralisation at the Garard prospect.

Two Exploration Targets have estimated for nickel-cobalt and scandium respectively:

3.1 Exploration Target – Nickel-Cobalt

The nickel-cobalt mineralisation at the Garard prospect has been intersected over more than 1,800 metres of strike and a breadth of more than 400 metres, with significant cobalt mineralisation intersected over widths varying between four and sixteen metres.

Exploration Target 20-30 Million Tonnes @ 0.1-0.2% Cobalt & 0.5-1.0% Nickel

3.2 Exploration Target – Scandium

Anomalous levels of Scandium mineralisation (>40 gpt) were intersected in all of the drill holes with ultramafic stratigraphy. A significant number of drill holes show scandium throughout the drill hole profile. It should be noted that the scandium mineralisation at the Garard prospect is related to the nickel-cobalt mineralisation and should not be regarded a separate entity at this time.

Scandium mineralisation at the Garard prospect has been intersected over more than 1,500 metres of strike and a breadth of over 400 metres, with significant mineralisation intersected over widths varying between six and sixty nine metres.

Exploration Target 30-60 Million Tonnes @ 45-75 gpt Scandium

*The potential quantity and grade of the Exploration Targets proposed for the Garard prospect is conceptual in nature as there has been insufficient exploration, to date, to allow the estimation of a Mineral Resource as defined by the 2012 JORC Code. In addition, it is uncertain if further exploration will result in the estimation of a Mineral Resource.

RC drilling is scheduled to commence in September 2017 to test these 'Exploration Targets' and move towards the estimation of a JORC resource.

4. Quicksilver Development Program

The development program over the Quicksilver project continues, including:

- Reconnaissance soil sampling of targets along the northern strike extensions from the Garard prospect, along more than 10 km of strike (Figure 2) results pending
- Resampling of the recent aircore drilling program, on one metre intervals
- Infill drilling, utilising a larger RC drill rig, to commence in early September to close the drill spacing at the Garard prospect from 400 x 100 metres to 200 x 50 metres and move towards the estimation of a JORC 2012 compliant resource.

Golden Mile looks forward to updating investors as the Company's drilling program over the Quicksilver project recommences in September, and the results of the above sampling programs becomes available.

<u>References</u>

- 1. https://www.lme.com/Metals
- 2. http://strategic-metal.com/products/scandium/scandium-price/
- 3. WA DMIRS WAMEX Report A15751
- 4. WA DMIRS WAMEX Report A62835
- 5. WA DMIRS WAMEX Report A96043

For further information please contact:

Rod North - Managing Director, Bourse Communications Pty Ltd T: (03) 9510 8309, M: 0408 670 706 E: rod@boursecommunications.com.au Tim Putt - Managing Director, Golden Mile Resources Ltd (ASX: G88) T: (08) 9480 0636, F: (08) 9321 0320 E: tputt@goldenmileresources.com.au

About Golden Mile Resources Ltd

Golden Mile Resources is an Australian based exploration and development company, with an outstanding suite of cobalt, gold, and base metal projects in Western Australia. The Company was formed in 2016 to carry out the acquisition, exploration and development of mining assets in Western Australia, and has to date acquired a suite of exploration projects, predominantly within the fertile North-Eastern Goldfields of Western Australia.

The Company's portfolio includes two nickel-cobalt projects, namely the Quicksilver project in the South West Mineral Field and the Minara project in the North Eastern Goldfields.

In addition, Golden Mile holds a suite of gold projects adjacent to Leonora which include the Ironstone Well & Leonora East projects.

The Company also holds the Darlot Gold project to the north of Leonora and the Gidgee Polymetallic project north of Sandstone.

For more information please visit the Company's website: https://www.goldenmileresources.com.au/

Exploration Targets

The term 'Exploration Target' should not be misunderstood or misconstrued as an estimate of Mineral Resources and Reserves as defined by the JORC Code (2012) and therefore the terms have not been used in this context. The potential quantity and grade of the Exploration target is conceptual in nature and there has been insufficient exploration to date to allow the estimation of a Mineral Resource. In addition it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Competent Persons Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based upon information compiled by Mr Timothy Putt, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Putt is the Managing Director of Golden Mile Resources Ltd, a full time employee and substantial shareholder of the Company.

Mr Putt has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Putt consents to the inclusion in the report of the matter based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Golden Mile Resources Ltd (ASX: G88) planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Golden Mile Resources Ltd (ASX: G88) believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Appendix 1 JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg 	 A total of 36 aircore drill holes (for 1,255 m of advance) were completed as part of the ongoing exploration program over the Quicksilver Project In total, these drill holes yielded 339 samples, comprised of composite samples, standards and blanks Drill samples were composed of 4 metre composites spear sampled from the 1 metre intervals produced from drilling, leaving the rotary split, 1 metre calico samples, for later resample.
Drilling techniques	 submarine nodules) may warrant disclosure of detailed information. Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Aircore drilling (95mm face sampling bit) was utilised to test the weathered stratigraphy to refusal.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All samples and subsamples were weighed to assess recovery Very little sample loss was observed at the collar There appears to be no sample bias or relationship between grade and sample recovery
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate 	 Small subsamples of the 1m drill intervals were collected and placed in a chip tray,

		RESOURCES
	 Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill holes were geologically logged, noting lithologies, veining and alteration, from their collar to the end of hole.
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core	 Samples were collected in two ways,
techniques and sample preparation	 taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 A rotary split of approximately 2 kg was taken on 1m intervals directly from the cyclone of the drill rig (for later resample), and A spear sample, from the remaining drill spoil, was taken to produce a 4m composite of the down hole drilling for initial assay.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Blanks and standards were introduced as checks through both Golden Mile sampling on site and by LabWest in Malaga.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The laboratory assaying techniques are suitable for the samples submitted. Samples were submitted to LabWest in Malaga, Perth, for a suite of elements including Ag, Co, Cr, Cu, Fe, Mg, Mn, Ni & Sc using an MAD prep and ICP analysis. Golden Mile introduced a mix of standards and blanks throughout the sample runs on a 1:20 ratio to ensure QC, Labwest also initiated duplicate sampling and ran their own standards as part of the assay regime.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Samples were collected, sampled and verified by independent geological consultant in the field and physically checked by Company personnel in the field before submitting to LabWest for assaying. Sampling and logging has been undertaken in hardcopy format prior to being entered into the Company's digital database. No adjustments to assay were done.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Samples were located using a hand held GPS (accurate to <5 metres) in GDA 94, Zone 50.

