

ASX: G88

CAPITAL STRUCTURE

Total shares on issue: 51.83m
Unlisted Issued Options: 8.5m
Market Cap @ \$0.78: \$40 million

CORPORATE DIRECTORY

Mr Rhod Grivas
Non-Executive Chairman

Mr Tim Putt Managing Director

Dr Koon Lip Choo Non-Executive Director

Mr Phillip Grundy Non-Executive Director

CONTACT DETAILS

1B/ 205-207 Johnson St, Fitzroy, Victoria, 3065 T: +61 (0) 3 9191 0135 F: +61 (0) 3 8678 1747

ACN 614 538 402

www.goldenmileresources.com.au

ASX Announcement 5 December 2017

NICKEL DISCOVERY EXTENDS OVER 3 KILOMETRES

Figure 1 - RC drilling at Quicksilver

HIGHLIGHTS

- RC drilling has now extended the known nickel mineralisation at Quicksilver to 3 kilometres of strike
- Composite sampling of the RC drilling continues to return broad, highly mineralised intercepts including:

QRC087 24m @ 1.27% Nickel & 0.05% Cobalt from 24m

Incl 8m @ 2.16% Nickel & 0.08% Cobalt from 28m

QRC091 24m @ 0.72% Nickel & 0.03% Cobalt from 8m

Incl 12m @ 1.01% Nickel & 0.03% Cobalt from 12m

QRC092 56m @ 0.53% Nickel & 0.04% Cobalt from 20m

- Modelling indicates the presence of a higher-grade zone of mineralisation on the western contact that remains only partially tested by drilling
- The development program at Quicksilver is accelerating with the resource program advancing and Newexco's geophysical program set to commence before Christmas 2017

*Please note that both the expected 2nd & 3rd batches of samples from the RC drilling program have been reported together in this announcement.

Golden Mile Resources (ASX: G88) ("Golden Mile" or "Company") is pleased to announce that it continues to receive outstanding nickel & cobalt results from its drilling program over the Quicksilver Nickel-Cobalt-Scandium project in the South-West Mineral Field of Western Australia.

RC drilling, on 200 x 50 metre centres, shows that the nickel-cobalt mineralisation at Quicksilver now extends over 3,000 metres of strike, and continues to return thick down hole mineralised intercepts of up to 56 metres thick (Appendix 1).

Initial geophysical analysis of the target lithologies indicates that the Quicksilver ultramafic remains open along strike, to both the north and south, and at depth. The mineralisation **shows excellent lateral continuity and extends DEEPER** than anticipated.

In addition, preliminary modelling of the drill hole data indicates the presence of a **higher-grade zone** (>1% **nickel**) of mineralisation on the western contact of the system (Figure 4). This higher-grade zone can be seen on the section (Figure 5) and may also be representative of a deeper source to the mineralisation.

This zone of mineralisation has only been partially tested by the RC drilling program and represents a priority target for follow up drilling.

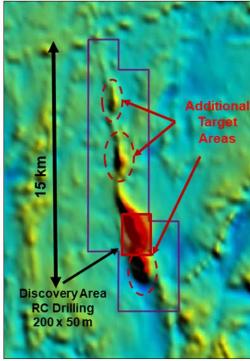


Figure 2 - Quicksilver project location (left) and magnetic imagery with targets (right).

1. The Quicksilver Project – A new discovery in a new terrane

The Quicksilver nickel-cobalt-scandium project is located in the South-West Mineral Field of Western Australia (Figure 1). The project is composed of one granted Exploration Licence (E 70/4641 – 100% Golden Mile) covering 15 km of prospective stratigraphy.

Western Australia is home to a significant number of world-class nickel deposits (Figure 3) including the sulphide deposits of the Kambalda Dome and lateritic deposits at Murrin Murrin, both in the Eastern Goldfields.

The discovery of the Quicksilver mineralisation is highly significant in that it represents the first significant nickel-cobalt system in the South West Mineral Field.

