

ASX Release

31 August 2017

VALOR RESOURCES LIMITED
ACN 076 390 451

22 Lindsay Street PERTH, WA Australia

Tel: +61 8 9200 3467 Fax: +61 8 9227 6390

Contact:

Mr Mark Sumner

E-mail:

info@valorresources.com.au

Directors

Mr Mark Sumner Mr Brian McMaster Ms Paula Cowan

Company Secretary

Ms Kelly Moore Ms Paula Cowan

ASX Code:

VAL

FURTHER EXCEPTIONAL DRILL RESULTS AT BERENGUELA INCLUDING 3M AT OVER 4,000 G/T Ag & 5.42% Cu

Valor Resources Limited ("**VAL**" or the "**Company**", ASX: VAL) is pleased to report the second assay results from the drilling program at the Berenguela Copper-Silver Project in Southern Peru.

Highlights:

- High grade intercepts including 8m @ 2.95% Copper (Cu) and >2,161.23 g/t Silver (Ag), 14.64% Manganese (Mn) and 0.49% Zinc (Zn)
- 3m interval @ 5.42% Cu and Ag values over 4,000 g/t, exceeding the limits of SGS lab tests
- Further assay results to be released shortly
- Updated resource estimate pending

Key Drilling Intercepts (refer to Tables 1 & 2 for complete results):

BEP029-BER246*:

- 16m @ 1.88% Cu + 1,243.31 g/t Ag + 10.43% Mn + 0.39% Zn (from 59). 8.372% CuEq, including:
- 8m @ 2.95% Cu + 2,161.23 g/t Ag + 14.64% Mn + 0.49% Zn (from 63m).
 14.154% CuEq

BEP029-BER243:

- 54m @ 1.48% Cu + 202.66 g/t Ag + 14.47% Mn + 0.27% Zn (from 37m).
 2.625% CuEq, including:
- 8m @ 2.09% Cu + 754.13 g/t Ag + 20% Mn + 0.38% Zn (from 37m).
 6.091% CuEq;

BEP023 - BER240:

23m @ 1.33% Cu + 167.65 g/t Ag + 10.23% Mn + 0.23% Zn (from 26m).
 2.27% CuEq.

BEP029 - BER245:

- 14m @ 1.07% Cu + 186.18 g/t Ag + 9.83% Mn + 0.71% Zn (from 20m). 2.323% CuEq, including:
 - 8m @ 1.47% Cu + 252.96 g/t Ag + 12.95% Mn + 0.93% Zn (from 22m) 3.149% CuEq.

^{*}BER246 exceeded 4,000 g/t Ag maximum limit of SGS Lab tests.

Management Commentary

Valor Chairman, Mark Sumner said: "The intercepts from this drill program continue to confirm that the Berenguela Project is a high-quality copper-silver asset, with potentially valuable manganese and zinc credits. We are intercepting grades that are unprecedented for this deposit, which only increases our enthusiasm for Berenguela.

"Hitting numerous intervals over 1,000 g/t Ag confirms that our geology is exceptional, but hitting grades so high that we've exceeded the limits of SGS' testing has surpassed our expectations. We will seek to determine the maximum silver grades and report on these results as soon as possible. In the meantime, we will continue to drive the project forward with ongoing drilling which is expected to unlock further value for shareholders. Berenguela is shaping up to be an outstanding multi-commodity asset."

Key Drilling Intercepts continued (refer to Tables 1 and 2 for complete drilling results):

BEP023 - BER239:

27 m @ 1.01 Cu% + 117.80 Ag g/t + 8.73 Mn% + 0.26 Zn% (from 30 m). 1.723% CuEq

BEP029 - BER244:

- 50 m @ 1.39 Cu% + 130.77 Ag g/t + 11.63 Mn% + 0.34 Zn% (from 14 m). 2.202% CuEq, including:
 - 9 m @ 3.02 Cu% + 107.11 Ag g/t + 9.45 Mn% + 0.24 Zn% (from 32 m). 3.671% CuEq
 - 10 m @ 1.24 Cu% + 177.18 Ag g/t + 18.11 Mn% + 0.5 Zn% (from 41 m). 2.359% CuEq

BEP029 - BER242:

26 m @ 0.91 Cu% + 105.30 Ag g/t + 7.14 Mn% + 0.63 Zn% (from 9m). 1.715% CuEq

Drilling Program Overview

The drilling program commenced on 10 July 2017. The program includes 66 drill holes for a total of 9,570 metres, targeting depths between 100 and 200 metres focusing primarily on the Berenguela central deposit area, with select drill holes targeting mineralisation outside of the area current Inferred Resource shell. To date, 24 holes for a total of 3,655m have been completed. The drill holes are spaced on 35m x 35m grid and were performed from 11 platforms (BEP-002, BEP-003, BEP-005, BEP-006, BEP-007, BEP-008, BEP-021, BEP-022, BEP-023, BEP-025, BEP-029).

