

ASX: G88

CAPITAL STRUCTURE

Total shares on issue: 51.83m Unlisted Issued Options: 8.5m Market Cap @ 26c: \$13.5 million

CORPORATE DIRECTORY

Mr Rhod Grivas Non-Executive Chairman

> Mr Tim Putt Managing Director

Dr Koon Lip Choo Non-Executive Director

Mr Phillip Grundy Non-Executive Director

CONTACT DETAILS

1B/ 205-207 Johnson St, Fitzroy, Victoria, 3065
T: +61 (0) 3 9191 0135
F: +61 (0) 3 8678 1747

ACN 614 538 402

www.goidenmileresources.com.au

ASX Announcement 10 November 2017

WIDE INTERCEPTS AT NEW NICKEL DISCOVERY

Figure 1 – RC drilling at Quicksilver

HIGHLIGHTS

- Early RC drilling has confirmed and extended the nickel mineralisation at the Quicksilver Nickel Discovery
- Strong nickel intercepts (>1%), in adjacent drill holes, indicate that the mineralised system has a lateral width of more than 400 metres
- Composite sampling of the RC drilling has returned thick, highly mineralised intercepts including:

QRC040 44m @ 1.24% Nickel & 0.08% Cobalt from 24m QRC041 28m @ 1.10% Nickel & 0.04% Cobalt from 52m QRC054 56m @ 0.77% Nickel & 0.05% Cobalt from 20m

- The Quicksilver discovery also hosts significant cobalt mineralisation
- Further updates can be expected in the coming weeks as the development program proceeds at Quicksilver and further drill results are received.

Golden Mile Resources (ASX: G88) ("Golden Mile" or **"Company")** is pleased to announce that it continues to receive outstanding nickel & cobalt results from its drilling program over the Quicksilver Nickel-Cobalt-Scandium project in the South-West Mineral Field of Western Australia.

RC drilling, on 200 x 50 metre centres, has begun to delineate the nickel and cobalt mineralisation at Quicksilver. The mineralised system extends over a broad area, covering more than 1,500 metres of strike, including lateral **widths in excess of 400 metres**, and mineralised down hole intercepts of up to 56 metres (Appendix 1).

Preliminary analysis of the drilling data indicates that the nickel and cobalt mineralisation at Quicksilver remains open along strike, to both the north and south, and at depth. The mineralisation **shows good lateral continuity and extends DEEPER** than was previously thought.

Figure 2 – Quicksilver project location and 'discovery' location within the tenement area.

1. The Quicksilver Project – A new discovery in a new terrane

The Quicksilver nickel-cobalt-scandium project is located in the South-West Mineral Field of Western Australia (Figure 1). The project is composed of one granted Exploration Licence (E 70/4641 – 100% Golden Mile) covering 15 km of prospective stratigraphy.

Western Australia is home to a significant number of world-class nickel deposits (Figure 3) including the sulphide deposits of the Kambalda Dome and lateritic deposits at Murrin Murrin, both in the Eastern Goldfields.

The discovery of the Quicksilver mineralisation is highly significant in that it represents the first significant nickel-cobalt system in the South West Mineral Field.

Figure 3 – Significant nickel deposits in the Yilgarn Craton (not assets of G88), over the regional gravity image, with the location of the Quicksilver Nickel-Cobalt discovery (100% owned G88 asset)

2. Quicksilver RC Drilling Program & Results

The infill and extensional RC drilling program at Quicksilver comprised 64 drill holes (QRC07-089) and resulted in 4,675 metres of drilling.

The early results from this campaign, namely drill holes QRC027-060 presented in this report, confirm and extend the mineralisation intersected during the earlier aircore program.

Drilling indicates that the weathering profile at Quicksilver has been stripped, with much of the lateritic and clay-rich saprolite having been eroded off. The nickel mineralisation appears to be found within the siliceous saprock at the base of the weathering profile, which is typically intersected from approximately 20 metres below surface and can extend to more than 75 metres depth.

It should also be noted that the presence of significant nickel assays (>0.4%) in samples at the end of a number of drill holes suggests that mineralisation may extend into fresh rock, which requires further investigation.

The RC drilling has returned outstanding intercepts of both nickel and cobalt including:

QRC040	44 metres @ 1.24% Nickel & 0.08% Cobalt	from 24 metres
Including	8 metres @ 2.70% Nickel & 0.13% Cobalt	from 56 metres
QRC041	28 metres @ 1.01% Nickel & 0.04% Cobalt	from 52 metres
QRC047	12 metres @ 1.03% Nickel & 0.26% Cobalt	from 24 metres
QRC 054	56 metres @ 0.77% Nickel & 0.05% Cobalt	from 20 metres
Including	8 metres @ 1.18% Nickel & 0.15% Cobalt	from 44 metres
And	8 metres @ 1.40% Nickel & 0.02% Cobalt	from 64 metres

Figure 4 shows the locations of the Aircore & RC drill holes with significant intercepts.

Appendix 1 & 3 show a full listing of the anomalous intercepts (>0.4% Nickel and >0.04% Cobalt) and assays returned from the early RC drilling at Quicksilver (drill holes QRC027-060).