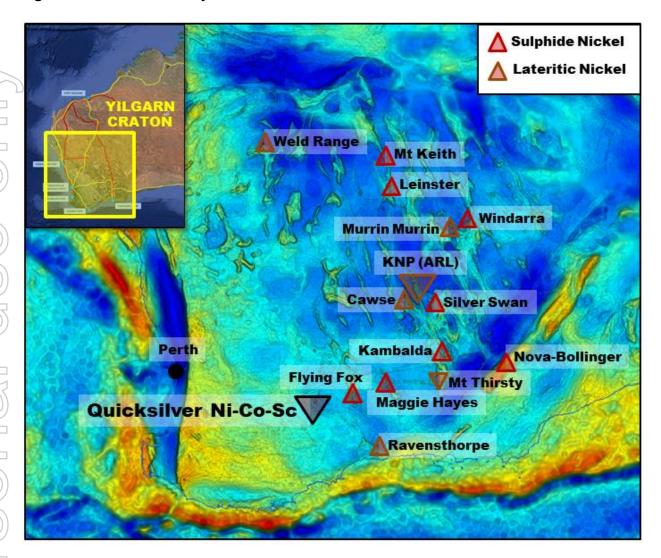


Figure 3 – Significant nickel deposits in the Yilgarn Craton (not assets of G88), over the regional gravity image, with the location of the Quicksilver Nickel-Cobalt discovery (100% owned G88 asset)

2. Quicksilver RC Drilling Program & Results

The now completed infill and extensional RC drilling program at Quicksilver now comprises 66 drill holes (QRC07-092) and resulted in 4,800 metres of drilling.

The nickel mineralisation at Quicksilver appears to be found in two zones within the subsurface profile:

- A. The siliceous saprock at the base of the weathering profile, which is typically intersected from approximately 20 metres below surface and can extend to more than 75 metres depth and
- B. The presence of significant nickel assays (>0.4%) in samples at the end of a number of drill holes suggests that mineralisation may extend into fresh rock.

Results from second half of the RC drilling program, namely drill holes QRC061-092, continue to return strong nickel & cobalt intercepts drill holes and indicate that the mineralisation extends over 3,000 metres of strike. Several reconnaissance drill holes, in the southern target area, returned significant intercepts of nickel & cobalt including the southern-most drill hole of the program, QRC087, intersecting **24 metres of mineralisation at over 1% nickel (Figure 4).**

The RC drilling continues to return thick intercepts of both nickel and cobalt including:

QRC063	28 metres @ 0.71% Nickel & 0.04% Cobalt from 12 metres
Including	4 metres @ 1.12% Nickel & 0.06% Cobalt from 20 metres
QRC064	36 metres @ 0.59% Nickel & 0.02% Cobalt from 8 metres
Including	4 metres @ 1.28% Nickel & 0.01% Cobalt from 16 metres
QRC087	24 metres @ 1.27% Nickel & 0.05% Cobalt from 24 metres
Including	8 metres @ 2.16% Nickel & 0.08% Cobalt from 28 metres
QRC091	24 metres @ 0.72% Nickel & 0.03% Cobalt from 8 metres
Including	12 metres @ 1.01% Nickel & 0.03% Cobalt from 12 metres
QRC092	56 metres @ 0.53% Nickel & 0.04% Cobalt from 20 metres

Figure 4 shows the locations of the Aircore & RC drill holes with significant intercepts.

Appendix 1 & 3 show a full listing of the anomalous intercepts (>0.4% Nickel and >0.04% Cobalt) and assays returned from the RC drilling at Quicksilver (drill holes QRC061-092).

3. Quicksilver - Ongoing Work Program

The development program at Quicksilver continues at an accelerated pace with several components of the program underway, or scheduled to commence prior to Christmas. These include:

- Resource Estimation Program including an extensive resampling and QAQC program, and
- Geophysical Exploration a detailed program of geophysics, including EM, is presently being planned by Newexco and is scheduled to commence in the coming weeks. This program will further test the potential of the mineralised system along strike and testing for a potential sulphide source to the system at depth.

The Company is presently **moving towards a JORC 2012 resource estimate**, as well as advancing both the regional exploration and development program at Quicksilver.

Golden Mile looks forward to reporting further on the Quicksilver Nickel-Cobalt project as the program continues in the coming weeks.

Figure 4 – Aircore & RC drill hole locations with significant nickel & cobalt intercepts over interpreted geology, with higher-grade target zone (red).

