Market Update

March 2018 - Highlights

19 Mar 2018

Cobalt Blue Holdings Ltd A Green Energy Exploration Company

ASX Code:

COB

nmodity Exposure:

Cobalt & Sulphur

edlors & Management:

Robert Biancardi Non-Exec Chairman Hugh Keller Trangie Johnston Matt Hill Joe Kaderavek

Non-Exec Director Non-Exec Director Non-Exec Director CEO & Exec Director Company Secretary

(o)tal Structure:

Ordinary Shares at 19/03/2018: 107.2m Options (ASX Code: COBO): 26.1m Market Cap (undiluted): \$108.2m

are Price:

ian Morgan

Share Price at 19/03/2018:

\$1.01

Cobalt Blue Holdings Limited

614 466 607

Level 2, 66 Hunter St, Sydney NSW 2000 +61 2 9966 5629 www.cobaltblueholdings.com info@cobaltblueholdings.com

f Cobalt.Blue.Energy cobalt-blue-holdings

Thackaringa – Significant Mineral Resource upgrade

31% increase in total resource tonnes with 72% now classified as Indicated

KEY POINTS:

- Cobalt Blue (ASX: COB) is pleased to announce a significant resource upgrade at the Thackaringa Project, located near Broken Hill, NSW. The global Mineral Resource estimate now comprises 72Mt at 852ppm cobalt (Co), 9.3% sulphur (S) & 10% iron (Fe) for 61Kt contained cobalt (at a 500ppm cobalt cut-off) compared to the June 2017 Mineral Resource estimate (detailed in ASX release of 5 June 2017) the upgrade reflects a 31% increase in total tonnes and a 23% increase in contained cobalt.
- The new Mineral Resource estimate succeeds a substantial resource definition drilling program comprising some 74 holes for approximately 12,500m; the resultant improvement in geological confidence has supported the classification of approximately 72% of the Mineral Resource as Indicated.
- These results reflect the strong conclusion of our CY17 drilling campaign. COB has submitted the draft geological report to our JV partner (Broken Hill Prospecting) and has served formal notice that COB believes it has fulfilled its Stage One JV requirements. Looking forward, COB remains on schedule to deliver a Pre Feasibility Study (PFS) by 30 June 2018 and satisfy obligations under Stage Two of the agreement to secure 70% beneficial interest.
- Thackaringa remains on target to become a world class cobalt project with recent metallurgical testwork highlighting 88% cobalt recoveries from ore to payable product.
- Cobalt Blue remains focussed on completion of a maiden Ore Reserve estimate as part of PFS.

The updated Mineral Resource estimate at Thackaringa is apportioned to the three main deposits as detailed in Table 1.

Table 1. The updated Mineral Resource estimates for the Thackaringa Cobalt deposits (at a cut-off of 500ppm Co) detailed by Mineral Resource category.

Note minor rounding errors may have occurred in the compilation of this table.

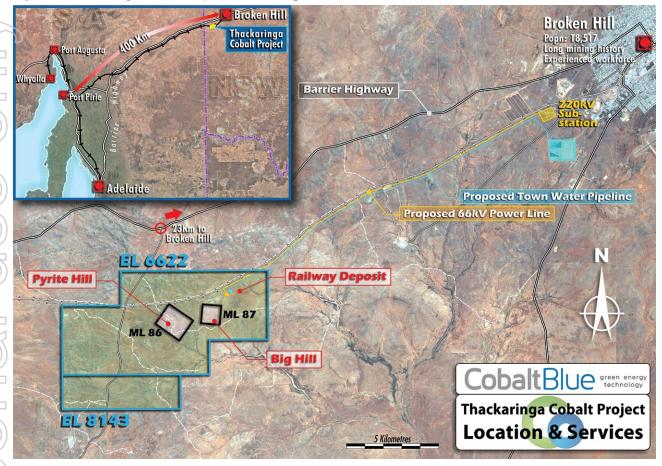
<u> </u>	Category	Mt	Co ppm	Fe %	S %	Pyrite %	Co Tonnes	Py Mt	Density
) F	Railway (at a 50	00ppm Co	o cut-off)						
lr	ndicated	23	854	10.1	9.2	17	19,400	4	2.85
lr	nferred	14	801	10.4	9.2	17	11,100	2	2.85
Т	otal	37	842	10.2	9.2	17	30,800	6	2.85
Е	Big Hill (at a 50	Oppm Co	cut-off)						
lr	ndicated	7	712	7.2	6.9	13	5,200	1	2.77
lr	nferred	2	658	6.7	6.3	12	1,500	0	2.76
Т	otal	10	697	7.1	6.7	13	6,700	1	2.77
P	Pyrite Hill (at a	500ppm	Co cut-off)						
lr	ndicated	22	937	10.9	10.3	19	20,300	4	2.87
Ir	nferred	4	920	11.2	10.8	20	4,000	1	2.89
Т	otal	26	934	10.9	10.3	19	24,200	5	2.88
T	otal (at a 500p	pm Co c	ut-off)						
Ir	ndicated	52	869	10.0	9.3	17	44,900	9	2.85
lr	nferred	20	810	10.1	9.2	17	16,600	4	2.85
Т.	otal	72	852	10.0	9.3	17	61,500	13	2.85

Thackaringa Project Timetable

COB remains on track to complete its PFS study for the Thackaringa Cobalt Project by 30 June 2018 and is pleased by the delivery of the Mineral ('Indicated') Resource upgrade – obligated under Stage One deliverables. Results to date continue to justify proceeding further along the pathway towards commercial development of the Thackaringa Cobalt Project.

The overall company timeline remains as below:

Figure 1. COB developmental timeline for the Thackaringa Cobalt Project


	Aug 2016 - Feb 2017	1 April 2018	30 June 2018	30 June 2019	
	Complete	Stage One	Stage Two	Stage Three	Stage
)	Cobalt Blue formed JV & Farm-in	A\$2.0m expenditure in the ground delivered.	A\$2.5m expenditure in ground – Indicated Resource Target	A\$5.0m expenditure in ground – Measured Resource + Reserves Target	Four Decision
	JORC 2012 upgrade	Delivered: • Inferred Resource Upgrade • Scoping Study	Deliver: Preliminary Feasibility Study	Deliver: Bankable Feasibility Study + Project Approvals	to Mine Project
	Cobalt Blue listed	Deliver: • Indicated Resource Upgrade • Aerial Geophysical Program	Target Date: 30 June 2018	Target Date: 30 June 2019	Finance
		Target Date: 1 April 2018			

The Thackaringa district map below shows the proximity to Broken Hill, the supporting rail and road network, as well as the availability of both power and water utilities to support future production.

Figure 2. Thackaringa Cobalt Project district map

Cobalt Blue Background

Cobalt Blue ("COB") is an exploration company focussed on green energy technology and strategic development to upgrade its mineral resource at the Thackaringa Cobalt Project in New South Wales from Inferred to Indicated status. This strategic metal is in strong demand for new generation batteries, particularly lithium-ion batteries now being widely used in clean energy systems.

COB is undertaking exploration and development programs on the Thackaringa Cobalt Project pursuant to a farm-in joint venture agreement entered into with Broken Hill Prospecting Limited ("BPL"). Subject to the achievement of milestones, COB will be entitled to acquire 100% of the Thackaringa Cobalt Project. Currently, COB has a 51% beneficial interest in the tenements comprising the Thackaringa Cobalt Project. Until Cobalt Blue's farm-in obligations have been satisfied, its interest in the tenements located at the Thackaringa Project is beneficial. Under the terms of the farm-in joint venture agreement, Cobalt Blue's beneficial interest in the Thackaringa Project will be increased in tranches on satisfaction of certain exploration and development milestones. When Cobalt Blue has completed its farm-in obligations, it will become the registered holder of the Thackaringa Project tenements. Broken Hill Prospecting remains the registered holder of the Thackaringa Project tenements until the farm-in is complete

The Thackaringa Project, 23 km west of Broken Hill, with railway line passing through the project area, consists of four granted tenements (EL6622, EL8143, ML86 and ML87) with total area of 63km². The main targets for exploration are well known and document large-tonnage cobalt-bearing pyrite deposits. The project area is under-explored, with the vast majority of historical exploration directed at or around the outcropping pyritic cobalt deposits at Pyrite Hill and Big Hill.

Potential to extend the Mineral Resource at Pyrite Hill, Big Hill, Railway and the other prospects is high. Numerous other prospects within COB's tenement package are at an early stage and under-explored.

Looking forward, we would like our shareholders to keep in touch with COB updates and related news items, which we will post on our website, the ASX announcements platform, as well as social media such as Facebook (1) and LinkedIn (in). Please don't hesitate to join the 'COB friends' on social media and also to join our newsletter mailing list at our website.

Mulal

Joe Kaderavek

Chief Executive Officer info@cobaltblueholdings.com P: (02) 9966 5629

Previously Released Information

This ASX announcement refers to information extracted from the following reports, which are available for viewing on COB's website http://www.cobaltblueholdings.com

- 24 January 2018: Significant Thackaringa Drilling Program complete Resource Upgrade pending
- 27 December 2017: PFS Bulk Metallurgical Testwork Progress Update
- 4 December 2017: Railway Drilling Program confirms grade continuity at depth and strike
- 26 October 2017: Bulk Metallurgical Testwork Strong Concentration Results
 - 27 September 2017: CEO's Letter to Shareholders September 2017
- 12 July 2017: Scoping Study update Strong Potential for Commercialisation after Processing Testwork
- 3 July 2017: Thackaringa Cobalt Project Major Geophysical Survey Positive news
- 5 June 2017: Significant resource upgrade for the Thackaringa Cobalt Project
- 25 May 2017: Stage One Drilling Program delivers robust results resource upgrade to follow
- 4 May 2017: 2017 Update Strong Drilling Results Continue

Excluding this market update, COB confirms it is not aware of any new information or data that materially affects the information included in the original market announcements, and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. COB confirms that the form and context in which the Competent Person's findings presented have not been materially modified from the original market announcement.

Competent Person's Statement

The information in this report that relates to exploration results, Mineral Resources and Targets is based on information compiled by Mr Anthony Johnston, BSc (Hons), who is a Member of the Australian Institute of Mining and Metallurgy and who is a non-executive director of Cobalt Blue Holdings Limited, the Chief Executive Officer of Broken Hill Prospecting Limited. Mr Johnston has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 & 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Johnston consents to the inclusion in the announcement of the matters based on his information in the form and context that the information appears.

About Cobalt Blue Holdings Limited

Cobalt Blue ("COB") is an exploration company focussed on green energy technology and a strategy of fast-tracking development of the Thackaringa Cobalt Project in New South Wales to achieve commercial production of cobalt. This strategic metal is in strong demand for new generation batteries, particularly lithium-ion batteries now widely used in clean energy systems.

COB has entered into a farm-in joint venture agreement with Broken Hill Prospecting Limited ("BPL") in which COB seeks to acquire an initial 51% interest in the Thackaringa Cobalt Project. COB will undertake exploration and development programs on the Thackaringa Cobalt Project and, subject to the achievement of milestones, will acquire 100% of the Thackaringa Cobalt Project.

Mineral Resource Estimate Overview

The revised Mineral Resource was independently prepared by SRK Consulting using a Co-Kriging ('CK') method of estimation, suitable for the style of mineralisation. Mr Danny Kentwell, Principal Consultant (Resource Evaluation) at SRK Consulting, was engaged to estimate the Mineral Resource as the independent Competent Person. The Mineral Resource has been estimated and reported in accordance with the guidelines of the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Minerals Resources and Ore Reserves ('2012 JORC Code').

The revised Mineral Resource estimate reflects the culmination of a focussed exploration effort by COB, comprising two successive drilling campaigns for a total of 20,444.8m. The programs have supported sustained Mineral Resource growth and a continued improvement in geological confidence as reflected by the significant Indicated resource component (Figure 3).

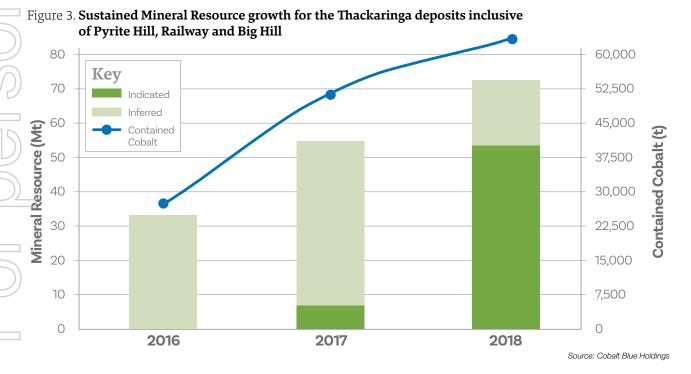


Figure 4. Railway deposit drilling plan illustrating increased data density along some 1.6km strike.

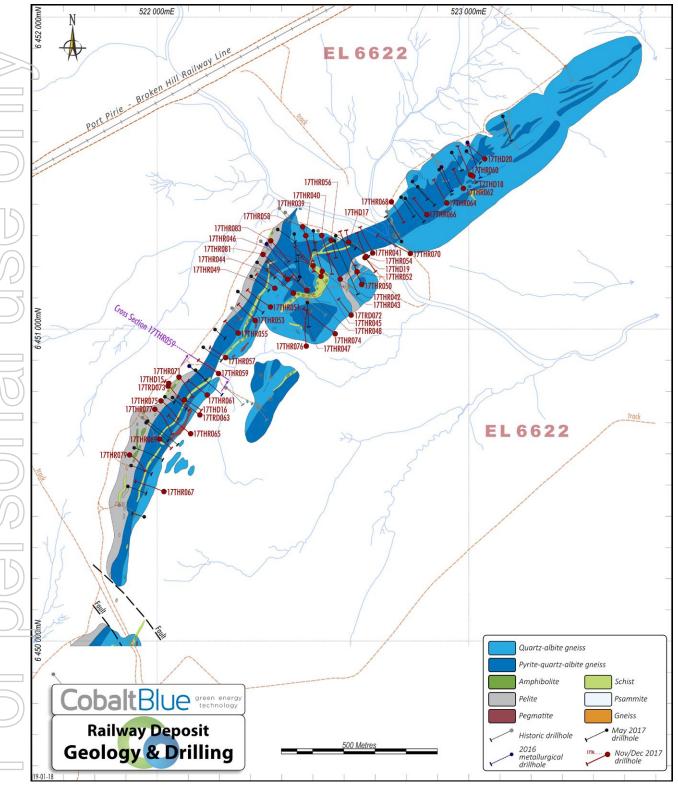


Figure 5. Railway deposit drilling cross section (looking north-east) showing strong continuity of high grade mineralisation at depth.

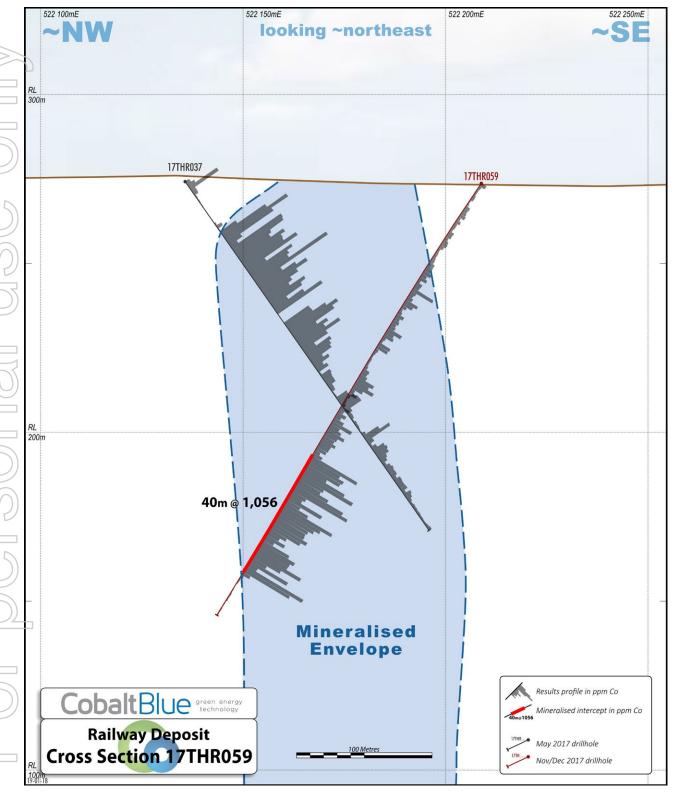


Figure 6. Railway Mineral Resource - block model looking northwest illustrating block distribution by resource classification (top) and cobalt grade (bottom).

