5 February 2018

ASX Announcement ASX: BOE

DEVELOPING INTO ONE OF THE BEST HIGH-GRADE GOLD EXPLORATION PROJECTS IN WEST AFRICA

HIGHLIGHTS

- Continued high-grade gold strikes at Golden Hill
- Initial drilling at fifth drilling prospect C-Zone:
 - о 11 m @ 4.87 g/t Au from 52m downhole depth (DHD) incl. 2 m @ 11.32 g/t Au (GHDD-189)
 - o 6 m @ 4.64 g/t Au from 52m DHD including 2 m @ 10.77 g/t Au (GHDD-188)
 - o 8 m @ 3.76 g/t Au from 61m DHD including 1 m @ 19.74 g/t Au (GHDD-191)
- Continuing drilling at Ma Prospect (Ma Main, Ma East, Ma North):
 - o 7 m @ 5.78 g/t Au from 14m DHD and 6 m @ 2.35 g/t Au (GHDD-095)
 - o 13 m @ 2.35 g/t Au from 102m DHD including 4 m @ 4.83 g/t Au (GHDD-139)
 - o 11 m @ 2.13 g/t Au from 20m DHD (GHDD-120)
- Continuing drilling at Peksou Prospect:
 - o 17 m @ 2.17 g/t Au from 86m DHD including 5 m @ 4.05 g/t Au (GHDD-207)
 - o 4 m @ 7.21 g/t Au from 78m DHD including 1 m @ 27.41 g/t Au (GHDD-209)
 - o 28 m @ 1.28 g/t Au from 54m DHD including 4 m @ 2.32 g/t Au (GHDD-211)
- Visible gold and favorable drill results continuing at Jackhammer Hill
- An extensive drill campaign is underway, with C\$8M budgeted for 2018 and currently two diamond core drills working on-site over all 5 prospects
 - o additional drills are planned for periodic drilling evaluation throughout the year
 - o metallurgical test work has started
- Joint Venture expects to issue an initial resource by the end of 2018

Boss Resources Limited (ASX: BOE) ("Boss" or the "Company") is pleased to report that Teranga Gold Corporation ("Teranga") (TSX: TGZ) announced on 1 February 2018 (Canadian time) that advanced drilling continues to yield new discoveries and high-grade, near surface and deeper gold mineralization at the Ma prospect on the Golden Hill property in Burkina Faso, West Africa (Figure 1). Teranga has an earn-in agreement on the Golden Hill property with Boss Resources.

Richard Young, President and CEO of TGZ, states "Golden Hill, located in the heart of the proven gold producing Houndé Greenstone Belt, is developing into one of the best high-grade gold exploration projects in West Africa."

The full Teranga announcement is enclosed.

Boss currently holds a 49% interest in joint venture with Teranga over the Golden Hill and Gourma Gold Projects located in Burkina Faso, West Africa. Teranga manages the joint venture and is funding all exploration on the projects up to the completion of a definitive feasibility study ("DFS") and Decision to Mine.

On delivery of the DFS, Teranga's interest in the joint venture will increase to 70% and they retain the rights to acquire an additional 10% in the joint venture for A\$2.5 million. Upon completion of the DFS but prior to a Decision to Mine, Boss may elect to convert the remainder of their interest to a 1.5% Net Smelter Return, otherwise Boss shall be free carried to a decision to mine and will then be required to contribute on a pro rata basis.

Boss Managing Director, Mr Duncan Craib, states "Following the previous sensational drill results reported on the Golden Hill prospects (see ASX: BOE 17 November and 20 November 2017), Teranga's latest drilling results further confirms our project is located in one of the most prospective gold belts in the world which hosts a number of high-grade gold discoveries, including the Siou, Yaramoko and Houndé deposits.

"Boss is a direct beneficiary of Teranga's project spend which continues to add incremental value to the projects. In just one year, Golden Hill has produced a series of high-grade, near-surface drill results at the first four prospects: Ma, Nahiri, Peksou, and Jackhammer Hill (where bonanza gold grades were intercepted). It is very encouraging to see the latest positive results from initial drilling in the new 5th prospect, C-Zone, continuing to build on this success.

"Due to the free carried nature of the joint venture agreement prior to the completion of a DFS and Decision to Mine, Boss directly benefits from the expanded exploration program planned for 2018 in the order of C\$8M. The solid results combined with a renewed interest in the West African gold sector has resulted in the Boss being approached regarding the potential divestment of its interest in the joint venture. To assist in assessing this interest, Boss has appointed corporate advisors in relation to assessing options to maximise the inherent value of the joint venture interest and Boss will provide further updates as appropriate.

"Boss's Board of Directors genuinely regards the Golden Hill Project as a significantly attractive exploration and development opportunity, and they remain focused on maximising shareholder value."

David Mallo, Teranga's Vice President, Exploration, follows "Golden Hill continues to demonstrate excellent correlation of the various mineralized zones at each of the five prospects drilled to-date. Based on these positive results, we have budgeted \$8 million for this year's exploration program at Golden Hill to move the five current prospects into an initial resource by year end and to expand our exploration program outwards to initiate exploration of more than a half dozen other targets. The combined positive drill results at Ma,

Peksou, Jackhammer Hill, Nahiri, and now C-Zone are encouraging. We have five advanced high-grade exploration prospects all within a 5-kilometre radius from a central point, which increases our confidence that Golden Hill represents Teranga's next mine in Burkina Faso."

Golden Hill Exploration Activities

Teranga has been regularly releasing results of its recent drilling at the Golden Hill Gold property. The announcements confirm early-stage drilling continues to yield high-grade, near-surface oxide gold mineralization at its Golden Hill property in Burkina Faso, West Africa.

The Golden Hill property is comprised of three adjacent exploration permits covering 470km² located in southwest Burkina Faso in the central part of the Houndé Greenstone Belt. This belt hosts a number of high-grade gold discoveries, including the Siou, Yaramoko and Houndé deposits, the latter property being contiguous with Golden Hill. To the south of Golden Hill is another large land position where active exploration programs are well underway.

Each of the five prospects successfully drilled to date are located approximately 5 kilometres from a central point (Figure 1). An all-prospect table of complete drill results is available on TGZ's website, <u>http://www.terangagold.com</u> (exploration section).