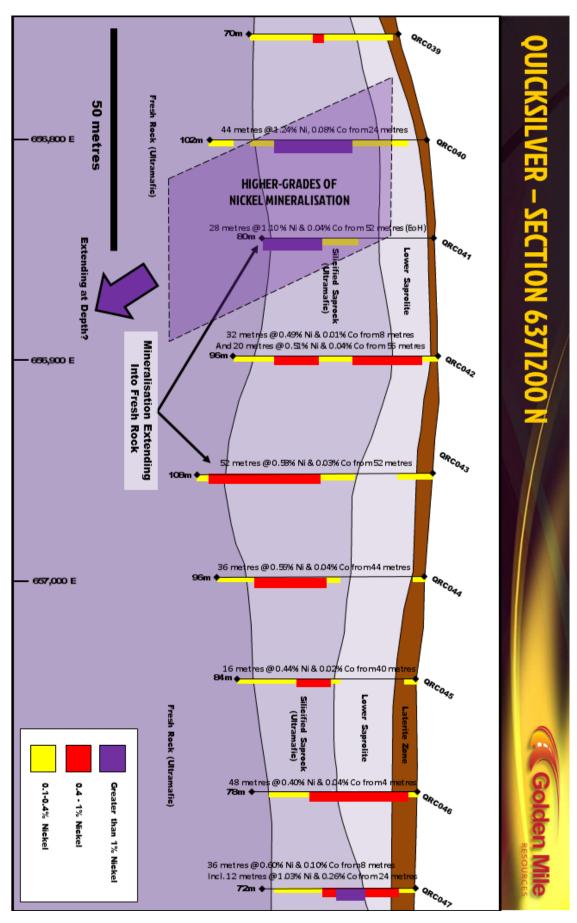


Figure 5 – Representative & Interpreted cross section for RC drill line 6,371,200 N showing geology, mineralised intercepts and higher-grade target zone in the west.

For further information please contact:

Tim Putt - Managing Director,

Golden Mile Resources Ltd (ASX: G88)

T: (08) 9480 0636, **F**: (08) 9321 0320

E: tputt@goldenmileresources.com.au

Justyn Stedwell – Company Secretary, Golden Mile Resources Ltd (ASX: G88)

T: (03) 9191 0135, F: (03) 8678 1747

E: justyn@stedwell.com.au

About Golden Mile Resources Ltd

Golden Mile Resources is an Australian based exploration and development company, with an outstanding suite of cobalt, gold, and base metal projects in Western Australia. The Company was formed in 2016 to carry out the acquisition, exploration and development of mining assets in Western Australia, and has to date acquired a suite of exploration projects, predominantly within the fertile North-Eastern Goldfields of Western Australia.

The Company's portfolio includes two nickel-cobalt projects, namely the Quicksilver project in the South West Mineral Field and the Minara project in the North-Eastern Goldfields.

In addition, Golden Mile holds a suite of gold projects adjacent to Leonora which include the Ironstone Well & Leonora East projects.

The Company also holds the Darlot Gold project to the north of Leonora and the Gidgee Polymetallic project north of Sandstone.

For more information please visit the Company's website: https://www.goldenmileresources.com.au/

Exploration Targets

The term 'Exploration Target' should not be misunderstood or misconstrued as an estimate of Mineral Resources and Reserves as defined by the JORC Code (2012) and therefore the terms have not been used in this context. The potential quantity and grade of the Exploration target is conceptual in nature and there has been insufficient exploration to date to allow the estimation of a Mineral Resource. In addition, it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Competent Persons Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based upon information compiled by Mr Timothy Putt, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Putt is the Managing Director of Golden Mile Resources Ltd, a full-time employee and shareholder of the Company.

Mr Putt has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Putt consents to the inclusion in the report of the matter based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Golden Mile Resources Ltd (ASX: G88) planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Golden Mile Resources Ltd (ASX: G88) believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

APPENDIX 1 – SIGNIFICANT NICKEL & COBALT RC INTERCEPTS (>0.4% Ni & >0.04% Co)

APPENDIX 1 - QUICKSILVER, NICKEL-COBALT INTERCEPTS & ASSAYS (>0.4% Nickel)