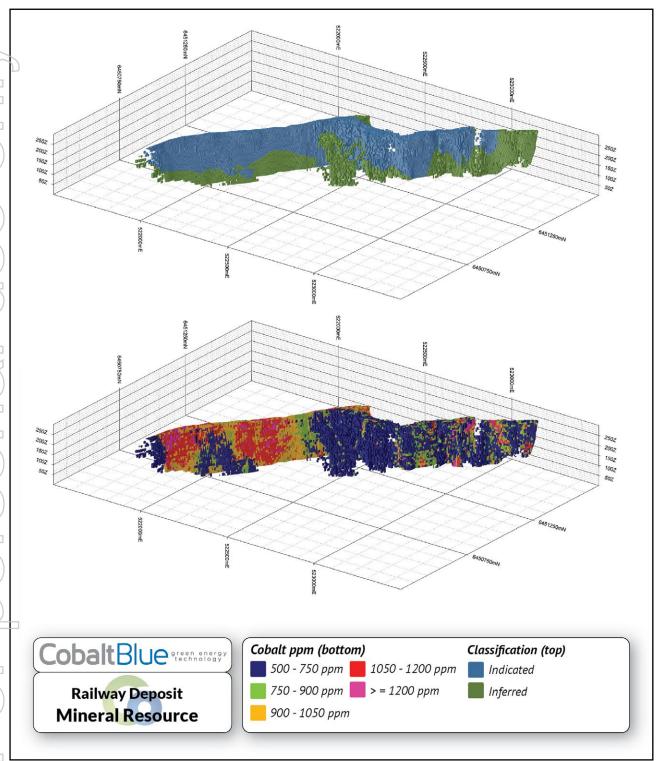


Figure 7. Big Hill deposit drilling plan illustrating increased data density along some 1.2km strike.

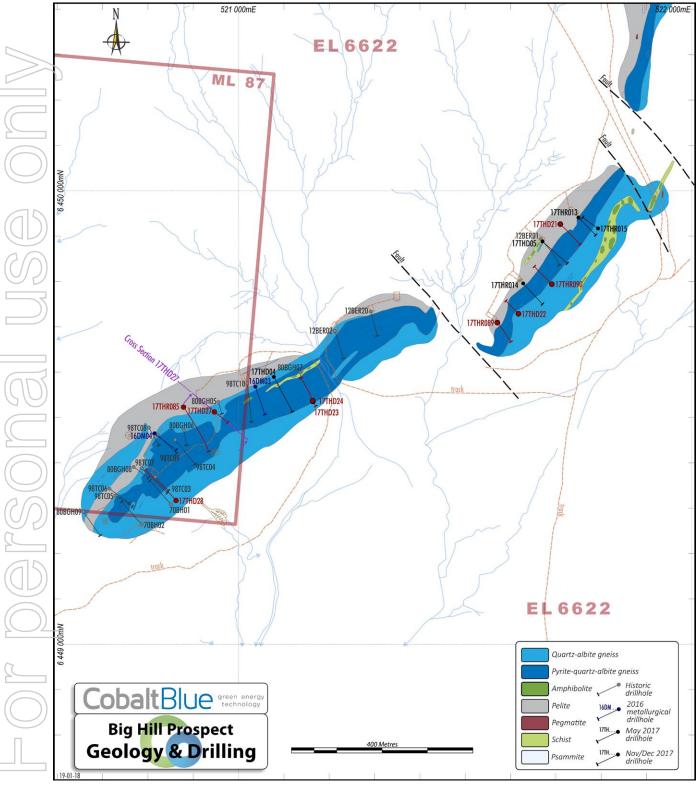


Figure 8. Big Hill deposit drilling cross section (looking north-east) showing strong continuity of high grade mineralisation at depth.

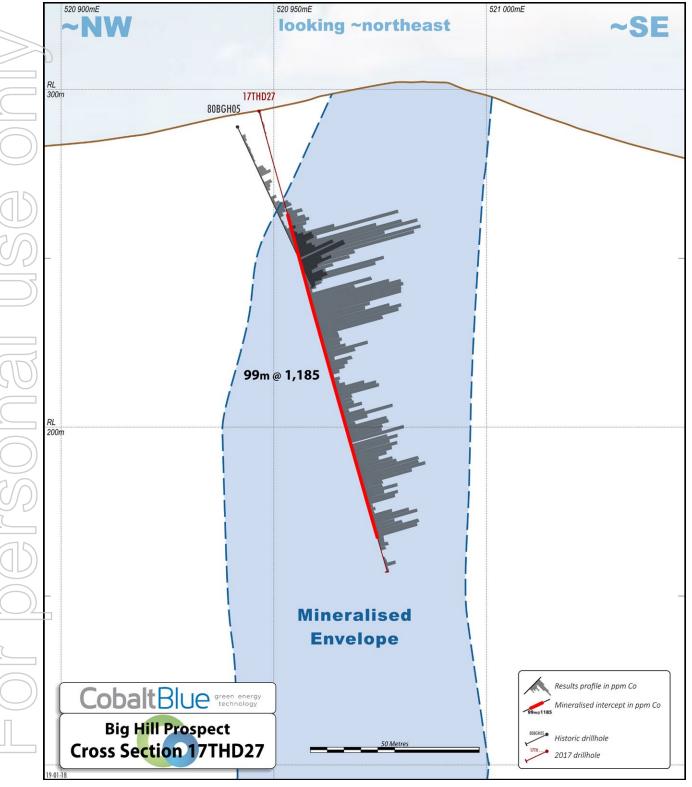


Figure 9. Big Hill Mineral Resource – block model looking northwest illustrating block distribution by resource classification (top) and cobalt grade (bottom).

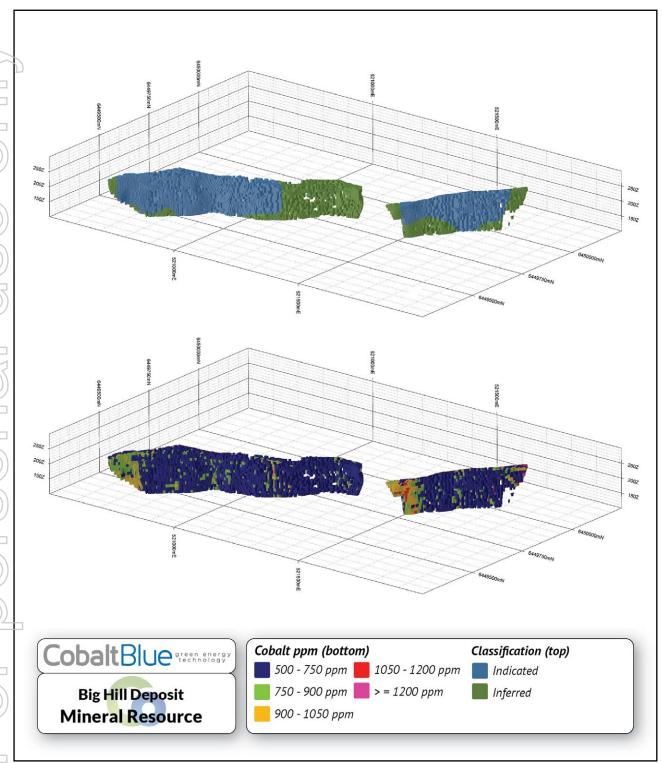


Figure 10. Pyrite Hill deposit drilling plan illustrating increased data density along some 1km strike.

Figure 11. Pyrite Hill deposit drilling cross section (looking north-west) showing strong continuity of high grade mineralisation down dip.

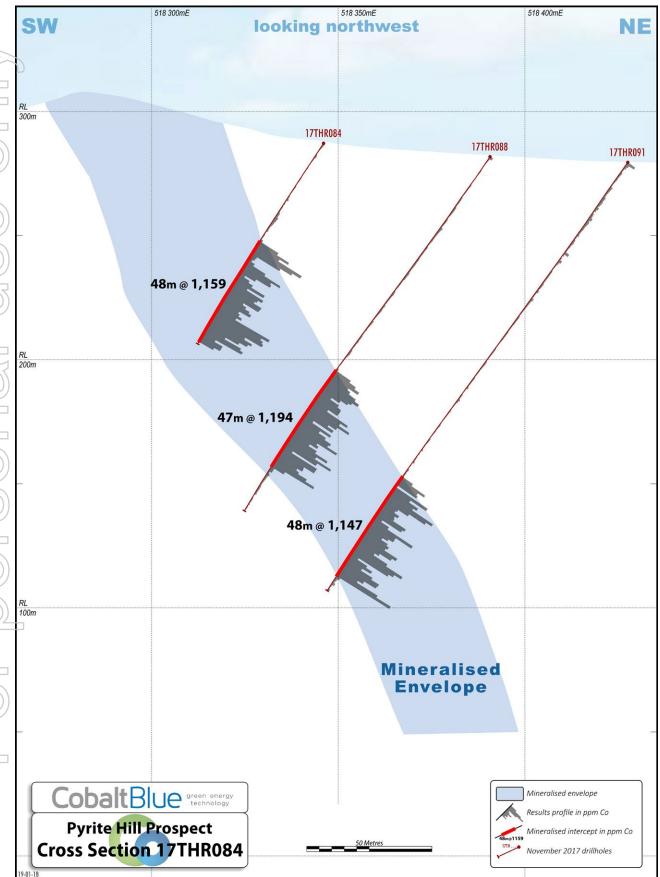
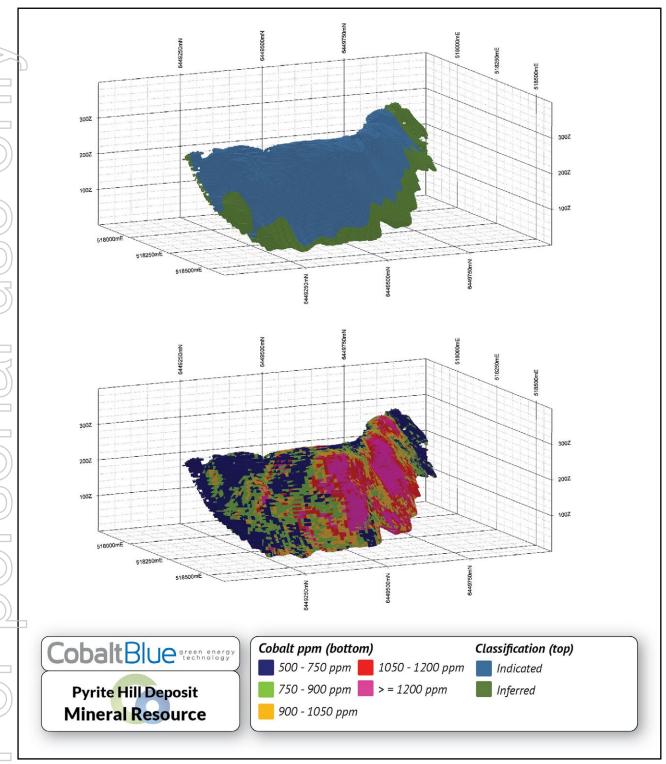



Figure 12. Pyrite Hill Mineral Resource – block model looking southwest illustrating block distribution by resource classification (top) and cobalt grade (bottom).

Geology and Geological Interpretation

The Thackaringa project is located in a deformed and metamorphosed Proterozoic supracrustal rock succession named the Willyama Supergroup, which is exposed as several inliers in western New South Wales, including the Broken Hill Block. Exploration by Broken Hill Prospecting Limited (BPL) has been focused on the discovery of cobaltiferous pyrite deposits and Broken Hill type base-metal mineralisation both of which are known from historical exploration in the district.

The project area covers portions of the Broken Hill and Thackaringa group successions which host the majority of mineralisation in the region, including the world-class Broken Hill Ag-Pb-Zn deposit. The extensive sequence of quartz-albite gneiss that hosts the cobaltiferous pyrite mineralisation is interpreted as belonging to the Himalaya Formation, which is stratigraphically at the top of the Thackaringa Group.

The Thackaringa mineralisation comprises moderate to steeply dipping, cobalt-rich, strongly pyritic quartz-albite gneiss. The rocks have been metamorphosed to amphibolite grade and feature internal zones of complex ductile deformation often contributing to localised structural thickening. Mineralisation is predominantly located in the fresh rock zone forming outcropping ridgelines with only minor oxidation averaging 10 metres from surface.

Sampling and sub-sampling Techniques and Sample Analysis Method

Sampling and sub-sampling techniques have varied between phases of exploration at the Thackaringa Project and are summarised below:

- Reverse circulation drilling was used to obtain a representative sample by means of riffle splitting. Samples were submitted for analysis using a mixed acid digestion and ICP-MS methodology for a variable suite of elements.
- Diamond drilling was used to obtain core from which variable sample intervals were sawn or hand split, in the case of historical drill holes. Samples were submitted for analysis using a mixed acid digestion and AAS or ICP-MS/OES methodology

Drilling Techniques

The Thackaringa drilling database comprises a total of sixty-four (64) diamond drill holes and 139 reverse circulation (RC) drill holes (three of which have diamond tails). Diamond drilling post 2013 was completed using a triple tube system with a HQ3 diameter. Diamond drilling pre-2013 was predominantly completed using standard diameter, conventional HQ and NQ and typically utilising RC and percussion pre-collars to an average 25 metres (see Drill hole Information for further details); early (1960-1970) drill holes utilised HX – AX diameters dependent on drilling depth.

Reverse circulation drilling utilised standard hole diameters (4.8"-5.5") with a face sampling hammer.

Mineral Resource Estimation Methodology

The Mineral Resource estimate was completed by Co-Kriging ('CK') Co, Fe and S in the Isatis software package. Eleven domains were used as hard boundaries to undertake sample selection and control geology, geometry and grade within the estimation.

The orientations of both variograms and search ellipses were varied on a block by block basis controlled by a set of trend and fold wireframes. Multivariate variography was completed for all domains with sufficient data. Given the folded nature of many of the domains and the use of local orientations, only two multivariate models were utilised for estimation. One for the Pyrite Hill domain and another for all remaining Big Hill and Railway domains.

5m composites were used with residual short lengths being incorporated and redistributed such that final composite lengths may be slightly shorter and longer than 5m. This length was chosen to be consistent with the 5m x 10m x 10m block dimensions and the assumed bulk mining approach. No top cuts or caps were used for any variables as grade distributions were not highly skewed and estimates were validated without the need for cutting or capping.

The estimation utilised a single pass approach with interpolation and extrapolation limited by both optimum sample numbers controlled by sectors and overall search ellipse distances. Search distances are anisotropic to the ratios of the search ellipse (5:1 cross strike, 1:1 down dip), that is samples are selected / prioritised within successively larger ellipses rather than by spherical distances. A minimum of 4 samples, an optimum of 8 composites and a maximum of 16 composites was used. A higher sample search with an optimum of 32 composites and maximum of 64 was tested maximising the regression slopes and smoothing the estimate but this excessively smoothed the block distribution and did not reflect the true block variability.