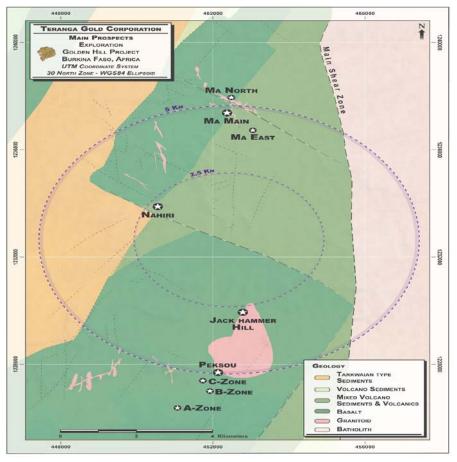


Figure 1: Golden Hill Property – Prospect Location Plan Map

Earn-in Agreement

The salient terms of the earn-in agreement with Teranga and Boss on the Golden Hill and Gourma Gold Projects are as follows:

- Teranga and Boss currently own 51% and 49% respective interest in the Golden Hill and Gourma Gold Projects;
- Teranga to sole manage the joint venture and fund all exploration on the projects up to the completion of a DFS and Decision to Mine;
- Boss has a free carried interest to completion of a DFS and decision to mine;
- On delivery of the DFS Teranga's interest in the joint venture will increase to 70%;
- Teranga has the right to acquire an additional 10% in the joint venture for A\$2.5 million cash;
- Upon completion of the DFS but prior to a Decision to Mine, Boss may elect to convert the remainder of their 20% interest to a 1.5% Net Smelter Return, otherwise Boss shall be free carried to a decision to mine and will then be required to contribute on a pro rata basis; and
- Pre-emptive rights stipulated should a third-party offer exist.

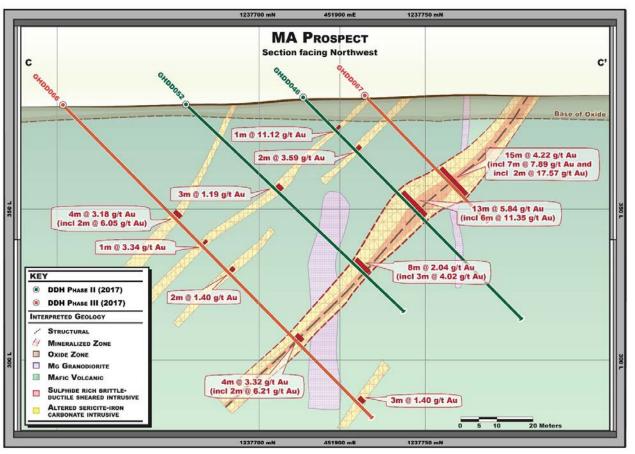


Figure 2: Ma Prospect – Representative Drill Section

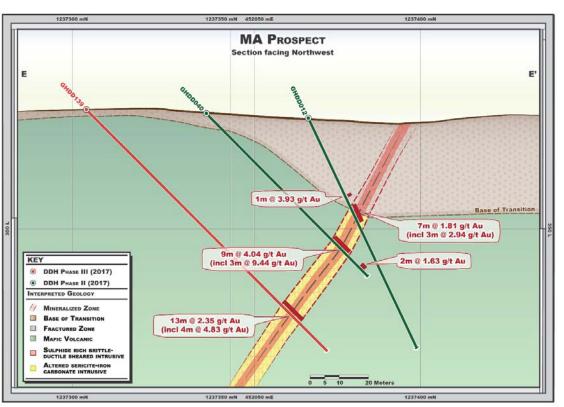


Figure 3: Ma Prospect – Representative Drill Section

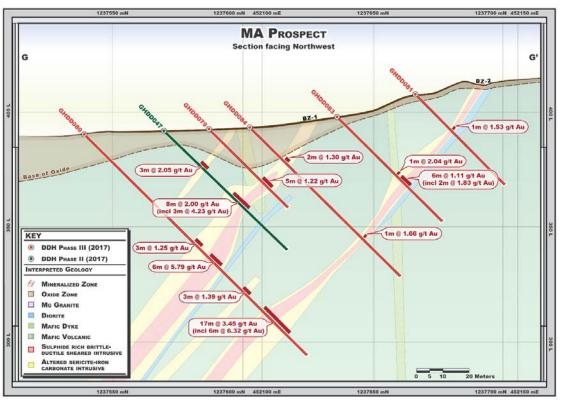


Figure 4: Ma Prospect – Representative Drill Section

Competent Persons Statements

Teranga's exploration programs are being managed by Peter Mann, FAusIMM. Mr. Mann is a full-time employee of Teranga and is not "independent" within the meaning of National Instrument 43-101. Mr. Mann has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the "JORC Code"). Mr. Mann is a "Qualified Person" under National Instrument 43-101 Standards of Disclosure for Mineral Projects. The technical information contained in this news release relating exploration results are based on, and fairly represents, information compiled by Mr. Mann. Mr. Mann has verified and approved the data disclosed in this release, including the sampling, analytical and test data underlying the information. The RC and diamond core samples are assayed at the BIGGS Laboratory in Ouagadougou, Burkina Faso. Mr. Mann has consented to the inclusion in this news release of the matters based on his compiled information in the form and context in which it appears herein. See Appendix 2 for the JORC Code explanations relating to the results in this press release.

For further information, contact:

Duncan Craib	Managing Director	+61 (08) 6143 6730
--------------	-------------------	--------------------

Drilling Results Tables

APPENDIX 1

Recent Golden Hill drill results continue to demonstrate excellent correlation of the various mineralized zones at the five prospects drilled to-date. A complete list of C-Zone, Ma, Peksou, Jackhammer Hill and Nahiri highlight drill results reported in this news release is included in the following Table 1.

Table 1: C-Zone, Ma, Peksou, Jackhammer Hill and Nahiri Prospects – Selected Drill Highlights

Hole #	Northing *	Easting *	Elevation	Azimuth	Dip	EOH (m)	Interval (m)*	Core length (m)*	Grade (g/t Au)
C-ZONE									
GHDD-188	1227335	451746	306	020	-50	92	52-58	6	4.64
			Including				56-58	2	10.77
GHDD-189	1227322	451787	304	020	-50	98	38-40	2	2.33
							52-63	11	4.87
			Including				57-59	2	11.32
			including				66-68	2	2.69
	4227262	454024	202	020	50	05	67.04		4.70
GHDD-190	1227263	451934	303	020	-50	95	67-81	14	1.76
			Including				69-71	2	3.46
GHDD-191	1227295	451856	302	020	-50	80	61-69	8	3.76
							62-63	1	19.74
GHDD-192	1227315	452036	300	020	-50	72	29-32	3	1.40
0100-192	122/315	452050	500	020	-50	12		10	1.40 1.91
			Including				45-55	10	1.91
			Including				51-52	1	10.93
GHDD-193	1227321	452195	300	020	-50	91	78-80	2	2.41
MA MAIN									
GHDD-085	1237505	452099	393	021	-45	127	94-96	2	1.25
							105-121	16	1.62
			Including				107-111	4	2.98
GHDD-086	1237741	451756	379	021	-45	143	88-90	2	3.68
GHDD-080	1237741	431730	575	021	-45	145		2	4.26
							96-98	2	4.20
GHDD-088	1237543	452114	394	025	-45	122	49-53	4	1.14
							96-103	7	1.05
GHDD-090	1237617	452147	399	025	-45	86	30-31	1	12.48
0	125,017	132117	333	025	-13	00	47-50	3	1.47
									/
GHDD-091	1237622	452278	413	025	-45	95	14-16	2	1.63
	1227520	452402	200	025	45	122	0.0	1	0.07
GHDD-093	1237538	452193	399	025	-45	122	8-9	1	8.97
							12-14	2	1.88
							32-34 80-85	2 5	2.96
GHDD-094	1237492	452130	396	025	-45	137	99-104	5	2.20
			Including				102-103	1	6.28
							112-117	5	2.25
			Including				115-117	2	4.44
GHDD-095	1237517	452214	403	025	-45	119	14-21	7	5.78