*Please note that QRC001-026 were drilled by previous explorers and targeted iron ore mineralisation through the tenement area. Drill hole locations and results relating to nickel from these drill holes have been released in previous announcements.

3. Quicksilver - Ongoing Work Program

An RC drilling program produced three batches of samples, which were submitted to Labwest in Perth during throughout the drilling program, until it's completion in October. A further two batches of results from the RC drilling, produced from holes QRC061-090, are expected in the coming weeks.

The Company is presently **moving towards a JORC 2012 resource estimate**, as well as advancing both the regional exploration and development program at Quicksilver.

Golden Mile looks forward to reporting further on the Quicksilver Nickel-Cobalt discovery as results continue to be received in the coming weeks

References

1. https://www.lme.com

Figure 4 – Aircore & RC drill hole locations with significant nickel & cobalt intercepts over interpreted geology.

For further information please contact:

Tim Putt - Managing Director, Golden Mile Resources Ltd (ASX: G88) T: (08) 9480 0636, F: (08) 9321 0320 E: tputt@goldenmileresources.com.au Justyn Stedwell – Company Secretary, Golden Mile Resources Ltd (ASX: G88) T: (03) 9191 0135, F: (03) 8678 1747 E: justyn@stedwell.com.au

About Golden Mile Resources Ltd

Golden Mile Resources is an Australian based exploration and development company, with an outstanding suite of cobalt, gold, and base metal projects in Western Australia. The Company was formed in 2016 to carry out the acquisition, exploration and development of mining assets in Western Australia, and has to date acquired a suite of exploration projects, predominantly within the fertile North-Eastern Goldfields of Western Australia.

The Company's portfolio includes two nickel-cobalt projects, namely the Quicksilver project in the South West Mineral Field and the Minara project in the North-Eastern Goldfields.

In addition, Golden Mile holds a suite of gold projects adjacent to Leonora which include the Ironstone Well & Leonora East projects.

The Company also holds the Darlot Gold project to the north of Leonora and the Gidgee Polymetallic project north of Sandstone.

For more information please visit the Company's website: https://www.goldenmileresources.com.au/

Exploration Targets

The term 'Exploration Target' should not be misunderstood or misconstrued as an estimate of Mineral Resources and Reserves as defined by the JORC Code (2012) and therefore the terms have not been used in this context. The potential quantity and grade of the Exploration target is conceptual in nature and there has been insufficient exploration to date to allow the estimation of a Mineral Resource. In addition, it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Competent Persons Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based upon information compiled by Mr Timothy Putt, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Putt is the Managing Director of Golden Mile Resources Ltd, a full- time employee and shareholder of the Company.

Mr Putt has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. *Mr* Putt consents to the inclusion in the report of the matter based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Golden Mile Resources Ltd (ASX: G88) planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Golden Mile Resources Ltd (ASX: G88) believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

APPENDIX 1 – SIGNIFICANT NICKEL & COBALT RC INTERCEPTS (>0.4% Ni & >0.04% Co)

APPENDIX 1 – QUICKSILVER, NICKEL-COBALT INTERCEPTS & ASSAYS (>0.4% Nickel)

	Hole No	GDA North	GDA East	Total Depth (m)	Nickel Intercepts (0.4% Cut Off)
	QRC027	6371500	656700	58	8 metres @ 0.56% Ni & 0.02% Co from 40 metres
\rightarrow	QRC029	6371500	656900	50	8 metres @ 0.54% Ni & 0.02% Co from 40 metres
	QRC030	6371500	657000	54	8 metres @ 0.48% Ni & 0.02% Co from 8 metres
	QRC033	6371300	657150	67	55 metres @ 0.62% Ni & 0.03% Co from 12 metres (EoH)
20	QRC034	6371300	657050	78	28 metres @ 0.64% Ni & 0.04% Co from 40 metres
	QRC035	6371300	656950	86	8 metres @ 0.47% Ni & 0.01% Co from 12 metres
))				And 8 metres @ 0.50% Ni & 0.04% Co from 44 metres
	QRC036	6371300	656850	84	36 metres @ 0.47% Ni & 0.02% Co from 12 metres
a	QRC037	6371300	656750	96	24 metres @ 0.47% Ni & 0.02% Co from 40 metres
	QRC040	6371200	656800	102	44 metres @ 1.24% Ni, 0.08% Co from 24 metres
RE					Incl. 8 metres @ 2.70% Ni & 0.13% Co from 56 metres
	QRC041	6371213	656842	80	28 metres @ 1.10 % Ni & 0.04% Co from 52 metres (EoH)
	QRC042	6371205	656900	96	32 metres @ 0.49% Ni & 0.01% Co from 8 metres
))				And 20 metres @ 0.51% Ni & 0.04% Co from 56 metres
	QRC043	6371206	656950	108	52 metres @ 0.58% Ni & 0.03% Co from 52 metres
	QRC044	6371200	657000	96	36 metres @ 0.56% Ni & 0.04% Co from 44 metres
GF	QRC045	6371200	657050	84	16 metres @ 0.44% Ni & 0.02% Co from 40 metres
GU	QRC046	6371200	657100	78	48 metres @ 0.40% Ni & 0.04% Co from 4 metres
	QRC047	6371200	657150	72	36 metres @ 0.60% Ni & 0.10% Co from 8 metres
29					Incl. 12 metres @ 1.03% Ni & 0.26% Co from 24 metres
	QRC048	6371200	657200	42	12 metres @ 0.82% Ni & 0.03% Co from 16 metres
	QRC049	6371000	657250	72	8 metres @ 0.45% Ni & 0.03% Co from 20 metres
ele	QRC050	6371000	657150	78	44 metres @ 0.51% Ni & 0.03% Co from 4 metres
\bigcirc	QRC051	6371000	657050	90	12 metres @ 0.80% Ni & 0.03% Co from 32 metres
5	QRC052	6371000	656950	96	36 metres @ 0.54% Ni & 0.02% Co from 40 metres
a	QRC053	6371000	656850	96	20 metres @ 0.63% Ni & 0.03% Co from 44 metres
	QRC054	6371010	656740	96	56 metres @ 0.77% Ni & 0.05% Co from 20 metres
					Incl. 8 metres @ 1.18% Ni & 0.15% Co from 44 metres
))				And 8 metres @ 1.40% Ni & 0.02% Co from 64 metres
	QRC055	6370830	657050	90	16 metres @ 0.42% Ni & 0.04% Co from 28 metres
(
	*Allou	vable internal dilutio	n on intercepts of u	p to 8 metres at less than 0.4	i% Ni cut-off – Co=Cobalt, Ni=Nickel, EoH=End of Hole

