

ASX Release

10 October 2017

VALOR RESOURCES LIMITED ACN 076 390 451

22 Lindsay Street PERTH, WA Australia

Tel: +61 8 9200 3467 Fax: +61 8 9227 6390

Contact:

Mr Mark Sumner

E-mail:

info@valorresources.com.au

Directors

Mr Mark Sumner Mr Brian McMaster Ms Paula Cowan

Company Secretary

Ms Kelly Moore Ms Paula Cowan

ASX Code:

VAI

HIGH GRADE COPPER & SILVER INTERCEPTS INCLUDE 80 METERS AT 1.34% Cu & 136.74 G/T Ag

Valor Resources Limited ("**VAL**" or the "**Company**", ASX: VAL) is pleased to confirm more multiple high grade and thick intersections from drilling at the flagship Berenguela Copper-Silver Project in Southern Peru.

Highlights:

- Extraordinary Cu intercepts include 100 meters at 1.17% Cu, 80 meters at 1.34% Cu, 71 meters at 1.03% Cu and 53 meters at 1.74% Cu.
- Very high grade silver intercepts, including 3 meters at 916.67 g/t, showing consistent Ag mineralisation across the Berenguela deposit.
- Updated JORC resource estimate coming soon.

Key drilling intercepts (refer to Tables 1 & 2 for complete results) include:

BEP-022 - BER272

- 80 m @ 1.34% Cu + 136.74 g/t Ag + 15.06% Mn + 0.34% Zn (from 21m).
 2.165% CuEq, including:
 - 56 m @ 1.08% Cu + 141.30 g/t Ag + 14.29% Mn + 0.39% Zn (from 21m). 1.952% CuEq; and
 - 13 m @ 2.57% Cu + 79.62 g/t Ag + 17.36% Mn + 0.20% Zn (from 77m) 3.052% CuEq

BEP-022 - BER275

- 71 m @ 1.03 Cu% + 119.91 Ag g/t + 9.91 Mn% + 0.27 Zn% (from 21 m).
 1.740% CuEq including:
 - 3 m @ 3.85% Cu + 321.67 g/t Ag + 15.06% Mn + 0.34% Zn (from 38m). 5.569 % CuEq; and
 - 51 m @ 0.91% Cu + 115.54 g/t Ag + 9.64% Mn + 0.25% Zn (from 41 m). 1.589% CuEq

BEP-025 - BER278

- 20 m @ 1.60% Cu + 212.59 g/t Ag + 16.69% Mn + 0.33% Zn (from 19m).
 2.787 % CuEq, including:
 - 3 m @ 2.59% Cu + 84 g/t Ag + 17.38% Mn + 0.35% Zn (from 28m).
 3.165% CuEq; and
 - 3 m @ 1.27% Cu + 916.67 g/t Ag + 20% Mn + 0.33% Zn (from 31m)
 5.860% CuEq; and
 - 5 m @ 2.08% Cu + 95.88 g/t Ag + 19.46% Mn + 0.36% Zn (from 34m)
 2.718% CuEq

Key drilling intercepts continued (refer to Tables 1 & 2 for complete results):

BEP025 - BER281:

27m @ 1.43% Cu + 122.15 g/t Ag + 11.18% Mn + 0.22% Zn (from 15m). 2.127 % CuEq

BEP025 - BER280:

• 100 m @ 1.17% Cu + 56.33 g/t Ag + 10.16% Mn + 0.27% Zn (from 12m). 1.573% CuEq

BEP025 - BER283:

29 m @ 1.13% Cu + 64.56 g/t Ag + 9.31% Mn + 0.26% Zn (from 17m). 1.568 % CuEq

BEP025 - BER286:

28 m @ 0.86% Cu + 106.54 g/t Ag + 8.74% Mn + 0.27% Zn (from 12m). 1.506 % CuEq

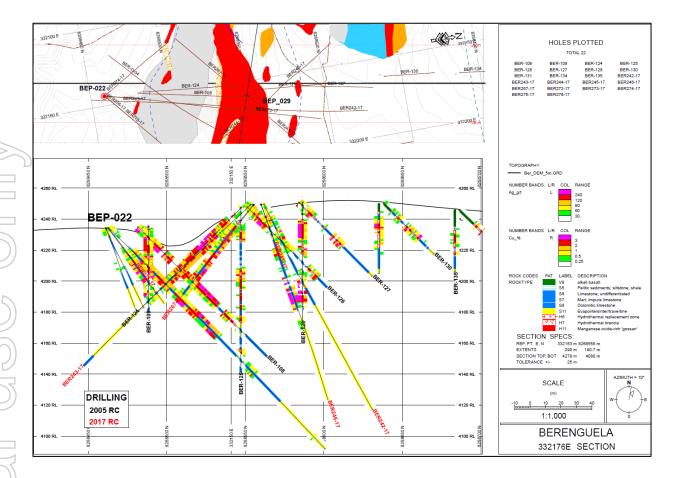
BEP001 - BER288:

32 m @ 0.74% Cu + 167.57 g/t Ag + 5.24% Mn + 0.33% Zn (from 0m). 1.710 % CuEq

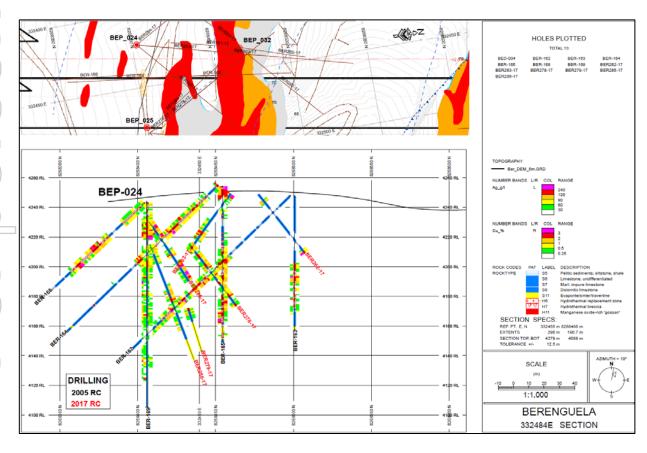
BEP022 - BER274:

19 m @ 0.73% Cu + 172.57 g/t Ag + 6.95% Mn + 0.24% Zn (from 27m). 1.680 % CuEq

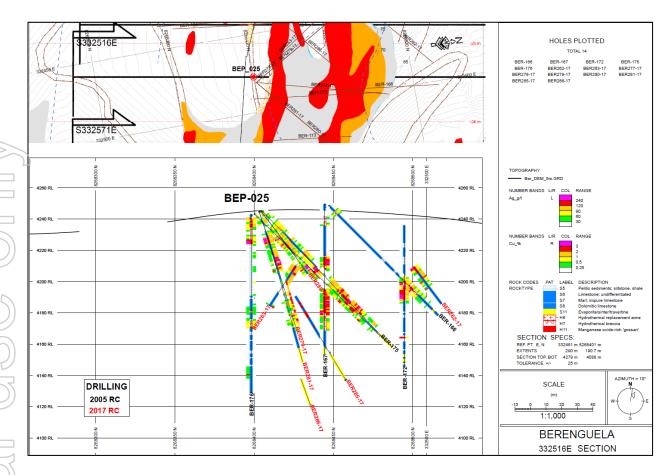
Management Commentary

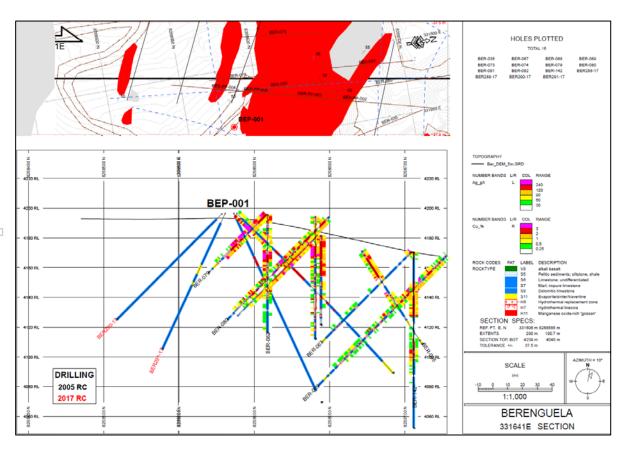

Valor Chairman, Mark Sumner said: "Assay results continue to exceed our expectations. We are witnessing high grade copper and silver intercepts across the project and we are very encouraged by both the length of the intersections and the multiple very high grade zones we are encountering like the three meter of silver at 916 grams per tonne.