Hole #	Northing *	Easting *	Elevation	Azimuth	Dip	EOH (m)	Interval (m)*	Core length (m)*	Grade (g/t Au)
							78-84	6	2.35
							101-102	1	13.48
GHDD-096	12374450	452178	406	025	-45	161	78-80	2	4.09
GHDD-097	1237466	452231	410	025	-45	120	43-46	3	4.88
GHDD-098	1237409	452240	420	025	-45	101	77-82	5	1.15
GHDD-099	1237428	452218	411	025	-45	110	91-92	1	6.13
0100-033	1237428	432218	411	023	-45	110	106-107	1	16.06
	4007407	452200	120	0.05	45	~ •	20.42	-	• • •
GHDD-100	1237427	452299	429	025	-45	74	38-43	5	2.91
GHDD-127	1237126	452664	400	025	-45	119	58-62	4	1.14
							74-79	5	1.47
GHDD-128	1237140	452703	403	025	-45	90	59-61	2	1.54
	1007107	4555.55	222	007	17		00.55		
GHDD-129	1237125	452742	399 Including	025	-45	95	80-86 84-85	6 1	1.60 5.30
			Including				04 05	-	5.50
GHDD-130	1237154	452586	402	025	-45	131	78-79	1	7.17
							94-98	4	2.31
GHDD-131	1237247	452630	414	025	-45	80	9-12	3	1.39
							15-21	6	1.51
GHDD-132	1237143	452626	407	025	-45	114	80-91	11	1.37
							83-89	6	2.03
GHDD-135	1237188	452474	419	025	-45	135	111-112	1	3.76
GHDD-136	1237226	452425	422	025	-45	122	111-115	4	1.28
GHDD-137	1237267	452402	426	025	-45	117	95-98	3	2.55
CUDD 139	1007017	452272	427	025	45	02	C0 7C		2 27
GHDD-138	1237317	452373	437	025	-45	93	69-76	7	2.27
GHDD-139	1237305	452327	437	025	-45	133	102-115	13	2.35
			Including				102-106	4	4.83
GHDD-141	1237718	451656	377	021	-45	194	124-125	1	7.40
	1007044	452200	440	021	AE	125	02.00	2	1.10
GHDD-152	1237341	452299	440	021	-45	125	93-96	3	1.16
GHDD-164	1237653	452164	408	021	-45	41	19-21	2	4.18
GHDD-166	1237093	452726	395	021	-45	158	61-65	4	1.50
MA NORTH	1207000				.5	200	02.00		1.55
GHDD-181	1237951	451924	385	006	-45	81	73-77	4	3.47
GHDD-182	1237939	452004	389	006	-45	93	61-65	4	4.65
GHDD-185	1237868	452482	423 Including	006	-45	106	24-30 24-26	6 2	1.14 2.36
GHDD-187	1237828	452716	415	006	-45	107	60-62	2	1.37
MA EAST	1000110	4500.45	200	005	45	110	40.54	-	
GHDD-117	1236148	453347	369	065	-45	110	46-51 58-61	5	2.54
GHDD-119	1236059	453392	367	065	-55	100	37-44	7	3.25
			Including				39-41	2	7.63

Hole #	Northing *	Easting *	Elevation	Azimuth	Dip	EOH (m)	Interval (m)*	Core length (m)*	Grade (g/t Au)
GHDD-120	1236775	453036	369	025	-55	59	20-31	11	2.13
GHDD-121	1236721	45305	370	025	-55	92	46-55	9	1.00
GHDD-121	1230721	43303	Including	023	-55	92	52-55	3	1.63
GHDD-122	1236697	453050	369	025	-55	83	16-17	1	3.48
			Including				22-34 26-29	12 3	1.50 3.69
			Including				20-23	3	5.05
GHDD-123	1236571	453096	368	025	-55	77	26-34	8	2.05
			Including				30-32	2	4.34
							60-62	2	1.65
GHDD-126	1237110	452849	382	021	-55	104	63-67	4	1.56
GHDD-167	1236838	452890	375	025	-55	80	58-63	5	1.13
GHDD-168	1236795	453000	372	025	-55	65	37-41	4	1.06
			5/2		33		57 11	•	1.00
GHDD-169	1236743	452972	372	025	-55	83	57-66	9	1.02
GHDD-170	1236536	453153	368	025	-55	68	33-35	2	3.16
5100-170	1230330	+33133	500	023		00	33-33	2	3.10
GHDD-172	1236630	453072	371	021	-55	80	30-32	2	1.92
	1220170	452402	368	005		62	0.17	0	1.01
GHDD-173	1236176	453402	Including	065	-55	62	9-17 10-13	8 3	1.61 3.19
			including				10 15		5.15
GHDD-174	1236160	453369	368	065	-55	80	38-40	2	1.49
DEKCOLL							43-47	4	1.71
PEKSOU GHDD-207	1227681	452129	300	025	-50	122	86-103	17	2.17
			Including				98-103	5	4.05
GHDD-208	1227611	452272	297	025	-50	110	20-21 86-87	1	3.18
							00-07	1	5.11
GHDD-209	1227647	452203	298	025	-50	143	78-84	4	7.21
			Including				78-79	1	27.41
GHDD-210	1227751	452076	301	025	-50	131	67-70	3	2.08
0.000 210		102070		010		101			2.00
GHDD-211	1227715	452146	300	025	-60	120	54-82	28	1.28
			Including				67-71 89-96	4	2.32
			Including				92-93	1	5.20
GHDD-212	1227787	452092	300	025	-50	85	25-33	8	1.14
GHDD-213	1227584	452213	298	025	-55	190	165-168	3	4.62
0.100 213			250	025	35	150	171-177	6	1.84
			Including				176-177	1	5.55
	1227402	453354	200	025	F 0	140	17.33	6	2.10
GHDD-214	1227492	452351	296	025	-50	149	17-23 122-123	6 1	3.16 6.66
							145-146	1	2.93
GHDD-216	1227549	452418	296	025	-50	150	56-58	2	1.65
GHDD-217	1227582	452347	297	025	-50	119	61-63	2	1.65
							108-110	2	3.62
	4007655		2000	0.25			5.40	_	
GHDD-219	1227633	452417	300	025	-50	84	5-12 53-55	7 2	1.81 1.60