		٠	Specification of
		٠	Quality and ade
	Data spacing	٠	Data spacing for
>>>	and	•	Whether the dat
	distribution		degree of geolog
			Resource and C
			classifications a
		٠	Whether sample
	Orientation of	٠	Whether the orie
	data in		possible structu
	relation to		the deposit type
	geological	•	If the relationshi
	structure		of key mineralise
			sampling bias, tl
	Sample	•	The measures ta
	security		
	Audits or	•	The results of ar
	reviews		
)			

		KE3OUKCE3
	 Specification of the grid system used. Quality and adequacy of topographic control. 	
ata spacing nd stribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling was undertaken on 400 x 100 metre centres across the Garard prospect Spacing is insufficient to establish a resource at this time, although an 'Exploration Target' has been put forward Samples down hole are reported as 4m composites, with 1m resamples pending
rientation of ata in lation to eological ructure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Sampling is unbiased and was designed to test the oxidised lithologies in the profile and both drill and sampling orientations have been optimised to this end No bias is recognised at this time due to drill orientation.
ample ecurity	The measures taken to ensure sample security.	 Samples were bagged and secured by field staff prior to submission to the laboratory.
udits or views	• The results of any audits or reviews of sampling techniques and data.	• At this preliminary stage no audits of sampling technique were done.

Section 2 - Reporting of Exploration Results

>	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 E 70/4641 overlies both private and crown land with access agreements in place over the landowners where the active work program is being undertaken.
S	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Compilation of historical data has been completed and is being utilised to target the ongoing work program.
	Geology	 Deposit type, geological setting and style of mineralisation. 	Ultramafic hosted nickel, cobalt & scandium mineralisation.
)ersonal	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A full listing of the drill hole collar information is provided in Appendix 2. Of this report.
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Weighted averages have been used in the calculation of drill hole intercepts Lower cut-offs have included 500 ppm or 0.05% for Cobalt, 5,000 ppm or 0.5% for nickel and 30 gpt or 30 ppm for Scandium Most individual samples are 4m composites Allowable internal dilution was set at 4m for Ni-Co intercepts, and 8m for Sc intercepts. No 'metal equivalents' have been quoted.

	Relationship between mineralisation widths and intercept lengths	•	These relationships are partic Exploration Results. If the geometry of the mineral angle is known, its nature sho If it is not known and only the should be a clear statement to width not known').
0) (1)	Diagrams	•	Appropriate maps and section intercepts should be included reported These should includ drill hole collar locations and
n S	Balanced reporting	•	Where comprehensive report practicable, representative re and/or widths should be pract Exploration Results.
	Other substantive exploration data	•	Other exploration data, if mea including (but not limited to): g survey results; geochemical s method of treatment; metallur groundwater, geotechnical an deleterious or contaminating s
	Further work	•	The nature and scale of plann extensions or depth extension Diagrams clearly highlighting including the main geological provided this information is no

tionship een ralisation is and cept hs	•	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 At this point we believe that the mineralisation is 'sub-horizontal' and as such the drill hole dip, predominantly vertical, represents true width.
rams	•	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Maps are presented in the accompanying ASX announcement.
nced rting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 A listing of all the results from the reported intercepts is provided in Appendices 3 & 4 of this report.
r tantive pration	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 These factors are discussed in the body of the accompanying ASX announcement.
er work	•	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 The ongoing work program and discussion of targets for drilling is contained in the body of the report.

APPENDIX 2– GARARD PROSPECT, AIRCORE DRILL HOLE COLLARS

	Hole No	Hole Type	North (m)	East (m)	Grid	RL (m)	Dip	Mag Azi	Max Depth (m)
	QAC0001	Aircore	6371300	656500	GDA94_50	305	-60	270	28
	QAC000Z	Aircore	6371000	656500	GDA94_50	319	-60	270	30
\geq	QAC0003	Aircore	6371300	656600	GDA94_50	309	-60	270	48
	QAC0004	Aircore	6371300	656700	GDA94_50	303	-60	270	62
	QAC0005	Aircore	6371300	656800	GDA94_50	315	-60	270	29
	QAC0006	Aircore	6371300	657300	GDA94_50	304	-60	270	3
	QAC0007	Aircore	6371300	657200	GDA94_50	300	-60	270	25
Ð	QAC0008	Aircore	6371000	657300	GDA94_50	303	-60	270	22
	QAC0009	Aircore	6371000	656600	GDA94_50	300	-90	360	58
75	QAC0010	Aircore	6371300	656900	GDA94_50	319	-90	360	57
IJ	QAC0011	Aircore	6371300	657000	GDA94_50	311	-90	360	57
	QACOO1Z	Aircore	6371300	657100	GDA94_50	307	-90	360	27
V P	QAC0013	Aircore	6371000	657200	GDA94_50	317	-90	360	32
5	QAC0014	Aircore	6371000	657100	GDA94_50	332	-90	360	60
P	QAC0015	Aircore	6371000	657000	GDA94_50	319	-90	360	58
	QAC0016	Aircore	6371000	656800	GDA94_50	324	-90	360	42
	QAC0017	Aircore	6370600	657200	GDA94_50	314	-90	360	27
\square	QAC0018	Aircore	6370600	657146	GDA94_50	320	-90	360	30.5
Y	QAC0019	Aircore	6371000	656700	GDA94_50	Z99	-90	360	55
	QAC00Z0	Aircore	6371000	656910	GDA94_50	324	-90	360	69
1	QACOOZ1	Aircore	6370600	657300	GDA94_50	303	-90	360	18
	QACOOZZ	Aircore	6370400	657154	GDA94_50	312	-90	360	45
7	QACOOZ3	Aircore	6370200	657130	GDA94_50	313	-90	360	18.3
\square	QACOOZ4	Aircore	6370200	657200	GDA94_50	Z96	-90	360	18.7
F	QAC0025	Aircore	6370200	657270	GDA94_50	302	-90	360	12.7
1	QACOOZ6	Aircore	6369800	657200	GDA94_50	Z8 Z	-90	360	44
	QAC0027	Aircore	6369800	657100	GDA94_50	282	-90	360	41
7	QAC0028	Aircore	6369800	657300	GDA94_50	281	-90	360	27.2
	QACOOZ9	Aircore	6369800	657400	GDA94_50	Z8 Z	-90	360	6
	QAC0030	Aircore	6370200	657400	GDA94_50	309	-90	360	32.5
	QAC0031	Aircore	6370200	657500	GDA94_50	309	-90	360	37
	QAC0032	Aircore	6370200	657600		Z86	-90	360	30.5
7	QAC0033	Aircore	6370200	657700		287	-90	360	15
Þ	QAC0034	Aircore	6371000	657400		302	-90	360	15
	QAC0035	Aircore	6370600	657400		282	-90	360	60
	QAC0036	Aircore	6370600	657500		303	-90	360	15