"We still have results to report from multiple holes to complete the drill program. The JORC-compliant resource will be reported very shortly and we believe will be the next game-changer for Berenguela."


Drill Sections

Platforms BEP-001, BEP-021, BEP-022, BEP-024, and BEP-025 (and their associated drill holes discussed in this release) trend from west to east along the southern margin of the property. The locations of these platforms were chosen based on data from previous drilling campaigns coupled with new geologic insight targeting mineralization from mobile hydrothermal fluids. The locations, azimuths, and dip angle of the holes drilled at each platform are original to this 2017 drilling program. Continued exploration will extend down dip along bedding planes within the carbonates to continue targeting concentrated zones of Cu, Ag, and Mn mineralization.


The Cu, Ag, and Mn mineralization is hosted within limestone and dolostones of the middle to late Cretaceous Ayavacas Formation. Mineralization is focused within lenticular bodies of manganese and iron oxides derived from complete and extensive replacement of Ca-Mg carbonates. The Mn carbonates are a product of metasomatic alteration from intermediate sulfidation epithermal (ISE) fluids. These mineral rich fluids were channelized along faults and intensely fractured zones where mineralized veins are localized. The southern boundary of the property approximately parallels this deformation.


Drill Section from Platform 022

Drill Section from Platform 024

Drill Section from Platform 025

Drill Section from Platform 001

Drilling Program Overview

The drilling program commenced on 10 July 2017. The program includes 66 drill holes for a total of 9,570 metres, targeting depths between 100 and 200 metres focusing primarily on the Berenguela central deposit area, with select drill holes targeting mineralisation outside of the area current Inferred Resource shell. To date, 61 holes for a total of 7,989 meters been completed. The drill holes are spaced on 35m x 35m grid and were performed from 19 platforms (BEP-002, BEP-003, BEP-005, BEP-006, BEP-007, BEP-008, BEP-021, BEP-022, BEP-023, BEP-024, BEP-025, BEP-029, BEP-031, BEP-032)

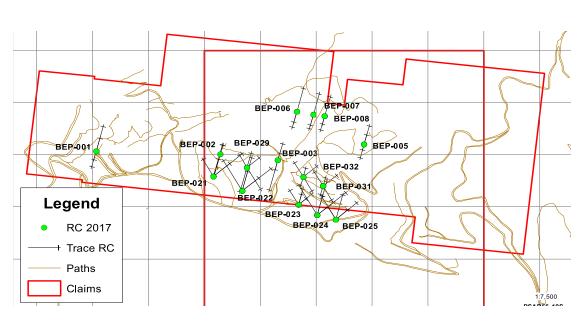


Figure 2 - 2017 Drilling Platform Map

Table 1: Drillhole Results at the Berenguela Project (Cut off Cu eq ~ 0.50)

Platform	HoleId	Comments	From (m)	To (m)	Interval (m)	% eCu Excl Mn	Summary
			4	11	7	0.855	7 m @ 0.69 Cu% + 17.44 Ag g/t + 1.16 Mn% + 0.17 Zn%
			26	49	23	0.974	23 m @ 0.54 Cu% + 41.17 Ag g/t + 4.31 Mn% + 0.5 Zn%
	BER223-17		66	69	3	0.631	3 m @ 0.26 Cu% + 40.47 Ag g/t + 3.43 Mn% + 0.37 Zn%
1			79	90	11	0.744	11 m @ 0.43 Cu% + 28.11 Ag g/t + 4.36 Mn% + 0.38 Zn%
BEP-006			113	175	62	1.591	62 m @ 0.6 Cu% + 109.92 Ag g/t + 8.98 Mn% + 0.97 Zn%
_	BER224-17		4	47	43	0.586	43 m @ 0.42 Cu% + 16.69 Ag g/t + 2.26 Mn% + 0.18 Zn%
		-	65	92	27	0.535	27 m @ 0.35 Cu% + 19.70 Ag g/t + 2.1 Mn% + 0.19 Zn%
))	BER225-17	1	5	68	63	1.586	63 m @ 1.08 Cu% + 40.84 Ag g/t + 7.62 Mn% + 0.66 Zn%
7	BER226-17		10	45	35	1.671	35 m @ 0.62 Cu% + 90.35 Ag g/t + 12.6 Mn% + 1.31 Zn%
			52	61	9	0.892	9 m @ 0.63 Cu% + 25.03 Ag g/t + 4.38 Mn% + 0.3 Zn%
	BER227-17		2	73	71	1.655	71 m @ 0.82 Cu% + 111.09 Ag g/t + 6.81 Mn% + 0.62 Zn%
			100	112	12	0.592	12 m @ 0.35 Cu% + 23.73 Ag g/t + 2.96 Mn% + 0.27 Zn%
BEP-007	BER228-17		7	92	85	0.963	85 m @ 0.55 Cu% + 38.66 Ag g/t + 5.4 Mn% + 0.48 Zn%
1	BER229-17		11	42	31	1.067	31 m @ 0.59 Cu% + 28.43 Ag g/t + 10.58 Mn% + 0.73 Zn%
))			50	54	4	0.583	4 m @ 0.3 Cu% + 19.93 Ag g/t + 3.99 Mn% + 0.4 Zn%
	BER230-17		0	42	42	1.605	42 m @ 0.93 Cu% + 70.35 Ag g/t + 11.13 Mn% + 0.71 Zn%
7	BER231-17		0	5	5	1.034	5 m @ 0.47 Cu% + 31.94 Ag g/t + 7.93 Mn% + 0.88 Zn%
V	DLR231-17		25	65	40	0.746	40 m @ 0.43 Cu% + 19.17 Ag g/t + 5.82 Mn% + 0.48 Zn%
			1	6	5	2.093	5 m @ 1.19 Cu% + 71.58 Ag g/t + 15.74 Mn% + 1.19 Zn%
BEP-008	BER232-17		30	37	7	0.837	7 m @ 0.45 Cu% + 20.44 Ag g/t + 8.65 Mn% + 0.62 Zn%
			96	102	6	0.856	6 m @ 0.57 Cu% + 27.93 Ag g/t + 3.07 Mn% + 0.32 Zn%
1	BER233-17		0	17	17	0.729	17 m @ 0.46 Cu% + 19.82 Ag g/t + 3.9 Mn% + 0.37 Zn%
)	BER234-17		0	23	23	1.112	23 m @ 0.73 Cu% + 33.39 Ag g/t + 5.12 Mn% + 0.47 Zn%
			0	28	28	1.148	28 m @ 0.65 Cu% + 30.71 Ag g/t + 9.32 Mn% + 0.75 Zn%
BEP-002	BER235-17		39	59	20	1.167	20 m @ 0.57 Cu% + 78.73 Ag g/t + 8.05 Mn% + 0.45 Zn%
			59	66	7	10.870	7 m @ 2.18 Cu% + 1,719.83 Ag g/t + 13.21 Mn% + 0.41 Zn
	BER236-17		0	44	44	1.499	44 m @ 0.9 Cu% + 85.63 Ag g/t + 8.42 Mn% + 0.38 Zn%
Ĭ)			21	32	11	0.597	11 m @ 0.31 Cu% + 47.80 Ag g/t + 1.27 Mn% + 0.11 Zn%
y .	BER237-17		35	46	11	1.461	11 m @ 0.86 Cu% + 94.43 Ag g/t + 10.49 Mn% + 0.29 Zn%
			67	71	4	1.638	4 m @ 0.68 Cu% + 139.62 Ag g/t + 9.02 Mn% + 0.58 Zn%
))			81	85	4	0.658	4 m @ 0.45 Cu% + 22.43 Ag g/t + 3.74 Mn% + 0.21 Zn%
Y	BER238-17		18	36	18	0.989	18 m @ 0.56 Cu% + 65.28 Ag g/t + 7.43 Mn% + 0.23 Zn%
BEP-023			82	92	10	1.179	10 m @ 0.79 Cu% + 61.03 Ag g/t + 3.98 Mn% + 0.19 Zn%
	BER239-17		30	57	27	1.715	27 m @ 1.01 Cu% + 117.80 Ag g/t + 8.73 Mn% + 0.26 Zn%
M. Committee			88	100	12	1.811	12 m @ 0.82 Cu% + 177.05 Ag g/t + 5.27 Mn% + 0.26 Zn%
)			26	43	17	1.925	17 m @ 0.76 Cu% + 214.60 Ag g/t + 9.24 Mn% + 0.24 Zn%
	BER240-17		43	49	6	3.222	6 m @ 2.96 Cu% + 34.65 Ag g/t + 13.04 Mn% + 0.2 Zn%
			75	80	5	0.746	5 m @ 0.46 Cu% + 37.80 Ag g/t + 4.19 Mn% + 0.21 Zn%
	BER241-17		20	61	41	1.323	41 m @ 0.69 Cu% + 113.22 Ag g/t + 4.84 Mn% + 0.15 Zn%