Hole #	Northing *	Easting *	Elevation	Azimuth	Dip	EOH (m)	Interval (m)*	Core length (m)*	Grade (g/t Au)
							67-71	4	1.23
JH HILL									
GHDD-143	1229987	452979	339	315	-55	145	65-67	2	2.53
							79-84	5	1.62
			Including				83-84	1	6.01
GHDD-144	1230030	452964	337	315	-55	142	61-66	5	4.32
GHDD-145	1229996	452938	336	315	-55	140	25-28	3	1.26
							59-60	1	3.39
							76-78	2	2.54
	1220054	4520.42	227	315		402	80-84		1.92
GHDD-146	1229954	452942	337	315	-55	183	90-93	4	1.92
							105-111	6	1.09
								2	1.23
							160-162		
							168-169	1	3.37
GHDD-147	1230097	453039	344	315	-55	117	34-37	3	2.28
GHDD-149	1230170	453078	347	315	-55	119	32-34	2	1.73
							37-41	4	1.13
GHDD-150	1229762	452810	332	315	-70	112	80-85	5	1.58
NAHIRI	1225702	452010	332	515	70	112	00 05	5	1.50
GHDD-176	1233829	450569	366	061	-60	89	32-40	8	1.63
			Including				35-36	1	5.36
GHDD-178	1234123	450039	383	061	-60	137	16-27	11	1.33
01100-176	1234123	430039	Including	001	-00	137	20-21	1	4.90
			including				80-84	4	1.21
							92-94	2	2.31
	lated with a 0.4 g/t A ade x thickness (gram				ion. True	e widths ar	e unknown. UT	M's are WGS8	4-30N

APPENDIX 2

JORC Code, 2012 Edition – Table 1 Report

Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	2012 JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Diamond Core holes are being reported in this news release. These drill holes are part of an ongoing drilling program at the Golden Hill Property where a number of Prospects are being evaluated. Sampling is of half NQ2 core from the DD drilling. Drill core was sawn in half over 1-metre defined sampling intervals, then one-half sampled and assayed for gold. Oriented core markings were used as guides for sawing. Occasionally quarter core was submitted for check assays. Diamond core was sampled selectively based on visual identification of mineralisation. Further sampling will occur should initial results warrant extending the sampling intervals.

Criteria	2012 JORC Code explanation	Commentary
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond drill holes were drilled using standard HQ or NQ sized rods.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond core recoveries were measured and recorded for each sample. Core was sampled or standard 1 m core lengths based on metre-to-metre drill measurement markings. Drill contractors have been requested to maximize recoveries throughout each drill hole and there has not been a significant issue with core recovery in both oxide and fresh rock. There is no evidence to suggest a relationship between sample recovery and grade as there is no significant loss of material. Sample recoveries are of good quality.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Core samples were geologically and geotechnically logged following established standard operating procedures and includes sufficient and appropriate detail to support Mineral Resource estimation, mining and metallurgical studies. Logging is qualitative in nature. All core was photographed. All recovered core was logged, but not all drilled core was sampled.

Criteria	2012 JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drill core sampling intervals were defined then cut in half with a diamond saw along the core length following orientation lines. Half core was sampled over one-metre lengths. The primary sample is pulverized in entirety at BIGGs Laboratory in Ouagadougou by LM2 and split to a 200g sub sample using riffle splitting. A 50g subsample from this pulp is then selected for analysis. Sampling and subsampling methods are industry standard and are appropriate for the type of drilling. The use of the riffle tiered splitter is a demonstrated method of accurately splitting the primary sample and the field method has been validated with the field duplicate data over the 8 years of exploration activity in Burkina Faso. Field duplicate data is routinely reviewed and show acceptable precision and variability. Field duplicate is not a significant issue in the sampling.

Criteria		2012 JORC Code explanation	Commentary
1	of data and ory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Gold assays for Core drilling were obtained by using a 50g charge for a lead collection fire assay with an AAS finish. This is considered to be total gold estimate. Assaying was conducted in Ouagadougou by BIGGS Laboratories. Not applicable Certified reference materials, blanks and duplicates are regularly inserted into the sample preparation and analysis process with approximately 10% of all samples being related to quality control. Data is reviewed before being accepted into the database. Any batches failing QAQC analysis resubmitted for check assays. Dataset QAQC contains acceptable levels of precision and accuracy.
Verifica samplir assayin	ng and	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have been reviewed by staff geologists to check the geological context. All sample and recovery data is recorded to paper forms at the time of drilling. Data is then keypunched into controlled excel templates with validation. Geological logging is directly logged into template log sheets by Toughbook computer. The templates are then provided to an internal database manager for loading in Datashed database management software. Referential integrity is checked as part of the data loading process into Datashed.

	Criteria	2012 JORC Code explanation	Commentary
	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations were surveyed by trained site based technicians using real time differential GPS (DGPS) to a sub decimetre accuracy in horizontal and vertical position. Signal correction completed using the Omnistar network. Vertical precision was supplemented using a Digital Surface Model created from WorldView-2 stereo imagery incorporating DGPS ground control points. Down hole drill hole surveys were undertaken by the drill contractor utilizing a Reflex EZ-Shot downhole survey instrument and by single shot Eastman Cameras. Survey intervals of 30m and end of hole were routinely collected. No strongly magnetic units are present within the deposit which may upset magnetic based readings. Topographic control is based on World View 2 stereoscopic processed image, providing additional <1m RL precision.
))))	Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling was spaced at distances nominally divisible by 20m, typically on 40m centres. Drilling is of an initial investigative nature and not sufficient to define mineral resources at this time. No sample compositing has been utilized.

Criteria	2012 JORC Code explanation	Commentary
Chicha		Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill hole azimuths and dips have been oriented as much as possible perpendicular to the interpreted mineralised zones in order to intersect the true widths of the zones as closely as possible. Occasionally, drilling was planned at oblique angles when the mineralisation trends were not yet well defined or if the optimal collar location was not accessible. Generally, the majority of drilling is oriented such that the sampling of mineralisation is unbiased. While at an early stage drilling orientation is not considered to introduce significant bias.
Sample security	The measures taken to ensure sample security.	 Core samples are removed from the field immediately upon drilling and stored in a secure compound for sub sampling and preparation for lab dispatch. Samples are collected directly from site by the laboratory. Sample submission forms are sent in paper form with the samples as well as electronically to the laboratory. Reconciliation of samples occurs prior to commencement of sample preparation of dispatches
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• All QA/QC data is reviewed in an ongoing basis and reported in monthly summaries. All QAQC data up until December 2012 has been reviewed and documented by CSA Global of Perth. Data subsequent to this period has been reviewed by the CP for this release.