APPENDIX 3 – GARARD PROSPECT, NICKEL-COBALT INTERCEPTS & ASSAYS

Hole No	North	East	Grid	Depth (m)	Cobalt Intercepts (>0.05% Cut Off)
QAC0010	6371300	656900	GDA94_50	57	16m @ 0.10% Co, 1.73% Ni & 41 gpt Sc from 36m
QAC0011	5m @ 0.07% Co, 0.36% Ni, & 24 gpt Sc from 52m (EoH)				
QAC001Z	6371300	657100	GDA94_50	27	7m @ 0.15% Co, 0.68% Ni & 41 gpt Sc from 20m (EoH)
]					Including 4m @ 0.19% Cobalt from 20m
QAC0014	6371000	657100	GDA94_50	60	12m @ 0.13% Co, 0.46% Ni, & 35 gpt Sc from 16m
)					Including 4m @ 0.19% Cobalt from 16m
QAC0015	6371000	657000	GDA94_50	58	12m @ 0.16% Co, 0.58% Ni & 32 gpt Sc from 32m
					Including 4m @ 0.26% Cobalt from 40m
QAC0016	6371000	656800	GDA94_50	42	12m @ 0.07% Co, 0.44% Ni & 26 gpt Sc from 24m
QAC0017	6370600	657200	GDA94_50	27	8m @ 0.05% Co, 0.47% Ni & 33 gpt Sc from 8m
QAC00ZZ	6370400	657154	GDA94_50	45	8m @ 0.08% Co, 0.58% Ni & 46 gpt Sc from 28m
QACO0Z4	6370200	657200	GDA94_50	18.7	8m @ 0.10% Co, 0.47% Ni & 39 gpt Sc from Surface
)					Including 4m @ 0.18% Cobalt from 4m
QAC0025	6370200	657270	GDA94_50	12.7	8m @ 0.08% Co, 0.35% Ni & 23 gpt Sc from Surface
QAC0035	6370600	657400	GDA94_50	60	8m @ 0.07% Co, 0.35% Ni & 13 gpt Sc from 24m

Appendix 3.1- Significant Cobalt Intercepts (Greater than 0.05% Cobalt)

C

Appendix 3.2 – Significant Nickel Intercepts (Greater than 0.5% Nickel)

ALX						
, (U)						
	*Allou	vable internal d	lilution on inte	rcepts of up to 4 i	metres at less that	n cut-off – Co=Cobalt, Ni=Nickel & Sc=Scandium, EoH=End of Hole
	Anno	ondiv 3 7 _ S	ianificant N	lickal Intorca	nts (Graatar t	than 0.5% Nickel)
	Арра	211UIN J.L - 3	ignincant i		his (oreater i	
Hole	No	North	East	Grid	Depth (m)	Nickel Intercepts (0.5% Cut Off)
	005	6371300	656800	GDA94_50	29	5m @ 0.74% Ni, 0.02% Co, 0.76% Cr & 24 gpt Sc from 24m (EoH)
QACC	008	6371000	657300	GDA94_50	22	10m @ 0.57% Ni, 0.03% Co, 0.57% Cr & 47 gpt Sc from 12m (EoH)
QAC(010	6371300	656900	GDA94_50	57	21m @ 1.48% Ni, 0.02% Co, 0.65% Cr & 39 gpt Sc from 36m (EoH)
						Including 8m @ 2.16% Nickel from 40m
QAC)011	6371300	657000	GDA94_50	57	1m @ 0.52% Ni, 0.02% Co, 0.51% Cr & 31 gpt Sc from 56m (EoH)
QAC)01Z	6371300	657100	GDA94_50	27	3m @ 1.02% Ni, 0.10% Co, 1.02% Cr & 34 gpt Sc from 24m (EoH)
QAC	013	6371000	657200	GDA94_50	32	8m @ 0.60% Ni, 0.04% Co, 0.47% Cr & 19 gpt Sc from 16m
QAC	014	6371000	657100	GDA94_50	60	20m @ 0.60% Ni, 0.06% Co, 0.53% Cr & 34 gpt Sc from 20m
QAC	015	6371000	657000	GDA94_50	58	26m @ 0.55% Ni, 0.03% Co, 0.40% Cr & 38 gpt Sc from 32m (EoF
QAC	016	6371000	656800	GDA94_50	42	4m @ 0.55% Ni, 0.08% Co, 0.82% Cr & 15 gpt Sc from 32m
QAC	0017	6370600	657200	GDA94_50	27	12m @ 0.50% Ni, 0.02% Co, 0.13% Cr & 40 gpt Sc from 8m
QAC	018	6370600	657146	GDA94_50	30.5	6.5m @ 0.59% Ni, 0.02% Co, 0.36% Cr & 36 gpt Sc from 24m (Eol
QAC	019	6371000	656700	GDA94_50	55	8m @ 0.55% Ni, 0.02% Co, 0.10% Cr & 58gpt Sc from 44m
QACO	0Z0	6371000	656910	GDA94_50	69	4m @ 0.51% Ni, 0.01% Co, 0.71% Cr & 57 gpt Sc from 16m
						8m @ 0.70% Ni, 0.01% Co, 0.68% Cr & 67 gpt Sc from 28m
						9m @ 0.72% Ni, 0.03% Co, 0.18% Cr & 41 gpt Sc from 41m (EoH)
QAC	0 2 2	6370400	657154	GDA94_50	45	13m @ 1.01% Ni, 0.05% Co, 0.31% Cr & 35 gpt Sc from 32m (EoH)

	Hole No	North	East	Grid	Depth (m)	Nickel Intercepts (0.5% Cut Off)
	QAC0023	6370200	657130	GDA94_50	18.3	6.3m @ 0.64% Ni, 0.02% Co, 0.48% Cr & 23 gpt Sc from 12m (EoH)
	QAC0024	6370200	657200	GDA94_50	18.7	4m @ 0.61% Ni, 0.18% Co, 0.78% Cr & 37 gpt Sc from 4m
	QAC0025	6370200	657270	GDA94_50	12.7	4m @ 0.52% Ni, 0.14% Co, 0.36% Cr & 31 gpt Sc from Surface
						4.7m @ 0.53% Ni, 0.03% Co, 0.17% Cr & 23 gpt Sc from 8m
\geq	QAC0026	6369800	657200	GDA94_50	44	4m @ 0.50% Ni, 0.02% Co, 0.05% Cr & 34 gpt Sc from 28m
						4m @ 0.52% Ni, 0.02% Co, 0.07% Cr & 14 gpt Sc from 36m
	QAC0035	6370600	657400	GDA94_50	60	8m @ 0.54% Ni, 0.03% Co, 0.27% Cr & 19 gpt Sc from Surface