Platform	HoleId	Comments	From	То	Interval	% eCu	Summary
	DED242.47		9	35	26	1.721	26 m @ 0.91 Cu% + 105.30 Ag g/t + 7.14 Mn% + 0.63 Zr
	BER242-17		48	57	9	1.645	9 m @ 0.72 Cu% + 165.57 Ag g/t + 3.94 Mn% + 0.23 Zn
			0	5	5	1.122	5 m @ 0.63 Cu% + 49.42 Ag g/t + 7.7 Mn% + 0.54 Zn%
			16	21	5	1.372	5 m @ 0.57 Cu% + 101.48 Ag g/t + 16.57 Mn% + 0.66 Zr
			24	29	5	1.267	5 m @ 0.63 Cu% + 70.66 Ag g/t + 17.53 Mn% + 0.63 Zn
	BER243-17		32	36	4	2.068	4 m @ 1.31 Cu% + 110.70 Ag g/t + 19.29 Mn% + 0.46 Z
	DLIL 13 17		37	91	54	2.605	54 m @ 1.48 Cu% + 202.66 Ag g/t + 14.47 Mn% + 0.27 Z
			37	45	8	5.996	8 m @ 2.09 Cu% + 754.13 Ag g/t + 20 Mn% + 0.38 Zn
			68	73	5	2.480	5 m @ 2.12 Cu% + 62.12 Ag g/t + 4.59 Mn% + 0.11 Zn
h			0	6	6	1.468	6 m @ 1.18 Cu% + 32.25 Ag g/t + 2.23 Mn% + 0.27 Zn
			8	11	3	2.473	3 m @ 1.95 Cu% + 58.23 Ag g/t + 7.11 Mn% + 0.51 Zr
ľ l	BER244-17		14	64	50	2.195	50 m @ 1.39 Cu% + 130.77 Ag g/t + 11.63 Mn% + 0.34
b	DEN244-17				9		
			32	41		3.663	9 m @ 3.02 Cu% + 107.11 Ag g/t + 9.45 Mn% + 0.24 Z
BEP-029			41	51	10	2.351	10 m @ 1.24 Cu% + 177.18 Ag g/t + 18.11 Mn% + 0.5 Z
/			3	15	12	1.229	12 m @ 0.79 Cu% + 48.40 Ag g/t + 8.9 Mn% + 0.42 Zr
			20	34	14	2.320	14 m @ 1.07 Cu% + 186.18 Ag g/t + 9.83 Mn% + 0.71 2
	BER245-17		22	30	8	3.144	8 m @ 1.47 Cu% + 252.96 Ag g/t + 12.95 Mn% + 0.93
N			45	48	3	1.428	3 m @ 0.99 Cu% + 48.73 Ag g/t + 6.89 Mn% + 0.42 Zr
V			52	64	12	2.309	12 m @ 0.85 Cu% + 243.52 Ag g/t + 15.69 Mn% + 0.55
1 L			60	64	4	1.656	4 m @ 0.59 Cu% + 195.55 Ag g/t + 8.16 Mn% + 0.21 Z
1)			0	3	3	0.911	3 m @ 0.52 Cu% + 16.50 Ag g/t + 19.09 Mn% + 0.67 Z
y I			10	17	7	2.031	7 m @ 1.15 Cu% + 116.61 Ag g/t + 18.57 Mn% + 0.66
h			22	29	7	0.659	7 m @ 0.52 Cu% + 16.89 Ag g/t + 2.43 Mn% + 0.12 Zr
	DED246 47		32	43	11	1.468	11 m @ 0.84 Cu% + 63.65 Ag g/t + 9.6 Mn% + 0.68 Z
	BER246-17		51	53	2	1.163	2 m @ 0.46 Cu% + 105.90 Ag g/t + 6.36 Mn% + 0.39 Z
			59	75	16	8.205	16 m @ 1.88 Cu% + 1,243.31 Ag g/t + 10.43 Mn% + 0
-			59	62	3	2.803	3 m @ 1.12 Cu% + 293.73 Ag g/t + 10.99 Mn% + 0.5 Z
1			63	71	8	13.859	8 m @ 2.95 Cu% + 2,161.23 Ag g/t + 14.64 Mn% + 0.49
Ŕ			24	35	11	0.792	11 m @ 0.46 Cu% + 56.91 Ag g/t + 11.61 Mn% + 0.1 Z
)	BER247-17		43	51	8	1.724	8 m @ 0.96 Cu% + 125.78 Ag g/t + 11.83 Mn% + 0.3 Z
<u>'</u>	BER248-17		30	45	15	1.577	15 m @ 0.83 Cu% + 143.40 Ag g/t + 12.01 Mn% + 0.08
_			30	33	3	1.700	3 m @ 1 Cu% + 94.63 Ag g/t + 11.82 Mn% + 0.5 Zn
h			36	41	5	3.422	5 m @ 2.05 Cu% + 234.00 Ag g/t + 11.54 Mn% + 0.47
			43	52	9	2.363	9 m @ 1.7 Cu% + 87.17 Ag g/t + 6.92 Mn% + 0.51 Zr
BEP-003	BER249-17		59	91	32	2.944	32 m @ 2.07 Cu% + 143.64 Ag g/t + 10.59 Mn% + 0.35
/ -= 333			77	81	4	3.701	4 m @ 3.3 Cu% + 63.83 Ag g/t + 6.4 Mn% + 0.19 Zn
			84	88	4	4.452	4 m @ 4.09 Cu% + 55.45 Ag g/t + 15.65 Mn% + 0.2 Zi
I)			29	34	5	3.695	5 m @ 1.68 Cu% + 353.86 Ag g/t + 11.51 Mn% + 0.56
			36	52	16	1.749	16 m @ 1.13 Cu% + 107.30 Ag g/t + 12.45 Mn% + 0.23
h	BER250-17		29	34	5	3.695	5 m @ 1.68 Cu% + 353.86 Ag g/t + 11.51 Mn% + 0.56
			36	52	16	1.749	16 m @ 1.13 Cu% + 107.30 Ag g/t + 12.45 Mn% + 0.2
1			52	70	18	2.217	18 m @ 1.51 Cu% + 100.30 Ag g/t + 12.45 Mil/% + 0.25
/	BER255-17		52	57	5	3.472	5 m @ 2.22 Cu% + 210.60 Ag g/t + 12.22 Mn% + 0.45
<u> </u>		+				-	
	DED356 47		29	54	25	2.372	25 m @ 1.99 Cu% + 57.38 Ag g/t + 10.71 Mn% + 0.21
	BER256-17		29	35	6	3.539	6 m @ 3.17 Cu% + 55.90 Ag g/t + 14.74 Mn% + 0.21 Z
BEP-031			51	54	3	4.973	3 m @ 4.13 Cu% + 137.77 Ag g/t + 16.93 Mn% + 0.36
	BER257-17		67	80	13	3.492	13 m @ 2.94 Cu% + 91.76 Ag g/t + 6.16 Mn% + 0.21 Z
L .			67	70	3	4.625	3 m @ 3.84 Cu% + 140.70 Ag g/t + 4.96 Mn% + 0.2 Z
Γ ļ	BER258-17	1	68	87	19	1.953	19 m @ 1.33 Cu% + 72.86 Ag g/t + 10.24 Mn% + 0.58
	BER259-17		63	100	37	1.397	37 m @ 1.07 Cu% + 47.43 Ag g/t + 5.58 Mn% + 0.2 Zi
			69	73	4	2.786	4 m @ 2.33 Cu% + 72.48 Ag g/t + 7.3 Mn% + 0.22 Zn