APPENDIX 2 - RC DRILL HOLE LOCATIONS

APPENDIX 2– QUICKSILVER RC DRILL HOLE COLLARS (QRC027-060)

Hole No	Hole Type	North (m)	East (m)	Grid	RL (m)	Dip	Mag Azi	Max Depth (m)
QRC0027	RC	6371500	656700	GDA94_50	315	-90	360	58
QRC0028	RC	6371500	656800	GDA94_50	313	-90	360	66
QRC0029	RC	6371500	656900	GDA94_50	303	-90	360	50
QRC0030	RC	6371500	657000	GDA94_50	301	-90	360	54
QRC0031	RC	6371510	657100	GDA94_50	300	-90	360	66
QRC0032	RC	6371520	657200	GDA94_50	300	-90	360	36
QRC0033	RC	6371300	657150	GDA94_50	303	-90	360	67
QRC0034	RC	6371300	657050	GDA94_50	309	-90	360	78
QRC0035	RC	6371300	656950	GDA94_50	311	-90	360	86
QRC0036	RC	6371300	656850	GDA94_50	310	-90	360	84
QRC0037	RC	6371300	656750	GDA94_50	307	-90	360	96
QRC0038	RC	6371200	656700	GDA94_50	312	-90	360	84
QRC0039	RC	6371200	656750	GDA94_50	317	-90	360	70
QRC0040	RC	6371200	656800	GDA94_50	320	-90	360	102
QRC0041	RC	6371213	656842	GDA94_50	322	-90	360	80
QRC0042	RC	6371205	656900	GDA94_50	334	-90	360	96
QRC0043	RC	6371206	656950	GDA94_50	318	-90	360	108
QRC0044	RC	6371200	657000	GDA94_50	309	-90	360	96
QRC0045	RC	6371200	657050	GDA94_50	304	-90	360	84
QRC0046	RC	6371200	657100	GDA94_50	308	-90	360	78
QRC0047	RC	6371200	657150	GDA94_50	318	-90	360	72
QRC0048	RC	6371200	657200	GDA94_50	309	-90	360	42
QRC0049	RC	6371000	657250	GDA94_50	312	-90	360	72
QRC0050	RC	6371000	657150	GDA94_50	321	-90	360	78
QRC0051	RC	6371000	657050	GDA94_50	321	-90	360	90
QRC0052	RC	6371000	656950	GDA94_50	323	-90	360	96
QRC0053	RC	6371000	656850	GDA94_50	322	-90	360	96
QRC0054	RC	6371010	656740	GDA94_50	327	-90	360	96
QRC0055	RC	6370830	657050	GDA94_50	325	-90	360	90
QRC0056	RC	6370800	657100	GDA94_50	319	-90	360	90
QRC0057	RC	6370800	657150	GDA94_50	329	-90	360	90
QRC0058	RC	6370800	657200	GDA94_50	329	-90	360	90
QRC0059	RC	6370800	657250	GDA94_50	319	-90	360	84
QRC0060	RC	6370800	657300	GDA94_50	317	-90	360	78

*Drill hole QRC001-026 were drilled by a previous explorer, within the tenement area and targeted iron ore mineralisation – results reported in previous announcements

** Drill holes QRC0061-90 have been completed but are not the subject of this report.

APPENDIX 3 - SIGNIFICANT RC ASSAYS (>0.4% Ni & >0.04% Co)

APPENDIX 3– SIGNIFICANT QUICKSILVER RC ASSAYS (>0.4% Ni & >0.04% Co)