Appendix 3.3 - Drill Hole Assays (Cut off 0.5% Nickel and/or 0.05% Cobalt)

							4.7m @ 0.5	3% Ni, 0.03%	5 Co, 0.17% C	ir & <mark>23 gpt Sc f</mark>	rom 8m
	QACOOZ6	6369800	657200	GDA94_5	50 4	4	4m @ 0.50%	% Ni, 0.02% (Co, 0.05% Cr	۵34 gpt Sc fr	rom 28m
							4m @ 0.529	% Ni, 0.02% (Co, 0.07% Cr	& 14 gpt Sc fr	om 36m
G	QAC0035	6370600	657400	GDA94_5	50 6	50	8m @ 0.54%	Ni, 0.03% Co), 0.27% Cr δ	19 gpt Sc fror	n Surface
				_							
	*AII	owable internal dil	ution on intercep	ts of up to 4 m	etres at less th	an cut-off – Co	=Cobalt, Ni=Nickel, C	r=Chromium & Sc	=Scandium, EoH=	End of Hole	
))										
	Ар	pendix 3.3 - D	rill Hole As	says (Cut c	off 0.5% N	lickel and	or 0.05% Co	balt)			
a	<u> </u>	-						-			<u>. </u>
	Hole No	Sample No	From	То	Ag ppm	Co ppm	Cr ppm	Cu ppm	Mn ppm	Ni ppm	Sc gpt
QQ	QAC0005	G00046	0	4	0.08	120	8010	81.8	1900	2830	75
()	QAC0005	G00047	4	8	0.06	46.6	1.27%	80.8	165	4720	46
	QAC0005	G00048	8	12	0.03	53.5	1.31%	67.6	252	4840	37
	0AC0005	G00049	12	16	0.07	124	5210	112	710	2330	27
	QAC0005	G00050	16	20	0.13	97.4	8630	111	572	4560	34
	QAC0005	G00051	20	24	0.07	75.5	5020	62.3	548	2470	50
65	ØAC0005	G00052	24	Z8	0.07	169	6140	63	2550	7390	23
U U	QAC0005	G00053	Z8	29	2.54	200	7540	78.3	Z110	6930	30
Ē	0AC0008	G00063	0	4	0.05	113	2580	14.8	2970	2210	11
2	QAC0008	G00064	4	8	0.04	35.6	4630	35.9	143	931	29
C	0AC0008	G00065	8	12	0.06	65.7	6290	137	50	1780	48
	0AC0008	G00066	12	16	0.32	310	8620	163	1650	6380	68
QA	QAC0008	G00067	16	ZO	0.06	341	4430	141	1170	5310	37
\bigcirc	0AC0008	G00068	20	ZZ	0.08	257	2580	94.2	513	4960	24
<u> </u>	OAC0010	G00085	0	4	0.24	27.1	5750	75.7	526	989	41
a	QAC0010	G00086	4	8	0.18	13.6	5440	90.Z	572	638	32
	0AC0010	G00087	8	12	0.07	9.Z	9380	110	97	753	40
	QAC0010	G00088	12	16	0.05	29	6470	74.8	32	1290	43
	QAC0010	G00089	16	20	0.05	8Z.6	6480	104	125	2660	48
	QAC0010	G00090	20	24	0.04	86.7	4810	93.9	469	875	33
	QAC0010	G00091	24	28	0.05	54.2	6560	155	312	869	57
	QAC0010	G0009Z	Z8	32	0.4	45.5	4540	133	665	751	57
	QAC0010	G00093	32	36	0.14	116	4880	170	313	2730	48
	QAC0010	G00094	36	40	0.33	1510	2840	207	7010	15400	47
	QAC0010	G00095	40	44	0.12	904	Z980	107	3310	23000	37
	QAC0010	G00096	44	48	0.06	440	5660	77.3	1160	20200	47
	QAC0010	G00097	48	52	0.3	1020	8250	151	1.77%	10500	32
	QAC0010	G00098	52	56	0.33	350	11200	137	3320	6830	37
	QAC0010	G00099	56	57	0.96	336	12100	144	3940	7220	24
	QAC0011	G00101	0	4	0.11	230	8180	41.7	499	1100	56