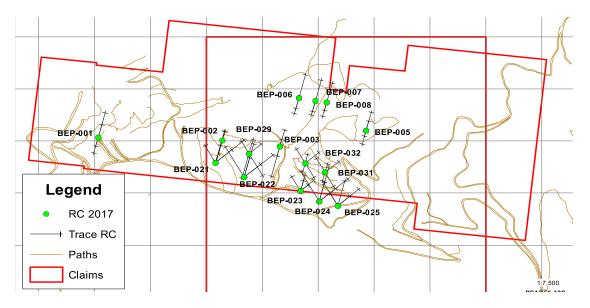


Figure 1 - 2017 Drilling Platform Map

Table 1: Drillhole Results at the Berenguela Project*

	Platform	Hole Id	Comments	From (m)	To (m)	Interval (m)	% eCu Excl Mn	Summary	%eCu Cutoff
				4	11	7	0.851	7 m @ 0.69 Cu% + 17.44 Ag g/t + 1.16 Mn% + 0.17 Zn%	0.50
	1			26	49	23	0.963	23 m @ 0.54 Cu% + 41.17 Ag g/t + 4.31 Mn% + 0.5 Zn%	0.50
		BER223-17		66	69	3	0.624	3 m @ 0.26 Cu% + 40.47 Ag g/t + 3.43 Mn% + 0.37 Zn%	0.50
				79	90	11	0.735	11 m @ 0.43 Cu% + 28.11 Ag g/t + 4.36 Mn% + 0.38 Zn%	0.50
	BEP-006			113	175	62	1.574	62 m @ 0.6 Cu% + 109.92 Ag g/t + 8.98 Mn% + 0.97 Zn%	0.50
		BER224-17		4	47	43	0.582	43 m @ 0.42 Cu% + 16.69 Ag g/t + 2.26 Mn% + 0.18 Zn%	0.50
	/			65	92	27	0.531	27 m @ 0.35 Cu% + 19.70 Ag g/t + 2.1 Mn% + 0.19 Zn%	0.50
		BER225-17		5	68	63	1.570	63 m @ 1.08 Cu% + 40.84 Ag g/t + 7.62 Mn% + 0.66 Zn%	0.50
615		BER226-17		10	45	35	1.640	35 m @ 0.62 Cu% + 90.35 Ag g/t + 12.6 Mn% + 1.31 Zn%	0.50
)			52	61	9	0.886	9 m @ 0.63 Cu% + 25.03 Ag g/t + 4.38 Mn% + 0.3 Zn%	0.50
16		BER227-17		2	73	71	1.650	71 m @ 0.82 Cu% + 111.09 Ag g/t + 6.81 Mn% + 0.62 Zn%	0.50
)			100	112	12	0.586	12 m @ 0.35 Cu% + 23.73 Ag g/t + 2.96 Mn% + 0.27 Zn%	0.50
	BEP-007	BER228-17		7	92	85	0.952	85 m @ 0.55 Cu% + 38.66 Ag g/t + 5.4 Mn% + 0.48 Zn%	0.50
	5	BER229-17		11	42	31	1.047	31 m @ 0.59 Cu% + 28.43 Ag g/t + 10.58 Mn% + 0.73 Zn%	0.50
	/			50	54	4	0.572	4 m @ 0.3 Cu% + 19.93 Ag g/t + 3.99 Mn% + 0.4 Zn%	0.50
		BER230-17		0	42	42	1.591	42 m @ 0.93 Cu% + 70.35 Ag g/t + 11.13 Mn% + 0.71 Zn%	0.50
		BER231-17		0	5	5	1.009	5 m @ 0.47 Cu% + 31.94 Ag g/t + 7.93 Mn% + 0.88 Zn%	0.50
	1			25	65	40	0.733	40 m @ 0.43 Cu% + 19.17 Ag g/t + 5.82 Mn% + 0.48 Zn%	0.50