BER260-17 BER261-17 BER262-17 BER263-17 BER264-17		5 0 0 8 63 0 6	16 15 8 15 85 15 15	11 15 8 7 22 15	1.536 3.350 3.779 2.860 1.677	11 m @ 1.02 Cu% + 76.45 Ag g/t + 4.42 Mn% + 0.3 Zn% 15 m @ 1.9 Cu% + 254.59 Ag g/t + 18.49 Mn% + 0.42 Zn% 8 m @ 2.64 Cu% + 190.13 Ag g/t + 20 Mn% + 0.44 Zn% 7 m @ 1.05 Cu% + 328.26 Ag g/t + 16.77 Mn% + 0.41 Zn%
BER262-17 BER263-17		0 8 63 0 6	8 15 85 15	8 7 22	3.779 2.860	8 m @ 2.64 Cu% + 190.13 Ag g/t + 20 Mn% + 0.44 Zn% 7 m @ 1.05 Cu% + 328.26 Ag g/t + 16.77 Mn% + 0.41 Zn%
BER262-17 BER263-17		8 63 0 6	15 85 15	7 22	2.860	7 m @ 1.05 Cu% + 328.26 Ag g/t + 16.77 Mn% + 0.41 Zn%
BER263-17		63 0 6	85 15	22		
BER263-17		0 6	15		1.677	22 6 0 00 0 000 + 00 44 4 4 + 42 02 44 04 0 0 0 0 0
		6		15	1	22 m @ 0.88 Cu% + 89.44 Ag g/t + 12.62 Mn% + 0.76 Zn9
			12	1.0	3.229	15 m @ 2.48 Cu% + 124.92 Ag g/t + 13.09 Mn% + 0.29 Zn
BER264-17		0		6	5.343	6 m @ 4.47 Cu% + 144.63 Ag g/t + 19.03 Mn% + 0.35 Zn
BER264-17			16	16	3.849	16 m @ 2.65 Cu% + 204.19 Ag g/t + 19.06 Mn% + 0.42 Zr
BER264-17		0	8	8	3.790	8 m @ 2.62 Cu% + 186.75 Ag g/t + 18.82 Mn% + 0.53 Zn
BER264-17		7	11	4	4.786	4 m @ 3.85 Cu% + 169.25 Ag g/t + 18.74 Mn% + 0.22 Zn
BER264-17		11	15	4	3.031	4 m @ 1.49 Cu% + 274.00 Ag g/t + 19.86 Mn% + 0.4 Zn%
BER264-17		3	9	6	4.776	6 m @ 1.21 Cu% + 637.33 Ag g/t + 16.99 Mn% + 0.89 Zn
		16	33	17	1.024	17 m @ 0.55 Cu% + 43.56 Ag g/t + 9.46 Mn% + 0.57 Zn%
		36	46	10	1.241	10 m @ 0.83 Cu% + 62.33 Ag g/t + 3.88 Mn% + 0.23 Zn%
		48	58	10	2.089	10 m @ 0.67 Cu% + 231.72 Ag g/t + 18.35 Mn% + 0.59 Zr
		61	75	14	2.764	14 m @ 1.73 Cu% + 155.64 Ag g/t + 16.2 Mn% + 0.57 Zn
		3	9	6	2.283	6 m @ 0.82 Cu% + 251.65 Ag g/t + 12.44 Mn% + 0.47 Zn
		50	80	30	1.498	30 m @ 0.95 Cu% + 80.76 Ag g/t + 12.43 Mn% + 0.32 Zn
		0	8	8	1.584	8 m @ 0.93 Cu% + 85.00 Ag g/t + 12.91 Mn% + 0.5 Zn%
		17	33	16	1.576	16 m @ 1 Cu% + 71.46 Ag g/t + 13.66 Mn% + 0.47 Zn%
		34	48	14	2.499	14 m @ 2.07 Cu% + 60.45 Ag g/t + 19.39 Mn% + 0.29 Zn
BER267-17		52	58	6	2.380	6 m @ 1.71 Cu% + 93.43 Ag g/t + 18.1 Mn% + 0.46 Zn%
		58	63	5	3.624	5 m @ 3.09 Cu% + 88.56 Ag g/t + 20 Mn% + 0.2 Zn%
		63	69	6	2.850	6 m @ 2.17 Cu% + 111.02 Ag g/t + 20 Mn% + 0.28 Zn%
		69	85	16	1.352	16 m @ 0.92 Cu% + 65.01 Ag g/t + 10.18 Mn% + 0.23 Zn
BED269 17		9	16	7	0.940	7 m @ 0.37 Cu% + 98.51 Ag g/t + 3.35 Mn% + 0.17 Zn%
DLN200-17		10	13	3	1.059	3 m @ 0.85 Cu% + 35.87 Ag g/t + 1.41 Mn% + 0.07 Zn%
BER269-17		9	23	14	0.124	14 m @ 0.05 Cu% + 7.29 Ag g/t + 0.43 Mn% + 0.08 Zn%
BED270 17		0	2	2	0.919	2 m @ 0.48 Cu% + 55.90 Ag g/t + 7.35 Mn% + 0.35 Zn%
DLI(270-17		1	15	14	0.093	14 m @ 0.03 Cu% + 5.90 Ag g/t + 0.46 Mn% + 0.08 Zn%
BER271-17		15	21	6	0.892	6 m @ 0.35 Cu% + 83.22 Ag g/t + 5.34 Mn% + 0.28 Zn%
		0	7	7	0.732	7 m @ 0.37 Cu% + 59.69 Ag g/t + 2.53 Mn% + 0.15 Zn%
		15	21	6	0.491	6 m @ 0.06 Cu% + 77.12 Ag g/t + 2.09 Mn% + 0.11 Zn%
RFR272-17		21	77	56	1.955	56 m @ 1.08 Cu% + 141.30 Ag g/t + 14.29 Mn% + 0.39 Zr
DLN2/2-1/		77	90	13	3.011	13 m @ 2.57 Cu% + 70.62 Ag g/t + 17.36 Mn% + 0.2 Zn
		90	101	11	2.221	11 m @ 1.22 Cu% + 181.04 Ag g/t + 16.31 Mn% + 0.22 Zr
		125	135	10	1.057	10 m @ 0.61 Cu% + 59.34 Ag g/t + 7.73 Mn% + 0.32 Zn9
BER273-17		0	3	3	0.972	3 m @ 0.58 Cu% + 56.43 Ag g/t + 4.53 Mn% + 0.24 Zn%
		0	+		0.897	3 m @ 0.53 Cu% + 47.70 Ag g/t + 3.61 Mn% + 0.28 Zn%
BER274-17		27	42	15	1.774	15 m @ 0.83 Cu% + 165.11 Ag g/t + 7.67 Mn% + 0.27 Zn
		45	49	4	1.432	4 m @ 0.37 Cu% + 200.45 Ag g/t + 4.27 Mn% + 0.15 Zn9
		0	11	11	0.820	11 m @ 0.4 Cu% + 68.81 Ag g/t + 2.87 Mn% + 0.18 Zn%
BFR275-17		21	38	17	1.544	17 m @ 0.91 Cu% + 97.44 Ag g/t + 9.85 Mn% + 0.33 Zn9
BEK2/5-1/		38	41	3	5.600	3 m @ 3.85 Cu% + 321.67 Ag g/t + 15.06 Mn% + 0.34 Zn
		41	92	51	1.601	51 m @ 0.91 Cu% + 115.54 Ag g/t + 9.64 Mn% + 0.25 Zn
BFR276-17		0	3	3	0.928	3 m @ 0.49 Cu% + 61.23 Ag g/t + 3.78 Mn% + 0.29 Zn%
		28	31	3	0.651	3 m @ 0.28 Cu% + 50.97 Ag g/t + 4.52 Mn% + 0.26 Zn%
	BER268-17 BER269-17 BER270-17 BER271-17 BER271-17 BER272-17	BER268-17 BER269-17 BER270-17 BER271-17 BER271-17 BER272-17 BER273-17 BER274-17	BER267-17 BER268-17 BER269-17 BER270-17 BER271-17 BER271-17 BER271-17 BER271-17 BER271-17 BER271-17 DO DO DO DO DO DO DO DO DO D	BER267-17 17 33 34 48 52 58 58 63 69 85 69 85 9 16 10 13 BER269-17 9 23 BER270-17 1 15 BER271-17 15 21 D	BER267-17 BER268-17 BER268-17 BER270-17 BER271-17 BER271-17	BER267-17 17 33 16 1.576 34 48 14 2.499 52 58 6 2.380 58 63 5 3.624 63 69 6 2.850 69 85 16 1.352 9 16 7 0.940 10 13 3 1.059 BER269-17 9 23 14 0.124 BER270-17 1 15 14 0.093 BER271-17 15 21 6 0.892 15 21 6 0.491 15 21 6 0.491 15 21 6 0.491 15 21 6 0.491 15 21 6 0.491 15 21 6 0.491 15 21 6 0.491 15 21 6 0.491 16 0.95 17 7 90 13 3.011 17 90 13 3.011 18 90 101 11 2.221 125 135 10 1.057 BER273-17 0 3 3 0.972 BER274-17 27 42 15 1.774 45 49 4 1.432 BER275-17 38 17 1.544 BER275-17 38 41 3 5.600 41 92 51 1.601 BER276-17