	Hole No QACOO11 QACOO11 QACOO11 QACOO11 QACOO11 QACOO11 QACOO11 QACOO11 QACOO11	Sample No G00102 G00103 G00104 G00105 G00106 G00107 G00108 G00109	From 4 8 12 16 20 24 28	To 8 12 16 20 24 28	Ag ppm 0.49 0.19 0.25 0.13 0.12	Co ppm 8.5 21.4 12.4 10.4	Cr ppm 1290 907 257	Cu ppm 12.7 15.5 7.5	Mn ppm 51 62 49	Ni ppm 146 95	Sc gpt 8 6
	QACOO11 QACOO11 QACOO11 QACOO11 QACOO11 QACOO11 QACOO11 QACOO11	G00103 G00104 G00105 G00106 G00107 G00108	8 12 16 20 24	12 16 20 24	0.19 0.25 0.13	21.4 12.4	907	15.5	62	95	6
	QACOO11 QACOO11 QACOO11 QACOO11 QACOO11 QACOO11 QACOO11	G00104 G00105 G00106 G00107 G00108	12 16 20 24	16 20 24	0.25 0.13	12.4					-
	QACOO11 QACOO11 QACOO11 QACOO11 QACOO11 QACOO11	G00105 G00106 G00107 G00108	16 20 24	20 24	0.13		257	75	<i>(</i> .0		-
	QACOO11 QACOO11 QACOO11 QACOO11 QACOO11	G00106 G00107 G00108	20 24	24		10.4		7.7	49	77	3
	0AC0011 0AC0011 0AC0011 0AC0011	G00107 G00108	24		A 17	1911	361	5	69	97	3
	0AC0011 0AC0011 0AC0011	G00108		70	U.12	10.4	549	6	43	113	3
0	QACOO11 QACOO11		79	20	0.13	6	414	6.6	38	81	3
Q	QAC0011	G00109	20	32	0.14	8	668	9.8	145	122	6
Q			32	36	0.03	33.9	3870	30.8	755	560	29
	0000011	G00110	36	40	0.03	16.3	Z350	9.3	242	310	10
	YACOUN	G00111	40	44	0.02	21.1	Z110	9	274	274	2
Q	QAC0011	G00112	44	48	0.03	41.5	2540	19.7	524	772	12
	QAC0011	G00113	48	52	0.03	148	4130	50.2	1900	1750	42
1100	0AC0011	G00114	52	56	0.08	760	6100	128	4760	3210	22
	QAC0011	G00115	56	57	0.03	Z36	5060	63	526	5180	31
$(\overline{\mathbb{D}})$)ACOO1Z	G00116	0	4	0.1	23.7	1.60%	6.8	Z12	463	32
- 6	DACOO12	G00117	4	8	0.06	30.Z	1.64%	30.8	151	713	46
Dò	ACOO12	G00118	8	12	0.03	74.2	9500	70.7	781	2400	51
Q	QACOO1Z	G00119	12	16	0.03	72.9	4490	46.6	826	1460	41
Q	QACOO1Z	G00121	16	20	0.03	131	1.48%	73.2	588	4760	35
0	0AC0012	G00122	20	24	1.21	1940	8820	127	28000	3370	48
D	ACOO12	G00123	24	27	0.31	1020	1.02%	53.8	9670	10200	34
\neg	OAC0013	G00124	0	4	1.86	187	9550	54	1740	1350	55
Q	QAC0013	G00125	4	8	0.04	237	2750	74.4	2230	3470	43
0	QAC0013	G00126	8	12	0.38	658	5470	48.6	2550	7280	21
Q	AC0013	G00127	12	16	0.28	163	3960	42.6	386	4660	16
Q	QAC0013	G00128	16	20	0.8	194	2850	69.Z	868	Z980	16
//D0	AC0013	G00129	20	24	0.07	109	1590	168	829	969	27
Q	QAC0013	G00130	24	Z8	0.06	57	880	155	684	566	22
	QAC0013	G00131	28	32	0.09	54.8	1040	184	794	810	21
100	AC0014	G00132	0	4	0.14	60.3	1.25%	92.8	584	1770	81
	QAC0014	G00133	4	8	0.04	54.1	3290	54.3	272	415	15
ÌÒ)AC0014	G00134	8	12	0.3	172	4090	106	Z860	1380	46
Q	QAC0014	G00135	12	16	0.04	181	7000	109	4580	2480	64
Q)AC0014	G00136	16	ZO	0.11	1870	3000	112	15100	Z100	32
Q)AC0014	G00137	20	24	0.1	1660	4940	88.4	9530	6990	40
0)AC0014	G00138	24	Z8	0.05	523	5450	40.7	4130	4790	34
±)AC0014	G00139	Z8	32	0.02	384	5940	10.4	3510	7340	34
Q)AC0014	G00141	32	36	0.05	Z36	5560	10.3	4480	5740	36
	AC0014	G00142	36	40	0.06	Z08	4680	11.5	2640	5190	25
_) AC0014	G00143	40	44	0.0Z	151	2070	4.7	2050	3600	12
	Dacoo14	G00144	44	48	0.04	102	1780	4.8	3140	2420	12
)AC0014	G00145	48	52	0.06	93.7	1780	8.7	2570	2520	12
)AC0014	G00146	52	56	0.07	115	2850	15.4	1690	2300	16

	Hole No	Sample No	From	То	Ag ppm	Co ppm	Cr ppm	Cu ppm	Mn ppm	Ni ppm	Sc gpt
	QAC0014	G00147	56	60	0.07	127	3160	13.3	1470	1810	13
	QAC0015	G00148	0	4	0.3	20.1	9880	29.6	139	453	98
	QAC0015	G00149	4	8	0.06	13.3	3490	53	180	208	32
	QAC0015	G00150	8	12	0.03	14.6	2670	52.1	354	289	29
\geq	QAC0015	G00151	12	16	0.02	32.9	9990	76.8	334	2060	30
_	QAC0015	G00152	16	20	0.12	5.5	680	14.4	159	126	4
	QAC0015	G00153	20	24	0.07	6.3	428	17.6	173	137	4
	QAC0015	G00154	24	28	0.06	15.1	1310	30.6	Z19	494	14
\sim	QAC0015	G00155	Z8	32	0.05	59. 2	2820	63.5	342	2140	22
	QAC0015	G00156	32	36	0.51	1700	3990	95.4	10500	8510	34
	QAC0015	G00157	36	40	0.09	648	Z160	61.5	4870	1810	33
_	QAC0015	G00158	40	44	0.27	2580	5260	103	34800	6990	29
11	QAC0015	G00159	44	48	0.1	283	4420	134	3920	3800	57
	QAC0015	G00161	48	52	0.07	337	3650	74.5	3380	7230	44
//	QAC0015	G00162	52	56	0.07	347	3610	64.6	5310	4890	42
	QAC0015	G00163	56	58	1.13	8Z1	6050	46.9	8830	4730	15
	QAC0016	G00164	0	4	0.27	57	9020	22.8	837	1900	58
	QAC0016	G00165	4	8	0.04	96.1	9240	Z6.8	1970	3390	30
	QAC0016	G00166	8	12	0.02	73.6	9320	26.9	535	3190	39
	QAC0016	G00167	12	16	0.02	55.5	1.08%	53.6	445	1780	68
$\left \right $	QAC0016	G00168	16	20	0.02	92	6650	64.5	1890	1340	49
	QAC0016	G00169	20	24	0.03	326	6390	70.3	6080	2040	50
	QAC0016	G00170	24	28	0.02	538	1.18%	108	9310	4420	43
	QAC0016	G00171	Z8	32	0.03	770	6270	51.6	7000	3380	19
	QAC0016	G00172	32	36	0.08	857	8180	34	5320	5510	15
	QAC0016	G00173	36	40	0.25	237	2570	5.3	1090	2290	3
//	QAC0016	G00174	40	42	11.8	187	3790	18.8	1120	3180	7
	QAC0017	G00211	0	4	0.16	114	2020	138	1800	905	58
	QAC0017	G00212	4	8	0.22	686	1740	263	4040	4110	33
	0AC0017	G00213	8	12	0.19	221	1580	168	726	5390	33
	QAC0017	G00214	12	16	0.05	115	1600	648	449	3650	59
	QACOO17	G00215	16	20	0.24	201	764	293	1490	6050	Z9
	QAC0017	G00216	20	24	0.06	215	1010	49.8	1070	4080	9
	QAC0017	G00217	24	27	0.15	119	1020	24.9	704	2830	4
	QAC0018	G00209	0	4	0.07	33.3	4390	30.1	153	452	23
	QAC0018	G00210	4	8	0.61	70.3	4200	42.5	270	691	38
_	QAC0018	G00334	8	12	0.61	57.7	1940	70.8	364	596	41
]]	QAC0018	G00335	12	16	0.04	101	1580	89	264	1630	24
	QAC0018	G00336	16	20	0.02	169	2230	63.3	786	3110	29
	QAC0018	G00337	20	24	0.02	196	1440	63.5	622	3000	20
	QAC0018	G00338	24	28	0.03	327	1740	62.8	2630	6870	52
	QAC0018	G00339	Z8	30.5	0.03	188	6440	22.3	3030	4270	10
	QAC0019	G00194	0	4	0.12	31.4	2590	27.6	408	716	58