Teranga Gold Strikes More High-Grade Gold at Golden Hill

Initial drilling at fifth drilling prospect – C-Zone – intersects 11 m @ 4.87 g/t Au

Toronto, Ontario – February 1, 2018 – Teranga Gold Corporation ("Teranga" or the "Company") (TSX: TGZ, OTCQX: TGCDF) is pleased to announce that early-stage drilling continues to yield high-grade, nearsurface and deeper gold mineralization at its Golden Hill property in Burkina Faso, West Africa. Teranga has an earn-in agreement on Golden Hill with Boss Resources Limited (ASX:BOE) pursuant to which Teranga, as operator, can earn a minimum 80% interest in the joint venture upon delivery of a feasibility study and payment of AU\$2.5 million.

"Golden Hill, located in the heart of the proven gold producing Houndé Greenstone Belt, is developing into one of the best high-grade gold exploration projects in West Africa," said Richard Young, President and Chief Executive Officer. "With positive results from initial drilling at C-Zone and ongoing drill success at Ma, Peksou, Jackhammer Hill and Nahiri, we are expanding our 2018 drill program and initiating the supporting technical work for this rapidly advancing project."

An extensive 2018 drill campaign is underway on all five prospects and the Company expects to issue an initial resource by the end of 2018.

"Golden Hill continues to demonstrate excellent correlation of the various mineralized zones at each of the five prospects drilled to-date. Based on these positive results, we have budgeted \$8 million for this year's exploration program at Golden Hill to move the five current prospects into an initial resource by year end and to expand our exploration program outwards to initiate exploration of more than a half dozen other targets," stated David Mallo, Vice President, Exploration. "The combined positive drill results at Ma, Peksou, Jackhammer Hill, Nahiri, and now C-Zone are encouraging. We have five advanced high-grade exploration prospects all within a 5-kilometre radius from a central point, which increases our confidence that Golden Hill represents Teranga's next mine in Burkina Faso."

The following highlight results are from the Company's most recent drilling program, completed in late 2017.

C-Zone Prospect

- 11 m @ 4.87 g/t Au including 2 m @ 11.32 g/t Au (GHDD-189)
- 6 m @ 4.64 g/t Au including 2 m @ 10.77 g/t Au (GHDD-188)
- 8 m @ 3.76 g/t Au including 1 m @ 19.74 g/t Au (GHDD-191)

The C-Zone prospect is located just south of the Peksou prospect (Figure 1 in Appendix 1) and has a current strike length of approximately 500 metres. Historical drilling at C-Zone was to shallow depths below which the Company targeted down-dip extensions of previously intersected mineralization.

Ma Prospect (Ma Main, Ma East, Ma North)

- 7 m @ 5.78 g/t Au and 6 m @ 2.35 g/t Au (GHDD-095)
- 13 m @ 2.35 g/t Au including 4 m @ 4.83 g/t Au (GHDD-139)
- 11 m @ 2.13 g/t Au (GHDD-120)
- 16 m @ 1.62 g/t Au including 4 m @ 2.98 g/t Au (GHDD-085)

The step-out drill program at the Ma structural complex comprising Ma Main, Ma East and Ma North continues to provide excellent hole-to-hole correlation along trend and to depth. The Ma plan map (Figure 2 in Appendix 1) of drilling completed to-date indicates a combined drilled strike extent for Ma Main and Ma East of 2.4 kilometres and a separate partially drilled strike extent for Ma North of 1.2 kilometres. Representative drill sections for Ma are included in Figures 3, 4 and 5 in Appendix 1.

Peksou Prospect

- 17 m @ 2.17 g/t Au including 5 m @ 4.05 g/t Au (GHDD-207)
- 28 m @ 1.28 g/t Au including 4 m @ 2.32 g/t Au (GHDD-211)
- 4 m @ 7.21 g/t Au including 1 m @ 27.41 g/t Au (GHDD-209)

Follow-up drilling of an initial successful five-hole drill program at the Peksou prospect intersected very positive drill intersections on 40 and 80-metre sections across an approximate 600-metre strike extent. The structurally controlled mineralization at Peksou occurs in both mafic volcanic, dioritic and granodioritic host units, similar to Ma and Jackhammer Hill.

Jackhammer Hill Prospect

- 5 m @ 4.32 g/t Au (GHDD-144)
- 4 m @ 1.92 g/t Au and 6 m @ 1.23 g/t Au (GHDD-146)
- 5 m @ 1.62 g/t Au including 1 m @ 6.01 g/t Au (GHDD-143)

A 10-hole step-out drill program was completed at Jackhammer Hill to follow-up favorable drill results. Todate, approximately 1,000 metres of strike extent has been drill tested predominantly on 40 and 80-metre sections. Field observations from three recent drill holes at Jackhammer Hill report visible gold. These results are pending and will be reported in a subsequent news release.

Nahiri and Nahiri West Prospects

- 8 m @ 1.63 g/t Au including 1 m @ 5.36 g/t Au (GHDD-176)
- 11 m @ 1.33 g/t Au including 1 m @ 4.90 g/t Au (GHDD-178)

A short drill program at the Nahiri and Nahiri West prospects met with modest success. Of note was the anomalous intersection observed in drill hole GHDD-178, which averages 0.48 g/t Au over its lower 123 metres. This intersection confirms similar very wide intervals of anomalous mineralization in earlier reverse circulations drill holes, necessitating a re-interpretation that will focus on possible crossing structures that may be controlling these wide anomalous intervals.

Other Activities & Next Steps

As part of the 2018 drill campaign, two diamond core drills are working on-site. Additional drills are planned for periodic drilling evaluation throughout the year.

In addition to ongoing drilling at the five advanced prospects, the Company plans initial field evaluations at other undrilled Golden Hill prospects including A-Zone, B-Zone, Didro, Intie, Nabere and Nabale. Geologic modeling and initial resource estimation for the most advanced prospects is planned for year-end 2018. Composite samples for preliminary metallurgical test work programmes are in progress and base line environmental studies are planned for later this year.

Drilling Results Table

Recent Golden Hill drill results continue to demonstrate excellent correlation of the various mineralized zones at the five prospects drilled to-date. A complete list of C-Zone, Ma, Peksou, Jackhammer Hill and Nahiri highlight drill results reported in this news release is included in the following Table 1.