Hole No	GDA North	GDA East	Total Depth (m)	Nickel Intercepts (0.4% Cut Off)
QRC061	6370600	657150	90	16 metres @ 0.63% Ni & 0.06% Co from 16 metres
QRC063	6370404	657255	84	28 metres @ 0.71% Ni & 0.04% Co from 12 metres
				Incl. 4 metres @ 1.12% Ni & 0.06% Co from 20 metres
QRC064	6370200	657150	90	36 metres @ 0.59% Ni & 0.02% Co from 8 metres
				Incl. 4 metres @ 1.28% Ni & 0.01% Co from 16 metres
)				And 12 metres @ 0.40% Ni & 0.01% Co from 60 metres
QRC070	6370200	657250	84	32 metres @ 0.43% Ni & 0.03% Co from Surface
QRC071	6370800	657350	72	8 metres @ 0.45% Ni & 0.03% Co from 24 metres
QRC074	6370400	657550	60	8 metres @ 0.42% Ni & 0.02% Co from 24 metres
QRC076	6370400	657450	66	16 metres @ 0.59% Ni & 0.03% Co from Surface
)				Incl. 4 metres @ 1.06% Ni & 0.05% Co from 4 metres
QRC078	6370402	657351	96	8 metres @ 0.42% Ni & 0.02% Co from 36 metres
QRC080	6370189	657552	54	12 metres @ 0.40% Ni & 0.02% Co from 28 metres
QRC083	6370197	657405	78	12 metres @ 0.49% Ni & 0.02% Co from 34 metres
QRC087	6368604	657399	56	24 metres @ 1.27% Ni & 0.05% Co from 24 metres
				Incl. 8 metres @ 2.16% Ni & 0.03% Co from 28 metres
QRC088	6369005	657296	54	16 metres @ 0.69% Ni & 0.04% Co from 24 metres
QRC090	6369006	657199	36	16 metres @ 0.54% Ni & 0.02% Co from 20 metres (EoH)
QRC091	6370187	657205	72	24 metres @ 0.72% Ni & 0.03% Co from 8 metres
				Incl. 12 metres @ 1.01% Ni & 0.03% Co from 12 metres
QRC092	6370400	657176	114	56 metres @ 0.53% Ni & 0.04% Co from 8 metres
*Allot	wable internal dilutio	on on intercepts of a	up to 8 metres at less than 0.	4% Ni cut-off – Co=Cobalt, Ni=Nickel, EoH=End of Hole
7				
)				
)]				

APPENDIX 2 - RC DRILL HOLE LOCATIONS

APPENDIX 2 – QUICKSILVER RC DRILL HOLE COLLARS (QRCO61-092)

Hole No	Hole Type	North (m)	East (m)	Grid	RL (m)	Dip	Mag Azi	Max Depth (m)
QRC0061	RC	6370600	657150	GDA94_50	319	-90	360	90
QRC0062	RC	6370600	657250	GDA94_50	316	-90	360	84
QRC0063	RC	6370404	657255	GDA94_50	312	-90	360	84
QRC0064	RC	6370200	657150	GDA94_50	300	-90	360	90
QRC0065	RC	6370003	657347	GDA94_50	285	-90	360	66
QRC0066	RC	6370000	657300	GDA94_50	287	-90	360	66
QRC0067	RC	6370000	657250	GDA94_50	289	-90	360	90
QRC0068	RC	6370000	657196	GDA94_50	298	-90	360	66
QRC0069	RC	6370000	657164	GDA94_50	296	-90	360	66
QRC0070	RC	6370200	657250	GDA94_50	300	-90	360	84
QRC0071	RC	6370800	657350	GDA94_50	303	-90	360	72
QRC0072	RC	6370600	657450	GDA94_50	303	-90	360	48
QRC0073	RC	6370600	657350	GDA94_50	304	-90	360	66
QRC0074	RC	6370400	657550	GDA94_50	294	-90	360	60
QRC0075	RC	6370400	657500	GDA94_50	299	-90	360	66
QRC0076	RC	6370400	657450	GDA94_50	301	-90	360	66
QRC0077	RC	6370400	657400	GDA94_50	304	-90	360	78
QRC0078	RC	6370402	657351	GDA94_50	305	-90	360	96
QRC0079	RC	6370200	657350	GDA94_50	300	-90	360	50
QRC0080	RC	6370189	657552	GDA94_50	295	-90	360	54
QRC0081	RC	6370196	657507	GDA94_50	297	-90	360	32
QRC0082	RC	6370203	657450	GDA94_50	297	-90	360	68
QRC0083	RC	6370197	657405	GDA94_50	301	-90	360	78
QRC0084	RC	6370009	657400	GDA94_50	288	-90	360	60
QRC0085	RC	6370003	657500	GDA94_50	286	-90	360	54
QRC0086	RC	6370003	657455	GDA94_50	294	-90	360	52
QRC0087	RC	6368604	657399	GDA94_50	275	-90	360	56
QRC0088	RC	6369005	657296	GDA94_50	276	-90	360	54
QRC0089	RC	6369006	657403	GDA94_50	282	-90	360	66
QRC0090	RC	6369000	657199	GDA94_50	273	-90	360	36
QRC0091	RC	6370187	657205	GDA94_50	306	-90	360	72
QRC0092	RC	6370400	657176	GDA94_50	315	-90	360	114