	Hole No	Sample No	From	То	Ag ppm	Co ppm	Cr ppm	Cu ppm	Mn ppm	Ni ppm	Sc gpt
	QAC0019	G00195	4	8	0.05	33.5	872	62.7	292	358	50
	QAC0019	G00196	8	12	0.11	28.1	915	120	293	520	45
	QAC0019	G00197	12	16	0.09	35.1	Z160	142	438	1240	73
	QAC0019	G00198	16	ZO	0.03	34.4	2530	108	1080	1480	76
	QAC0019	G00199	20	24	0.03	41.8	2160	187	1560	1870	100
	QAC0019	G00201	24	Z8	0.04	39.5	1510	69.8	898	730	52
	QAC0019	G00202	Z8	32	0.3	49.9	6340	98.3	2350	1960	86
	QAC0019	G00203	32	36	0.Z	637	4370	141	15800	2920	51
	QAC0019	G00204	36	40	0.23	1080	1360	105	14600	4320	59
	QAC0019	G00205	40	44	0.09	197	1320	57.9	4000	3200	67
	QAC0019	G00206	44	48	0.Z	112	838	79.2	1430	5530	57
	QAC0019	G00207	48	52	0.14	186	1120	72.2	3680	5050	58
11	QAC0019	G00208	52	55	0.31	132	789	50.4	3330	3930	50
	QAC0020	G00175	0	4	0.21	17.7	4570	15.5	175	293	28
	QACOOZO	G00176	4	8	0.14	Z1.5	1.52%	76	334	2160	49
	QAC0020	G00177	8	12	0.1	22.3	1.12%	60.3	501	2560	48
	QAC0020	G00178	12	16	0.12	35.6	2540	40.8	440	1450	40
	QAC0020	G00179	16	20	0.14	78.1	7120	84.4	971	5130	57
	QAC0020	G00181	20	24	0.11	45.2	3390	35.4	1020	2630	48
	QAC0020	G00182	24	28	0.07	58.3	4880	52.4	765	4160	66
$\left \right $	QAC0020	G00183	Z8	32	0.1	66.8	6600	115	946	7690	70
	QAC0020	G00184	32	36	0.27	166	7040	231	13300	6250	63
	QAC0020	G00185	36	40	0.14	88.9	3180	57.4	7300	2080	50
	QAC0020	G00186	40	44	0.11	49.9	3160	66.3	2940	1640	50
	QACOOZO	G00187	44	48	0.15	35.2	2250	77.8	1450	740	50
	QAC0020	G00188	48	52	0.03	22.1	2120	72.7	893	661	53
]/[QACOOZO	G00189	52	56	0.33	98.Z	1840	67.2	2470	667	39
	QAC0020	G00190	56	60	0.85	441	1220	77.9	5160	750	28
	QACOOZO	G00191	60	64	0.1	356	Z090	110	1600	7300	33
	QACOOZO	G00192	64	68	0.09	194	1530	73.5	720	6790	45
	QAC0020	G00193	68	69	0.02	126	1360	64	302	8650	56
	QACOOZZ	G00224	0	4	0.18	28.7	1.63%	51.8	916	484	51
	QAC0022	G00225	4	8	0.0Z	332	1.87%	68.4	1170	4620	57
	QAC0022	G00226	8	12	0.02	96.6	7890	52.9	441	2200	42
	QACOOZZ	G00227	12	16	0.03	104	8560	72.9	1130	Z150	50
	QACOOZZ	G00228	16	20	0.02	136	9330	72.4	1740	2800	51
	QAC00ZZ	G00229	20	24	0.03	80.3	2200	33.9	1450	797	49
ן [QAC0022	G00230	24	28	0.07	223	7580	55.1	8670	2660	54
	QACOOZZ	G00231	28	32	0.04	410	1710	43.4	3890	2780	52
	QAC0022	G00232	32	36	0.05	1230	3600	89.7	9200	8730	39
	QAC0022	G00233	36	40	0.05	Z17	1360	61.7	3050	13100	52
	QAC0022	G00234	40	45	0.06	260	4020	46.4	2660	8840	19
	QAC0023	G00235	0	4	0.04	52.8	1480	25.2	630	1000	20

Hole No	Sample No	From	То	Ag ppm	Co ppm	Cr ppm	Cu ppm	Mn ppm	Ni ppm	Sc gpt
QAC0023	G00236	4	8	0.04	12.4	229	18.1	137	670	11
QAC0023	G00237	8	12	0.04	14	249	31.5	114	929	10
QAC0023	G00238	12	16	0.04	118	4010	40.5	421	5610	24
QAC0023	G00239	16	18.3	38.7	221	6060	71.6	1120	7740	21
QAC0024	G00241	0	4	0.18	253	8630	110	3660	3320	40
QAC0024	G00242	4	8	0.39	1790	7840	188	1.68%	6100	37
QAC0024	G00243	8	12	0.15	170	3630	67.4	937	3310	50
QAC0024	G00244	12	16	0.03	252	2800	72.9	3190	3410	43
QAC0024	G00245	16	18.7	0.08	196	1890	59.9	4050	3350	59
QAC0025	G00246	0	4	0.07	1420	3550	88.1	1.27%	5230	31
QAC0025	G00247	4	8	1.4	254	1660	38.3	2870	1840	14
QAC0025	G00248	8	12.7	0.28	88.9	4090	53.5	808	5270	23
QAC0026	G00249	0	4	0.06	26.6	1970	17.3	Z11	548	24
QAC0026	G00250	4	8	0.04	12.2	947	8.3	87	242	11
QAC0026	G00251	8	12	0.09	11.8	626	12	78	301	20
QAC0026	G00252	12	16	0.06	6.9	202	9.4	116	182	16
QAC0026	G00253	16	20	0.06	8.8	111	15.1	91	256	16
QAC0026	G00254	20	24	0.11	11.2	140	15.5	88	320	16
QAC0026	G00255	24	28	0.11	19	153	15	143	455	17
QAC0026	G00256	28	32	0.06	225	505	16.9	595	5040	34
QAC0026	G00257	32	36	0.02	144	636	2.9	378	2880	7
QAC0026	G00258	36	40	0.04	Z09	716	5.7	521	5180	14
QAC0026	G00259	40	45	0.03	190	942	7	716	4460	20
QAC0035	G00314	0	4	0.02	315	2550	55.2	999	4760	21
QAC0035	G00315	4	8	< 0.01	328	2870	48.3	523	6030	16
QAC0035	G00316	8	12	< 0.01	136	3210	48.6	110	3150	13
QAC0035	G00317	12	16	< 0.01	135	3320	48.3	125	3110	15
QAC0035	G00318	16	20	< 0.01	195	2420	58.2	501	3780	13
QAC0035	G00319	20	24	0.03	Z06	Z860	44.8	1310	3330	13
QAC0035	G00321	24	28	0.01	568	2230	35	1.49%	3440	11
QAC0035	G00322	Z8	32	< 0.01	831	2640	62.7	1.74%	3540	14
QAC0035	G00323	32	36	0.01	110	2940	21.7	606	3410	15
QAC0035	G00324	36	40	0.01	104	2270	22	394	3140	14
QAC0035	G00325	40	44	< 0.01	145	3000	19	386	3390	12
QAC0035	G00326	44	48	0.09	176	2550	25	320	3460	11
QAC0035	G00327	48	52	0.01	113	2360	34.7	265	2220	7
QAC0035	G00328	52	56	0.01	87	1560	26.9	253	1410	4
QAC0035	G00329	56	60	0.01	79.4	1550	24.1	1260	1020	7