Block size used is 5m in Easting, 10m in Northing and 10m in elevation. This compares to an average drill spacing of between 25m and 60m along strike with average sample lengths of 1m combined with variogram ranges between 115m and 160m along strike, 70m to 80m down dip and 18m to 40m across strike.

Validation of the estimate was completed by:

- statistical comparisons to declustered composite averages per domain at zero cut off
- statistical inspection of density, regression slopes, kriging efficiency, number of composites used
- visual inspection of grades, regression slopes, kriging efficiency, number of composites used
- Comparison of grades and tonnages above cut off to previous estimates
- Swath plots
- Global change of support checks

Maximum extrapolation for Inferred material is approximately 120m and averages around 80m.

The final model is presented in the Surpac software package.

Mineral Resource Classification

Classification is based on the kriging regression slope with class surfaces created from viewing the regression slopes of the estimated blocks in section. Indicated is defined as all material above the 0.5 kriging regression slope surface and Inferred as all material above the 0 kriging regression slope surface and below the 0.5 kriging regression slope surface. There is some Indicated material near surface that has regression slopes less than 0.5 and this is included as Indicated due to the known mapped outcrop at surface. In addition to this a depth limit has been imposed at Railway and Big Hill. The depth limit at Big Hill is 150m elevation. The depth limit at Railway is mostly at 50m elevation with a section between 6540950mN and 6451400mN at 0m elevation. These depth limits are imposed approximately 50m below the base of the previous 2017 pit optimisations. Material below these depths is currently considered not to have reasonable prospects of eventual economic extraction. These depths may change in the future when additional metallurgical, geotechnical and additional exploration studies have been completed.

Cut-off Grade

The Mineral Resource has been reported at a cut-off of 500ppm cobalt to appropriately reflect the tonnes and grade of estimated blocks that will meet the potential beneficiation process currently under consideration. The reported Mineral Resource includes only material categorised as 'sulphide'; constrained by the modelled 'base of partial weathering' surface.

A complete review of modifying factors as supported by technical studies currently being completed for the Preliminary Feasibility Study will assist in deriving an economic cut-off grade reflective of the proposed product stream.

Modifying Factors

Preliminary pit optimisations were completed for the Scoping Study using the preceding Mineral Resource estimates. These optimisations supported an open pit mining methodology with near surface resources indicating low strip ratios. Revised pit optimisations are to be completed during the Preliminary Feasibility Study in support of Ore Reserve estimation.

Detailed metallurgical studies completed for the Preliminary Feasibility Study have examined a processing pathway comprising four primary stages of ore treatment:

- Concentrate: Preparation of a sulphide concentrate from the ore
- Calcine: Calcination (thermal treatment) of the concentrate
- Leaching: Leaching of the calcine
- Product Recovery: purification of leach liquor, followed by crystallisation of cobalt sulphate

Results from test work related to the stages above are summarised in the following:

- Concentrate
 - Ore was processed by crushing to p100 at 1.2 mm and passed through a gravity spiral circuit. The tails were screened, with the fines subjected to froth flotation. The gravity and flotation concentrates were combined into a single concentrate. Approximately 144kg of concentrate was produced from the 820 kg of ore composite, with a recovery of 92% of the cobalt to concentrate.
 - Further work examining finer grind sizing was then conducted. Results indicated that varying the particle size down to 425um permitted 94% recovery of cobalt to concentrate.
- Calcine and Leach
 - A total of 90 kg of gravity-float concentrate has been calcined by ALS Metallurgy in Perth, producing approximately 70 kg of calcine. Process conditions have been varied to determine the optimum parameters for selection as design criteria set-point for the PFS engineering design study. Importantly, the target conversion of >95% of the pyrite into pyrrhotite has been repeatedly achieved, with no loss of cobalt to the sulphur collected from the off-gas. Further, the typical removal of sulphur from the head feed has increased from 35% (27 Dec 2017) to 40% in recent tests. Potential equipment vendors are presently involved with the PFS engineering study. Preliminary marketing studies have now commenced for the elemental sulphur product.
 - A total of 56 leach tests have been completed on the calcine by ALS Metallurgy Burnie, systematically varying temperature, liquor composition, solids density, residence time, particle size, and oxygen uptake. The optimum conditions have achieved repeatable cobalt extractions of 95-98% with the average being 96%.

In acid mine drainage terms, both economic and waste material contain significant amounts potentially acid forming materials (Pyrite and sulphur bearing minerals > 0.05% Sulphur). Sulphur has been estimated in both the Resource and waste material where information is available. A background S value of 0.05% S has been included where no assay information is available and where expected lithology types are typically below the 0.05% S value.

The construction of a suitable tailings facility is assumed for processing waste. It is considered a portion of water from such a facility could be recovered for re-use as process water.

Appendix – JORC Code, 2012 Edition – Table 1

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	Diamond Drilling (DDH) Pre-1990 Diamond drilling was used to obtain core from which irregular intervals, reflecting visual mineralisation and geological logging were hand-split or sawn. Samples were submitted for analysis using a mixed acid digestion and AAS methodology. Post-1990 Diamond drilling (one drill hole) was used to obtain core from which irregular intervals, reflecting visual mineralisation and geological logging were sawn (quarter core for HQ). Samples were submitted for analysis using a mixed acid digestion and ICP-OES methodology. 2016 Metallurgical Drilling Eight (8) HQ diameter diamond drill holes (DDH) were drilled at the Thackaringa project in late 2016. They were used as metallurgic reference holes and were designed to twin some of the previous reverse circulation percussion (RC) holes for QA/QC and assay comparison between DDH and RC. There were two (2) holes drilled at Pyrite Hill, two (2) at Big Hill and four (4) at Railway: Diamond drilling was used to obtain core from which regular (one-metre) intervals were sawn with: one half core dispatched for analysis using a mixed acid digestion and ICP-MS methodology (sulphur >10% by LECC): the other half was further sawn such that one quarter-core was sent for metallurgical test work and the other quarter-core retained for archival purposes. 2017 Resource Drilling Program Fourteen HQ diameter diamond drill holes (DDH) were complete and assayed. They were used as metallurgical reference holes designed to twin some historical reverse circulation percussion (RC) holes for QA/QC and assay comparison between DDH and RC. There were four (4) holes drilled at Pyrite Hill, two (2) at Big Hill and eight (8) at Railway: Diamond drilling (17THD01-03) was used to obtain core from which regular (one-metre) intervals were sawn with: one half core dispatched for analysis using a mixed acid digestion and ICP-MS methodology for a suite of 48 elements (sulphur >10% by LECQ); the other half was retained for future metallurgical test work and archival pu

assayed. They were used as geotechnical reference holes designed to inform pit optimisation and mine design. There were four (4) holes

Diamond drilling (17THD016-24, 26-28) was used to obtain core from which regular (one-metre) intervals were sawn with:

drilled at Pyrite Hill, six (6) at Big Hill and six (6) at Railway:

Criteria	JORC Code Explanation		Commentary	
Sampling techniques (continued)			 one half core dispatched for analysis using digestion and ICP-MS methodology for a elements (sulphur >10% by LECO); 	
			the other half was retained for future meta work and archival purposes.	llurgical test
			Intervals selected for sampling were derived froi logging and as such drill holes 17THD015, 29 a sampled as they did not intersect the mineralise	nd 31 were not
		Historica	l Reverse Circulation Drilling	
		of riff	Irilling was used to obtain a representative san de splitting with samples submitted for analysis de-mentioned methodologies.	
		of ele (5,09	2000 drill samples were assayed for a small ar ements (sometimes only cobalt). The post-200 15 samples) are all assayed by ICP-MS for a su Belements.	00 drill samples
		2017 RC	Orilling Program	
		Nine diam	ty-three (93) RC drill holes and three (3) RC dril ond tails were drilled and assayed to infill histo	rical holes and
		(65) I	ort re-estimation of Mineral Resources. There noles drilled at Railway, six (6) at Big Hill and twrite Hill:	
			RC drilling was used to obtain a representative means of riffle splitting with samples submitted ICP-MS for a suite of 48 elements (sulphur >10	I for analysis b
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	(64) (three nantl with to an department)	Thackaringa drilling database comprises a total diamond drill holes and 139 reverse circulation of which have diamond tails). Diamond drilling y completed with standard diameter, convention historical holes typically utilising RC and percustrate average 25 metres (see Drill hole Information fils). Early (1960-1970) drill holes utilised HX – Avendent on drilling depth. Reverse circulation drill dard hole diameters (4.8"-5.5") with a face sam	(RC) drill holes I was predominal HQ and NC Ision pre-collar Ior further IX diameters Ing utilised
		tube at ar	e 2013 all diamond drilling has been complete system with a HQ3 diameter. Drill holes were igles between 40 and 60 degrees from horizor ting core was oriented as part of the logging p	typically drilled ntal and the
		Year	Drilling	Metres
		1967	1 diamond drill hole	304.2
		1970	4 diamond drill holes	496.6
		1980	18 diamond and 1 RC drill hole	1,711.23
		1993	2 diamond drill holes	250
		1998	11 RC drill holes	1,093.25
		2011	11 RC drill holes	1,811
		2012	20 RC drill holes	2,874.25
		2013	1 diamond drill hole	349.2
		2016	8 diamond drill holes	1,511.8
		2017	30 diamond drill holes, 93 RC drill holes, 3 RC drill holes with diamond tails	18,933
		Total	64 diamond, 136 RC drill holes and 3 RC drill holes with diamond tails	29,334.53

								C	obaltBlu	
	Criteria		JORC Code Explanation				Commentary			
	Criteria	H	JONG Code Explanation				Commentary			
	Drill sample recovery	•	Method of recording and assessing core and chip sample recoveries and results assessed.	Diar •		core recover	ies were accura I core recovered			
	9	•	Measures taken to maximise sample recovery and ensure representative nature of the samples.	•	Historical niques wh	diamond drill nile diamond o alt Blue Holdir	ing employed co drilling complete ngs utilised a trip	nventional dril d by Broken H	ling tech- ill Prospecting	
		•	between sample recovery and			recovery of 9 nole 13BED01	9.7% was achie	ved during cor	npletion of	
			grade and whether sample bias may have occurred due			recovery of 9 recovery of 9 recovery of 9	18% was achieve	ed during the 2	016 diamond	
			to preferential loss/gain of fine/ coarse material.		Core	recovery of 9	6.7% was achie f diamond tails).	ved during 20 ⁻	17 diamond	
a 5					No re		tween sample re	covery and gra	ade has been	
				Rev			ng			
				Reverse Circulation Drilling Reverse circulation sample recoveries were visually estimated during drilling programs. Where the estimated sample recovery was below 100% this was recorded in field logs by means of qualitative observation.						
					 Reverse circulation drilling employed adequate air (using a compressor and booster) to maximise sample recovery. 					
				 No relationship between sample recovery and grade has been observed. 						
	have been geologically and geotechnically logged to a let of detail to support appropria Mineral Resource estimation, mining studies and metallurg studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections	 A qualified geoscientist has logged all reported drill holes in their entirety. This logging has been completed to a level of detail considered to accurately support Mineral Resource estimation and metallurgical studies. The parameters logged include lithology, alteration, mineralisation and oxidation. These parameters are both qualitative and quantitative in nature. Diamond drilling completed during 2016–2017 by Broken Hill Prospecting/Cobalt Blue Holdings has been subject to geotechnical logging with parameters recorded including rock-quality designation (RQD), fracture frequency and hardness. During 2013, a considerable amount of historical drilling was re-logged through review of available core stored at Broken Hill as well the re-interpretation of historical reports where core or percussion samples no longer exist. A total of eight (8) diamond drill holes and sixteen (16) diamond drill holes with pre-collars were 					detail stimation ude lithology, ters are both ken Hill o geotechnical ty designation ng was roken Hill core or o diamond		
					re-logged	as detailed b	elow:			
				Hol	e ID	Deposit	Max Depth	Hole Type	Pre-Collar Depth (m)	
\mathcal{T}					TH01	Pyrite Hill	304.2	DDH		
				70T	TH02	Pyrite Hill	148.6	DDH	_	
				70T	TH03	Pyrite Hill	141.4	DDH	_	
				70E	3H01	Big Hill	102.7	DDH	_	
П				70E	3H02	Big Hill	103.9	DDH	_	
				80F	PYH13	Pyrite Hill	77	DDH	_	
				80F	PYH14	Pyrite Hill	300.3	DDH	_	
				80E	BGH09	Big Hill	100.5	DDH	_	
				80F	PYH01	Pyrite Hill	24.53	PDDH	6	
				80F	PYH02	Pyrite Hill	51.3	PDDH	33.58	

80PYH04

Pyrite Hill

PDDH

55

38.7

Criteria	JORC Code Explanation	Commentary						
Logging (continued)		Hole ID	Deposit	Max Depth	Hole Type	Pre-Collar Depth (m)		
		80PYH05	Pyrite Hill	93.6	PDDH	18		
5		80PYH06	Pyrite Hill	85.5	PDDH	18		
		80PYH07	Pyrite Hill	94.5	PDDH	12		
		80PYH08	Pyrite Hill	110	PDDH	8		
		80PYH09	Pyrite Hill	100.5	PDDH	8		
		80PYH10	Pyrite Hill	145.3	PDDH	25.5		
		80PYH11	Pyrite Hill	103.1	PDDH	18		
		80PYH12	Pyrite Hill	109.5	PDDH	4.2		
		80BGH05	Big Hill	54.86	RCDDH	45.5		
		80BGH06	Big Hill	68.04	RCDDH	58		
		80BGH08	Big Hill	79.7	RCDDH	69.9		
		93MGM01	Pyrite Hill	70	RDDH	24		
		93MGM02	Pyrite Hill	180	RDDH	48		
		PDDH Dian RCDDH Dian RDDH Dian Dian PDH	mond drill hole with mond drill hole with eochemistry has available for drill 110. entative reference completed post	n percussion pre-con n reverse circulation n rotary air blast pre- s been used to ing completed b ce trays of chips 2010 have bee	n pre-collar e-collar verify geologic by Broken Hill s from reverse	Prospecting circulation		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	historica split wa	imples were har al core (see Log s typical. The va	nd-split or sawn ging) indicating ariation of samp e sub-sampling	a 70:30 (retai le ratios notec	ined:assayed) I are consid-		
	For all sample types, the nature,			s were submitte	,			
	quality and appropriateness of the sample preparation			sed for core cur ced sample cor		essed and		
	technique. Quality control procedures adopted for all sub-sampling	Procedulare not	ures relating to taxailable. It is ex	the definition of xpected that 'st to maximize sa	the line of cutt andard indust	ry practice' for		
	stages to maximise representivity	Post-1990						
	of samples.		ng core was sa	wn with half cor	re submitted fo	or assay.		
	 Measures taken to ensure that the sampling is representative 	HQ drilli	ing core was sa	wn with quarter	core submitte	ed for assay.		
	of the in situ material collected,			s were submitte	-			
	including for instance results for field duplicate/second-half			sed for core cu		essed and		
	sampling.	-		ced sample cor the definition of		ting or enlitting		
	Whether sample sizes are appropriate to the grain size of the material being sampled.	are not	available. It is e	xpected that 'st to maximise sa	andard industi	ry practice' for		

2016 Metallurgical Drilling

appropriate to the grain size of the material being sampled.

All HQ drill core was sawn into halves, with each half then re-sawn

to provide 4 lengths of quarter core for each interval.

One quarter core was submitted for metallurgical test work.

One half core was submitted for assay.