$(\zeta) \cup (\zeta)$				1	6	5	2.063	5 m @ 1.19 Cu% + 71.58 Ag g/t + 15.74 Mn% + 1.19 Zn%	0.50
7	BEP-008	BER232-17		30	37	7	0.819	7 m @ 0.45 Cu% + 20.44 Ag g/t + 8.65 Mn% + 0.62 Zn%	0.50
				96	102	6	0.849	6 m @ 0.57 Cu% + 27.93 Ag g/t + 3.07 Mn% + 0.32 Zn%	0.50
		BER233-17		0	17	17	0.719	17 m @ 0.46 Cu% + 19.82 Ag g/t + 3.9 Mn% + 0.37 Zn%	0.50
		BER234-17		0	23	23	1.101	23 m @ 0.73 Cu% + 33.39 Ag g/t + 5.12 Mn% + 0.47 Zn%	0.50
	/			0	28	28	1.127	28 m @ 0.65 Cu% + 30.71 Ag g/t + 9.32 Mn% + 0.75 Zn%	0.50
26	BEP-002	BER235-17		39	59	20	1.163	20 m @ 0.57 Cu% + 78.73 Ag g/t + 8.05 Mn% + 0.45 Zn%	0.50
02	BEP-002			59	66	7	11.104	7 m @ 2.18 Cu% + 1,719.83 Ag g/t + 13.21 Mn% + 0.41 Zn%	0.50
2	7	BER236-17		0	44	44	1.498	44 m @ 0.9 Cu% + 85.63 Ag g/t + 8.42 Mn% + 0.38 Zn%	0.50
				21	32	11	0.600	11 m @ 0.31 Cu% + 47.80 Ag g/t + 1.27 Mn% + 0.11 Zn%	0.50
				35	46	11	1.464	11 m @ 0.86 Cu% + 94.43 Ag g/t + 10.49 Mn% + 0.29 Zn%	0.50
	/	BER237-17		67	71	4	1.638	4 m @ 0.68 Cu% + 139.62 Ag g/t + 9.02 Mn% + 0.58 Zn%	0.50
				81	85	4	0.654	4 m @ 0.45 Cu% + 22.43 Ag g/t + 3.74 Mn% + 0.21 Zn%	0.50
		DED220 17		18	36	18	0.990	18 m @ 0.56 Cu% + 65.28 Ag g/t + 7.43 Mn% + 0.23 Zn%	0.50
	DED 222	BER238-17		82	92	10	1.182	10 m @ 0.79 Cu% + 61.03 Ag g/t + 3.98 Mn% + 0.19 Zn%	0.50
	BEP-023	DED220 47		30	57	27	1.723	27 m @ 1.01 Cu% + 117.80 Ag g/t + 8.73 Mn% + 0.26 Zn%	0.50
		BER239-17		88	100	12	1.828	12 m @ 0.82 Cu% + 177.05 Ag g/t + 5.27 Mn% + 0.26 Zn%	0.50
				26	43	17	1.948	17 m @ 0.76 Cu% + 214.60 Ag g/t + 9.24 Mn% + 0.24 Zn%	0.50
	/	BER240-17		43	49	6	3.221	6 m @ 2.96 Cu% + 34.65 Ag g/t + 13.04 Mn% + 0.2 Zn%	0.50
ПП				75	80	5	0.744	5 m @ 0.46 Cu% + 37.80 Ag g/t + 4.19 Mn% + 0.21 Zn%	1.50
	1	BER241-17		20	61	41	1.334	41 m @ 0.69 Cu% + 113.22 Ag g/t + 4.84 Mn% + 0.15 Zn%	0.50