APPENDIX 3 – SIGNIFICANT RC ASSAYS (>0.4% Ni & >0.04% Co)

APPENDIX 3- SIGNIFICANT QUICKSILVER RC ASSAYS (>0.4% Ni & >0.04% Co)

Hole No	Sample No	From	То	Interval	Sample Type	Ni ppm	Co ppm	Cu ppm	Sc ppm
QRC0061	G01803	8	12	4	RC - Composite	3450	829	106	31
QRC0061	G01804	12	16	4	RC - Composite	1980	742	111	26
QRC0061	G01805	16	20	4	RC - Composite	4840	1350	55.7	20
QRC0061	G01806	20	24	4	RC - Composite	5550	428	35.6	19
QRC0061	G01807	24	28	4	RC - Composite	5990	287	17.8	16
QRC0061	G01808	28	32	4	RC - Composite	8740	247	46.4	22
QRC0061	G01812	44	48	4	RC - Composite	5300	215	15.8	17
QRC0061	G01813	48	52	4	RC - Composite	3860	237	24.4	16
QRC0062	G01828	12	16	4	RC - Composite	5810	389	182	44
QRC0063	G01850	12	16	4	RC - Composite	5120	511	68.4	24
QRC0063	G01851	16	20	4	RC - Composite	8220	631	47.4	20
QRC0063	G01852	20	24	4	RC - Composite	11200	597	34.8	15
QRC0063	G01853	24	28	4	RC - Composite	7130	518	23.7	11
QRC0063	G01854	28	32	4	RC - Composite	5720	382	13.5	7
QRC0063	G01855	32	36	4	RC - Composite	7160	233	21.8	8
QRC0063	G01856	36	40	4	RC - Composite	4940	165	164	30
QRC0063	G01862	56	60	4	RC - Composite	5170	279	19.8	9
QRC0064	G01869	0	4	4	RC - Composite	3280	1080	131	38
QRC0064	G01870	4	8	4	RC - Composite	3120	237	171	54
QRC0064	G01871	8	12	4	RC - Composite	3890	115	164	55
QRC0064	G01872	12	16	4	RC - Composite	4290	56.3	114	44
QRC0064	G01873	16	20	4	RC - Composite	12800	67	81.4	23
QRC0064	G01874	20	24	4	RC - Composite	6730	47.4	40.3	38
QRC0064	G01875	24	28	4	RC - Composite	5100	692	63.9	50
QRC0064	G01876	28	32	4	RC - Composite	5170	421	32.2	31
QRC0064	G01877	32	36	4	RC - Composite	4250	181	45.2	19
QRC0064	G01878	36	40	4	RC - Composite	6370	326	17.8	22
QRC0064	G01879	40	44	4	RC - Composite	4260	246	23.4	15
QRC0064	G01885	60	64	4	RC - Composite	4210	123	43.8	10
QRC0064	G01886	64	68	4	RC - Composite	3670	128	39.6	9
QRC0064	G01887	68	72	4	RC - Composite	4120	122	25	8
QRC0064	G01888	72	76	4	RC - Composite	3450	90.5	9.1	14
QRC0064	G01889	76	80	4	RC - Composite	3920	113	19.1	19
QRC0069	G01976	20	24	4	RC - Composite	2770	451	187	49
QRC0070	G01989	0	4	4	RC - Composite	4290	1040	70.7	34
QRC0070	G01990	4	8	4	RC - Composite	3350	156	49.3	27
QRC0070	G01991	8	12	4	RC - Composite	4040	106	36.4	21
QRC0070	G01992	12	16	4	RC - Composite	4060	107	44.7	19
QRC0070	G01993	16	20	4	RC - Composite	4470	136	35.3	18
QRC0070	G01994	20	24	4	RC - Composite	3000	175	11.9	6
QRC0070	G01995	24	28	4	RC - Composite	4140	359	8.1	4
QRC0070	G01996	28	32	4	RC - Composite	6890	131	103	21
QRC0071	G02017	24	28	4	RC - Composite	4350	356	5.4	9
QRC0071	G02018	28	32	4	RC - Composite	4540	311	21.8	16
QRC0072	G02034	16	20	4	RC - Composite	4240	405	34.6	22
QRC0073	G02052	36	40	4	RC - Composite	2830	431	17.4	9
QRC0074	G02067	24	28	4	RC - Composite	3800	275	7.6	15
QRC0074	G02068	28	32	4	RC - Composite	4540	158	21.8	28