Criteria	JORC Code Explanation	Commentary
Sub-sampling		One quarter core was retained for archive.
techniques and sample	•	It is considered that the water used for core cutting is most unlikely to have introduced sample contamination.
preparation (continued)	•	Sample sawing and processing for test work were undertaken according to 'standard industry practice' to maximise sample representivity.
	201	17 Diamond Drilling
	•	All HQ drill core was sawn into halves, with each half then re-sawn to provide 4 lengths of quarter core for each interval.
	•	One quarter – one half core was submitted for assay.
	•	One quarter – three quarter core was retained for archive and further metallurgical test work.
	•	It is considered that the water used for core cutting is most unlikely to have introduced sample contaminatio.n
	•	Sample sawing and processing for test work were undertaken according to 'standard industry practice' to maximise sample representivity.
	Re	verse Circulation (RC) Drilling
	•	Sub-sampling of reverse circulation chips was achieved using a riffle splitter.
	•	During drilling operations, the splitter was regularly cleaned to prevent down hole sample contamination.
	•	Dry sampling was achieved with the use of adequate air, using a compressor and booster, where groundwater was encountered.
	His	torical Reverse Circulation Drilling
	•	During reverse circulation drilling completed by Broken Hill Prospecting, duplicate samples were collected at the time of drilling. These were obtained by spearing the bulk material held in the PVC sacks using a spear made of 40mm diameter PVC pipe; three samples were speared through the full depth of the bulk material and these were combined to form one sample.
	•	The Thackaringa drilling database includes a total of 139 historical field duplicates collected during reverse circulation drilling. This reflects a ratio of approximately one field duplicate in every 32 samples (3.1%) for drill holes where duplicates were collected (31 drill holes for 4469 metres) and an overall ratio of one field duplicate in every 42 samples (2.4%) for all reverse circulation drill holes (43 drill holes for 5801.5 metres).
	•	Statistical analysis of field duplicates collected during drilling completed by Broken Hill Prospecting (119 duplicates representing 86% of all field duplicates) considered 18 elements of which only chromium, lanthanum and titanium show some bias in the duplicate samples. For cobalt, the confidence limits were evenly placed either side of zero and the duplicates are deemed to be representative of the original samples.
	201	17 Reverse Circulation Drilling
	•	During reverse circulation drilling completed by Broken Hill Prospecting/Cobalt Blue Holdings, duplicate samples were collected at the time of drilling at an average rate of 1:23 samples. These were obtained by riffle splitting the remnant bulk sample following collection of the primary split.
		Assay results include analysis of 630 field duplicate pairs from 96 RC and 3 RCDDH drill holes.
	•	A measure of the average precision of the sampling, sample preparation and assaying methods, given by the mean per cent difference (MPD) assay values of the duplicate pairs is summarised below. Overall, the sampling and assay precision for Co, Fe and S at economically significant grades is regarded as reasonable.

	Criteria		JORC Code Ex	planation				(Commer	ntary			
	Sub-sampling techniques					Co Cut-Off	. (2017 I Count	RC Field D Co M	•	airs S MPD	Fe	e MPD
	and sample preparation				_	All		630	12	%	14%		8%
	(continued)				-	500ppm		170	10'	%	10%		7%
	Quality of assay data and laboratory tests		The nature, quality appropriateness of and laboratory properties and whether the transidered partial. For geophysical to spectrometers, has instruments, etc., the used in determining including instruments and model, reading calibrations factors their derivation, etc. Nature of quality of dures adopted (e. blanks, duplicates laboratory checks acceptable levels (i.e. lack of bias) at have been established.	of the assaying ocedures used echnique is or total. ols, andheld XRF the parameters of the analysis of analysis of accuracy of acc		 The nature and quality of all assaying and employed for samples obtained through d reverse circulation) are considered 'industr respective periods. The assay techniques employed for drilling reverse circulation) include mixed acid dige and AAS finishes. These methods are confor the targeted mineralisation and regarded digestion technique with resistive phases recobalt analyses. All samples have been processed at indeplaboratories including AMDEL, Australian L (ALS), Analabs and Genalysis. All samples from drilling completed by Broduring 2011-2012 were assayed at ALS in South Wales. All samples from drilling com Hill Prospecting/Cobalt Blue Holdings duri processed at ALS Adelaide, South Austral Accredited Laboratory and qualifies for JA quality systems. ALS maintains robust interfined including analysis of standards, repeats an To monitor the accuracy of assay results from Thackaringa drilling, CRM standards were sample stream at an average rate of 1:24. were purchased from Ore Research & Exp 				drilling (catry standing (diaming (catry standing (diaming gestion wonsidered ded as a sond expendent in Catronal Catron	rilling (diamond and y standard' for the diamond and setion with ICP-OES sidered appropriate as a 'near total' not expected to affect endent commercial aboratory Services ken Hill Prospecting Orange, New pleted by Broken as ALS is a NATA S/ANZ ISO9001:2008 rnal QAQC procedures and blanks). om the 2016 – 2017 included in the assay The CRM samples		
						Cobalt			Sulphur			Iron	
	Standard			Count	10%	20%	+20%	10%	20%	+20%	10%	20%	+20%
	Low S Blank (2.8ppm	Co)		121	83	21	17	83	0	38	114	6	1
)	Med Grade (631ppm (Co)		152	152	0	0	150	2	0	144	8	0
	Low Grade (230ppm 0	Co), m	nod S (10.4%)	140	135	5	0	118	22	0	116	24	0
)	High Grade (2445ppm	ı Co)		120	115	4	1	111	8	1	109	10	1
_	High Grade (1970ppm	n Co)		128	127	1	0	74	53	1	122	5	1
	Low Grade (387ppm (Co), Ic	w S (2.15%)	61	60	1	0	60	1	0	60	1	0
	Med Grade (734ppm (Co)		72	72	0	0	72	0	0	72	0	0
				794	744	32	18	668	86	40	737	54	3
				PCT	94%	4%	2%	84%	11%	5%	93%	7%	0%

i.	**	
Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historical drilling intersections were internally verified by personnel employed by previous explorers including CRAE Pty Limited, Central Austin Pty Limited and Hunter Resources. Broken Hill Prospecting has completed a systematic review of the related data. The Thackaringa drilling database exists in electronic form as a Microsoft Access database. Information related to individual drill holes is stored in digital files as extracted from historical reports (typically including location plan, section, logs, photos, surveys, assays and petrology) Historical drilling data available in electronic form has been re-formatted and imported into the drilling database. Quantitative historical drilling data, including assays, have been captured electronically during systematic data compilation and validation completed by Broken Hill Prospecting. Samples returning assays below detection limits are assigned half detection limit values in the database. All significant intersections are verified by the Company's Exploration Manager and an independent geological consultant.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Historical drill collars have been relocated and surveyed using a differential GPS (DGPS). In the instances where no collar could be located the position has been derived from georeferenced historical plans. During systematic data validation completed in 2016, three (3) drill holes at Big Hill were found to be incorrectly located. One collar was located and surveyed by GPS and two were digitised from georeferenced historical plans (reported to the nearest metre) as the collars had been destroyed. Down hole surveys using digital cameras were completed on all post 2000 drilling. Down hole surveys for some earlier drilling were estimated from hole trace and section data where raw survey data was not reported. All 2016–2017 drill hole collars were located and surveyed with DGPS by an independent surveyor with reported accuracy of ±0.05m in horizontal and vertical measurement. Downhole surveys using digital cameras were completed on all 2016–2017 drill-holes. All data is recorded in the GDA94 datum; UTM Zone 54 (MGA54). 3D validation of drilling data has been completed by independent geological consultants to support detailed geological modelling in Micromine™ software. The quality of topographic control is deemed adequate in consideration of the results presented in this release.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The data density of existing drill holes at Thackaringa has been materially increased by the 2017 drilling program. Drilling density at each deposit varies along strike generally responsive to exploration targeting and interpreted geological complexity with the average drill line spacing for each deposit summarised below: Railway: 25–40m Pyrite Hill: 30–40m Big Hill: 40–60m Drilling density is also illustrated in drilling plans presented within this release Detailed geological mapping is supported by drill-hole data of sufficient spacing and distribution to complete a 3D geological modelling and Mineral Resource estimation No sample compositing has been applied to reported intersections

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures 	 The 2017 drill holes at the Thackaringa project were typically angled at -55° or -60° to the horizontal and drilled perpendicular to the mineralised trend.
geological structure	and the extent to which this is known, considering the deposit	 Drilling orientations are adjusted along strike to accommodate folded geological sequences.
Structure	 type. If the relationship between the drilling orientation and the orientation of key mineralised 	• Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be greater than true width. At Pyrite Hill mineralisation is gently dipping and mineralised intersections will be close to true width.
	structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The drilling orientation is not considered to have introduced a sampling bias on assessment of the current geological interpretation.
Sample security	 The measures taken to ensure sample security. 	 Sample security procedures are considered to be 'industry standard' for the respective periods
security		 Following recent drilling completed by Broken Hill Prospecting/ Cobalt Blue Holdings, samples were trucked by an independent courier directly from Broken Hill to ALS, Adelaide.
		 The Company considers that risks associated with sample security are limited given the nature of the targeted mineralisation.
Audits or reviews	 The results of any audits or reviews of sampling techniques 	In late 2016 an independent validation of the Thackaringa drilling database was completed:
	and data.	The data validation process consisted of systematic review of drilling data (collars, assays and surveys) for identification of transcription errors.
		 Following review, historical drill hole locations were also validated against georeferenced historical maps to confirm their location.
		Three (3) drill holes at Big Hill were found to be incorrectly located. One collar was located and surveyed by GPS and two were digitised from georeferenced historical plans (reported to the nearest metre) as the collars had been destroyed. These corrections were captured in the Big Hill Mineral Resource estimate.
		 Total depths for all holes were checked against original reports.
		 Final 3D validation of drilling data has been completed by independent geological consultants to support detailed geological modelling in Micromine™ software.
		 Audits and reviews of QAQC results and procedures are further described in preceding sections of this table including Quality of assay data and laboratory tests, Sub-sampling techniques and sample preparation and Logging.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	Criteria	JORC Code Explanation	Commentary								
_	Mineral tenement and land	location and ownership 25 including agreements or material for		25 kilometre	ringa Cobalt proje s west-southwes nts with a total ar	t of Broken Hill a					
1	tenure status	issues with third parties such as joint ventures, partnerships,		Tenement	Grant Date	Expiry Date					
		overriding royalties, native		EL6622	30/08/2006	30/08/2020					
		title interests, historical sites,		EL 8143	26/07/2013	26/07/2020					
)		wilderness or national park and environmental settings.		ML86	05/11/1975	05/11/2022					
/		The security of the tenure held		ML87	05/11/1975	05/11/2022					
)		at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	with any known impediments to obtaining a licence to operate in	with any known impediments to obtaining a licence to operate in the area.	Cobalt Blue Limited (BPL	Holdings Limited	(COB) and Brokhis agreement is	eement between ken Hill Prospecting detailed in the COB lary 2017).			
			mately three kilometres west of EL6622.								
)											
1				•	•	Lease which However, Na Traditional O	is considered to ative Title Determi wners 8) is curre	the project tenure is covered by Western Lands considered to extinguish native title interest. e Title Determination NC97/32 (Barkandji ers 8) is current over the area and may be relevan parcels (e.g. public roads) within the project area.			
)				The project tenure is more than 90 kilometres from the neares National Park and or Wilderness Area (Kinchega National Parl and approximately 20 kilometres south of the nearest Water Supply Reserve (Umberumberka Reservoir Water Supply Res							
)			•		ny is not aware of perate in the area		its to obtaining a				
)	Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	•	undertaken p the JORC Ta		2016 drilling prog is part of the Co	cion activities gram is appended to balt Blue Prospectus				
\											

					CODGREDIO
	Criteria		JORC Code Explanation		Commentary
	Geology	•	Deposit type, geological setting and style of mineralisation.	The phoseSup	I Geological Setting Thackaringa project is located in a deformed and metamorsed Proterozoic supracrustal succession named the Willyama ergroup, which is exposed as several inliers in western New th Wales, including the Broken Hill Block (Willis, et al., 1982).
	J			Expl of commine	oration by BPL Limited has been focused on the discovery obaltiferous pyrite deposits and Broken Hill type base-metal eralisation both of which are known from historical exploration e district.
				Tha mine dep seq cob the	project area covers portions of the Broken Hill and ckaringa group successions which host the majority of eralisation in the region, including the Broken Hill base-metal osit. The Sundown Group suite is also present. The extensive uence of quartz-albite-plagioclase rock that hosts the altiferous pyrite mineralisation is interpreted as belonging to Himalaya Formation, which is stratigraphically at the top of the ckaringa Group.
20				Local Ge	ological Setting
				The	oldest rocks in the region belong to the Curnamona Craton ch outcrops on the Broken Hill and Euriowie blocks.
				into high Tha of th Pb-7	overlying Proterozoic rocks have been broadly subdivided three major groupings, of which the oldest groups are the ly deformed metasediments and igneous derived rocks of the ckaringa and Broken Hill groups. They comprise a major part le Willyama Supergroup and host the giant Broken Hill massive Zn-Ag sulphide ore body. EL6622 is within the Broken Hill k of the Curnamona Craton.
60				Minerali	sation Style
				The are sation	Thackaringa Mineral deposits (Pyrite Hill, Big Hill and Railway) characterised by large tonnage cobaltiferous-pyrite mineralion hosted within siliceous albitic gneisses and schists of the alaya Formation
				Cob whe stud	alt mineralisation exists within stratabound pyritic horizons re cobalt is present within the pyrite lattice. Mineralogical lies have indicated the majority of cobalt (~85%) is found in a solution with primary pyrite (Henley 1998)).
				A st	rong correlation between pyrite content and cobalt grade is erved.
					regional geological setting indicates additional mineralisation ets including:
				•	Stratiform Broken Hill Type (BHT) Copper-Lead-Zinc-Silver deposits.
				•	Copper-rich BHT deposits.
7					Stratiform to stratabound Copper-Cobalt-Gold deposits. Epigenetic Gold and Base metal deposits.
	Drill hole Information	•	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	• See	drill holle summaries below.
			dip and azimuth of the holedown hole length and		
			interception depth		