	Platform	Hole Id	Comments	From (m)	To (m)	Interval (m)	% eCu Excl Mn	Summary	%eCu Cutoff
		BER242-17		9	35	26	1.715	26 m @ 0.91 Cu% + 105.30 Ag g/t + 7.14 Mn% + 0.63 Zn%	0.50
		DLR242-17		48	57	9	1.661	9 m @ 0.72 Cu% + 165.57 Ag g/t + 3.94 Mn% + 0.23 Zn%	0.50
	2			0	5	5	1.111	5 m @ 0.63 Cu% + 49.42 Ag g/t + 7.7 Mn% + 0.54 Zn%	1.50
	1			16	21	5	1.364	5 m @ 0.57 Cu% + 101.48 Ag g/t + 16.57 Mn% + 0.66 Zn%	2.50
	1			24	29	5	1.255	5 m @ 0.63 Cu% + 70.66 Ag g/t + 17.53 Mn% + 0.63 Zn%	3.50
]	BER243-17		32	36	4	2.068	4 m @ 1.31 Cu% + 110.70 Ag g/t + 19.29 Mn% + 0.46 Zn%	4.50
				37	91	54	2.625	54 m @ 1.48 Cu% + 202.66 Ag g/t + 14.47 Mn% + 0.27 Zn%	5.50
				37	45	8	6.091	8 m @ 2.09 Cu% + 754.13 Ag g/t + 20 Mn% + 0.38 Zn%	6.50
a				68	73	5	2.485	5 m @ 2.12 Cu% + 62.12 Ag g/t + 4.59 Mn% + 0.11 Zn%	7.50
)			0	6	6	1.463	6 m @ 1.18 Cu% + 32.25 Ag g/t + 2.23 Mn% + 0.27 Zn%	8.50
46				8	11	3	2.464	3 m @ 1.95 Cu% + 58.23 Ag g/t + 7.11 Mn% + 0.51 Zn%	9.50
(U/))	BER244-17		14	32	18	1.963	18 m @ 1.2 Cu% + 110.81 Ag g/t + 16.13 Mn% + 0.47 Zn%	10.50
	1	DERETT IT		32	41	9	3.671	9 m @ 3.02 Cu% + 107.11 Ag g/t + 9.45 Mn% + 0.24 Zn%	11.50
)			41	51	10	2.359	10 m @ 1.24 Cu% + 177.18 Ag g/t + 18.11 Mn% + 0.5 Zn%	12.50
	BEP-029			55	64	9	1.907	9 m @ 0.89 Cu% + 191.09 Ag g/t + 2.11 Mn% + 0.11 Zn%	13.50
	1			3	15	12	1.221	12 m @ 0.79 Cu% + 48.40 Ag g/t + 8.9 Mn% + 0.42 Zn%	8.50
	1			20	34	14	2.323	14 m @ 1.07 Cu% + 186.18 Ag g/t + 9.83 Mn% + 0.71 Zn%	9.50
)	DED245 47		22	30	8	3.149	8 m @ 1.47 Cu% + 252.96 Ag g/t + 12.95 Mn% + 0.93 Zn%	10.50
	1	BER245-17		45	48	3	1.421	3 m @ 0.99 Cu% + 48.73 Ag g/t + 6.89 Mn% + 0.42 Zn%	11.50
	1			52	64	12	2.326	12 m @ 0.85 Cu% + 243.52 Ag g/t + 15.69 Mn% + 0.55 Zn%	12.50
)			60	64	4	1.677	4 m @ 0.59 Cu% + 195.55 Ag g/t + 8.16 Mn% + 0.21 Zn%	13.50
)			0	3	3	0.890	3 m @ 0.52 Cu% + 16.50 Ag g/t + 19.09 Mn% + 0.67 Zn%	0.50
00)			10	17	7	2.025	7 m @ 1.15 Cu% + 116.61 Ag g/t + 18.57 Mn% + 0.66 Zn%	0.50
	/			22	29	7	0.657	7 m @ 0.52 Cu% + 16.89 Ag g/t + 2.43 Mn% + 0.12 Zn%	0.50
				32	43	11	1.455	11 m @ 0.84 Cu% + 63.65 Ag g/t + 9.6 Mn% + 0.68 Zn%	0.50
(15		BER246-17		51	53	2	1.165	2 m @ 0.46 Cu% + 105.90 Ag g/t + 6.36 Mn% + 0.39 Zn%	0.50
	/			59	75	16	8.372	16 m @ 1.88 Cu% + 1,243.31 Ag g/t + 10.43 Mn% + 0.39 Zn%	0.50
)			59	62	3	2.828	3 m @ 1.12 Cu% + 293.73 Ag g/t + 10.99 Mn% + 0.5 Zn%	0.50
				63	71	8	14.154	8 m @ 2.95 Cu% + 2,161.23 Ag g/t + 14.64 Mn% + 0.49 Zn%	0.50