Hole #	Northing *	Easting *	Elevation	Azimuth	Dip	EOH (m)	Interval (m)*	Core length (m)*	Grade (g/t Au)
C-ZONE								(,	
GHDD-188	1227335	451746	306	020	-50	92	52-58	6	4.64
			Including				56-58	2	10.77
GHDD-189	1227322	451787	304	020	-50	98	38-40	2	2.33
GHDD-169	1227322	401707	304	020	-50	90	52-63	<u> </u>	4.87
			Including				52-63	2	11.32
			Including				66-68	2	2.69
							00-00	2	2.05
GHDD-190	1227263	451934	303	020	-50	95	67-81	14	1.76
			Including				69-71	2	3.46
	4007005	454950	202	020	50	00	C1 C0	0	0.70
GHDD-191	1227295	451856	302	020	-50	80	61-69	8	3.76
							62-63	1	19.74
GHDD-192	1227315	452036	300	020	-50	72	29-32	3	1.40
						_	45-55	10	1.91
			Including				51-52	1	10.93
GHDD-193	1227321	452195	300	020	-50	91	78-80	2	2.41
MA MAIN									
GHDD-085	1237505	452099	393	021	-45	127	94-96	2	1.25
							105-121	16	1.62
			Including				107-111	4	2.98
GHDD-086	1237741	451756	379	021	-45	143	88-90	2	3.68
							96-98	2	4.26
GHDD-088	1237543	452114	394	025	-45	122	49-53	4	1.14
0.122 000				020			96-103	7	1.05
GHDD-090	1237617	452147	399	025	-45	86	30-31	1	12.48
							47-50	3	1.47
GHDD-091	1237622	452278	413	025	-45	95	14-16	2	1.63
GHDD-091	1237022	432270	413	025	-45	90	14-10	2	1.03
GHDD-093	1237538	452193	399	025	-45	122	8-9	1	8.97
							12-14	2	1.88
			1				32-34	2	2.96
							80-85	5	1.41
GHDD-094	1237492	452130	396	025	-45	137	99-104	5	2.20
			Including				102-103	1	6.28
			la alcuella s				112-117	5	2.25
			Including				115-117	2	4.44
GHDD-095	1237517	452214	403	025	-45	119	14-21	7	5.78
							78-84	6	2.35
							101-102	1	13.48
GHDD-096	12374450	452178	406	025	-45	161	78-80	2	4.09
	4007400	450004	440	005	45	400	40.40	•	4.00
GHDD-097	1237466	452231	410	025	-45	120	43-46	3	4.88

Hole #	Northing *	Easting *	Elevation	Azimuth	Dip	EOH (m)	Interval (m)*	Core length (m)*	Grade (g/t Au)
GHDD-098	1237409	452240	420	025	-45	101	77-82	5	1.15
GHDD-099	1237428	452218	411	025	-45	110	91-92	1	6.13
GIIDD-033	1237420	432210		023		110	106-107	1	16.06
GHDD-100	1237427	452299	429	025	-45	74	38-43	5	2.91
GHDD-127	1237126	452664	400	025	-45	119	58-62	4	1.14
GHDD-127	1237 120	432004	400	025	-40	113	74-79	5	1.14
GHDD-128	1237140	452703	403	025	-45	90	59-61	2	1.54
GHDD-129	1237125	452742	399	025	-45	95	80-86	6	1.60
01122 120			Including	020			84-85	1	5.30
GHDD-130	1237154	452586	402	025	-45	131	78-79	1	7.17
							94-98	4	2.31
GHDD-131	1237247	452630	414	025	-45	80	9-12	3	1.39
							15-21	6	1.51
GHDD-132	1237143	452626	407	025	-45	114	80-91	11	1.37
							83-89	6	2.03
GHDD-135	1237188	452474	419	025	-45	135	111-112	1	3.76
GHDD-136	1237226	452425	422	025	-45	122	111-115	4	1.28
GHDD-137	1237267	452402	426	025	-45	117	95-98	3	2.55
GHDD-138	1237317	452373	437	025	-45	93	69-76	7	2.27
GHDD-139	1237305	452327	437	025	-45	133	102-115	13	2.35
			Including				102-106	4	4.83
GHDD-141	1237718	451656	377	021	-45	194	124-125	1	7.40
GHDD-152	1237341	452299	440	021	-45	125	93-96	3	1.16
GHDD-164	1237653	452164	408	021	-45	41	19-21	2	4.18
GHDD-166	1237093	452726	395	021	-45	158	61-65	4	1.50
MA NORTH GHDD-181	1237951	451924	385	006	-45	81	73-77	4	3.47
GHDD-182	1237939	452004	389	006	-45	93	61-65	4	4.65
GHDD-185	1237868	452482	423	006	-45	106	24-30	6	1.14
GHDD-187	1237828	452716	Including 415	006	-45	107	24-26 60-62	2 2	2.36 1.37
MA EAST GHDD-117	1236148	453347	369	065	-45	110	46-51	5	2.54
	1230140	455547	309	065	-45	110	46-51 58-61	3	3.76
GHDD-119	1236059	453392	367 Including	065	-55	100	37-44 39-41	7 2	3.25 7.63
GHDD-120	1236775	453036	369	025	-55	59	20-31	11	2.13
GHDD-121	1236721	45305	370	025	-55	92	46-55	9	1.00
			Including				52-55	3	1.63
GHDD-122	1236697	453050	369	025	-55	83	16-17	1	3.48
							22-34	12	1.50 3.69
GHDD-122	1236697	453050	369 Including	025	-55	83			

GHDD-145

1229996

Hole #	Northing *	Easting *	Elevation	Azimuth	Dip	EOH (m)	
GHDD-123	1236571	453096	368 Including	025	-55	77	
GHDD-126	1237110	452849	382	021	-55	104	
GHDD-167	1236838	452890	375	025	-55	80	
GHDD-168	1236795	453000	372	025	-55	65	
GHDD-169	1236743	452972	372	025	-55	83	
GHDD-170	1236536	453153	368	025	-55	68	
GHDD-172	1236630	453072	371	021	-55	80	
GHDD-173	1236176	453402	368 Including	065	-55	62	
GHDD-174 PEKSOU	1236160	453369	368	065	-55	80	
GHDD-207	1227681	452129	300 Including	025	-50	122	
GHDD-208	1227611	452272	297	025	-50	110	
GHDD-209	1227647	452203	298 Including	025	-50	143	
GHDD-210	1227751	452076	301	025	-50	131	
GHDD-211	1227715	452146	300 Including	025	-60	120	
			Including				
GHDD-212	1227787	452092	300	025	-50	85	
GHDD-213	1227584	452213	298	025	-55	190	
			Including				
GHDD-214	1227492	452351	296	025	-50	149	
GHDD-216	1227549	452418	296	025	-50	150	
GHDD-217	1227582	452347	297	025	-50	119	
GHDD-219	1227633	452417	300	025	-50	84	
JH HILL		/===					
GHDD-143	1229987	452979	339 Including	315	-55	145	
GHDD-144	1230030	452964	337	315	-55	142	