Platform	HoleId	Comments	From (m)	To (m)	Interval (m)	% eCu Excl Mn	Summary
			10	22	12	1.021	12 m @ 0.62 Cu% + 57.32 Ag g/t + 9.92 Mn% + 0.25 Zn%
			25	45	20	1.048	20 m @ 0.63 Cu% + 65.04 Ag g/t + 7.49 Mn% + 0.2 Zn%
	BER277-17		60	78	18	1.950	18 m @ 1.47 Cu% + 45.42 Ag g/t + 16.49 Mn% + 0.55 Zn%
			81	94	13	2.323	13 m @ 1.69 Cu% + 97.95 Ag g/t + 14.2 Mn% + 0.32 Zn%
>			96	104	8	1.055	8 m @ 0.8 Cu% + 33.74 Ag g/t + 3.89 Mn% + 0.19 Zn%
			4	8	4	2.566	4 m @ 1.66 Cu% + 142.23 Ag g/t + 17.38 Mn% + 0.44 Zn%
			12	17	5	1.120	5 m @ 0.73 Cu% + 56.88 Ag g/t + 6.01 Mn% + 0.23 Zn%
			19	28	9	1.659	9 m @ 1.1 Cu% + 85.60 Ag g/t + 13.83 Mn% + 0.3 Zn%
	BER278-17		28	31	3	3.167	3 m @ 2.59 Cu% + 84.00 Ag g/t + 17.38 Mn% + 0.35 Zn%
			31	34	3	5.949	3 m @ 1.27 Cu% + 916.67 Ag g/t + 20 Mn% + 0.33 Zn%
			34	39	5	2.738	5 m @ 2.08 Cu% + 95.88 Ag g/t + 19.46 Mn% + 0.4 Zn%
)))			39	103	64	1.312	64 m @ 0.93 Cu% + 44.24 Ag g/t + 10.86 Mn% + 0.36 Zn9
			0	4	4	0.906	4 m @ 0.53 Cu% + 49.58 Ag g/t + 3.32 Mn% + 0.29 Zn%
			6	9	3	2.757	3 m @ 1.85 Cu% + 153.37 Ag g/t + 10.64 Mn% + 0.33 Zn%
			14	18	4	1.012	4 m @ 0.83 Cu% + 27.75 Ag g/t + 3.28 Mn% + 0.1 Zn%
BEP-025			18	21	3	5.178	3 m @ 4.9 Cu% + 44.40 Ag g/t + 5.75 Mn% + 0.12 Zn%
1			21	34	13	15.337	13 m @ 14.83 Cu% + 1.10 Ag g/t + 0.02 Mn% + 1.1 Zn%
	BER279-17		34	38	4	3.323	4 m @ 3.09 Cu% + 26.10 Ag g/t + 13.8 Mn% + 0.23 Zn%
))			38	43	5	1.115	5 m @ 0.88 Cu% + 28.00 Ag g/t + 12.53 Mn% + 0.2 Zn%
			48	71	23	2.303	23 m @ 2.02 Cu% + 37.06 Ag g/t + 14.54 Mn% + 0.22 Zn9
7			71	80	9	1.887	9 m @ 1.5 Cu% + 48.42 Ag g/t + 17.74 Mn% + 0.32 Zn%
7)			80	87	7	0.914	7 m @ 0.47 Cu% + 65.91 Ag g/t + 6.63 Mn% + 0.25 Zn%
			4	8	4	0.796	4 m @ 0.52 Cu% + 39.85 Ag g/t + 2.49 Mn% + 0.17 Zn%
			12	45	33	1.347	33 m @ 0.9 Cu% + 70.36 Ag g/t + 9 Mn% + 0.23 Zn%
	BER280-17		47	59	12	2.421	12 m @ 1.97 Cu% + 66.95 Ag g/t + 14.8 Mn% + 0.25 Zn%
1			65	112	47	1.766	47 m @ 1.36 Cu% + 49.11 Ag g/t + 11.53 Mn% + 0.35 Zn%
			0	3	3	1.748	3 m @ 1.14 Cu% + 82.00 Ag g/t + 6.63 Mn% + 0.44 Zn%
2/			5	8	3	2.034	3 m @ 1.54 Cu% + 57.90 Ag g/t + 14.01 Mn% + 0.45 Zn%
.	BER281-17		15	42	27	2.137	27 m @ 1.43 Cu% + 122.15 Ag g/t + 11.18 Mn% + 0.22 Zn
	DENZO1-17		56	59	3	0.911	3 m @ 0.79 Cu% + 9.67 Ag g/t + 6.67 Mn% + 0.16 Zn%
			61	83	22	0.911	22 m @ 0.73 Cu% + 24.02 Ag g/t + 7.2 Mn% + 0.21 Zn%
			0	9	9	0.526	9 m @ 0.16 Cu% + 62.11 Ag g/t + 1.43 Mn% + 0.12 Zn%
<i>)</i>)			23	39	16	1.181	16 m @ 0.76 Cu% + 64.41 Ag g/t + 8.86 Mn% + 0.23 Zn%
	DED202 17			1			
\mathcal{N}	BER282-17		41	68	27	1.289	27 m @ 0.93 Cu% + 47.49 Ag g/t + 10.33 Mn% + 0.28 Zn9
1			70 91	81	11	1.443	11 m @ 1.18 Cu% + 23.82 Ag g/t + 9.15 Mn% + 0.31 Zn%
		+		100	9	1.452	9 m @ 0.66 Cu% + 112.19 Ag g/t + 7.33 Mn% + 0.52 Zn%
			1 17	8	7	0.441	7 m @ 0.14 Cu% + 47.80 Ag g/t + 1.69 Mn% + 0.14 Zn%
			17	46	29	1.571	29 m @ 1.13 Cu% + 64.56 Ag g/t + 9.31 Mn% + 0.26 Zn%
<i>)</i>)	BER283-17		60	65	5	0.559	5 m @ 0.47 Cu% + 5.82 Ag g/t + 2.59 Mn% + 0.13 Zn%
			74	79	5	1.007	5 m @ 0.49 Cu% + 81.06 Ag g/t + 4.08 Mn% + 0.25 Zn%
			83	86	3	0.347	3 m @ 0.14 Cu% + 36.03 Ag g/t + 0.85 Mn% + 0.06 Zn%
<u> </u>		+	88	93	5	0.399	5 m @ 0.1 Cu% + 51.68 Ag g/t + 0.58 Mn% + 0.1 Zn%
			0	4	4	0.534	4 m @ 0.31 Cu% + 33.65 Ag g/t + 2 Mn% + 0.12 Zn%
BEP-024			5	9	4	0.782	4 m @ 0.5 Cu% + 47.47 Ag g/t + 2.05 Mn% + 0.1 Zn%
	BER284-17		27	54	27	1.225	27 m @ 0.75 Cu% + 72.05 Ag g/t + 10.96 Mn% + 0.25 Zn%
			69	92	23	1.251	23 m @ 0.88 Cu% + 39.34 Ag g/t + 6.53 Mn% + 0.37 Zn%
		1	97	104	7	0.622	7 m @ 0.32 Cu% + 54.71 Ag g/t + 0.85 Mn% + 0.07 Zn%
∌			4	7	3	0.720	3 m @ 0.42 Cu% + 30.03 Ag g/t + 3.35 Mn% + 0.34 Zn%
			15	33	18	2.135	18 m @ 1.57 Cu% + 83.54 Ag g/t + 14.8 Mn% + 0.32 Zn%
	BER285-17		42	49	7	1.579	7 m @ 1.04 Cu% + 82.74 Ag g/t + 11.6 Mn% + 0.28 Zn%
			53	63	10	1.876	10 m @ 1.67 Cu% + 27.78 Ag g/t + 9.26 Mn% + 0.15 Zn%
<u> </u>			63	69	6	3.033	6 m @ 2.59 Cu% + 56.37 Ag g/t + 19.92 Mn% + 0.35 Zn%
		1	69	102	33	1.859	33 m @ 1.43 Cu% + 60.01 Ag g/t + 13.1 Mn% + 0.28 Zn%
			18	46	28	1.516	28 m @ 0.86 Cu% + 106.54 Ag g/t + 8.74 Mn% + 0.27 Zn9
	BER286-17		61	83	22	1.371	22 m @ 0.81 Cu% + 87.72 Ag g/t + 11.28 Mn% + 0.28 Zn9
			84	95	11	0.494	11 m @ 0.11 Cu% + 67.90 Ag g/t + 1.09 Mn% + 0.1 Zn%
BEP-001	BER288-17		0	32	32	1.170	32 m @ 0.74% Cu + 167.57 g/t Ag + 5.24% Mn + 0.33% Z