^{*}Intercepts are calculated using: True width intervals of the mineralisation are interpreted as being between 50-80% true widths from oriented RC drilling core and sectional interpretation

Copper equivalent (CuEq) calculations assume:

	Base of Calculus	Units	Costs-LME (London Metal Exchange)	Recovery (%) Concentrate
Cu US Dollars per t		US Dollars per tonne	6,353.50	0.85
	Ag	US Dollars and cents per troy ounce	17.09	0.5
	Zn	US Dollars per tonne	2,886.50	0.8

Mn grades are not considered for eCu calculus.

Table 2: Drill Collar Information for Berenguela Project:

				•		
Hole ID	East_WGS	North_WGS	Elevation	Azimuth	Dip	Depth (m)
BEP-6_BER223	332339.4	8268762.5	4260.6	15	-60	200
BEP-6_BER224	332339.07	8268760.9	4260.61	0	-90	180
BEP-6_BER225	332338.77	8268759.2	4260.55	195	-70	150
BEP-6_BER226	332338.44	8268757.5	4260.57	195	-50	110
BEP-7_BER227	332392.59	8268742	4254.98	15	-60	180
BEP-7_BER228	332392.1	8268740	4255.05	0	-90	160
BEP-7_BER229	332391.64	8268738.2	4254.89	195	-70	150
BEP-7_BER230	332391.6	8268738.2	4254.9	195	-50	100
BEP-8_BER231	332450.8	8268736.5	4246.7	0	-60	170
BEP-8_BER232	332450.8	8268736.5	4246.7	290	-60	120
BEP-8_BER233	332450.8	8268736.5	4246.7	215	-70	120
BEP-8_BER234	332450.8	8268736.5	4246.7	215	-50	100
BEP-2_BER235	332080.2	8268590.1	4250.5	15	-70	130
BEP-2_BER236	332080.2	8268590.1	4250.5	195	-50	150
BEP-023_BER237	332338.4	8268408.3	4234.6	15	-45	100
BEP023_BER-238	332338.4	8268408.3	4234.6	15	-60	100
BEP023_BER-239	332338.4	8268408.3	4234.6	330	-45	105
BEP023_BER-240	332338.4	8268408.3	4234.6	50	-45	100
BEP023_BER-241	332338.4	8268408.3	4234.6	50	-65	100
BEP029_BER-242	332168.8	8268555.4	4249.4	15	-65	150
BEP029_BER-243	332168.8	8268555.4	4249.4	195	-45	150
BEP029_BER-244	332168.8	8268555.4	4249.4	150	-45	150
BEP029_BER-245	332168.8	8268555.4	4249.4	50	-65	150
BEP029_BER246	332168.8	8268555.4	4249.4	330	-65	150

ENDS-

For further information, please contact:

Mark Sumner Chairman

Media Relations:

Ben Jarvis, Six Degrees Investor Relations: +61 (0) 413 150 448

Follow us on Twitter <a>@valorresources

About the Berenguela Project:

The Berenguela Project is an advanced stage copper-silver project located in the Puno District of Peru. On 10 March 2017 in an announcement titled "Mineral Resource Confirmation – Additional Information for ASX LR 5.8.1", Valor informed the market that Berenguela has confirmed Mineral Resources, according to the JORC (2012) Code of:

- Indicated: 15.6 million tonnes at 132 g/t Ag and 0.92% Cu
- Inferred: 6 million tonnes at 111 g/t Ag and 0.74% Cu

The current resource base covers an area of approximately 140 hectares, which accounts for only 2% of the total 6,594 hectares of exploration concessions in Valor's total land package. Valor believes this drilling program will continue to confirm and upgrade the existing resource, while paving the way to further resource expansion drilling in the future.

Competent Person's Statement

The technical information in this release is based on compiled and reviewed data by Mr. Marcelo Batelochi. Mr. Batelochi is an independent consultant with MB Geologia Ltda and is a Chartered Member of AusIMM – The Minerals Institute. Mr. Batelochi has sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Batelochi consents to the inclusion in the report of the matters based on their information in the form and context in which it appears. Mr. Batelochi accepts responsibility for the accuracy of the statements disclosed in this release.

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 RC drilling the entire 1m RC samples were obtained and split by an adjustable cone splitter attached to the base of the cyclone or riffle split separately to 1.5kg – 3.0kg and were utilized for both lithology logging and assaying;
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Samples are split into single meter intervals. Certified standards were inserted every 20th sample and to assess the accuracy and methodology of the external laboratories. Field duplicates were inserted every 20th sample to assess the repeatability and variability of the Polymetallic mineralisation. Laboratory duplicates were also completed approximately every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the mineralisation. A blank standard was inserted at the start of every batch. Results of the QAQC sampling were assessed on a batch by batch basis and were considered acceptable.
	 Aspects of the determination of mineralisation that are Material to the Public Report. 	 1m RC samples were obtained by an adjustable cone splitter attached to the base of the cyclone (1.5kg – 3.0kg) and were utilized for both lithology logging and assaying.
	• In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 These identified samples are sent to SGS preparation Laboratory, which are reidentified with SGS number linked to a code bar, the samples are weighed, dried at 105°C, grain size reduced to -8mm in primary crusher and in a secondary to 90%@ - 2mm, split to 0.15-0.3kg before being pulverised to 95% @ - 140mesh. The final pulp is sent to SGS laboratories in Callao – Lima Peru for chemical analysis assay.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) 	 A AKD RC Drill Rig (Schramm T660H) Being 5.5" diameter face sampling hammer was used