336

452938

Core

length

(m)*

8

2

2

4

5

4

9

2

2

8

3

2

4

17

5

1

1

4

1

3

28

4

7

1

8

3

6

1

6

1

1

2

2

2

7

2

4

2

5

1

5

3

Grade

(g/t Au)

2.05

4.34

1.65

1.56

1.13

1.06

1.02

3.16

1.92

1.61

3.19

1.49

1.71

2.17

4.05 3.18

3.11 **7.21**

27.41

2.08

1.28

2.32

1.19

5.20

1.14

4.62

1.84 5.55

3.16

6.66

2.93

1.65

1.65

3.62

1.81 1.60

1.23

2.53

1.62

6.01

4.32

1.26

Interval

(m)*

26-34

30-32

60-62

63-67

58-63

37-41

57-66

33-35

30-32

9-17

10-13

38-40

43-47

86-103

98-103

20-21

86-87

78-84

78-79

67-70

54-82 67-71

89-96

92-93

25-33

165-168

171-177

176-177

17-23

122-123

145-146

56-58

61-63

108-110

5-12

53-55

67-71

65-67

79-84

83-84

61-66

25-28

-55

315

140

Hole #	Northing *	Easting *	Elevation	Azimuth	Dip	EOH (m)	Interval (m)*	Core length (m)*	Grade (g/t Au)
							59-60	1	3.39
							76-78	2	2.54
GHDD-146	1229954	452942	337	315	-55	183	80-84	4	1.92
							90-93	3	1.09
							105-111	6	1.23
							160-162	2	1.94
							168-169	1	3.37
GHDD-147	1230097	453039	344	315	-55	117	34-37	3	2.28
GHDD-149	1230170	453078	347	315	-55	119	32-34	2	1.73
							37-41	4	1.13
GHDD-150	1229762	452810	332	315	-70	112	80-85	5	1.58
NAHIRI									
GHDD-176	1233829	450569	366	061	-60	89	32-40	8	1.63
			Including				35-36	1	5.36
GHDD-178	1234123	450039	383	061	-60	137	16-27	11	1.33
			Including				20-21	1	4.90
							80-84	4	1.21
							92-94	2	2.31

* Intervals calculated with a 0.4 g/t Au cut-off and 2 metres maximum internal dilution. True widths are unknown. UTM's are WGS84-30N Intervals with grade x thickness (gram x metre) of 10 or higher are in bold.

Competent Persons Statements

Teranga's exploration programs in Burkina Faso are being managed by Peter Mann, FAusIMM. Mr. Mann is a full time employee of Teranga and is not "independent" within the meaning of National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Mr. Mann has sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a "Qualified Person" under NI 43-101. The technical information contained in this news release relating to exploration results are based on, and fairly represents, information compiled by Mr. Mann. Mr. Mann has verified and approved the data disclosed in this release, including the sampling, analytical and test data underlying the information. The RC and diamond core samples are assayed at the BIGGS Laboratory in Ouagadougou, Burkina Faso. Mr. Mann has consented to the inclusion in this news release of the matters based on his compiled information in the form and context in which it appears herein.

Forward-Looking Statements

This press release contains certain statements that constitute forward-looking information within the meaning of applicable securities laws ("forward-looking statements"), which reflects management's expectations regarding Teranga's future growth and business prospects (including the timing and development of new deposits and the success of exploration activities) and opportunities. Wherever possible, words such as "intent", "belief", "believe", "expects", "estimates", "plans", "planned", "anticipated", "ability", "developing", "leading towards", "can attain" and similar expressions or statements that certain actions, events or results "should", "may" or "will" have been used to identify such forward-looking information.

Specific forward-looking statements in this press release include next steps and targeting an initial resource by year end. Although the forward-looking statements contained in this press release reflect management's current beliefs based upon information currently available to management and based upon what management believes to be reasonable assumptions, Teranga cannot be certain that actual results will be consistent with such forward-looking statements. Such forward-looking statements are based upon assumptions, opinions and analysis made by management in light of its experience, current conditions and

its expectations of future developments that management believe to be reasonable and relevant but that may prove to be incorrect. These assumptions include, among other things, the ability to obtain any requisite governmental approvals, including renewals of the Golden Hill exploration permits in 2018, the accuracy of sampling, analytical and test data underlying the exploration results included herein, gold price, exchange rates, fuel and energy costs, future economic conditions, and anticipated future estimates of free cash flow. Teranga cautions you not to place undue reliance upon any such forward-looking statements.

The risks and uncertainties that may affect forward-looking statements include, among others: the inherent risks involved in exploration and development of mineral properties, including government approvals and permitting, changes in economic conditions, changes in the worldwide price of gold and other key inputs, changes in mine plans and other factors, such as project execution delays, many of which are beyond the control of Teranga, as well as other risks and uncertainties which are more fully described in Teranga's Annual Information Form dated March 30, 2017, and in other filings of Teranga with securities and regulatory authorities which are available at <u>www.sedar.com</u>. Teranga does not undertake any obligation to update forward-looking statements should assumptions related to these plans, estimates, projections, beliefs and opinions change. Nothing in this document should be construed as either an offer to sell or a solicitation to buy or sell Teranga securities. All references to Teranga include its subsidiaries unless the context requires otherwise.

About Golden Hill

The Golden Hill property is comprised of three adjacent exploration permits covering 470 km² located in southwest Burkina Faso in the central part of the Houndé Greenstone Belt. This belt hosts a number of high-grade gold discoveries, including the Siou, Yaramoko and Houndé deposits. The latter property is contiguous with Golden Hill. To the south of Golden Hill is another large land position where active exploration programs are well underway.

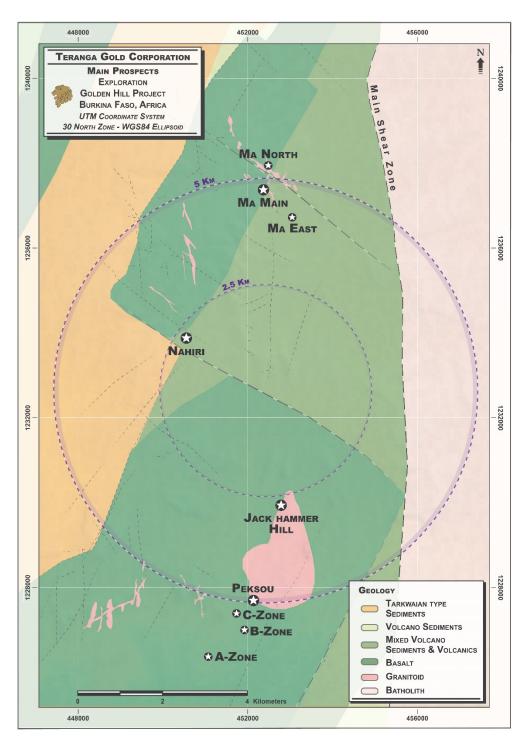
Each of the five prospects successfully drilled to date are located approximately 5 kilometres from a central point (Figure 1 in Appendix 1). An all-prospect table of complete drill results is available on the Company's website, <u>http://www.terangagold.com</u> (exploration section).