[Hole No	Sample No	From	То	Interval	Sample Type	Ni ppm	Co ppm	Cu ppm	Sc ppm
	QRC0027	G01090	40	44	4	RC - Composite	5440	149	37.7	20
	QRC0027	G01091	44	48	4	RC - Composite	5810	165	22.5	20
	QRC0028	G01097	8	12	4	RC - Composite	4140	162	78	33
	QRC0028	G01106	40	44	4	RC - Composite	4470	153	14	2
6	QRC0029	G01121	28	32	4	RC - Composite	1620	438	135	46
5	QRC0029	G01124	40	44	4	RC - Composite	4950	184	68.4	30
6	QRC0029	G01125	44	48	4	RC - Composite	5810	168	20.2	33
9	QRC0030	G01129	8	12	4	RC - Composite	4740	182	90.4	37
	QRC0030	G01130	12	16	4	RC - Composite	4920	196	45.6	21
6	QRC0030	G01141	52	54	2	RC - Composite	4420	231	8.5	8
U	QRC0033	G01172	12	16	4	RC - Composite	6580	248	75.9	37
21	QRC0033	G01173	16	20	4	RC - Composite	17900	1170	47	18
Y	QRC0033	G01174	20	24	4	RC - Composite	9560	264	7.6	8
ļ	QRC0033	G01175	24	28	4	RC - Composite	5630	403	21.1	8
	QRC0033	G01176	28	32	4	RC - Composite	4220	289	19.5	10
	QRC0033	G01177	32	36	4	RC - Composite	4080	181	21.2	9
	QRC0033	G01178	36	40	4	RC - Composite	4660	202	16.2	12
2	QRC0033	G01179	40	44	4	RC - Composite	4420	166	7.7	12
31	QRC0033	G01181	44	48	4	RC - Composite	4890	153	10.7	10
6	QRC0033	G01182	48	52	4	RC - Composite	4720	109	9.5	5
	QRC0033	G01183	52	56	4	RC - Composite	4850	176	5.9	13
8	QRC0033	G01184	56	60	4	RC - Composite	5620	233	14.4	17
9	QRC0033	G01185	60	64	4	RC - Composite	5160	210	10.2	16
21	QRC0033	G01186	64	67	3	RC - Composite	5120	200	8	15
\bigcirc	QRC0034	G01190	12	16	4	RC - Composite	4230	141	43.7	33
	QRC0034	G01196	36	40	4	RC - Composite	2670	469	23.6	15
6	QRC0034	G01197	40	44	4	RC - Composite	5610	903	25.9	17
U	QRC0034	G01198	44	48	4	RC - Composite	8850	656	14.8	17
2	QRC0034	G01199	48	52	4	RC - Composite	7270	336	13.2	15
2	QRC0034	G01201	52	56	4	RC - Composite	6730	300	13.5	19
_	QRC0034	G01202	56	60	4	RC - Composite	6160	208	13.9	24
2	QRC0034	G01203	60	64	4	RC - Composite	4670	132	10.2	18
	QRC0034	G01204	64	68	4	RC - Composite	5270	186	9.8	13
	QRC0035	G01208	0	4	4	RC - Composite	4450	81.1	48.1	31
	QRC0035	G01211	12	16	4	RC - Composite	5300	82.1	57	34
	QRC0035	G01212	16	20	4	RC - Composite	4030	70.4	66.9	30
	QRC0035	G01219	44	48	4	RC - Composite	5400	434	128	51
	QRC0035	G01221	48	52	4	RC - Composite	4590	287	65	24
	QRC0036	G01234	12	16	4	RC - Composite	4700	89.9	51.6	26
	QRC0036	G01235	16	20	4	RC - Composite	5990	112	66.4	22
	QRC0036	G01236	20	24	4	RC - Composite	4010	82.5	56.3	23