Hole No	Sample No	From	То	Interval	Sample Type	Ni ppm	Co ppm	Cu ppm	Sc ppm
QRC0076	G02094	0	4	4	RC - Composite	4920	220	59.5	34
QRC0076	G02095	4	8	4	RC - Composite	10600	478	36.7	27
QRC0076	G02096	8	12	4	RC - Composite	3680	182	21.5	15
QRC0076	G02097	12	16	4	RC - Composite	4320	189	34.9	23
QRC0076	G02106	44	48	4	RC - Composite	4630	335	12.3	13
QRC0077	G02121	32	36	4	RC - Composite	3890	504	236	29
QRC0078	G02143	36	40	4	RC - Composite	4140	262	24.5	20
QRC0078	G02144	40	44	4	RC - Composite	4190	176	17.8	25
QRC0080	G02177	28	32	4	RC - Composite	3810	191	7.9	13
QRC0080	G02177	32	36	4	RC - Composite	3450	195	5.7	11
QRC0080	G02178 G02179	36	40	4	RC - Composite	4490	249	8.9	10
QRC0083	G02173	34	38	4	RC - Composite	4480	157	7.7	8
QRC0083	G02214 G02215	34	42	8	RC - Composite	3790	210	21	8
QRC0083	G02213 G02216	42	46	4	RC - Composite	6410	358	23.5	28
QRC0083	G02210 G02230	16	20	4	RC - Composite	4160	319	22.4	20
QRC0084 QRC0087	G02274	20	24	4	•	3440	126	68.7	44
QRC0087					RC - Composite				
	G02275	24 28	28 32	4	RC - Composite	13800	579	62.5	45 16
QRC0087	G02276 G02277	32	36	4	RC - Composite	25500	887	27.6	14
QRC0087					RC - Composite	17600	640	19.5	
QRC0087	G02278	36	40	4	RC - Composite	9220	431	7.2	13
QRC0087	G02279	40	44	4	RC - Composite	6440	280	5.8	10
QRC0088	G02290	24	28	4	RC - Composite	4680	265	57.8	18
QRC0088	G02291	28	32	4	RC - Composite	6440	436	29.3	11
QRC0088	G02292	32	36	4	RC - Composite	6750	506	35.4	10
QRC0088	G02293	36	40	4	RC - Composite	9630	406	16.8	6
QRC0090	G02316	20	24	4	RC - Composite	6740	245	38.3	15
QRC0090	G02317	24	28	4	RC - Composite	5860	198	43.2	18
QRC0090	G02318	28	32	4	RC - Composite	3090	115	22.9	5
QRC0090	G02319	32	36	4	RC - Composite	5690	206	42.4	15
QRC0091	G02321	0	4	4	RC - Composite	1890	115	108	53
QRC0091	G02322	4	8	4	RC - Composite	2410	212	75.5	34
QRC0091	G02323	8	12	4	RC - Composite	4100	406	58.1	54
QRC0091	G02324	12	16	4	RC - Composite	10100	180	53.4	17
QRC0091	G02325	16	20	4	RC - Composite	8580	206	30.9	37
QRC0091	G02326	20	24	4	RC - Composite	11700	427	41.3	37
QRC0091	G02327	24	28	4	RC - Composite	2980	318	8.6	4
QRC0091	G02328	28	32	4	RC - Composite	5980	200	45.3	29
QRC0092	G02342	8	12	4	RC - Composite	4530	162	55.2	32
QRC0092	G02343	12	16	4	RC - Composite	3030	147	157	62
QRC0092	G02344	16	20	4	RC - Composite	4300	259	89.6	52
QRC0092	G02345	20	24	4	RC - Composite	3660	168	78.7	33
QRC0092	G02346	24	28	4	RC - Composite	3320	238	48.5	28
QRC0092	G02347	28	32	4	RC - Composite	5000	564	59	27
QRC0092	G02348	32	36	4	RC - Composite	2090	289	37.1	24
QRC0092	G02349	36	40	4	RC - Composite	6880	1080	55.4	46
QRC0092	G02350	40	44	4	RC - Composite	4840	284	39.8	40
QRC0092	G02351	44	48	4	RC - Composite	7340	284	36	30
QRC0092	G02352	48	52	4	RC - Composite	6680	852	27.6	16
QRC0092	G02353	52	56	4	RC - Composite	8870	626	28.6	18
QRC0092	G02354	56	60	4	RC - Composite	8700	614	32	23
QRC0092	G02355	60	64	4	RC - Composite	4190	324	20.8	14