Drill hole summaries

				Max Depth								Pre-Collar
		Hole ID	Deposit	-	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	
	Ī	67TH01	Pvrite Hill	304.2	MGA94 54	518565	6449460	281	-55	261	DDH	
			-									
			-									
		1										
BOPPH14	1											
	1											
BORPHOS Pyrite Hill 35												
BODFHO10 Pyrite Hill 24.53 MGA94_54 \$206857 6449293 273 -50 145 DDH 6 BOPFHO1 Pyrite Hill 24.53 MGA94_54 518261 6449566 301 -60 203 PDDH 6 BOPFHO2 Pyrite Hill 51.3 MGA94_54 518261 6449574 298 -60 221 PDDH 38.5 BOPFHO4 Pyrite Hill 55 MGA94_54 518261 6449572 285 -49 223 PDDH 18 BOPFHO5 Pyrite Hill 93.6 MGA94_54 518261 6449757 284 -54.4 223 PDDH 18 BOPFHO7 Pyrite Hill 94.5 MGA94_54 518036 64498678 286 -60 223 PDDH 18 BOPFHO7 Pyrite Hill 100.5 MGA94_54 518016 6449868 286 -60 223 PDDH 8 BOPFHO9 Pyrite Hill 100.5 MGA94_54 518016 6449560 286 -50 223 PDDH 8 BOPFHO9 Pyrite Hill 103.1 MGA94_54 518041 6449363 297 -50 281 PDDH 25.5 BOPFH11 Pyrite Hill 103.1 MGA94_54 518441 6449360 297 -50 281 PDDH 42 80097402 Pyrite Hill 103.5 MGA94_54 518441 520956 6449360 297 -50 281 PDDH 42 80097402 Pyrite Hill 103.5 MGA94_54 522750 6451340 267 -60 159 RC 816004 816004 816004 816005 816004 816005 816004 816004 816004 816004 816005 816004 816005 816004 816005 816004 816005 816004 816005 816004 816005 816004 816005 816004 816005 816004 816005 81			-									22
BOPPHOTO	\		-									
BOPPHO2) !											6
BOPPH04			-									
BOPPH05 Pyrite Hill 93.6 MGA94_54 518163 6449767 285 -49 223 PDDH 18 BOPPH06 Pyrite Hill 94.5 MGA94_54 518163 6449767 284 -54.4 223 PDDH 12 BOPPH07 Pyrite Hill 110 MGA94_54 518010 6449886 286 -50 223 PDDH 8 BOPPH09 Pyrite Hill 110.5 MGA94_54 517917 6449932 287 -48.5 223 PDDH 8 BOPPH09 Pyrite Hill 100.5 MGA94_54 517917 6449932 287 -48.5 223 PDDH 8 BOPPH19 Pyrite Hill 103.1 MGA94_54 518393 6449566 286 -50 223 PDDH 25.5 BOPPH11 Pyrite Hill 103.1 MGA94_54 518393 6449566 286 -50 223 PDDH 18 BOPPH12 Pyrite Hill 103.1 MGA94_54 518393 6449566 286 -50 223 PDDH 25.5 BOPPH12 Pyrite Hill 103.1 MGA94_54 518441 6449330 297 -50 281 PDDH 18 BOPPH12 Pyrite Hill 54.86 MGA94_54 522955 6449534 289 -60 164 RCDDH 42.2 BOBGH05 Big Hill 54.86 MGA94_54 522750 6451340 267 -60 159 RC BOPTO2 Big Hill 84 MGA94_54 522816 6449389 313 -60 136 RC BOPTO2 Big Hill 138.25 MGA94_54 520816 6449389 313 -60 136 RC BOPTO2 Big Hill 108 MGA94_54 520715 6449343 285 -60 126 RC BOPTO2 Big Hill 108 MGA94_54 520715 6449389 299 -50 123 RC BOPTO2 Big Hill 114 MGA94_54 520826 6449388 299 -50 134 RC BOPTO2 Big Hill 114 MGA94_54 520826 6449388 299 -50 134 RC BOPTO2 Big Hill 114 MGA94_54 520860 6449472 299 -60 171 RCDDH 58 BOPTO2 Big Hill 114 MGA94_54 520826 6449389 291 -60 171 RCDDH 58 BOPTO2 Big Hill 114 MGA94_54 520860 6449472 299 -60 171 RCDDH 58 BOPTO2 Big Hill 114 MGA94_54 520860 6449472 299 -60 171 RCDDH 58 BOPTO2 Big Hill 114 MGA94_54 520860 6449472 299 -60 171 RCDDH 58 BOPTO2 Big Hill 108 MGA94_54 518185 644976 286 -60 279 RC TITHPRO2 Pyrite Hill 180 MGA94_54 51818			-									
80PYH06 Pyrite Hill 94.5 MGA94_54 518163 6449757 284 -54.4 223 PDDH 18 80PYH07 Pyrite Hill 94.5 MGA94_54 518084 6449818 285 -55 223 PDDH 8 80PYH09 Pyrite Hill 100.5 MGA94_54 5181010 6449885 286 -60 223 PDDH 8 80PYH09 Pyrite Hill 104.5 MGA94_54 518393 6449866 286 -50 223 PDDH 25.5 80PYH11 Pyrite Hill 103.1 MGA94_54 518393 6449566 286 -50 223 PDDH 25.5 80PYH11 Pyrite Hill 103.1 MGA94_54 518441 6449330 297 -50 281 PDDH 18 80PYH12 Pyrite Hill 109.5 MGA94_54 518407 6449137 293 -50 281 PDDH 4.2 80PYH12 Pyrite Hill 109.5 MGA94_54 520955 6449137 293 -50 281 PDDH 4.2 80PYH12 Pyrite Hill 50.5 MGA94_54 522955 6449134 287 -60 164 RCDDH 45.5 89ETC01 Railway 100 MGA94_54 5222760 6451340 267 -60 169 RC 89ETC02 Railway 100 MGA94_54 522032 6451387 267 -60 141 RC 89ETC04 Big Hill 138.25 MGA94_54 520806 6449369 313 -60 141 RC 89ETC05 Big Hill 70 MGA94_54 520726 6449369 313 -60 141 RC 89ETC05 Big Hill 108 MGA94_54 520726 6449369 299 -50 123 RC 89ETC07 Big Hill 108 MGA94_54 520726 6449378 291 -60 156 RC 89ETC07 Big Hill 120 MGA94_54 520806 6449478 291 -60 151 RC 89ETC10 Big Hill 134 MGA94_54 520806 6449478 291 -60 151 RC 89ETC10 Big Hill 134 MGA94_54 520806 6449478 291 -60 151 RC 89ETC10 Big Hill 134 MGA94_54 520806 6449478 291 -60 151 RC 89ETC10 Big Hill 134 MGA94_54 520806 6449478 291 -60 151 RC 89ETC10 Big Hill 134 MGA94_54 520806 6449478 291 -60 151 RC 89ETC10 Big Hill 134 MGA94_54 520806 6449478 291 -60 151 RC 89ETC10 Big Hill 134 MGA94_54 520806 6449478 291 -60 151 RC 89ETC10 Big Hill 134 MGA94_54 521086 6449457 282 -60 127 RCDDH 69.9	\		-									
BOPYHO7 Pyrite Hill 94.5 MGA94_54 518084 6449815 285 -55 223 PDDH 12) !		-									
80PYH08 Pyrite Hill 110			-									
80PYH09	\											
80PYH10 Pyrite Hill 145.3 MGA94_54 518393 6449566 286 -50 223 PDDH 25.5	١.											
80PYH11 Pyrite Hill 103.1 MGA94_54 518441 6449330 297 -50 281 PDDH 18 80PYH12 Pyrite Hill 109.5 MGA94_54 518407 6449137 293 -50 281 PDDH 4.2 4.5 80BGH05 Big Hill 54.86 MGA94_54 520955 6449137 293 -50 281 PDDH 4.5	, !											
BOPYH12) :											
BIGHID BIG HIII 54.86 MGA94_54 520955 6449534 289 -60 164 RCDDH 45.5	_		-									
98TC01												
98TC02	J											45.5
98TC03 Big Hill 138	1		-									
98TC04 Big Hill 138.25 MGA94_54 520860 6449451 304 -60 141 RC 98TC05 Big Hill 70 MGA94_54 520728 6449328 289 -50 123 RC 98TC06 Big Hill 108 MGA94_54 520715 6449343 285 -60 126 RC 98TC07 Big Hill 120 MGA94_54 520715 6449348 299 -50 134 RC 98TC08 Big Hill 90 MGA94_54 520802 6449478 291 -60 151 RC 98TC09 Big Hill 114 MGA94_54 520802 6449461 296 -60 134 RC 98TC10 Big Hill 134 MGA94_54 521018 6449576 282 -50 173 RC 98TC11 Big Hill 35 MGA94_54 522118 6449478 299 -60 171 RCDDH 58 80BGH06 Big Hill 68.04 MGA94_54 5220880 6449472 299 -60 171 RCDDH 58 80BGH08 Big Hill 79.7 MGA94_54 520769 6449391 296 -60 127 RCDDH 69.9 80BGH07 Big Hill 23 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 70 MGA94_54 518185 6449714 286 -60 223 RDDH 24 93MGM01 Pyrite Hill 180 MGA94_54 518435 6449073 285 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 186 MGA94_54 518500 6449159 284 -60 279 RC 11PHR04 Pyrite Hill 180 MGA94_54 518560 6449159 284 -60 279 RC 11PHR05 Pyrite Hill 180 MGA94_54 518584 6449398 280 -60 279 RC 11PHR06 Pyrite Hill 180 MGA94_54 518584 6449398 280 -60 279 RC 11PHR07 Pyrite Hill 180 MGA94_54 518491 6449523 284 -60 279 RC 11PHR08 Pyrite Hill 180 MGA94_54 518491 6449523 284 -60 279 RC 11PHR07 Pyrite Hill 180 MGA94_54 518584 6449398 280 -60 259 RC 11PHR08 Pyrite Hill 180 MGA94_54 518491 6449550 283 -60 218 RC 11PFR09 Pyrite Hill 180 MGA94_54 518491 6449550 283 -60 218 RC 11PFR09 Pyrite Hill 180 MGA94_54 518496 6449660 270 -60 255 RC 11PFR00												
98TC05 Big Hill 70 MGA94_54 520728 6449328 289 -50 123 RC 98TC06 Big Hill 108 MGA94_54 520715 6449343 285 -60 126 RC 98TC07 Big Hill 120 MGA94_54 520786 6449388 299 -50 134 RC 98TC08 Big Hill 90 MGA94_54 520802 6449478 291 -60 151 RC 98TC09 Big Hill 114 MGA94_54 520802 6449478 291 -60 151 RC 98TC10 Big Hill 134 MGA94_54 521018 6449576 282 -50 173 RC 98TC11 Railway 35 MGA94_54 522411 6451374 267 -60 133 RC 80BGH06 Big Hill 68.04 MGA94_54 520880 6449472 299 -60 171 RCDDH 58 80BGH07 Big Hill 23 MGA94_54 520769 6449391 296 -60 127 RCDDH 69.9 80BGH07 Big Hill 23 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 70 MGA94_54 518185 6449714 286 -60 223 RDDH 24 93MGM02 Pyrite Hill 180 MGA94_54 518515 6449455 285 -60 259 RDDH 48 11PHR01 Pyrite Hill 150 MGA94_54 518515 6449455 285 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 234 MGA94_54 518500 6449159 284 -60 279 RC 11PHR04 Pyrite Hill 180 MGA94_54 518500 6449159 284 -60 279 RC 11PHR05 Pyrite Hill 180 MGA94_54 51854 644957 284 -60 279 RC 11PHR06 Pyrite Hill 180 MGA94_54 51854 644955 283 -60 259 RC 11PHR07 Pyrite Hill 180 MGA94_54 51854 644955 284 -60 279 RC 11PHR08 Pyrite Hill 180 MGA94_54 51854 644955 284 -60 279 RC 11PHR09 Pyrite Hill 180 MGA94_54 51854 644955 284 -60 279 RC 11PHR09 Pyrite Hill 180 MGA94_54 51854 644955 283 -60 258 RC 11PSR01 Pyrite Hill 180 MGA94_54 51854 644955 283 -60 258 RC 11PSR02 Pyrite Hill 180 MGA94_54 51854 644955 283 -60 258 RC 11PSR02 Pyrite Hill 132) ,											
98TC06 Big Hill 108 MGA94_54 520715 6449343 285 -60 126 RC 98TC07 Big Hill 120 MGA94_54 520786 6449388 299 -50 134 RC 98TC08 Big Hill 90 MGA94_54 520802 6449478 291 -60 151 RC 98TC09 Big Hill 114 MGA94_54 520822 6449461 296 -60 134 RC 98TC10 Big Hill 134 MGA94_54 521818 6449576 282 -50 173 RC 98TC11 Railway 35 MGA94_54 522811 6451374 267 -60 133 RC 80BGH06 Big Hill 68.04 MGA94_54 520800 6449472 299 -60 171 RCDDH 58 80BGH08 Big Hill 79.7 MGA94_54 520769 6449391 296 -60 127 RCDDH 69.9 80BGH07 Big Hill 23 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 70 MGA94_54 518185 6449742 286 -60 223 RDDH 24 93MGM02 Pyrite Hill 180 MGA94_54 518185 6449455 285 -60 229 RDDH 48 11PHR02 Pyrite Hill 150 MGA94_54 518515 6449455 285 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518560 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 180 MGA94_54 518560 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 180 MGA94_54 518560 6449190 280 -60 279 RC 11PHR05 Pyrite Hill 180 MGA94_54 518584 6449398 280 -60 279 RC 11PHR07 Pyrite Hill 180 MGA94_54 518584 6449583 284 -60 279 RC 11PHR08 Pyrite Hill 180 MGA94_54 518540 6449533 283 -60 219 RC 11PHR07 Pyrite Hill 180 MGA94_54 51843 6449560 283 -60 218 RC 11PSR01 Pyrite Hill 180 MGA94_54 51843 6449650 283 -60 218 RC 11PSR02 Pyrite Hill 180 MGA94_54 51843 6449650 270 -60 255 RC 11PSR03 Pyrite Hill 180 MGA94_54 518687 6449660 270 -60 255 RC 11PSR03 Pyrite Hill 182 MGA94_54 518687 6449650 273 -60 255 RC 11PSR03 Pyrite Hill 180 MGA94_54 518687 6449650 273 -60 255 RC 11PSR03	ار											
98TC07 Big Hill 120 MGA94_54 520786 6449388 299 -50 134 RC 98TC08 Big Hill 90 MGA94_54 520802 6449478 291 -60 151 RC 98TC09 Big Hill 114 MGA94_54 520802 6449461 296 -60 134 RC 98TC10 Big Hill 134 MGA94_54 521018 6449576 282 -50 173 RC 98TC11 Railway 35 MGA94_54 522118 6451374 267 -60 133 RC 80BGH06 Big Hill 68.04 MGA94_54 520880 6449472 299 -60 171 RCDDH 58 80BGH08 Big Hill 79.7 MGA94_54 520769 6449391 296 -60 127 RCDDH 69.9 80BGH07 Big Hill 23 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 70 MGA94_54 518185 6449714 286 -60 223 RDDH 24 93MGM02 Pyrite Hill 180 MGA94_54 518515 6449455 285 -60 259 RDDH 48 11PHR01 Pyrite Hill 198 MGA94_54 51850 6449179 286 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518560 6449190 280 -60 279 RC 11PHR03 Pyrite Hill 186 MGA94_54 518560 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518580 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 180 MGA94_54 518580 6449257 284 -60 279 RC 11PHR06 Pyrite Hill 180 MGA94_54 518580 644953 285 -60 259 RC 11PHR07 Pyrite Hill 180 MGA94_54 518560 6449190 280 -60 279 RC 11PHR08 Pyrite Hill 180 MGA94_54 518580 6449257 284 -60 279 RC 11PHR09 Pyrite Hill 180 MGA94_54 518580 644953 285 -60 259 RC 11PHR09 Pyrite Hill 180 MGA94_54 518580 644953 284 -60 279 RC 11PHR09 Pyrite Hill 180 MGA94_54 518580 644953 284 -60 279 RC 11PHR09 Pyrite Hill 180 MGA94_54 518580 644953 284 -60 279 RC 11PHR09 Pyrite Hill 180 MGA94_54 518580 644953 284 -60 259 RC 11PHR09 Pyrite Hill 180 MGA94_54 518491 644953 284 -60 259 RC 11PHR09 Pyrite Hill 180 MGA94_54 518491 644953 284 -60 259 RC 11PHR09 Pyrite Hill 180 MGA94_54 518696 644953 284 -60 255 RC 11PSR01 Pyrite Hill 192 MGA94_54 518687 6449656 283 -60 255 RC 11PSR02 Pyrite Hill 132 MGA94_54 518687 6449656 283 -60 255 RC 11PSR03 Pyrite Hill 132 MGA94_54 518687 6449656 283 -60 255 RC 11PSR03 Pyrite Hill 180 MGA94_54 518687 6449656 273 -60 255 RC 11PSR03 Pyrite Hill 180 MGA94_54 518687 6449656 273 -60 255 RC 11PSR03 Railway 157 MGA94_54 521213 6449691 274 -60 162 RC 12BER02 Railway 151												
98TC08 Big Hill 90 MGA94_54 520802 6449478 291 -60 151 RC 98TC09 Big Hill 114 MGA94_54 520822 6449461 296 -60 134 RC 98TC10 Big Hill 134 MGA94_54 521018 6449576 282 -50 173 RC 98TC11 Railway 35 MGA94_54 522411 6451374 267 -60 133 RC 80BGH06 Big Hill 68.04 MGA94_54 520880 6449472 299 -60 171 RCDDH 58 80BGH06 Big Hill 79.7 MGA94_54 520806 6449391 296 -60 127 RCDDH 69.9 80BGH07 Big Hill 70 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 70 MGA94_54 518185 6449714 286 -60 223 RDDH 24 93MGM02 Pyrite Hill 180 MGA94_54 518185 6449714 286 -60 259 RDDH 48 11PHR01 Pyrite Hill 150 MGA94_54 518435 6449073 285 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518506 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 186 MGA94_54 518506 6449159 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518529 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 180 MGA94_54 518529 6449257 284 -60 279 RC 11PHR06 Pyrite Hill 180 MGA94_54 518584 6449398 280 -60 279 RC 11PHR06 Pyrite Hill 180 MGA94_54 518584 6449593 283 -60 219 RC 11PHR07 Pyrite Hill 180 MGA94_54 518413 6449593 283 -60 219 RC 11PHR08 Pyrite Hill 180 MGA94_54 518413 6449593 283 -60 218 RC 11PSR01 Pyrite Hill 180 MGA94_54 518743 644866 283 -60 255 RC 11PSR02 Pyrite Hill 180 MGA94_54 518687 6449656 283 -60 255 RC 11PSR01 Pyrite Hill 180 MGA94_54 518687 6449656 273 -60 255 RC 11PSR02 Pyrite Hill 180 MGA94_54 518743 644864 268 -60 255 RC 11PSR01 Pyrite Hill 180 MGA94_54 518687 6449656 273 -60 255 RC 11PSR02 Pyrite Hill 180 MGA94_54 518687 6449656 273 -60 255 RC 1												