A. Ag= Silver, Co=Cobalt, Cr=Chromium, Cu=Copper, Mn=Manganese, Ni=Nickel & Sc=Scandium

B. ppm= part per million, gpt=grams per tonnes (nb. ppm=gpt)

C. 1%=10,000 ppm

APPENDIX 4 – GARARD PROSPECT, SCANDIUM INTERCEPTS & ASSAYS

Hole No	North	East	Grid	Depth (m)	Scandium Intercepts (>30 gpt cut off)	
QAC0004	6371300	656700	GDA94_50	62	8m @ 54 gpt Sc from Surface	
QAC0005	6371300	656800	GDA94_50	29	29m @ 40gpt Sc from Surface (WoH)	
QAC0008	6371000	657300	GDA94_50	22	18m @ 43 gpt Sc from 4m	
QAC 0009	6371000	656600	GDA94_50	58	26m @ 44 gpt Sc from 32m	
QAC0010	6371300	656900	GDA94_50	57	57m @ 42 gpt Sc from Surface (WoH)	
QACOO1Z	6371300	657100	GDA94_50	27	27m @ 41 gpt Sc from Surface (WoH)	
QAC0014	6371000	657100	GDA94_50	60	16m @ 52 gpt Sc from Surface	
QAC0015	6371000	657000	GDA94_50	58	16m @ 47 gpt Sc from Surface	
QAC0016	6371000	656800	GDA94_50	42	24m @ 49 gpt Sc from 4m	
QAC0017	6370600	657200	GDA94_50	27	16m @ 46 gpt Sc from Surface	
QAC0019	6371000	656700	GDA94_50	55	55m @ 63 gpt Sc from Surface (WoH) incl 4m @ 100 gpt Sc from 20m	
QAC 0020	6371000	656910	GDA94_50	69	69 m @ 49 gpt Sc from Surface (WoH) incl 12m @ 66 gpt Sc from 24m	
QAC0021	6370600	657300	GDA94_50	18	12m @ 48 gpt Sc from Surface	
QAC0022	6370400	657154	GDA94_50	45	40m @ 50 gpt Sc from Surface	
QAC 0024	6370200	657200	GDA94_50	18.7	18.7m @ 45 gpt Sc from Surface (WoH)	
QAC0027	6369800	657100	GDA94_50	41	20m @ 40 gpt Sc from Surface	
QAC0028	6369800	657300	GDA94_50	27.2	6.2m @ 46 gpt Sc from 16m (EoH)	

Appendix 4.1 - Significant Scandium Intercepts (Greater than average 40 gpt Scandium)

*Allowable internal dilution on intercepts of up to 8 metres at less than cut-off – Sc=Scandium, WoH=Whole of Hole Intercept, EoH=End of Hole

Appendix 4.2 - Drill Hole Assays (for holes with average intercepts >40 gpt Scandium)

Hole No	Sample No	From	То	Interval	Sc gpt
QAC0004	G00029	0	4	4	72
QAC0004	G00030	4	8	4	36
QAC0004	G00031	8	12	4	16
QAC0004	G00032	12	16	4	24
QAC0004	G00033	16	20	4	21
QAC0004	G00034	ZO	24	4	Z8
QAC0004	G00035	Z4	Z8	4	8
QAC0004	G00036	Z8	32	4	7
QAC0004	G00037	32	36	4	6
QAC0004	G00038	36	40	4	6
QAC0004	G00039	40	44	4	4
QAC0004	600041	44	48	4	9
QAC0004	G0004Z	48	52	4	7
QAC0004	G00043	52	56	4	3
QAC0004	G00044	56	60	4	3

Hole No	Sample No	From	То	Interval	Sc gpt
QAC0004	G00045	60	62	Z	4
QAC0005	G00046	0	4	4	75
QAC0005	G00047	4	8	4	46
QAC0005	G00048	8	12	4	37
QAC0005	G00049	12	16	4	27
QAC0005	G00050	16	20	4	34
QAC0005	G00051	ZO	Z4	4	50
QAC0005	G00052	Z4	Z8	4	23
QAC0005	G00053	Z8	29	1	30
QAC0008	G00063	0	4	4	11
QAC0008	G00064	4	8	4	29
QAC0008	G00065	8	12	4	48
QAC0008	G00066	12	16	4	68
QAC0008	G00067	16	ZO	4	37
QAC0008	G00068	ZO	22	Z	24
QAC0009	G00069	0	4	4	39
QAC0009	G00070	4	8	4	19
QAC0009	G00071	8	12	4	14
QAC0009	G00072	12	16	4	14
QAC0009	G00073	16	ZO	4	18
QAC0009	G00074	ZO	Z4	4	23
QAC0009	G00075	Z4	Z8	4	23
QAC0009	G00076	Z8	32	4	16
QAC0009	G00077	32	36	4	34
QAC0009	G00078	36	40	4	46
QAC0009	G00079	40	44	4	60
QAC0009	G00081	44	48	4	Z8
QAC0009	G0008Z	48	52	4	48
QAC0009	G00083	52	56	4	50
QAC0009	G00084	56	58	Z	36
QAC0010	G00085	0	4	4	41
QAC0010	G00086	4	8	4	32
QAC0010	G00087	8	12	4	40
QAC0010	G00088	12	16	4	43
QAC0010	G00089	16	20	4	48
QAC0010	G00090	20	24	4	33
QAC0010	G00091	24	Z8	4	57
QAC0010	G0009Z	Z8	32	4	57
QAC0010	G00093	32	36	4	48
QAC0010	G00094	36	40	4	47
QAC0010	G00095	40	44	4	37