Criteria	JC	ORC Code explanation		Commentary
		and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).		
Drill sample recovery	•	Method of recording and assessing core and chip sample recoveries and results assessed.	•	RC recovery was visually assessed, with recovery being excellent in this case due to the all drilled interval are above the water table. There are rare (-3%) of high intense fractured interval with no recovery, or less than 1 kg that is discarded.
	•	Measures taken to maximise sample recovery and ensure representative nature of the samples.	•	RC samples were visually checked for recovery, moisture and contamination
	•	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	•	during the drill rig operation. The drilling contractor utilized a cyclone and cone splitter to provide uniform sample size. The cone splitter was cleaned at the end of every rod and the cyclone cleaned at the completion of every hole. Sample recoveries for RC drilling were high within the mineralized zones, confirmed by the check between RC x DD drilling performed by Silver Standard in 2015 and checked by Valor Resources in 2017. No significant bias is expected and high reproducibility between RC and DD drilling.
Logging	•	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	•	Lithology, alteration, veining, mineralization and manganese alteration were logged from the RC chips and stored in Datashed. Chips from selected holes were also placed in chip trays and stored in a designated building at site for future reference.
	•	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	•	All drill holes intervals are logged by geologists acquiring the qualitative information, and all RC chip boxes are photography
Sub- sampling	•	If core, whether cut or sawn and whether quarter, half or all core taken.	•	Non cores;
techniques and sample preparation	•	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	•	RC drilling recovery samples using a cyclone and cone splitter or riffle, in a weather sampled wet, natural humidity less than 10%.
	•	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	•	These identified samples are sent to SGS preparation Laboratory in Arequipa,

Criteria .	JORC Code explanation	Commentary
	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/secondhalf sampling. 	 which are re-identified with SGS number linked to a code bar, the samples are weighed, dried at 105°C, grain size reduced to -8mm in primary crusher and in a secondary to 90%@ - 2mm, split to 0.15-0.3kg before being pulverised to 95% @ - 140mesh. The final pulp is sent to SGS laboratories in Callao – Lima Peru for chemical analysis assay. Certified standards and blanks were inserted every 20th sample to assess the accuracy and methodology of the external laboratory (SGS), and field duplicates were inserted every 20th sample to assess the repeatability and variability of the polymetallic mineralization. Laboratory duplicates (sample preparation split) were completed every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the mineralization.
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sample sizes (1.5kg to 3kg) are considered to be a sufficient size to accurately represent the mineralization based on the mineralisation style, the width and continuity of the intersections, the sampling methodology. 5 twin DD drilling were performed in 2005 to ensure of the sub-sampling quality. Acceptable precision and accuracy is noted in this comparison RC x DD and also the duplicates are acceptable and consistent with this mineralization style.
Quality of assay data and aboratory eests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 All 2017 RC Drilling are analysing following the procedure summarized below: All Samples of Geochemical Exploration Total Digestion - ICP

Criteria	JORC Code explanation			Comn	nentary		
		Elements:					
		Element - Unit	Detection Limit	Upper Limit	Element - Unit	Detection Limit	Upper Limit
		Ag - PPM	0.2	100	Mo - PPM	1	10000
		AI - %	0.01	15	Na - %	0.01	15
		As - PPM	3	10000	Nb - PPM	1	10000
		Ba - PPM	1	10000	Ni - PPM	1	10000
		Be - PPM	0.5	10000	P - %	0.01	15
		Bi - PPM	5	10000	Pb - PPM	2	10000
		Ca - %	0.01	15	S - %	0.01	10
		Cd - PPM	1	10000	Sb - PPM	5	10000
		Co - PPM	1	10000	Sc - PPM	0.5	10000
		Cr - PPM	1	10000	Sn - PPM	10	10000
		Cu - PPM	0.5	10000	Sr - PPM	0.5	5000
		Fe - %	0.01	15	Ti - %	0.01	15
		Ga - PPM	10	10000	TI - PPM	2	10000
		K - %	0.01	15	V - PPM	2	10000
		La - PPM	0.5	10000	W - PPM	10	10000
		Li - PPM	1	10000	Y - PPM	0.5	10000
		Mg - %	0.01	15	Zn - PPM	0.5	10000
		Mn - PPM	2	10000	Zr - PPM	0.5	10000
		Samples above ICP40B upper limit: Multi-acid Digestion - Atomic Absorption Scheme: AAS41B - Method: SGS-MN-ME-106 ✓ Weigh 0.25 grams of sample and transfer to a Teflon beaker; ✓ Add 2.5 ml nitric acid, 7.5 ml chloric acid, 1.5 ml perchloric acid and 10 ml fluoric acid; ✓ Digest to dryness; ✓ Cool and add chloric acid. ✓ Heat and dissolve the salts. ✓ Cool and complete the solution with deionized water to 100 ml; ✓ Cover and homogenize.					