98TC09 Big Hill 114 MGA94_54 520822 6449461 296 -60 134 RC 98TC10 Big Hill 134 MGA94_54 521018 6449576 282 -50 173 RC 98TC11 Railway 35 MGA94_54 522411 6451374 267 -60 133 RC 80BGH06 Big Hill 68.04 MGA94_54 520880 6449472 299 -60 171 RCDDH 58 80BGH07 Big Hill 79.7 MGA94_54 520769 6449391 296 -60 127 RCDDH 69.9 93MGM01 Pyrite Hill 70 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 180 MGA94_54 518185 6449714 286 -60 223 RDDH 48 11PHR01 Pyrite Hill 180 MGA94_54 518435 6449073 285 -60 279	\											
98TC10 Big Hill 134 MGA94_54 521018 6449576 282 -50 173 RC 98TC11 Railway 35 MGA94_54 522411 6451374 267 -60 133 RC 80BGH06 Big Hill 68.04 MGA94_54 520880 6449472 299 -60 171 RCDDH 58 80BGH08 Big Hill 79.7 MGA94_54 520769 6449391 296 -60 127 RCDDH 69.9 80BGH07 Big Hill 23 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 70 MGA94_54 518185 6449714 286 -60 223 RDDH 24 93MGM02 Pyrite Hill 180 MGA94_54 518515 6449455 285 -60 259 RDDH 48 11PHR01 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 240 MGA94_54 518500 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518529 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 234 MGA94_54 518584 6449388 280 -60 259 RC 11PHR06 Pyrite Hill 180 MGA94_54 51854 6449533 284 -60 259 RC 11PHR06 Pyrite Hill 180 MGA94_54 518413 6449593 283 -60 219 RC 11PHR07 Pyrite Hill 180 MGA94_54 518413 6449593 283 -60 218 RC 11PRR08 Pyrite Hill 180 MGA94_54 518413 6449566 283 -60 218 RC 11PSR01 Pyrite Hill 132 MGA94_54 518743 6448864 268 -60 255 RC 11PSR02 Pyrite Hill 132 MGA94_54 518743 6448864 268 -60 255 RC 11PSR03 Pyrite Hill 132 MGA94_54 518687 6449055 273 -60 255 RC 11PSR01 Pyrite Hill 132 MGA94_54 518687 6449055 273 -60 255 RC 11PSR02 Pyrite Hill 132 MGA94_54 518687 6449055 273 -60 255 RC 11PSR03 Pyrite Hill 132 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 Railway 157 MGA94_54 521213 6449691 274 -60 162 RC 12BER02 Railway 151 MGA94_54 521213 6449691 274 -60 162 RC) [
98TC11 Railway 35 MGA94_54 522411 6451374 267 -60 133 RC 80BGH06 Big Hill 68.04 MGA94_54 520880 6449472 299 -60 171 RCDDH 58 80BGH08 Big Hill 79.7 MGA94_54 520769 6449391 296 -60 127 RCDDH 69.9 80BGH07 Big Hill 23 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 70 MGA94_54 518185 6449714 286 -60 223 RDDH 24 93MGM02 Pyrite Hill 180 MGA94_54 518515 6449455 285 -60 259 RDDH 48 11PHR01 Pyrite Hill 150 MGA94_54 518435 6449073 285 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518560 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 240 MGA94_54 518560 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518529 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 234 MGA94_54 518584 6449398 280 -60 279 RC 11PHR06 Pyrite Hill 180 MGA94_54 518413 644953 284 -60 279 RC 11PHR06 Pyrite Hill 180 MGA94_54 518584 6449398 280 -60 259 RC 11PHR07 Pyrite Hill 180 MGA94_54 518413 644953 284 -60 279 RC 11PHR08 Pyrite Hill 180 MGA94_54 518584 6449656 283 -60 219 RC 11PHR09 Pyrite Hill 174 MGA94_54 518413 6449593 283 -60 219 RC 11PHR09 Pyrite Hill 180 MGA94_54 518143 6449565 283 -60 218 RC 11PSR01 Pyrite Hill 180 MGA94_54 518743 644864 268 -60 258 RC 11PSR02 Pyrite Hill 132 MGA94_54 518743 6448960 270 -60 255 RC 11PSR02 Pyrite Hill 132 MGA94_54 518687 6449965 273 -60 255 RC 11PSR03 Pyrite Hill 132 MGA94_54 518687 6449965 273 -60 255 RC 11PSR03 Pyrite Hill 132 MGA94_54 518687 6449965 273 -60 255 RC 11PSR03 Pyrite Hill 132 MGA94_54 518687 6449969 270 -60 255 RC 12BER01 Railway 157 MGA94_54 518687 6449969 274 -60 162 RC	١											
80BGH06 Big Hill 68.04 MGA94_54 520880 6449472 299 -60 171 RCDDH 58 80BGH08 Big Hill 79.7 MGA94_54 520769 6449391 296 -60 127 RCDDH 69.9 80BGH07 Big Hill 23 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 70 MGA94_54 518185 6449714 286 -60 223 RDDH 24 93MGM02 Pyrite Hill 180 MGA94_54 518515 6449455 285 -60 259 RDDH 48 11PHR01 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518560 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 186 MGA94_54 518560 6449190 280 -60<												
80BGH08 Big Hill 79.7 MGA94_54 520769 6449391 296 -60 127 RCDDH 69.9 80BGH07 Big Hill 23 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 70 MGA94_54 518185 6449714 286 -60 223 RDDH 24 93MGM02 Pyrite Hill 180 MGA94_54 518515 6449455 285 -60 259 RDDH 48 11PHR01 Pyrite Hill 150 MGA94_54 518435 6449073 285 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 186 MGA94_54 518560 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518584 6449398 280 -60 259 </td <td>Ι,</td> <td></td>	Ι,											
80BGH07 Big Hill 23 MGA94_54 521137 6449599 274 -60 178 RC 93MGM01 Pyrite Hill 70 MGA94_54 518185 6449714 286 -60 223 RDDH 24 93MGM02 Pyrite Hill 180 MGA94_54 518515 6449455 285 -60 259 RDDH 48 11PHR01 Pyrite Hill 150 MGA94_54 518500 6449159 284 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 186 MGA94_54 518560 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518529 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 180 MGA94_54 518491 6449523 284 -60 234 RC												
93MGM01 Pyrite Hill 70 MGA94_54 518185 6449714 286 -60 223 RDDH 24 93MGM02 Pyrite Hill 180 MGA94_54 518515 6449455 285 -60 259 RDDH 48 11PHR01 Pyrite Hill 150 MGA94_54 518435 6449073 285 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 240 MGA94_54 518500 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518529 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 234 MGA94_54 518529 6449257 284 -60 279 RC 11PHR06 Pyrite Hill 180 MGA94_54 518584 6449398 280 -60 259 RC 11PHR06 Pyrite Hill 180 MGA94_54 518491 6449523 284 -60 234 RC 11PHR07 Pyrite Hill 174 MGA94_54 518413 6449593 283 -60 219 RC 11PHR08 Pyrite Hill 180 MGA94_54 518343 6449656 283 -60 218 RC 11PSR01 Pyrite Hill 59 MGA94_54 518743 644864 268 -60 258 RC 11PSR02 Pyrite Hill 132 MGA94_54 518719 6448960 270 -60 255 RC 11PSR03 Pyrite Hill 78 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 Railway 157 MGA94_54 521213 6449691 274 -60 162 RC 12BER02 Railway 132 MGA94_54 521213 6449691 274 -60 162 RC	١,											69.9
93MGM02 Pyrite Hill 180 MGA94_54 518515 6449455 285 -60 259 RDDH 48 11PHR01 Pyrite Hill 150 MGA94_54 518435 6449073 285 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 240 MGA94_54 518560 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518529 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 234 MGA94_54 518584 6449398 280 -60 279 RC 11PHR06 Pyrite Hill 180 MGA94_54 518584 6449398 280 -60 259 RC 11PHR07 Pyrite Hill 174 MGA94_54 518413 6449523 284 -60 234 RC 11PHR08 Pyrite Hill 174 MGA94_54 518413 6449593 283 -60 219 RC 11PHR08 Pyrite Hill 180 MGA94_54 518343 6449656 283 -60 218 RC 11PSR01 Pyrite Hill 59 MGA94_54 518743 6448864 268 -60 258 RC 11PSR02 Pyrite Hill 132 MGA94_54 518719 6448960 270 -60 255 RC 11PSR03 Pyrite Hill 78 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 Railway 157 MGA94_54 521667 6449893 278 -60 141 RC 12BER02 Railway 132 MGA94_54 521213 6449691 274 -60 162 RC 12BER03 Railway 151 MGA94_54 521879 6450435 289 -60 102 RC												
11PHR01 Pyrite Hill 150 MGA94_54 518435 6449073 285 -60 279 RC 11PHR02 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 240 MGA94_54 518560 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518529 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 234 MGA94_54 518584 6449398 280 -60 259 RC 11PHR06 Pyrite Hill 180 MGA94_54 518491 6449523 284 -60 234 RC 11PHR07 Pyrite Hill 174 MGA94_54 518413 6449593 283 -60 219 RC 11PSR01 Pyrite Hill 180 MGA94_54 518343 6449656 283 -60 218 RC 11PSR02),		-									
11PHR02 Pyrite Hill 198 MGA94_54 518500 6449159 284 -60 279 RC 11PHR03 Pyrite Hill 240 MGA94_54 518560 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518529 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 234 MGA94_54 518584 6449398 280 -60 259 RC 11PHR06 Pyrite Hill 180 MGA94_54 518491 6449523 284 -60 234 RC 11PHR07 Pyrite Hill 174 MGA94_54 518413 6449593 283 -60 219 RC 11PHR08 Pyrite Hill 180 MGA94_54 518343 6449656 283 -60 218 RC 11PSR01 Pyrite Hill 59 MGA94_54 518743 6448864 268 -60 258 RC 11PSR02<												48
11PHR03 Pyrite Hill 240 MGA94_54 518560 6449190 280 -60 279 RC 11PHR04 Pyrite Hill 186 MGA94_54 518529 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 234 MGA94_54 518584 6449398 280 -60 259 RC 11PHR06 Pyrite Hill 180 MGA94_54 518491 6449523 284 -60 234 RC 11PHR07 Pyrite Hill 174 MGA94_54 518413 6449593 283 -60 219 RC 11PHR08 Pyrite Hill 180 MGA94_54 518343 6449656 283 -60 218 RC 11PSR01 Pyrite Hill 59 MGA94_54 518743 644864 268 -60 258 RC 11PSR02 Pyrite Hill 132 MGA94_54 518719 6448960 270 -60 255 RC 12BER01 </td <td>١.</td> <td></td>	١.											
11PHR04 Pyrite Hill 186 MGA94_54 518529 6449257 284 -60 279 RC 11PHR05 Pyrite Hill 234 MGA94_54 518584 6449398 280 -60 259 RC 11PHR06 Pyrite Hill 180 MGA94_54 518491 6449523 284 -60 234 RC 11PHR07 Pyrite Hill 174 MGA94_54 518413 6449593 283 -60 219 RC 11PHR08 Pyrite Hill 180 MGA94_54 518343 6449656 283 -60 218 RC 11PSR01 Pyrite Hill 59 MGA94_54 518743 6448864 268 -60 258 RC 11PSR02 Pyrite Hill 132 MGA94_54 518719 6448960 270 -60 255 RC 11PSR03 Pyrite Hill 78 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 </td <td>4</td> <td></td>	4											
11PHR05 Pyrite Hill 234 MGA94_54 518584 6449398 280 -60 259 RC 11PHR06 Pyrite Hill 180 MGA94_54 518491 6449523 284 -60 234 RC 11PHR07 Pyrite Hill 174 MGA94_54 518413 6449593 283 -60 219 RC 11PHR08 Pyrite Hill 180 MGA94_54 518343 6449656 283 -60 218 RC 11PSR01 Pyrite Hill 59 MGA94_54 518743 6448864 268 -60 258 RC 11PSR02 Pyrite Hill 132 MGA94_54 518719 6448960 270 -60 255 RC 11PSR03 Pyrite Hill 78 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 Railway 157 MGA94_54 521667 6449893 278 -60 141 RC 12BER02												
11PHR06 Pyrite Hill 180 MGA94_54 518491 6449523 284 -60 234 RC 11PHR07 Pyrite Hill 174 MGA94_54 518413 6449593 283 -60 219 RC 11PHR08 Pyrite Hill 180 MGA94_54 518343 6449656 283 -60 218 RC 11PSR01 Pyrite Hill 59 MGA94_54 518743 6448864 268 -60 258 RC 11PSR02 Pyrite Hill 132 MGA94_54 518719 6448960 270 -60 255 RC 11PSR03 Pyrite Hill 78 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 Railway 157 MGA94_54 521667 6449893 278 -60 141 RC 12BER02 Railway 132 MGA94_54 521213 6449691 274 -60 162 RC 12BER03 Railway 151 MGA94_54 521879 6450435 289 -60 <			-		MGA94_54					279		
11PHR07 Pyrite Hill 174 MGA94_54 518413 6449593 283 -60 219 RC 11PHR08 Pyrite Hill 180 MGA94_54 518343 6449656 283 -60 218 RC 11PSR01 Pyrite Hill 59 MGA94_54 518743 6448864 268 -60 258 RC 11PSR02 Pyrite Hill 132 MGA94_54 518719 6448960 270 -60 255 RC 11PSR03 Pyrite Hill 78 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 Railway 157 MGA94_54 521667 6449893 278 -60 141 RC 12BER02 Railway 132 MGA94_54 521213 6449691 274 -60 162 RC 12BER03 Railway 151 MGA94_54 521879 6450435 289 -60 102 RC	1 1		Pyrite Hill		MGA94_54	518584		280	-60			
11PHR08 Pyrite Hill 180 MGA94_54 518343 6449656 283 -60 218 RC 11PSR01 Pyrite Hill 59 MGA94_54 518743 6448864 268 -60 258 RC 11PSR02 Pyrite Hill 132 MGA94_54 518719 6448960 270 -60 255 RC 11PSR03 Pyrite Hill 78 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 Railway 157 MGA94_54 521667 6449893 278 -60 141 RC 12BER02 Railway 132 MGA94_54 521213 6449691 274 -60 162 RC 12BER03 Railway 151 MGA94_54 521879 6450435 289 -60 102 RC		11PHR06	Pyrite Hill	180	MGA94_54	518491	6449523	284	-60	234		
11PSR01 Pyrite Hill 59 MGA94_54 518743 6448864 268 -60 258 RC 11PSR02 Pyrite Hill 132 MGA94_54 518719 6448960 270 -60 255 RC 11PSR03 Pyrite Hill 78 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 Railway 157 MGA94_54 521667 6449893 278 -60 141 RC 12BER02 Railway 132 MGA94_54 521213 6449691 274 -60 162 RC 12BER03 Railway 151 MGA94_54 521879 6450435 289 -60 102 RC			-									
11PSR02 Pyrite Hill 132 MGA94_54 518719 6448960 270 -60 255 RC 11PSR03 Pyrite Hill 78 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 Railway 157 MGA94_54 521667 6449893 278 -60 141 RC 12BER02 Railway 132 MGA94_54 521213 6449691 274 -60 162 RC 12BER03 Railway 151 MGA94_54 521879 6450435 289 -60 102 RC						518343	6449656					
11PSR03 Pyrite Hill 78 MGA94_54 518687 6449055 273 -60 255 RC 12BER01 Railway 157 MGA94_54 521667 6449893 278 -60 141 RC 12BER02 Railway 132 MGA94_54 521213 6449691 274 -60 162 RC 12BER03 Railway 151 MGA94_54 521879 6450435 289 -60 102 RC												
12BER01 Railway 157 MGA94_54 521667 6449893 278 -60 141 RC 12BER02 Railway 132 MGA94_54 521213 6449691 274 -60 162 RC 12BER03 Railway 151 MGA94_54 521879 6450435 289 -60 102 RC			Pyrite Hill			518719	6448960		-60			
12BER02 Railway 132 MGA94_54 521213 6449691 274 -60 162 RC 12BER03 Railway 151 MGA94_54 521879 6450435 289 -60 102 RC	-		Pyrite Hill		MGA94_54		6449055		-60	255		
12BER03 Railway 151 MGA94_54 521879 6450435 289 -60 102 RC			Railway			521667	6449893	278	-60			
		12BER02	Railway		MGA94_54	521213		274				
12BER04 Railway 148 MGA94_54 522354 6451268 274 -60 131 RC		12BER03	Railway	151	MGA94_54	521879	6450435	289	-60	102		
		12BER04	Railway	148	MGA94_54	522354	6451268	274	-60	131	RC	