^{*}Intercepts are calculated using: True width intervals of the mineralisation are interpreted as being between 50-80% true widths from oriented RC drilling core and sectional interpretation

Copper equivalent (CuEq) calculations assume:

Base of Calculus	Units	Price-LME (London Metal Exchange)	Recovery (%) Concentrate
Cu	US Dollars per tonne	6,510.00	0.85
Ag	US Dollars and cents per troy ounce	16.635	0.5
Zn	US Dollars per tonne	3,349.00	0.8

	LME Prices on 6 TH C] 3,	549.00	0.8		
				l			
//	Mn grades are not	considered t	or eCu caicu	ius.			
		_					
	Table 2: Drill Collar		n for Bereng	uela Projec	ct:		
	Hole ID	East_WGS	North_WGS	Elevation	Depth (m)	Azimuth	Dip
	BEP-006-BER223-17	332339.410	8268762.630	4260.650	200	15	-(
	BEP-006-BER224-17	332339.080	8268760.870	4260.790	180	0	-(
	BEP-006-BER225-17	332338.780	8268759.210	4260.570	150	195	-
	BEP-006-BER226-17	332338.460	8268757.500	4260.500	110	195	-
	BEP-007-BER227-17	332392.650	8268742.000	4254.980	180	15	-
	BEP-007-BER228-17	332392.070	8268740.090	4255.210	160	0	-
	BEP-007-BER229-17	332391.650	8268738.240	4254.950	150	195	-
	BEP-007-BER230-17	332391.200	8268736.590	4254.920	100	195	-
16	BEP-008-BER231-17	332449.560	8268738.380	4246.690	170	0	-
(//)	BEP-008-BER232-17	332449.460	8268737.180	4246.710	120	290	-
	BEP-008-BER233-17	332449.460	8268736.080	4246.700	120	215	_
	BEP-008-BER234-17	332448.590	8268734.830	4246.730	100	215	-
$\overline{}$	BEP-002-BER235-17	332080.460	8268590.960	4250.510	130	15	_
	BEP-002-BER236-17	332080.610	8268587.750	4250.550	150	195	_
	BEP-023-BER237-17	332339.420	8268411.700	4234.640	100	15	-
	BEP-023-BER238-17	332339.020	8268410.440	4234.530	100	15	
	BEP-023-BER239-17	332335.050	8268412.860	4234.610	105	330	
	BEP-023-BER240-17		8268410.140		100	50	
50	BEP-023-BER241-17	332340.630		4234.620	100	50	
		332339.190	8268409.000	4234.630		1	-
	BEP-029-BER242-17	332169.770	8268559.000	4249.480	150	15	-
	BEP-029-BER243-17	332167.540	8268550.810	4249.250	150	195	-
	BEP-029-BER244-17	332170.440	8268552.370	4249.230	150	150	
	BEP-029-BER245-17	332170.780	8268557.070	4249.440	150	50	
	BEP-029-BER246-17	332167.700	8268557.340	4249.460	150	330	-
16	BEP-003-BER247-17	332273.340	8268582.060	4251.940	110	15	
(//)	BEP-003-BER248-17	332272.910	8268580.540	4251.950	100	15	-
	BEP-003-BER249-17	332271.670	8268576.170	4251.720	200	195	-
	BEP-003-BER250-17	332272.150	8268577.920	4251.850	140	195	
	BEP-005-BER251-17	332581.210	8268643.310	4234.760	140	15	
115	BEP-005-BER252-17	332580.780	8268641.890	4234.800	170	15	
UL,	BEP-005-BER253-17	332579.530	8268637.300	4234.690	110	195	
\prec	BEP-005-BER254-17	332579.900	8268638.750	4234.780	120	195	
	BEP-031-BER255-17	332362.940	8268506.690	4255.170	100	15	-
	BEP-031-BER256-17	332362.290	8268504.480	4255.280	100	195	
	BEP-031-BER257-17	332360.520	8268509.530	4255.160	100	330	
7	BEP-031-BER258-17	332365.520	8268508.090	4255.210	100	50	-
	BEP-031-BER259-17	332365.160	8268501.640	4255.390	100	150	-
	BEP-032-BER260-17	332435.720	8268473.320	4256.940	100	15	-
	BEP-032-BER261-17	332434.600	8268469.560	4256.920	100	195	-
	BEP-032-BER262-17	332437.950	8268474.170	4256.910	100	50	
	BEP-032-BER263-17	332437.250	8268468.870	4256.870	100	150	
		+					
	BEP-032-BER264-17	332432.430	8268469.770	4256.910 4250.660	100	230	-
	BEP-002-BER265-17	332080.200	8268589.880		80	105	-
	BEP-002-BER266-17	332080.030	8268589.090	4250.530	80	195	-
	BEP-029-BER267-17	332165.460	8268552.820	4249.310	100	230	-
	BEP-021-BER268-17	332035.530	8268511.420	4226.940	163	15	-
	BEP-021-BER269-17	332034.960	8268509.480	4226.930	105	15	-
	BEP-021-BER270-17	332033.880	8268510.410	4226.950	63	330	-
	BEP-021-BER271-17	332037.090	8268510.700	4227.000	45	50	-
	BEP-022-BER272-17	332144.270	8268461.710	4234.090	200	15	-
	BEP-022-BER273-17	332143.670	8268459.650	4234.100	57	15	-

Hole ID	East_WGS	North_WGS	Elevation	Depth (m)	Azimuth	Dip
BEP-022-BER274-17	332142.120	8268461.390	4234.090	77	330	-45
BEP-022-BER275-17	332145.990	8268461.080	4234.210	160	50	-45
BEP-022-BER276-17	332144.530	8268459.860	4234.180	60	50	-65
BEP-025-BER277-17	332479.360	8268405.840	4244.750	120	15	-46
BEP-025-BER278-17	332476.080	8268405.410	4244.680	135	330	-45
BEP-025-BER279-17	332477.130	8268403.850	4244.590	110	330	-66
BEP-025-BER280-17	332481.530	8268404.410	4244.780	150	50	-45
BEP-025-BER281-17	332480.200	8268403.250	4244.660	110	50	-65
BEP-024-BER282-17	332420.200	8268403.680	4242.430	130	15	-45
BEP-024-BER283-17	332419.790	8268401.990	4242.280	120	15	-63
BEP-024-BER284-17	332416.350	8268403.510	4242.180	130	330	-45
BEP-024-BER285-17	332422.980	8268402.230	4242.250	140	50	-46
BEP-024-BER286-17	332421.640	8268401.100	4242.300	135	50	-65
BEP-005-BER287-17	332581.110	8268637.860	4234.820	140	150	-65
BEP-001-BER288-17	331639.150	8268582.600	4196.330	150	15	-45
BEP-001-BER289-17	331638.660	8268580.740	4196.360	140	15	-66
BEP-001-BER290-17	331636.420	8268572.910	4196.110	100	195	-45
BEP-001-BER291-17	331636.990	8268575.040	4196.350	100	195	-63

-ENDS-

For further information, please contact:

Mark Sumner

Chairman

Media Relations:

Ben Jarvis, Six Degrees Investor Relations: +61 (0) 413 150 448

Follow us on Twitter <a>@valorresources

About the Berenguela Project:

The Berenguela Project is an advanced stage copper-silver project located in the Puno District of Peru. On 10 March 2017 in an announcement titled "Mineral Resource Confirmation – Additional Information for ASX LR 5.8.1", Valor informed the market that Berenguela has confirmed Mineral Resources, according to the JORC (2012) Code of:

- Indicated: 15.6 million tonnes at 132 g/t Ag and 0.92% Cu
- Inferred: 6 million tonnes at 111 g/t Ag and 0.74% Cu

The current resource base covers an area of approximately 140 hectares, which accounts for only 2% of the total 6,594 hectares of exploration concessions in Valor's total land package. Valor believes this drilling program will continue to confirm and upgrade the existing resource, while paving the way to further resource expansion drilling in the future.