Hole No	Sample No	From	То	Interval	Sample Type	Ni ppm	Co ppm	Cu ppm	Sc ppm
QRC0036	G01237	24	28	4	RC - Composite	2960	104	74.8	16
QRC0036	G01238	28	32	4	RC - Composite	4820	116	65.7	25
QRC0036	G01239	32	36	4	RC - Composite	4180	147	84.3	25
QRC0036	G01241	36	40	4	RC - Composite	5500	288	85.5	26
QRC0036	G01242	40	44	4	RC - Composite	5620	329	61.4	23
QRC0036	G01243	44	48	4	RC - Composite	4630	531	58.4	20
QRC0036	G01244	48	52	4	RC - Composite	3310	663	40	8
QRC0036	G01245	52	56	4	RC - Composite	3950	934	50.5	10
QRC0036	G01246	56	60	4	RC - Composite	2110	482	46	13
QRC0037	G01264	40	44	4	RC - Composite	5220	228	239	30
QRC0037	G01265	44	48	4	RC - Composite	4740	283	258	60
QRC0037	G01266	48	52	4	RC - Composite	4200	207	249	55
QRC0037	G01267	52	56	4	RC - Composite	4260	190	124	54
QRC0037	G01268	56	60	4	RC - Composite	5020	230	53.1	50
QRC0037	G01269	60	64	4	RC - Composite	4790	155	34.6	55
QRC0039	G01310	36	40	4	RC - Composite	4120	298	155	49
QRC0040	G01326	24	28	4	RC - Composite	4140	309	125	56
QRC0040	G01327	28	32	4	RC - Composite	3520	177	168	72
ORC0040	G01328	32	36	4	RC - Composite	4500	1650	140	36
QRC0040	G01329	36	40	4	RC - Composite	11800	938	121	35
QRC0040	G01330	40	44	4	RC - Composite	10800	534	83.7	40
QRC0040	G01331	44	48	4	RC - Composite	13500	374	71.9	38
QRC0040	G01332	48	52	4	RC - Composite	10200	687	55.9	23
QRC0040	G01333	52	56	4	RC - Composite	8540	479	59.2	19
QRC0040	G01334	56	60	4	RC - Composite	29000	1520	38	16
QRC0040	G01335	60	64	4	RC - Composite	25000	1070	40.5	16
QRC0040	G01336	64	68	4	RC - Composite	15200	660	33.4	11
QRC0041	G01359	48	52	4	RC - Composite	3820	888	76	13
QRC0041	G01361	52	56	4	RC - Composite	12200	1010	101	43
QRC0041	G01362	56	60	4	RC - Composite	13800	443	37.8	36
QRC0041	G01363	60	64	4	RC - Composite	14800	426	38	32
QRC0041	G01364	64	68	4	RC - Composite	5450	168	10.7	7
QRC0041	G01365	68	72	4	RC - Composite	12100	291	18.3	18
QRC0041	G01366	72	76	4	RC - Composite	8050	211	10	10
QRC0041	G01367	76	80	4	RC - Composite	10900	250	21.6	23
QRC0042	G01370	8	12	4	RC - Composite	4400	41.7	73.6	41
QRC0042	G01371	12	16	4	RC - Composite	4810	39.8	105	33
QRC0042	G01372	16	20	4	RC - Composite	4430	27.7	108	37
QRC0042	G01373	20	24	4	RC - Composite	2120	29	51.8	21
QRC0042	G01374	24	28	4	RC - Composite	5480	50	115	37
QRC0042	G01375	28	32	4	RC - Composite	6660	51.4	87	35
QRC0042	G01376	32	36	4	RC - Composite	6300	77	105	41
QRC0042	G01377	36	40	4	RC - Composite	4680	49.7	61.3	26

	Hole No	Sample No	From	То	Interval	Sample Type	Ni ppm	Co ppm	Cu ppm	Sc ppm
	QRC0042	G01381	48	52	4	RC - Composite	2510	448	32.7	12
	QRC0042	G01382	52	56	4	RC - Composite	3860	864	37.2	10
	QRC0042	G01383	56	60	4	RC - Composite	5290	485	41.9	12
	QRC0042	G01384	60	64	4	RC - Composite	3670	404	37.9	8
\supset	QRC0042	G01385	64	68	4	RC - Composite	3460	516	39.4	6
\geq	QRC0042	G01386	68	72	4	RC - Composite	5020	339	38.5	10
	QRC0042	G01387	72	76	4	RC - Composite	8210	200	75.8	33
C	QRC0043	G01407	52	56	4	RC - Composite	5850	312	22.5	21
	QRC0043	G01408	56	60	4	RC - Composite	2520	107	9.4	5
	QRC0043	G01409	60	64	4	RC - Composite	12500	228	8.9	21
	QRC0043	G01410	64	68	4	RC - Composite	10100	178	9.1	19
	QRC0043	G01411	68	72	4	RC - Composite	8070	211	14.8	10
	QRC0043	G01412	72	76	4	RC - Composite	2680	123	15.4	3
7	QRC0043	G01413	76	80	4	RC - Composite	2550	119	22.3	4
(QRC0043	G01414	80	84	4	RC - Composite	4020	184	21.4	5
\square	QRC0043	G01415	84	88	4	RC - Composite	6410	406	36.1	6
	QRC0043	G01416	88	92	4	RC - Composite	5530	498	30.4	6
į	QRC0043	G01417	92	96	4	RC - Composite	5690	614	32.7	6
	QRC0043	G01418	96	100	4	RC - Composite	5300	608	9.7	5
	QRC0043	G01419	100	104	4	RC - Composite	4790	307	7	4
ζ	QRC0044	G01433	44	48	4	RC - Composite	7760	436	46.2	12
	QRC0044	G01434	48	52	4	RC - Composite	4360	1200	52.3	18
\Box	QRC0044	G01435	52	56	4	RC - Composite	3040	390	35.5	9
	QRC0044	G01436	56	60	4	RC - Composite	7530	382	108	21
	QRC0044	G01437	60	64	4	RC - Composite	7040	351	91.8	22
1	QRC0044	G01438	64	68	4	RC - Composite	6970	308	55.9	18
U	QRC0044	G01439	68	72	4	RC - Composite	4240	154	25.7	7
Ĭ	QRC0044	G01441	72	76	4	RC - Composite	5240	329	31.2	11
	QRC0044	G01442	76	80	4	RC - Composite	4200	363	12.1	5
	QRC0045	G01457	40	44	4	RC - Composite	6980	512	17.7	8
\geq	QRC0045	G01458	44	48	4	RC - Composite	2070	97.9	3.9	2
$\left(\right)$	QRC0045	G01459	48	52	4	RC - Composite	2790	91.1	10.5	7
	QRC0045	G01461	52	56	4	RC - Composite	5580	154	12.3	9
7	QRC0046	G01470	4	8	4	RC - Composite	4520	83.4	144	62
	QRC0046	G01471	8	12	4	RC - Composite	4580	63.2	81.3	41
(QRC0046	G01472	12	16	4	RC - Composite	4360	74.9	64.2	33
4	QRC0046	G01473	16	20	4	RC - Composite	2780	77.8	73.8	39
Π	QRC0046	G01474	20	24	4	RC - Composite	3510	103	60	22
	QRC0046	G01475	24	28	4	RC - Composite	4810	473	48.8	8
	QRC0046	G01476	28	32	4	RC - Composite	2580	315	20.7	4
l	QRC0046	G01477	32	36	4	RC - Composite	4770	1110	39	22
	QRC0046	G01478	36	40	4	RC - Composite	4410	1160	37.1	39
	QRC0046	G01479	40	44	4	RC - Composite	5550	416	19.5	14