	Criteria	JORC Code explanation	Commentary
			✓ Read by atomic absorption.
			Element - Detection Upper Unit Limit Limit
)			Ag - PPM 10 4000
			Cu - % 0.002 20
			Pb - % 0.01 20
			Zn - % 0.01 20
			Geophysical tools not used.
		 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Three Certified Reference Material (standards) were inserted every 20th sample to assess the assaying accuracy of the external laboratories. Coarse duplicates were inserted every 20th sample to assess the repeatability from the preparation and variability of the Cu, Ag, Zn and Mn mineralization. Laboratory duplicates were also completed approximately every 20th sample to assess the precision of assaying. Evaluation of control samples has been carry out every received batch received from laboratory, which the submitted standards, duplicates and blanks (blinded) and the internal laboratory quality control data (non blinded), indicates assaying to be accurate and without significant bias. Field duplicate sample show excellent levels of correlation, above 0.85 for blinded duplicates (inserted by Valor Resources) and non blinded (inserted by SGS).
ı	Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	The Cu, Ag, Mn and Zn high grade intersections of RC drilling, have been intensively re-logged by the field geologists and also for the Competent Person with extensive experience in similar gold deposit styles
	assaying	The use of twinned holes.	 Silver Standard in 2015 performed five Diamond twin holes, which was analyzed internally and checked by Valor Resources during the Due Diligences, showing the high correlation considering distinct sample support and the deviations are considered to be normal variations in this mineralization type deposit.

Criteria	JORC Code explanation	Commentary
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 All sample controls, geological logging, assays are entered directly into excel spreadsheets files, with daily backup with a local copy replicated to a Valor Resources Ftp.
	Discuss any adjustment to assay data.	Updating the procedures for database storage
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The surveys were carried out by the contracted Company "Servicios Múltiples Cáceres S.R.L" – Arequipa Peru; Two Geomax Zenith 35Pro GNSS equipment with their respective accessories were used; The method used was that of RTK for stakeout by satellite tracking; Base station at geodesic point BE-01; The grid system is PSAD-56 Zone 19S
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Valor Resource is carrying 9750 meters of infill drilling, using platforms to perform no regular fan drill to cover the main areas of the deposit with approximately 35x35 meters space. In these platforms are drill holes to investigate extensions out of previous resources.
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralized domains to support the definition of Inferred, Indicated and Measured Mineral resources under the 2012 JORC code
	Whether sample compositing has been applied.	 No sample compositing has been applied in the field within the mineralized zones
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 The drilling is orientated N15 and N195 with dip varying from 40° to 90°, as a non regular fan drill, performing about 4-5 RC drilling starting at a referred platform
geological structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is 	The previous sectional interpretation of 50m spaced holes shows reasonable continuity of the mineralized zone both along strike and down dip. The drill

Criteria	JORC Code explanation	Commentary
	considered to have introduced a sampling bias, this should be assessed and reported if material.	orientation crossing a stock work mineralization trying to reproduce with high accuracy the spatial variability of this polymetallic Cu, Ag, Zn and Mn deposit
Sample	The measures taken to ensure sample security.	Samples are securely sealed and stored onsite;
security		 Samples delivery to SGS warehouse in Juliaca, by Valor Resources Staff;
•		 SGS staff delivery to SGS Arequipa for preparation;
		• SGS Arequipa sent to SGS Callao – Lima to chemical analysis.
Audits or	The results of any audits or reviews of sampling	The 2017 procedure was revised and audited internally by Valor Resources in
reviews	techniques and data.	August 2017. Checking RC Drilling, Sampling, Preparation and Chemical Analysis,
		by independent consultant M. Batelochi (AUSIMM Chattered Professional)

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JC	ORC Code explanation	Commentary
Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Berenguela Property encompasses approximately 141.33 hectares situated in the eastern part of the Western Cordilleran of south-central Peru and consists of two mineral concessions. The Berenguela concessions are located within the Department of Puno and lie within Peruvian National Topographic System (NTS) map area Lagunillas, No. 32-U. The centre of the Berenguela concessions is at 15° 40' South Latitude and 70° 34' West Longitude
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	 In March of 2004, SSR entered into an option agreement with SOMINBESA (KCA) to purchase 100% of the silver resources contained in the Berenguela Project. SSR performed 3 drill programmes: 2005 - 222 reverse circulation drill holes. 2010 – 17 Diamond Drill holes 2015 – 12 Diamond Drill holes In 2017 Valor Resources is carrying out this RC drilling for a Feasibility study
Geology	•	Deposit type, geological setting and style of mineralisation.	Based on the distribution and form of the potentially economic bodies of Mn-Cu-Ag