Copper Equivalent Calculations & Recoveries Assumptions

The calculation formula used to calculate the reported Copper Equivalent (CuEq %) is as follows: Cu Eq (%) = Cu G (%) + ((Ag G / 10000) x Ag P x C x ReAg) / (Cu P x ReCu) + (Zn% x Zn P x ReZn) / (Cu P x ReCu)

Equation Key:

Cu G = Copper grade %

Ag G = Silver grade in g/t

Ag P = Silver price in USD per troy ounce: US\$16.635

 $C = Conversion of tonnes to ounces, 1 tonne = <math>10^6/31.1035=32150.7465$ ounces

ReAg = Expected recovery of silver = 50%

Cu P = Copper price at US\$6,150.00 per tonne

ReCu = Expected recovery of copper = 85%

Zn% = Zinc Grade %;

Zn P = Zinc price = US\$3,349.00 per tonne;

ReZn = Expected recovery of zinc = 80%

See Table 1 for further information on metals grades and drilling intervals.

The metals price assumptions were calculated using spot prices taken from the London Metals Exchange (LME) on Monday, 6th October 2017.

Metallurgical test work has been completed on multiple Berenguela ore samples by independent laboratories and consulting groups. Recovery rates are based on historical work conducted on Berenguela ore samples, as well as guidance from Valor's metallurgical consultants. Valor's metallurgists were consulted regarding the potential for Cu, Ag and Zn recovery based on historical metallurgical work in order to confirm Reasonable Prospects for Eventual Economic Extraction. A Quality Assurance-Quality Control (QAQC) analysis has been conducted to confirm mineralisation, which showed positive intervals. Based on historical metallurgical work and QAQC, it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Competent Person's Statement

The technical information in this release is based on compiled and reviewed data by Mr. Marcelo Batelochi. Mr. Batelochi is an independent consultant with MB Geologia Ltda and is a Chartered Member of AusIMM – The Minerals Institute. Mr. Batelochi has sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Batelochi consents to the inclusion in the report of the matters based on their information in the form and context in which it appears. Mr. Batelochi accepts responsibility for the accuracy of the statements disclosed in this release.

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	ins section apply to all succeeding sections.)	
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 RC drilling the entire 1m RC samples were obtained and split by an adjustable cone splitter attached to the base of the cyclone or riffle split separately to 1.5kg – 3.0kg and were utilized for both lithology logging and assaying;
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Samples are split into single meter intervals. Certified standards were inserted every 20th sample and to assess the accuracy and methodology of the external laboratories. Field duplicates were inserted every 20th sample to assess the repeatability and variability of the Polymetallic mineralisation. Laboratory duplicates were also completed approximately every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the mineralisation. A blank standard was inserted at the start of every batch. Results of the QAQC sampling were assessed on a batch by batch basis and were considered acceptable.
	 Aspects of the determination of mineralisation that are Material to the Public Report. 	 1m RC samples were obtained by an adjustable cone splitter attached to the base of the cyclone (1.5kg – 3.0kg) and were utilized for both lithology logging and assaying.
I	• In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 These identified samples are sent to SGS preparation Laboratory, which are reidentified with SGS number linked to a code bar, the samples are weighed, dried at 105°C, grain size reduced to -8mm in primary crusher and in a secondary to 90%@ - 2mm, split to 0.15-0.3kg before being pulverised to 95% @ - 140mesh. The final pulp is sent to SGS laboratories in Callao – Lima Peru for chemical analysis assay.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, 	A AKD RC Drill Rig (Schramm T660H) Being 5.5" diameter face sampling hammer was used

Criteria	JORC Code explanation	Commentary
	depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 RC recovery was visually assessed, with recovery being excellent in this case due to the all drilled interval are above the water table. There are rare (-3%) of high intense fractured interval with no recovery, or less than 1 kg that is discarded.
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 RC samples were visually checked for recovery, moisture and contamination during the drill rig operation. The drilling contractor utilized a cyclone and cone splitter to provide uniform sample size. The cone splitter was cleaned at the end
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	of every rod and the cyclone cleaned at the completion of every hole. • Sample recoveries for RC drilling were high within the mineralized zones,
		confirmed by the check between RC x DD drilling performed by Silver Standard in 2015 and checked by Valor Resources in 2017. No significant bias is expected and high reproducibility between RC and DD drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 Lithology, alteration, veining, mineralization and manganese alteration were logged from the RC chips and stored in Datashed. Chips from selected holes were also placed in chip trays and stored in a designated building at site for future reference.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill holes intervals are logged by geologists acquiring the qualitative information, and all RC chip boxes are photography
Sub- sampling	 If core, whether cut or sawn and whether quarter, half or all core taken. 	Non cores;
techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 RC drilling recovery samples using a cyclone and cone splitter or riffle, in a weather sampled wet, natural humidity less than 10%.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 These identified samples are sent to SGS preparation Laboratory in Arequipa, which are re-identified with SGS number linked to a code bar, the samples are weighed, dried at 105°C, grain size reduced to -8mm in primary crusher and in a

Criteria	JORC Code explanation	Commentary
		secondary to 90% - 2 mm, split to 0.15 - 0.3 kg before being pulverised to 95% @ - 140 mesh. The final pulp is sent to SGS laboratories in Callao – Lima Peru for chemical analysis assay.
	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/secondhalf sampling. 	 Certified standards and blanks were inserted every 20th sample to assess the accuracy and methodology of the external laboratory (SGS), and field duplicates were inserted every 20th sample to assess the repeatability and variability of the polymetallic mineralization. Laboratory duplicates (sample preparation split) were completed every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the mineralization.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	 Sample sizes (1.5kg to 3kg) are considered to be a sufficient size to accurately represent the mineralization based on the mineralisation style, the width and continuity of the intersections, the sampling methodology. 5 twin DD drilling were performed in 2005 to ensure of the sub-sampling quality. Acceptable precision and accuracy is noted in this comparison RC x DD and also the duplicates are acceptable and consistent with this mineralization style.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 All 2017 RC Drilling are analysing following the procedure summarized below: All Samples of Geochemical Exploration Total Digestion - ICP

Criteria	JORC Code explanation			Comr	nentary		
		Element - Unit	Detection Limit	Upper Limit	Element - Unit	Detection Limit	Upper Limit
		Ag - PPM	0.2	100	Mo - PPM	1	10000
		Al - %	0.01	15	Na - %	0.01	15
)		As - PPM	3	10000	Nb - PPM	1	10000
		Ba - PPM	1	10000	Ni - PPM	1	10000
		Be - PPM	0.5	10000	P - %	0.01	15
		Bi - PPM	5	10000	Pb - PPM	2	10000
		Ca - %	0.01	15	S - %	0.01	10
		Cd - PPM	1	10000	Sb - PPM	5	10000
		Co - PPM	1	10000	Sc - PPM	0.5	10000
		Cr - PPM	1	10000	Sn - PPM	10	10000
		Cu - PPM	0.5	10000	Sr - PPM	0.5	5000
		Fe - %	0.01	15	Ti - %	0.01	15
		Ga - PPM	10	10000	TI - PPM	2	10000
		K - %	0.01	15	V - PPM	2	10000
		La - PPM	0.5	10000	W - PPM	10	10000
		Li - PPM	1	10000	Y - PPM	0.5	10000
		Mg - %	0.01	15	Zn - PPM	0.5	10000
		Mn - PPM	2	10000	Zr - PPM	0.5	10000
		Samples above Scheme: AAS41 ✓ Weigh 0.2	B - Method	: SGS-MN-			•
1		✓ Add 2.5 n fluoric ac		, 7.5 ml ch	nloric acid, 1.5 r	nl perchloric	acid and 10 m
		✓ Digest to	dryness;				
			add chloric				
			dissolve the				
					with deionized	l water to 10	0 ml;
			d homogeni:				
		✓ Read by a	atomic absor	ption.			