	Hole No	Sample No	From	То	Interval	Sample Type	Ni ppm	Co ppm	Cu ppm	Sc ppm
	QRC0046	G01481	44	48	4	RC - Composite	2020	138	6.8	4
	QRC0046	G01482	48	52	4	RC - Composite	4000	227	10.5	6
	QRC0047	G01492	8	12	4	RC - Composite	4440	112	51.1	35
/	QRC0047	G01493	12	16	4	RC - Composite	2590	95.3	50.2	30
	QRC0047	G01494	16	20	4	RC - Composite	1840	80.4	39.7	21
\geq	QRC0047	G01495	20	24	4	RC - Composite	5780	587	43.7	29
	QRC0047	G01496	24	28	4	RC - Composite	15200	3740	26.3	17
C	QRC0047	G01497	28	32	4	RC - Composite	10800	3100	11.8	12
	QRC0047	G01498	32	36	4	RC - Composite	4950	1040	12.4	10
$\left(\right)$	QRC0047	G01499	36	40	4	RC - Composite	3580	497	15.2	14
0	QRC0047	G01501	40	44	4	RC - Composite	4680	334	11.1	12
	QRC0048	G01513	16	20	4	RC - Composite	6110	215	65.4	39
$\left(\right)$	QRC0048	G01514	20	24	4	RC - Composite	12800	446	69.3	34
2 1	QRC0048	G01515	24	28	4	RC - Composite	5640	244	37	18
Ù	QRC0049	G01522	4	8	4	RC - Composite	3510	692	45	16
\bigcirc	QRC0049	G01526	20	24	4	RC - Composite	4670	384	18.9	15
	QRC0049	G01527	24	28	4	RC - Composite	4330	243	16.2	14
	QRC0050	G01541	4	8	4	RC - Composite	4860	388	25.7	18
	QRC0050	G01542	8	12	4	RC - Composite	5230	263	29.4	9
	QRC0050	G01543	12	16	4	RC - Composite	4810	185	21	10
$\left(\right)$	QRC0050	G01544	16	20	4	RC - Composite	4840	356	18.5	9
\sum	QRC0050	G01545	20	24	4	RC - Composite	3890	410	14.6	14
C	QRC0050	G01546	24	28	4	RC - Composite	3680	449	20.3	19
	QRC0050	G01547	28	32	4	RC - Composite	7740	467	27.7	24
$\left(\right)$	QRC0050	G01548	32	36	4	RC - Composite	5140	281	18.7	11
7	QRC0050	G01549	36	40	4	RC - Composite	5780	372	13.9	20
()	QRC0050	G01550	40	44	4	RC - Composite	4960	336	17.3	28
\sum	QRC0050	G01551	44	48	4	RC - Composite	5340	229	11.7	17
	QRC0051	G01569	32	36	4	RC - Composite	8050	262	31	8
$\left(\right)$	QRC0051	G01570	36	40	4	RC - Composite	10100	531	12.8	7
~ 1	QRC0051	G01571	40	44	4	RC - Composite	5790	188	5.5	5
(QRC0052	G01595	40	44	4	RC - Composite	6060	382	57.5	25
	QRC0052	G01596	44	48	4	RC - Composite	5510	413	79.7	42
7	QRC0052	G01597	48	52	4	RC - Composite	4190	232	128	50
	QRC0052	G01598	52	56	4	RC - Composite	5000	191	38.7	24
P	QRC0052	G01599	56	60	4	RC - Composite	9190	171	37.1	12
J	QRC0052	G01601	60	64	4	RC - Composite	5420	134	24.3	9
	QRC0052	G01602	64	68	4	RC - Composite	4100	94.9	7.2	11
	QRC0052	G01603	68	72	4	RC - Composite	4030	134	5	6
	QRC0052	G01604	72	76	4	RC - Composite	5260	151	15	8
	QRC0053	G01622	44	48	4	RC - Composite	4290	310	426	48
	QRC0053	G01623	48	52	4	RC - Composite	7080	372	283	47
	QRC0053	G01624	52	56	4	RC - Composite	6430	256	142	23