About Teranga

Teranga is a multi-jurisdictional West African gold company focused on production and development as well as the exploration of more than 5,000 km² of land located on prospective gold belts. Since its initial public offering in 2010, Teranga has produced more than 1.2 million ounces of gold from its operations in Senegal, which as of June 30, 2017 had a reserve base of 2.7 million ounces of gold. Focused on diversification and growth, the Company is advancing its Wahgnion Gold Project, with our recently released positive feasibility study, and conducting extensive exploration programs in three countries: Burkina Faso, Senegal and Côte d'Ivoire. Teranga has a strong balance sheet and the financial flexibility to execute on its growth strategy. The Company has nearly 4.0 million ounces of gold reserves from its combined Sabodala Gold operations and Wahgnion Gold Project.

Steadfast in its commitment to set the benchmark for responsible mining, Teranga operates in accordance with the highest international standards and aims to act as a catalyst for sustainable economic, environmental, and community development as it strives to create value for all of its stakeholders. Teranga is a member of the United Nations Global Compact and a leading member of the multi-stakeholder group responsible for the submission of the first Senegalese Extractive Industries Transparency Initiative revenue report. The Company's responsibility report is available at www.terangagold.com/responsibilityreport and is prepared in accordance with its commitments under the United Nations Global Compact and in alignment with the Global Reporting Initiative guidelines.

Contact Information


Richard Young President & CEO T: +1 416-594-0000 | E: <u>ryoung@terangagold.com</u>

Trish Moran Head of Investor Relations T: +1 416-564-4290 | E: tmoran@terangagold.com

-Orbersonal use only

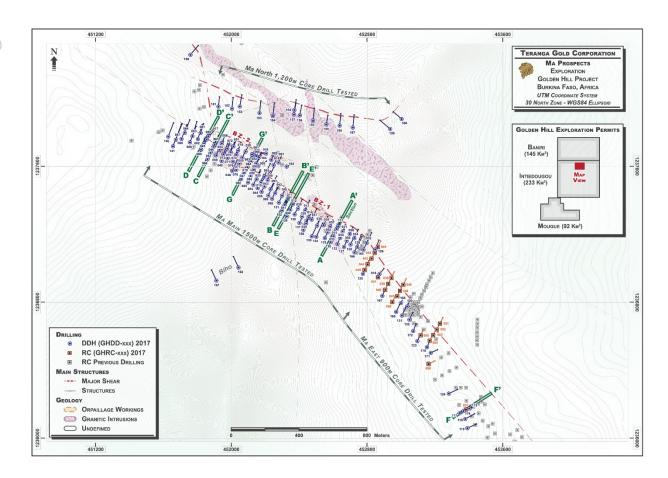
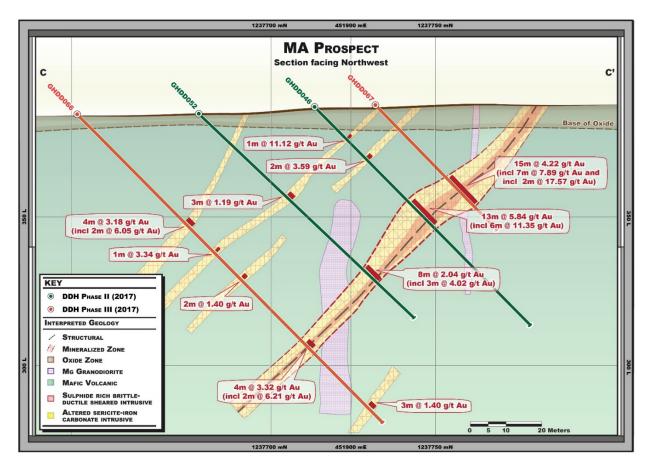

APPENDIX 1

Figure 1: Golden Hill Property – Prospect Location Plan Map


Figure 2: Ma Prospect – Drill Plan

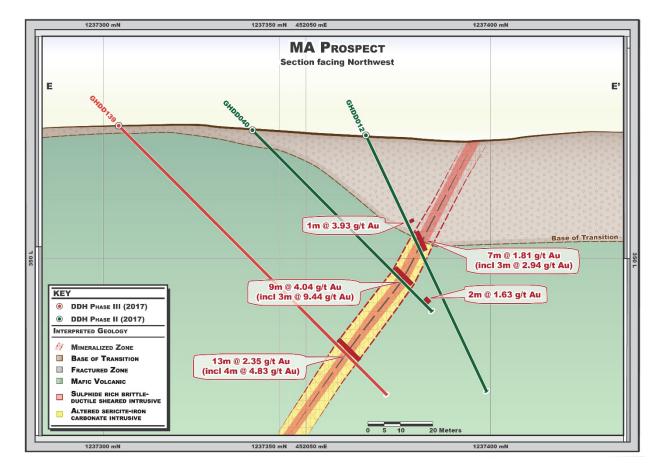


Figure 3: Ma Prospect – Representative Drill Section (C-C')

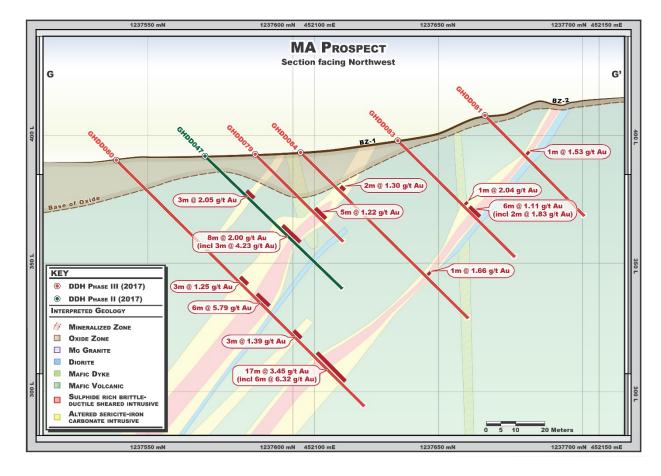


Figure 4: Ma Prospect – Representative Drill Section (E-E')

Figure 5: Ma Prospect – Representative Drill Section (G-G')