	Criteria	JORC Code explanation				Commentary			
				Element - Unit	Detection Limit	Upper Limit			
				Ag - PPM	10	4000			
				Cu - %	0.002	20			
				Pb - %	0.01	20			
				Zn - %	0.01	20			
			•	Geophysica	l tools not us	ed.			
-Or personal use only		 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Three Certified Reference Material (standards) were inserted every 20th sample to assess the assaying accuracy of the external laboratories. Coarse duplicates were inserted every 20th sample to assess the repeatability from the preparation and variability of the Cu, Ag, Zn and Mn mineralization. Laboratory duplicates were also completed approximately every 20th sample to assess the precision of assaying. Evaluation of control samples has been carry out every received batch received from laboratory, which the submitted standards, duplicates and blanks (blinded) and the internal laboratory quality control data (non blinded), indicates assaying to be accurate and without significant bias. Field duplicate sample show excellent levels of correlation, above 0.85 for blinded duplicates (inserted by Valor Resources) and non blinded (inserted by SGS). 						
	Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	•	intensively	re-logged by	gh grade intersections of he field geologists and al e in similar gold deposit s	so for the Competent Person		
	assaying	The use of twinned holes.	•	internally a the high co	nd checked b rrelation cons	Valor Resources during	win holes, which was analyzed the Due Diligences, showing upport and the deviations are ization type deposit.		
			•	All sample	controls, geol	ogical logging, assays are	entered directly into excel		

Criteria	JORC Code explanation	Commentary	
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	spreadsheets files, with daily backup with a local copy replicated to a Valor Resources Ftp.	
	Discuss any adjustment to assay data.	Updating the procedures for database storage	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The surveys were carried out by the contracted Company "Servicios Múltiples Cáceres S.R.L" – Arequipa Peru; Two Geomax Zenith 35Pro GNSS equipment with their respective accessories were used; The method used was that of RTK for stakeout by satellite tracking; Base station at geodesic point BE-01; The grid system is PSAD-56 Zone 19S 	
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Valor Resource is carrying 9750 meters of infill drilling, using platforms to perform no regular fan drill to cover the main areas of the deposit with approximately 35x35 meters space. In these platforms are drill holes to investigate extensions out of previous resources. 	
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralized domains to support the definition of Inferred, Indicated and Measured Mineral resources under the 2012 JORC code 	
	Whether sample compositing has been applied.	 No sample compositing has been applied in the field within the mineralized zones 	
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 The drilling is orientated N15 and N195 with dip varying from 40° to 90°, as a non regular fan drill, performing about 4-5 RC drilling starting at a referred platform 	
geological structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The previous sectional interpretation of 50m spaced holes shows reasonable continuity of the mineralized zone both along strike and down dip. The drill orientation crossing a stock work mineralization trying to reproduce with high 	

Criteria	JORC Code explanation Commentary		
		accuracy the spatial variability of this polymetallic Cu, Ag, Zn and Mn deposit	
Sample	The measures taken to ensure sample security.	Samples are securely sealed and stored onsite;	
security		 Samples delivery to SGS warehouse in Juliaca, by Valor Resources Staff; 	
		 SGS staff delivery to SGS Arequipa for preparation; 	
		 SGS Arequipa sent to SGS Callao – Lima to chemical analysis. 	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The 2017 procedure was revised and audited internally by Valor Resources in August 2017. Checking RC Drilling, Sampling, Preparation and Chemical Analysis, by independent consultant M. Batelochi (AUSIMM Chattered Professional) 	

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Berenguela Property encompasses approximately 141.33 hectares situated in the eastern part of the Western Cordilleran of south-central Peru and consists of two mineral concessions. The Berenguela concessions are located within the Department of Puno and lie within Peruvian National Topographic System (NTS) map area Lagunillas, No. 32-U. The centre of the Berenguela concessions is at 15° 40' South Latitude and 70° 34' West Longitude
_	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 In March of 2004, SSR entered into an option agreement with SOMINBESA (KCA) to purchase 100% of the silver resources contained in the Berenguela Project. SSR performed 3 drill programmes: 2005 - 222 reverse circulation drill holes. 2010 – 17 Diamond Drill holes 2015 – 12 Diamond Drill holes In 2017 Valor Resources is carrying out this RC drilling for a Feasibility study
	Geology	Deposit type, geological setting and style of mineralisation.	Based on the distribution and form of the potentially economic bodies of Mn-Cu-Ag mineralization within the structurally deformed limestone formation there is little doubt that Berenguela represents a type of epigenetic, replacement-type ore

Criteria	JORC Code explanation	Commentary		
		 deposit (Clark et al., 1990). Silver- and copper-mineralized veins of quartz and/or carbonate appear to be a very minor component of the deposit. What is debateable at Berenguela is whether or not, or to what extent supergene processes played a role in the formation of the deposit. More specifically, is the extensive development of manganese oxides the result of the surface oxidation of hypogene manganiferous carbonates (manganocalcite and/or rhodochrosite) which had replaced calcite and dolomite adjacent to fractures in the precursor limestone and where silver, copper and zinc were deposited as sulphides synchronous with or subsequent to the Mn-carbonate replacement event. Or are the Mn- and Fe-oxides the direct metasomatic products of a hydrothermal system marked by strongly oxidized fluids enriched in Ag, Cu. Considering that the replacement-type ore bodies at Uchucchacua have vertical extents of up to 300 meters, one could presume that good exploration potential still exists at Berenguela for the discovery of hypogene Ag-Cu-Mn mineralization at depths of 150 meters or greater. A possible indication of additional and extensive metasomatic alteration at depth is represented by the thick gypsum zone that has been intersected by several of the deeper holes in the deposit. (Strathern, 1969) While this gypsum may be of sedimentary origin, it could also be explained as forming a well-developed zone of sulphate alteration (perhaps originally occurring as anhydrite) that is related to a high level intrusion which exsolved a large volume of sulphur-rich fluids and/or vapour 		
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this 	See Tables 1 and 2 and Section 1 - Sampling Techniques and Data		

Criteria	JORC Code explanation	Commentary			
	exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.				
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	 In the reporting of exploration results, un-cut outliers grades at The lower cut-off limit is considered to be Cu eq 0.5g/t for the intercepts with no more than 2 m downhole internal dilution. I determined using a weighted average over the length of the intercept. 		e reporting of o	
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	Zn and Mn,	ots were included on Exploration in which there are high grade ra s range. These were incorporate	nges of one meta	I and sterile of
		Copper equ	ivalent (CuEq) calculations assur	ne:	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Base of Calculus	Units	Costs-LME (London Metal Exchange)	Recovery (%) Concentra te
		Cu	US Dollars per tonne	6,353.50	0.85
		Ag	US Dollars and cents per troy ounce	17.09	0.5
		Zn Mn grado	US Dollars per tonne s are not considered for eCu calo	2,886.50	0.8
		iviii grade	s are not considered for ecu can	Luius.	
Relationship between mineralisati on widths and intercept	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to 	accounts of	rill holes completed at Berengue hypogene, sulphide-rich minera alization does not exist in altered	lization. However	this is not to

Criteria	JORC Code explanation	Commentary
Diagrams	 known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional 	See diagrams in main body of the announcement
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All the significant results of Cu, Ag, Zn and Mn greater than 0.5 % e Cu least 2m downhole have been reported in the main body of the announcement
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 There are other substantive exploration data in the Silver Standard data room. Valor Investments has plans to investigate these data in detail after this drilling campaign
Further work	-	 Revision of Mineral Resources, updating with the 2011/2015 diamond drilling and 2017 RC Drilling information and also the geological knowledge, which improved considerably since 2005; This Mineral Resource should be detailed and complete to support a Feasibility Study of Berenguela Project.