Criteria	JORC Code explanation	Commentary
		mineralization within the structurally deformed limestone formation there is little doubt that Berenguela represents a type of epigenetic, replacement-type ore deposit (Clark et al., 1990). Silver- and copper-mineralized veins of quartz and/or carbonate appear to be a very minor component of the deposit. What is debateable at Berenguela is whether or not, or to what extent supergene processes played a role in the formation of the deposit. • More specifically, is the extensive development of manganese oxides the result of the surface oxidation of hypogene manganiferous carbonates (manganocalcite and/or rhodochrosite) which had replaced calcite and dolomite adjacent to fractures in the precursor limestone and where silver, copper and zinc were deposited as sulphides synchronous with or subsequent to the Mn-carbonate replacement event. Or are the Mn- and Fe-oxides the direct metasomatic products of a hydrothermal system marked by strongly oxidized fluids enriched in Ag, Cu. • Considering that the replacement-type ore bodies at Uchucchacua have vertical extents of up to 300 meters, one could presume that good exploration potential still exists at Berenguela for the discovery of hypogene Ag-Cu-Mn mineralization at depths of 150 meters or greater. A possible indication of additional and extensive metasomatic alteration at depth is represented by the thick gypsum zone that has been intersected by several of the deeper holes in the deposit. (Strathern, 1969) While this gypsum may be of sedimentary origin, it could also be explained as forming a well-developed zone of sulphate alteration (perhaps originally occurring as anhydrite) that is related to a high level intrusion which exsolved a large volume of sulphur-rich fluids and/or vapour
Prill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	See Tables 1 and 2 and Section 1 - Sampling Techniques and Data

Criteria	JC	DRC Code explanation	Comn	nentary			
	•	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.					
Data aggregation methods	•	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	 In the reporting of exploration results, un-cut outliers grades are reported. The lower cut-off limit is considered to be Cu eq 0.5g/t for the reporting of drill hole intercepts with no more than 2 m downhole internal dilution. Intercepts are determined using a weighted average over the length of the intercept. 				
	•	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 The intercepts were included on Exploration results to included and Mn, in which there are high grade ranges of one metal in this range. These were incorporated by calculating 		ranges of one meta	l and sterile of anoth	
		detail.					
			•	Copper equi	ivalent (CuEq) calculations ass	ume:	
	•	The assumptions used for any reporting of metal equivalent values should be clearly stated.	•	Copper equi Base of Calculus	ivalent (CuEq) calculations ass Units	Costs-LME (London Metal Exchange)	Recovery (%) Concentra te
	•	The assumptions used for any reporting of metal	•	Base of		Costs-LME (London Metal	(%) Concentra
	•	The assumptions used for any reporting of metal	•	Base of Calculus Cu	Units US Dollars per tonne US Dollars and cents per troounce	Costs-LME (London Metal Exchange) 6,353.50 Y 17.09	(%) Concentra te 0.85
	•	The assumptions used for any reporting of metal	•	Base of Calculus Cu Ag Zn	Units US Dollars per tonne US Dollars and cents per tro	Costs-LME (London Metal Exchange) 6,353.50 y 17.09 2,886.50	(%) Concentra te 0.85
	•	The assumptions used for any reporting of metal	•	Base of Calculus Cu Ag Zn	Us Dollars per tonne US Dollars and cents per tro ounce US Dollars per tonne	Costs-LME (London Metal Exchange) 6,353.50 y 17.09 2,886.50	(%) Concentra te 0.85
Relationship between mineralisati on widths		The assumptions used for any reporting of metal	•	Base of Calculus Cu Ag Zn Mn grade: Since few draccounts of	Us Dollars per tonne US Dollars and cents per tro ounce US Dollars per tonne	Costs-LME (London Metal Exchange) 6,353.50 y 17.09 2,886.50 alculus. uela are longer than ralization. However	(%) Concentra te 0.85 0.5 0.8 150 m, there are ferr, this is not to say the

Criteria	JORC Code explanation	Commentary
intercept lengths	are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See diagrams in main body of the announcement
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All the significant results of Cu, Ag, Zn and Mn greater than 0.5 % e Cu least 2m downhole have been reported in the main body of the announcement
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results, geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Investments has plans to investigate these data in detail after this drilling campaign
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Revision of Mineral Resources, updating with the 2011/2015 diamond drilling and 2017 RC Drilling information and also the geological knowledge, which improved considerably since 2005; This Mineral Resource should be detailed and complete to support a Feasibility Study of Berenguela Project.