DDH Diamond drill hole

PDDH Diamond drill hole with percussion pre-collar

RCDDH Diamond drill hole with reverse circulation pre-collar

RDDH Diamond drill hole with rotary air blast pre-collar

Drill hole summaries (continued)

			Max Depth								Pre-Collar
	Hole ID	Deposit	(m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Depth
	12BER05	Railway	145	MGA94_54	522439	6451168	300	-60	124	RC	
	12BER06	Railway	169	MGA94_54	522481	6451091	296	-60	118	RC	
	12BER07	Railway	115	MGA94_54	522324	6450749	278	-60	144	RC	
	12BER08	Railway	193	MGA94_54	522221	6450812	273	-60	129	RC	
	12BER09	Railway	139.75	MGA94_54	522101	6450881	276	-60	129	RC	
	12BER10	Railway	151	MGA94_54	521953	6450716	284	-60	129	RC	
1	12BER11	Railway	193	MGA94_54	522737	6451377	266	-60	153	RC	
	12BER12	Railway	111	MGA94_54	522910	6451517	277	-60	153	RC	
	12BER13	Railway	205	MGA94_54	522884	6451558	271	-60	156	RC	
/	12BER14	Railway	151	MGA94_54	523125	6451637	288	-60	152	RC	
	12BER15	Railway	109	MGA94_54	523311	6451842	284	-60	154	RC	
	12BER16	Railway	115	MGA94_54	522994	6451592	276	-60	156	RC	
\	12BER17	Railway	115.5	MGA94_54	522517	6451315	269	-60	153	RC	
/	12BER18	Railway	157	MGA94_54	522333	6451281	272	-60	129	RC	
	12BER19	Railway	97	MGA94_54	522241	6451067	276	-60	135	RC	
)	12BER20	Railway	120	MGA94_54	521292	6449734	277	-60	165	RC	
	13BED01	Railway	349.2	MGA94_54	522480	6451092	296	-60	301	DDH	
	16DM01	Pyrite Hill	161.6	MGA94_54	518411	6449594	283	-60	216	DDH	
)	16DM02	Pyrite Hill	183.4	MGA94_54	518527	6449262	284	-60	285	DDH	
	16DM03	Big Hill	126.5	MGA94_54	521037	6449567	283	-60	159	DDH	
	16DM04	Big Hill	105.4	MGA94_54	520815	6449464	296	-55	129	DDH	
	16DM05	Railway	246.5	MGA94_54	522104	6450882	277	-60	129	DDH	
1	16DM06	Railway	160.4	MGA94_54	522912	6451519	279	-60	153	DDH	
	16DM07	Railway	242.5	MGA94_54	522995	6451598	276	-60	156	DDH	
	16DM08	Railway	258.5	MGA94_54	522351	6451273	274	-60	131	DDH	
	17THD01	Pyrite Hill	124.2	MGA94_54	518382	6449551	289	-40	222	DDH	
	17THD02	Pyrite Hill	149.7	MGA94_54	518475	6449445	291	-40	258	DDH	
	17THD03	Pyrite Hill	78.5	MGA94_54	518370	6449190	303	-40	285	DDH	
\	17THD04	Big Hill	119.8	MGA94_54	521078	6449589	278	-45	155	DDH	
/	17THD05	Big Hill	99.5	MGA94_54	521669	6449889	279	-40	131	DDH	
	17THD06	Railway	165.5	MGA94_54	521970	6450705	287	-45	128	DDH	
)	17THD07	Railway	274.6	MGA94_54	522569	6451282	271	-45	157	DDH	
	17THD08	Railway	132.5	MGA94_54	522784	6451280	269	-45	326	DDH	
	17THD09	Railway	120.5	MGA94_54	522905	6451511	278	-40	153	DDH	
	17THD10	Railway	84.2	MGA94_54	522992	6451569	280	-45	130	DDH	
	17THD11	Railway	111.5	MGA94_54	523109	6451682	281	-40	161	DDH	
/	17THD12	Railway		MGA94_54		6451419	273	-40	141	DDH	
	17THD13	Railway	105.5	MGA94_54	522836	6451456	277	-40	139	DDH	
)	17THD14	Pyrite Hill	99	MGA94_54	518375	6449089	294	-60	285	DDH	
	17THR001	Railway	156	MGA94_54	522615	6451277	268	-60	120	RC	
	17THR002	Railway	160	MGA94_54	522573	6451299	269	-60	120	RC	
	17THR003	Railway	96	MGA94_54	522124	6450868	277	-60	130	RC	
	17THR004	Railway	150	MGA94_54	522387	6451319	271	-60	120	RC	
\	17THR005	Railway	72	MGA94_54	522024	6450783	282	-60	120	RC	
	17THR006	Railway	114	MGA94_54	522049	6450780	284	-58	125	RC	
	17THR007	Railway	180	MGA94_54	521965	6450699	287	-59	125	RC	
	17THR008	Railway	132	MGA94_54	521917	6450562	292	-56	105	RC	
1	17THR009	Railway	120	MGA94_54	521906	6450496	293	-58	105	RC	
	17THR010	Railway	72	MGA94_54	521959	6450398	286	-56	285	RC	
	17THR011	Railway	126	MGA94_54	522302	6451169	277	-56	120	RC	
	17THR012	Railway	180	MGA94_54	522440	6451304	275	-58	173	RC	
		· ·······	. 55		0 110	3.31001	0	30	5		

DDH Diamond drill hole

PDDH Diamond drill hole with percussion pre-collar

RCDDH Diamond drill hole with reverse circulation pre-collar

RDDH Diamond drill hole with rotary air blast pre-collar

Drill hole summaries (continued)

		Max Depth								Pre-Collar
Hole ID	Deposit	(m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Depth
17THR013	Big Hill	102	MGA94_54	521750	6449942	285	-60	131	RC	
17THR014	Big Hill	104	MGA94_54	521628	6449796	278	-53	130	RC	
17THR015	Big Hill	108	MGA94_54	521793	6449918	285	-58	310	RC	
17THR016	Pyrite Hill	138	MGA94_54	518446	6449209	290	-57	283	RC	
17THR017	Pyrite Hill	120	MGA94_54	518449	6449263	293	-56	282	RC	
17THR018	Pyrite Hill	78	MGA94_54	518027	6449806	290	-60	222	RC	
17THR019	Pyrite Hill	72	MGA94_54	518105	6449754	288	-55	222	RC	
17THR020	Pyrite Hill	66	MGA94_54	518166	6449695	289	-60	222	RC	
17THR021	Pyrite Hill	78	MGA94_54	518183	6449717	286	-60	222	RC	
17THR022	Pyrite Hill	156	MGA94_54	518510	6449306	287	-55	281	RC	
17THR023	Pyrite Hill	150	MGA94_54	518506	6449377	289	-57	265	RC	
17THR024	Pyrite Hill	150	MGA94_54	518457	6449498	288	-59.5	229	RC	
17THR025	Pyrite Hill	114	MGA94_54	518311	6449609	287	-60	222	RC	
17THR026	Pyrite Hill	114	MGA94_54	518268	6449681	284	-60	222	RC	
17THR027	Pyrite Hill	72	MGA94_54	518243	6449646	287	-60	222	RC	
17THR028	Railway	150	MGA94_54	522457	6451167	301	-60	350	RC	
17THR029	Railway	162	MGA94 54	522482	6451084	296	-60	175	RC	
17THR030	Railway	138	MGA94_54	522783	6451423	271	-55	140	RC	
17THR031	Railway	120	MGA94_54	522945	6451566	276	-55	145	RC	
17THR032	Railway	132	MGA94_54	522819	6451473	274	-53	140	RC	
17THR033	Railway	120	MGA94_54	522501	6451315	270	-60	175	RC	
17THR034	Railway	132	MGA94_54	522321	6451214	276	-55	127	RC	
17THR035	Railway	156	MGA94_54	522259	6451120	276	-55.2	130	RC	
17THR036	Railway	92	MGA94_54	522186	6450998	275	-61.2	130	RC	
17THR037	Railway	126	MGA94_54	522148	6450941	274	-55	126	RC	
17THR038	Railway	168	MGA94_54	521927	6450619	290	-55	108	RC	
17THD015	Railway	81.6	MGA94_54	522038	6450826	279	-80	304	DDH	
17THD016	Railway	176.9	MGA94_54	522089	6450774	287	-70	122	DDH	
17THD017	Railway	255.9	MGA94_54	522615	6451279	268	-80	350	DDH	
17THD018	Railway	72.5	MGA94_54	523013	6451491	295	-70	150	DDH	
17THD019	Railway	151.3	MGA94_54	522667	6451229	267	-70	140	DDH	
17THD020	Railway	121.7	MGA94_54	523052	6451545	290	-55	310	DDH	
17THD021	Big Hill	100	MGA94_54	521708	6449928	281	-50	133	DDH	
17THD022	Big Hill	70	MGA94_54	521618	6449729	278	-56	316	DDH	
17THD023	Big Hill	99.5	MGA94_54	521164	6449537	275	-55	337	DDH	
17THD024		69.6	MGA94_54	521164	6449536	275	-80	150	DDH	
	Pyrite Hill		MGA94_54		6449334	281	-75	90	DDH	
17THD026	Pyrite Hill	240.7	MGA94_54	518586	6449334	281	-55	272	DDH	
17THD027	Big Hill	141.6	MGA94_54	520947	6449513	294	-75	130	DDH	
17THD028	Big Hill	171.7	MGA94_54	520862	6449317	285	-56	321	DDH	
17THD029	Pyrite Hill	200.5	MGA94_54	518489	6449338	290	-70	90	DDH	
17THD030	Pyrite Hill	201.5	MGA94_54	518351	6449706	281	-55	222	DDH	
17THD031	Pyrite Hill	229	MGA94_54	518289	6449629	287	-65	50	DDH	
17THR039	Railway	210	MGA94_54	522477	6451299	274	-55.8	168.7	RC	
17THR040	Railway	276	MGA94_54	522528	6451300	270	-55	164	RC	
17THR041	Railway	210	MGA94_54	522692	6451244	265	-55	339	RC	
17THR042	Railway	234	MGA94_54	522588	6451160	283	-55	336	RC	
17THR043	Railway	200	MGA94_54	522531	6451185	289	-55	341	RC	
17THR044	Railway	180	MGA94_54	522420	6451159	298	-55	311	RC	
17THR045	Railway	210	MGA94_54	522526	6451168	290	-55	311	RC	
17THR046	Railway	216	MGA94_54	522501	6451203	291	-56	311	RC	

DDH Diamond drill hole

PDDH Diamond drill hole with percussion pre-collar

RCDDH Diamond drill hole with reverse circulation pre-collar

RDDH Diamond drill hole with rotary air blast pre-collar

Drill hole summaries (continued)