	Hole No	Sample No	From	То	Interval	Sample Type	Ni ppm	Co ppm	Cu ppm	Sc ppm
	QRC0053	G01625	56	60	4	RC - Composite	9490	330	404	21
	QRC0054	G01641	20	24	4	RC - Composite	5830	149	68.8	54
	QRC0054	G01642	24	28	4	RC - Composite	6840	507	76.3	43
	QRC0054	G01643	28	32	4	RC - Composite	7980	1700	181	69
	QRC0054	G01644	32	36	4	RC - Composite	4460	228	100	78
	QRC0054	G01645	36	40	4	RC - Composite	1810	76.3	68.7	55
	QRC0054	G01646	40	44	4	RC - Composite	3580	79.5	59.2	57
	QRC0054	G01647	44	48	4	RC - Composite	14400	2460	41.3	54
	QRC0054	G01648	48	52	4	RC - Composite	9250	485	28.3	56
	QRC0054	G01649	52	56	4	RC - Composite	6440	296	22.1	66
	QRC0054	G01650	56	60	4	RC - Composite	5420	113	24.7	56
	QRC0054	G01651	60	64	4	RC - Composite	9560	154	26.9	55
	QRC0054	G01652	64	68	4	RC - Composite	14100	177	37.1	44
	QRC0054	G01653	68	72	4	RC - Composite	13800	211	44.4	29
$(\dot{\bigcirc})$	QRC0054	G01654	72	76	4	RC - Composite	4000	166	13.4	9
	QRC0055	G01668	28	32	4	RC - Composite	4220	585	43.9	18
	QRC0055	G01669	32	36	4	RC - Composite	3340	240	31.4	15
	QRC0055	G01670	36	40	4	RC - Composite	4550	326	25	13
	QRC0055	G01671	40	44	4	RC - Composite	4520	264	52.6	38
6	QRC0056	G01692	28	32	4	RC - Composite	3410	642	9	7
(ζ)	QRC0056	G01693	32	36	4	RC - Composite	5920	487	33.3	34
G	QRC0056	G01694	36	40	4	RC - Composite	3700	484	132	48
	QRC0056	G01701	60	64	4	RC - Composite	4500	294	14.9	15
	QRC0057	G01712	12	16	4	RC - Composite	3970	651	154	30
	QRC0057	G01713	16	20	4	RC - Composite	4720	166	36.2	8
	QRC0058	G01734	4	8	4	RC - Composite	3430	492	112	26
(O)	QRC0059	G01757	0	4	4	RC - Composite	3280	911	26.3	16
C C	QRC0059	G01758	4	8	4	RC - Composite	3350	654	26.5	9
	QRC0060	G01782	8	12	4	RC - Composite	4830	198	22.5	17
	()									
	2									
(())									
		A Co-Cobal	t Cu=Copr	or Ni-Nic	kol & Sc=Sca	ndium				
5			t nor milli	n ant-ar	ame nor tor	mas (nh nnm-ant)				
	D. ppin- part per minion, gpt-grains per tonnes (np. ppin-gpt)									
	C. 1%= 10,000 ppm									
	2									

- A. Co=Cobalt, Cu=Copper, Ni=Nickel & Sc=Scandium
- B. ppm= part per million, gpt=grams per tonnes (nb. ppm=gpt)
- C. 1%=10,000 ppm

APPENDIX 4 - JORC TABLES

Appendix 1 JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 A total of 64 reverse circulation drill holes were completed as part of the ongoing exploration program over the Quicksilver Project In total, these drill holes yielded over 1,200 samples, comprised of composite samples, standards and blanks Drill samples were composed of 4 metre composites spear sampled from the 1 metre intervals produced from drilling, leaving the rotary split, 1 metre calico samples, for later resample.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling (5.25" face sampling bit) was utilised to test the weathered stratigraphy through to fresh rock
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All samples and subsamples were weighed to assess recovery Very little sample loss was observed at the collar There appears to be no sample bias or relationship between grade and sample recovery
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate 	• Small subsamples of the 1m drill intervals were collected and placed in a chip tray,