Hole No	Sample No	From	То	Interval	Sc gpt
QAC0010	G00096	44	48	4	47
QAC0010	G00097	48	52	4	32
QAC0010	G00098	52	56	4	37
QAC0010	G00099	56	57	1	24
QAC0012	G00116	0	4	4	32
QAC001Z	G00117	4	8	4	46
QAC0012	G00118	8	12	4	51
QAC001Z	G00119	12	16	4	41
QAC001Z	G00121	16	20	4	35
QAC0012	G00122	20	24	4	48
QAC001Z	G00123	Z4	27	3	34
QAC0014	G00132	0	4	4	81
QAC0014	G00133	4	8	4	15
QAC0014	G00134	8	12	4	46
QAC0014	G00135	12	16	4	64
QAC0014	G00136	16	20	4	32
QAC0014	G00137	20	24	4	40
QAC0014	G00138	24	Z8	4	34
QAC0014	G00139	Z8	32	4	34
QAC0014	G00141	32	36	4	36
QAC0014	G0014Z	36	40	4	25
QAC0014	G00143	40	44	4	12
QAC0014	G00144	44	48	4	12
QAC0014	G00145	48	52	4	12
QAC0014	G00146	52	56	4	16
QAC0014	G00147	56	60	4	13
QAC0015	G00148	0	4	4	98
QAC0015	G00149	4	8	4	32
QAC0015	G00150	8	12	4	29
QAC0015	G00151	12	16	4	30
QAC0015	G0015Z	16	20	4	4
QAC0015	G00153	20	24	4	4
QAC0015	G00154	24	Z8	4	14
QAC0015	G00155	Z8	32	4	22
QAC0015	G00156	32	36	4	34
QAC0015	G00157	36	40	4	33
QAC0015	G00158	40	44	4	29
QAC0015	G00159	44	48	4	57
QAC0015	G00161	48	52	4	44
QAC0015	G0016Z	52	56	4	42
QAC0015	G00163	56	58	2	15
QAC0016	G00164	0	4	4	58

Hole No	Sample No	From	То	Interval	Sc gpt
QAC0016	G00165	4	8	4	30
QAC0016	G00166	8	12	4	39
QAC0016	G00167	12	16	4	68
QAC0016	G00168	16	20	4	49
QAC0016	G00169	ZO	Z4	4	50
QAC0016	G00170	Z4	Z8	4	43
QAC0016	G00171	Z8	32	4	19
QAC0016	G00172	32	36	4	15
QAC0016	G00173	36	40	4	3
QAC0016	G00174	40	42	Z	7
QAC0017	G00211	0	4	4	58
QAC0017	G00212	4	8	4	33
QAC0017	G00Z13	8	12	4	33
QAC0017	G00Z14	12	16	4	59
QAC0017	G00Z15	16	20	4	29
QAC0017	G00Z16	20	24	4	9
QAC0017	G00217	24	27	3	4
QAC0019	G00194	0	4	4	58
QAC0019	G00195	4	8	4	50
QAC0019	G00196	8	12	4	45
QAC0019	G00197	12	16	4	73
QAC0019	G00198	16	20	4	76
QAC0019	G00199	20	24	4	100
QAC0019	G00201	24	Z8	4	52
QAC0019	G00202	28	32	4	86
QAC0019	G00203	32	36	4	51
QAC0019	G00204	36	40	4	59
QAC0019	G00205	40	44	4	67
QAC0019	G00206	44	48	4	57
QAC0019	G00207	48	52	4	58
QAC0019	G00208	52	55	3	50
QAC0020	G00175	0	4	4	28
QAC0020	G00176	4	8	4	49
QAC0020	G00177	8	12	4	48
QAC0020	G00178	12	16	4	40
QAC0020	G00179	16	20	4	57
QAC0020	G00181	20	24	4	48
QAC0020	G0018Z	24	Z8	4	66
QAC0020	G00183	Z8	32	4	70
QAC0020	G00184	32	36	4	63
QAC0020	G00185	36	40	4	50
QAC0020	G00186	40	44	4	50

Hole No	Sample No	From	То	Interval	Sc gpt
QAC0020	G00187	44	48	4	50
QAC0020	G00188	48	52	4	53
QAC0020	G00189	52	56	4	39
QAC0020	G00190	56	60	4	28
QAC0020	G00191	60	64	4	33
QAC0020	G0019Z	64	68	4	45
QAC0020	G00193	68	69	1	56
QAC0021	G00218	0	4	4	42
QAC0021	G00219	4	8	4	56
QAC0021	G00221	8	12	4	46
QAC0021	G00222	12	16	4	21
QAC0021	G00223	16	18	Z	13
QAC0022	G00224	0	4	4	51
QAC0022	G00225	4	8	4	57
QAC0022	G00226	8	12	4	42
QAC0022	G00227	12	16	4	50
QAC0022	G00228	16	20	4	51
QAC0022	G00229	20	Z4	4	49
QAC0022	G00230	24	Z8	4	54
QAC0022	G00231	28	32	4	5 2
QAC0022	G00232	32	36	4	39
QAC0022	G00233	36	40	4	52
QAC0022	G00234	40	45	5	19
QAC0024	G00241	0	4	4	40
QAC0024	G00242	4	8	4	37
QAC0024	G00243	8	12	4	50
QAC0024	G00244	12	16	4	43
QAC0024	G00245	16	18.7	2.7	59
QAC0027	G00261	0	4	4	48
QAC0027	G00262	4	8	4	10
QAC0027	G00263	8	12	4	38
QAC0027	G00264	12	16	4	53
QAC0027	G00265	16	20	4	51
QAC0027	G00266	20	24	4	35
QAC0027	G00267	24	28	4	11
QAC0027	G00268	28	32	4	14
QAC0027	G00269	32	36	4	8
QAC0027	G00270	36	41	5	8
QAC0028	G00271	0	4	4	10
QAC0028	G00272	4	8	4	20
QAC0028	G00273	8	12	4	21
QAC0028	G00274	12	16	4	17

Hole No	Sample No	From	То	Interval	Sc gpt
QAC0028	G00275	16	20	4	54
QAC0028	G00276	ZO	22.2	2.2	31

- A. Sc=Scandium
- B. ppm= parts per million, gpt=grams per tonnes (nb. ppm=gpt)