- A. Co=Cobalt, Cu=Copper, Ni=Nickel & Sc=Scandium
- B. ppm= part per million, gpt=grams per tonnes (nb. ppm=gpt)
- C. 1%=10,000 ppm

APPENDIX 4 – JORC TABLES

Appendix 1 JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 A total of 66 reverse circulation drill holes were completed as part of the ongoing exploration program over the Quicksilver Project In total, these drill holes yielded over 1,200 samples, comprised of composite samples, standards and blanks Drill samples were composed of 4 metre composites spear sampled from the 1 metre intervals produced from drilling, leaving the rotary split, 1 metre calico samples, for later resample.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling (5.25" face sampling bit) was utilised to test the weathered stratigraphy through to fresh rock
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All samples and subsamples were weighed to assess recovery Very little sample loss was observed at the collar There appears to be no sample bias or relationship between grade and sample recovery
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate	 Small subsamples of the 1m drill intervals were collected and placed in a chip tray,

		RESOURCES
)	 Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill holes were geologically logged, noting lithologies, veining and alteration, from their collar to the end of hole.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The laboratory assaying techniques are suitable for the samples submitted. Samples were submitted to LabWest in Malaga, Perth, for a suite of elements including Ag, Co, Cr, Cu, Fe, Mg, Mn, Ni & Sc using an MAD prep and ICP analysis. Golden Mile introduced a mix of standards and blanks throughout the sample runs on a 1:20 ratio to ensure QC, Labwest also initiated duplicate sampling and ran their own standards as part of the assay regime.
Verification of sampling and assaying Location of data points	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Samples were collected, sampled and verified by independent geological consultant in the field and physically checked by Company personnel in the field before submitting to LabWest for assaying. Sampling and logging has been undertaken in hardcopy format prior to being entered into the Company's digital database. No adjustments to assay were done. Drill holes were located using a hand held GPS (accurate to <5 metres) in GDA 94, Zone 50.

	Specification of the grid system used.Quality and adequacy of topographic control.	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling was undertaken on 200 x 50 metre centres across the Quicksilver prospect Spacing may be sufficient to estimate a resource, however this has yet to be properly determined and an 'Exploration Target' has previously been put forward Samples down hole are reported as 4m composites, with 1m resamples pending
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Sampling is unbiased and was designed to test the oxidised lithologies in the profile and both drill and sampling orientations have been optimised to this end No bias is recognised at this time due to drill orientation.
Sample security	The measures taken to ensure sample security.	 Samples were bagged and secured by field staff prior to submission to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	At this preliminary stage no audits of sampling technique were done.

For personal use only

Section 2 - Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 E 70/4641 overlies both private and crown land with access agreements in place over the landowners where the active work program is being undertaken.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Compilation of historical data has been completed and is being utilised to target the ongoing work program.
Geology Drill hole Information	 Deposit type, geological setting and style of mineralisation. A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly 	 Ultramafic hosted nickel, cobalt & scandium mineralisation. A listing of the drill hole collar information is provided in Appendix 2. Of this report.
Data aggregation methods	 explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Weighted averages have been used in the calculation of drill hole intercepts Lower cut-offs have included 400 ppm or 0.04% for Cobalt and 4,000 ppm or 0.4%for nickel Most individual samples are 4m composites Allowable internal dilution was set at 8m for Ni-Co intercepts No 'metal equivalents' have been quoted.

		RESOURCES
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 At this point we believe that the mineralisation is 'sub-horizontal' and as such the drill hole dip, predominantly vertical, represents true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Maps are presented in the accompanying ASX announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 A listing of all the results from the reported intercepts is provided in Appendices 1 & 3 of this report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The ongoing work program and discussion of targets for drilling is contained in the body of the report.