Sub-sampling techniques and sample preparation	Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken.	 All drill holes were geologically logged, noting lithologies, veining and alteration, from their collar to the end of hole. Samples were collected in two ways,
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Samples were collected in two ways,
techniques and sample preparation	taken.	
and sample • preparation	If non-core whether riffled tube sampled rotary split etc and	1 A rotary split of approximately 2 kg was taken on 1m intervals
preparation	in non-core, whether nined, tube sampled, rotary spin, etc and	directly from the cyclone of the drill rig (for later resample), and
<i>[</i>	whether sampled wet or dry.	2. A spear sample, from the remaining drill spoil, was taken to
•	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	produce a 4m composite of the down hole drilling for initial assay.
•	Quality control procedures adopted for all sub-sampling stages to	 Blanks and standards were introduced as checks through both
	maximise representivity of samples.	Golden Mile sampling on site and by LabWest in Malaga.
•	Measures taken to ensure that the sampling is representative of the	
	In situ material collected, including for instance results for held duplicate/second-half sampling	
•	Whether sample sizes are appropriate to the grain size of the material	
	being sampled.	
Quality of	The nature, quality and appropriateness of the assaying and	The laboratory assaying techniques are suitable for the samples
assay data	laboratory procedures used and whether the technique is considered	submitted. Samples were submitted to LabWest in Malaga, Perth, for
and	partial or total.	a suite of elements including Ag, Co, Cr, Cu, Fe, Mg, Mn, Ni & Sc
tests	etc. the parameters used in determining the analysis including	 Golden Mile introduced a mix of standards and blanks throughout the
10010	instrument make and model, reading times, calibrations factors	sample runs on a 1:20 ratio to ensure QC.
	applied and their derivation, etc.	• Labwest also initiated duplicate sampling and ran their own standards
•	Nature of quality control procedures adopted (eg standards, blanks,	as part of the assay regime.
	duplicates, external laboratory checks) and whether acceptable levels	
Varification of	of accuracy (le lack of bias) and precision have been established.	 Complex were collected, complex and varified by independent.
sampling and	alternative company personnel	 Samples were collected, sampled and verned by independent declorical consultant in the field and physically checked by Company.
assaving •	The use of twinned holes.	personnel in the field before submitting to LabWest for assaving.
•	Documentation of primary data, data entry procedures, data	• Sampling and logging has been undertaken in hardcopy format prior
	verification, data storage (physical and electronic) protocols.	to being entered into the Company's digital database.
•	Discuss any adjustment to assay data.	No adjustments to assay were done.
Location of	Accuracy and quality of surveys used to locate drill holes (collar and	 Samples were located using a hand held GPS (accurate to <5 metros) in CDA 04, Zana 50
uata points	used in Mineral Resource estimation.	

		•	Specification of the
		٠	Quality and adequa
	Data spacing	٠	Data spacing for rep
	and	٠	Whether the data sp
	distribution		degree of geologica
			Resource and Ore
			classifications appli
(\bigcirc)	O dia statiana a f	•	whether sample co
	Orientation of	•	whether the orienta
615	data in relation to		possible structures
UD			If the relationship h
60	structure	•	of key mineralised s
00	Structure		sampling hias this
\square	Sample	•	The measures take
	security	-	
	Audits or	٠	The results of any a
ad	reviews		
60			
(\bigcirc)			
RA			
UJ			
(15)			
(\bigcirc)			
í			
<u> </u>			
$\overline{\bigcirc}$			

	 Specification of the grid system used. Quality and adequacy of topographic control. 	
a spacing ribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling was undertaken on 200 x 50 metre centres across the Quicksilver prospect Spacing is insufficient to establish a resource at this time, although an 'Exploration Target' has previously been put forward Samples down hole are reported as 4m composites, with 1m resamples pending
entation of a in tion to logical cture	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Sampling is unbiased and was designed to test the oxidised lithologies in the profile and both drill and sampling orientations have been optimised to this end No bias is recognised at this time due to drill orientation.
nple urity	The measures taken to ensure sample security.	 Samples were bagged and secured by field staff prior to submission to the laboratory.
lits or ews	• The results of any audits or reviews of sampling techniques and data.	• At this preliminary stage no audits of sampling technique were done.

Section 2 - Reporting of Exploration Results

	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 E 70/4641 overlies both private and crown land with access agreements in place over the landowners where the active work program is being undertaken.
	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Compilation of historical data has been completed and is being utilised to target the ongoing work program.
	Geology	 Deposit type, geological setting and style of mineralisation. 	Ultramafic hosted nickel, cobalt & scandium mineralisation.
OGTSONAI	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A listing of the drill hole collar information is provided in Appendix 2. Of this report.
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Weighted averages have been used in the calculation of drill hole intercepts Lower cut-offs have included 400 ppm or 0.04% for Cobalt and 4,000 ppm or 0.4% for nickel Most individual samples are 4m composites Allowable internal dilution was set at 8m for Ni-Co intercepts No 'metal equivalents' have been quoted.

	Relationship between mineralisation widths and intercept lengths	•	These relat Exploration If the geom angle is kno If it is not kn should be a width not kn
\bigcirc	Diagrams	•	Appropriate intercepts s reported Th drill hole co
S D	Balanced reporting	•	Where com practicable, and/or widt Exploration
	Other substantive exploration data	•	Other explo including (b survey resu method of t groundwate deleterious
	Further work	•	The nature extensions Diagrams c including th provided th

lationship tween neralisation dths and ercept ogths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 At this point we believe that the mineralisation is 'sub-horizontal' and as such the drill hole dip, predominantly vertical, represents true width.
agrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps are presented in the accompanying ASX announcement.
lanced porting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 A listing of all the results from the reported intercepts is provided in Appendices 1 & 3 of this report.
her bstantive bloration ta	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 These factors are discussed in the body of the accompanying ASX announcement.
rther work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The ongoing work program and discussion of targets for drilling is contained in the body of the report.