			Max Depth								Pre-Collar
	Hole ID	Deposit	(m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Depth
	17THR047	Railway	246	MGA94_54	522438	6451115	297	-55	311	RC	
	17THR048	Railway	122	MGA94_54	522481	6451124	298	-55	310	RC	
	17THR049	Railway	138	MGA94_54	522378	6451130	292	-55	310	RC	
	17THR050	Railway	154	MGA94_54	522657	6451143	274	-63	344	RC	
	17THR051	Railway	174	MGA94_54	522364	6451070	283	-55	308	RC	
	17THR052	Railway	246	MGA94_54	522642	6451184	274	-55	334	RC	
	17THR053	Railway	156	MGA94_54	522315	6451028	278	-55	314	RC	
	17THR054	Railway	180	MGA94_54	522671	6451232	267	-60	333	RC	
1	17THR055	Railway	114	MGA94_54	522261	6450987	278	-55	313	RC	
/	17THR056	Railway	102	MGA94_54	522558	6451285	271	-55	158	RC	
	17THR057	Railway	111	MGA94_54	522220	6450909	274	-55	308	RC	
	17THR058	Railway	210	MGA94_54	522467	6451328	270	-55	160	RC	
\	17THR059	Railway	150	MGA94_54	522198	6450857	274	-55	306	RC	
)	17THR060	Railway	181	MGA94_54	523006	6451494	294	-55	331	RC	
	17THR061	Railway	138	MGA94_54	522161	6450789	277	-55	307	RC	
	17THR062	Railway	168	MGA94_54	522983	6451450	296	-60	327	RC	
	17TRD063	Railway	169.5	MGA94_54	522137	6450725	280	-55	305	RCDDH	96.7
7	17THR064	Railway	171	MGA94_54	522931	6451403	295	-56.1	329	RC	
)	17THR065	Railway	174	MGA94_54	522108	6450664	283	-55	304	RC	
	17THR066	Railway	168	MGA94_54	522865	6451367	292	-60	318	RC	
	17THR067	Railway	150	MGA94_54	522022	6450479	284	-50	291	RC	
	17THR068	Railway	210	MGA94_54	522752	6451407	268	-60	148	RC	
1	17THR069	Railway	96	MGA94_54	522008	6450647	301	-60	117	RC	
)	17THR070	Railway	228	MGA94_54	522813	6451242	266	-60	300	RC	
	17THR071	Railway	142	MGA94_54	522070	6450846	279	-60	130	RC	
	17TRD072	Railway	210	MGA94_54	522623	6451044	271	-60	320	RCDDH	155.6
1	17TRD073	Railway	195.4	MGA94_54	522035	6450817	280	-55	126	RCDDH	134.9
	17THR074	Railway	300	MGA94_54	522572	6450985	271	-60	310	RC	
	17THR075	Railway	148	MGA94_54	522013	6450770	283	-55	121	RC	
	17THR076	Railway	300	MGA94_54	522479	6450945	272	-60	355	RC	
\	17THR077	Railway	180	MGA94_54	521993	6450743	285	-55	117	RC	
	17THR078	Pyrite Hill	157	MGA94_54	518220	6449774	281	-60	222	RC	
	17THR079	Railway	120	MGA94_54	521912	6450597	289	-55	116	RC	
	17THR080	Pyrite Hill	67	MGA94_54	518024	6449782	292	-55	190	RC	
\	17THR081	Railway	184	MGA94_54	522340	6451239	276	-55	125	RC	
)	17THR082	Pyrite Hill	67	MGA94_54	517972	6449842	290	-55	222	RC	
	17THR083	Railway	156	MGA94_54	522365	6451282	274	-55	133	RC	
\	17THR084	Pyrite Hill	97	MGA94_54	518343	6449588	287	-55	205	RC	
_	17THR085	Big Hill	210	MGA94_54	520878	6449523	287	-60	141	RC	
	17THR086	Pyrite Hill	157	MGA94_54	518427	6449541	287	-55	218	RC	
	17THR087	Pyrite Hill	181	MGA94_54	518466	6449587	282	-60	218	RC	
1	17THR088	Pyrite Hill	175	MGA94_54	518392	6449633	282	-55	213	RC	
	17THR089	Big Hill	108	MGA94_54	521571	6449709	274	-60	141	RC	
	17THR090	Big Hill	96	MGA94_54	521692	6449794	284	-55	312	RC	
	17THR091	Pyrite Hill	211	MGA94_54	518424	6449679	279	-55	219	RC	
	17THR092	Pyrite Hill	139	MGA94_54	518301	6449661	285	-55	219	RC	
	17THR093	Pyrite Hill	151	MGA94_54	518270	6449732	281	-55	219	RC	
	17THR094	Pyrite Hill	240	MGA94_54	518568	6449501	279	-60	253	RC	
	17THR095	Pyrite Hill	205	MGA94_54	518509	6449194	283	-55	273	RC	
	17THR096	Pyrite Hill	187	MGA94_54	518540	6449419	284	-60	257	RC	

DDH Diamond drill hole

PDDH Diamond drill hole with percussion pre-collar

RCDDH Diamond drill hole with reverse circulation pre-collar

RDDH Diamond drill hole with rotary air blast pre-collar

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drilling Drill hole intercept grades are typically reported as down-hole length-weighted averages with any non-recovered sample within the reported intervals treated as no grade. The cut-off used for selecting significant intersections is selected to reflect the overall tenor of mineralisation, in most cases 500ppm cobalt. No top cuts have been applied when calculating average grades for reported significant intersections. No metal equivalent values are reported.
Relationship between mineralis- ation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drill holes at the Thackaringa project are typically angled at 50° or 60° and drilled perpendicular to the mineralised trend with drilling orientations adjusted along strike to accommodate folded geological sequences. Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be greater than true width. At Pyrite Hill mineralisation is gently dipping and mineralised intersections will be close to true width. There is insufficient geological knowledge to accurately estimate true widths and as such all drill intersections are reported as down hole lengths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and sections are presented in the accompanying ASX release.
Balanced reporting	Where comprehensive reporting of all exploration results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Only mineralised drill hole intersections regarded as highly anomalous and of economic interest are reported. The proportion of each hole represented by the reported intervals can be ascertained from the sum of the reported intervals divided by the total drill hole depth. All assay results for drill holes included in the various Mineral Resource estimates have been considered and comprise results not necessarily regarded as anomalous.

0 " '	1000 0 1 - 1 11	•
Criteria	JORC Code Explanation	Commentary
Other	Other exploration data, if	A PFS was commenced in August 2017.
substantive exploration data	meaningful and material, should be reported including (but not limited to): geological obser- vations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, ground-	The first stage of the process is to prepare a concentrate from the ore. A composite of diamond drilling core samples from the 2016 program, was prepared using quarter core samples previously held in storage by ALS Metallurgy Burnie. The composite grade was 607 ppm which is about 300 ppm less than the average grade of the combined Thackaringa resources (Pyrite Hill, Railway and Big Hill). For clarity, the composite tested represents "low-grade" ore rather than the average grade ore.
	water, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The ore composite was crushed to 1.2 mm and passed through a gravity-flotation circuit. From the 820 kg of ore, 139 kg of concentrate was produced. The cobalt recovery was 92% to concentrate. The metal content in the ore and concentrate was determined using industry standard XRF and ICP methods by ALS.
		90 kg of concentrate was processed through a laboratory furnace by ALS, producing 70 kg of calcine for leaching studies. The process conditions were varied, to identify the optimum condi- tions for converting >95% of the pyrite into pyrrhotite. Elemental sulphur was recovered from the off-gas of the furnace. The metal content in the calcine and elemental sulphur was determined using industry standard XRF and ICP methods by ALS.
		30 kg of calcine was processed through a laboratory autoclave by ALS. The process conditions were varied, to identify the optimum conditions for extracting cobalt. The optimum results were an average of 96% extraction of cobalt. The metal content in the calcine and leach residue was determined using industry standard XRF and ICP methods by ALS.
		 Additional work is being undertaken on the further process steps to produce a final product.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 The nature and scale of planned further work will be determined following the completion of the Preliminary Feasibility Study forecast for 30 June 2018.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation		Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures 	ur Th do ru	ne Thackaringa drilling database exists in electronic form order the independent management of Maxwell GeoServices. The Maxwell Data Schema (MDS) strictly applies integrity to all ownhole and measurement recordings. If data fails the integrity les, the data is NOT loaded into the database. general, the following rules are applied: Downhole intervals Depth_To > Depth_From
	used.		Downhole intervals < Max depth
			No overlapping intervals
			Dips between -90 & 90°
			Azimuths, dip direction, alpha, beta are all between 0 $\&360^\circ$
			Gamma between 0 & 90°
			Individual percentage values <= 100%; total of all percentage values <=100%
			Recovery values <= 110%; RQD values <= 100%
		•	Incremental values must have data in preceding values before the next can be entered (e.g. Cannot have Lith2 unless Lith1 exists)
		•	Cannot enter qualifiers unless the primary code is populated (e.g. Cannot have a Lith_Grainsize or a Lith_Colour unless Lith_Code is populated)
		•	Dates <= current daily (load) date; start dates <= complete dates etc.
		•	Codes for fields linked to corresponding library tables can only be loaded if they are set to Is_Active = 'TRUE' in the library table
		•	Once drill holes, linear sites and point sites have been set to Validated = 'TRUE', no data related to these can be updated, inserted or deleted.
		•	Once Load_Date and Loaded_By fields have been populated upon database loading these fields are unable to be modified. Instead any updates are recorded in the Modified_Date and Modified_By fields.
			A Data_Source field is required for ALL data tables
		lo pa	dditionally, the MDS stores every instance (record) of data ading, data modification, and who loaded and modified that articular data, as well as data sources where appropriate. This akes the data loading process highly auditable.
		ge w	ne database was extensively examined by SRK Consulting ith various minor issues identified and addressed during the cological modelling and Mineral Resource estimation process. camples of issues examined and rectified include:
			Correct prioritisation of assay method where upper limits of detection are exceeded;
			Inclusion / exclusion and quality of historic assays;
			Use of correct downhole survey grid systems and survey prioritisation
			Inclusion of up to date density information
		•	Inclusion of up to date QAQC data including standards, duplicates, blanks and lab repeats

Criteria	JORC Code Explanation	Commentary
Site Visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The geological model used for the resource estimation has been developed by Dr Stuart Munroe of SRK Consulting in conjunction with other consultants and COB employees, following a review of previous mapping, over approximately nine days on site at the Thackaringa project during drilling in November 2017.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. 	The mineralisation at Thackaringa is well exposed at surface and forms prominent topographic highs. The mineralisation has been mapped by previous lease holders and presented in statutory annual reports which are in the public domain. The previous mapping has been compiled and re-mapped by Mr Garry Johansen for COB. Dr Stuart Munroe of SRK Consulting completed reconnaissance mapping and reviewed the controls on mineralisation in preparation for this resource estimate update. Confidence in the current geological model has been greatly improved by the drilling completed during 2017.
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology 	The geological model has been developed from a good understanding of the distribution of surface mineralisation, observed controls on mineralisation and the extensive drill hole intersections. Two key structural controls on mineralisation are, (1); the primary foliation (bedding), as a fluid flow pathway and site for deposition of cobaltiferous pyrite, and (2); bedding parallel shear zones at the contact of quartz – albite gneiss. These shear zones appear to be responsible for fold thickening of the quartz – albite gneiss. Much of the folding appears to be slump or soft-sediment folding. The fold hinges have a variable plunge (moderate to steeply east to north-east).
		 No viable alternative mineralisation models have been developed. The mineralisation host is a quartz + albite + cobaltiferous pyrite gneiss. This rock is defined by the presence of disseminated pyrite, concentrated parallel to the primary foliation in a fine-grained, recrystalised quartz + albite groundmass. Where the pyrite is present there is an increase in the silica content and an almost complete absence of biotite and sericite. In addition to the logged geology, most of the drill holes have multi-element analysis. These data have been used to develop a lithogeochemical profile for each rock type logged. The lithogeochemistry, logged geology, structure at surface, Cobalt assay and Sulphur assay have all beer used to guide the mineralised domain that contain the resource.
		■ The gradation from a biotite schist to (quartz + albite) to (pyrite + quartz + albite) suggests the sulphide may accompany silica + sodic alteration of a micaceous schist protolith. Across the shear zones mapped at surface, the transition is rapid, however where there is no shearing at the contact, a gradational contact from biotite to albite to pyrite + albite + silica is observed. Parallel to bedding and bedding parallel shear zones (faults), continuity of the mineralisation is strong, particularly close to the shear zones.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource	 The Railway Big Hill portion of the deposit is approximately 3500m along strike, 350m down dip and between 20m and 300m across strike averaging around 70m across strike. This portion is partially a steeply dipping linear formation but with a complexly folded area to the North East. The linear portion is distinguished by a distinct high grade Western Hanging wall zone The Pyrite Hill portion of the deposit is an arc like formation some 1000m along strike, 300m down dip and between 10m and 100m across strike

	*			
À ,		**		
Criteria		JORC Code Explanation		Commentary
Estimation and modelling techniques	•	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen, include a description of computer software and parameters used.		The wireframe geological modelling, data compositing were carried out in the Leap The estimation and classification were consoftware package. The final model is presoftware package. Three variables Co, Fe and S are highly of Co-Kriged. Co-kriging involves simultane models to the three main variables and the and simultaneous estimation accounting of all three variables at once. This maintain between variable which are not necessal independent kriging is performed.
	•	The availability of check esti- mates, previous estimates and/ or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.		The orientations of both variograms and sa block by block basis. The orientations a of trend and fold wireframes. Each wirefra assigned a dip and strike and these are eneighbour estimate into the blocks prior to Eleven domains are used all with hard be geology, geometry and grade and ensure
	•	The assumptions made regarding recovery of by-products.	•	selected for estimation. No top cuts or caps are used for any of distributions are not highly skewed and t without the need for cutting or capping.
	•	Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	•	Multivariate variography was completed sufficient data. Given the folded nature cand the use of local orientations, only tw were utilised for estimation. One for the lanother for all of the remaining Big Hill ar
	•	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	•	5m composites are used with residual sl porated and redistributed such that final be slightly shorter and longer than 5m. T to be consistent with the 5m x 10m x 10 the assumed bulk mining approach.
	•	Any assumptions behind modelling of selective mining units.	•	Estimation utilised a single pass approach extrapolation limited by both optimum sail by sectors and by overall search ellipse of distances are apisotropic to the ratios of distances.
		Any assumptions about correlation between variables.		distances are anisotropic to the ratios of the cross strike, 1:1 down dip), that is sample itised within successively larger ellipses ratios.
	•	Description of how the geological interpretation was used to control the resource estimates.		distances. A minimum of 4 samples, and and a maximum of 16 composites was usearch with an optimum of 32 composite was tested maximizing the regression along.
	•	Discussion of basis for using or not using grade cutting or capping.		was tested maximising the regression slo estimate but this excessively smoothed the did not reflect the true block variability.
	•	The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available	•	Block size used is 5m in Easting, 10m in elevation. This compares to an average of 25m and 60m along strike with average combined with variogram ranges between strike, 70m to 80m down dip and 18m to Variography shown moderate to low nug
			•	Validation was completed by:

- atabase validation and apfrog software package. completed in the Isatis resented in the Surpac
- correlated and have been neous fitting of variogram to three cross variograms g for the spatial continuity tains the correlations arily honoured when
- search ellipses is varied on are controlled by the set rame triangle centroid is estimated using a nearest to grade estimation.
- coundaries to control ire appropriate samples are
- f the variables as the grade the estimated validate well
- d for all domains with of many of the domains wo multivariate models Pyrite Hill domain and and Railway domains.
- short lengths being incoral composite lengths may This length was chosen 0m block dimensions and
- ch with interpolation end ample numbers controlled distances. Search the search ellipse (5:1 oles are selected / priorrather than by spherical optimum of 8 composites used. A higher sample es and maximum of 64 opes and smoothing the the block distribution and
- in Northing and 10m in drill spacing of between e sample lengths of 1m een 115m and 160m along to 40m across strike. iggets effect.
 - statistical comparisons to declustered composite averages per domain at zero cut off
 - statistical inspection of density, regression slopes, kriging efficiency, number of composites used
 - visual inspection of grades, regression slopes, kriging efficiency, number of composites used
 - Comparison of grades and tonnages above cut off to previous estimates
 - Swath plots
 - Global change of support checks
- Maximum extrapolation for Inferred material is approximately 120m and averages around 80m.

	Criteria		JORC Code Explanation	Commentary
<u>></u>	Moisture	•	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnage and assays are on a dry basis.
	Cut-off parameters	•	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The Mineral Resource has been reported at a cut-off of 500ppm cobalt to appropriately reflect the tonnes and grade of estimated blocks that will meet the potential beneficiation process currently under consideration. The reported Mineral Resource includes only material categorised as 'sulphide'; constrained by the modelled 'base of partial weathering' surface. A complete review of modifying factors as supported by technical studies currently being completed for the Preliminary Feasibility Study will assist in deriving an economic cut-off grade reflective of the proposed product stream. SRK is unaware of any other similar style of deposit that is at surface and amenable to open cut mining.
	Mining factors or assumptions	•	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Open pit mining is assumed as the deposits outcrop at surface. Preliminary pit optimisations were completed for the Scoping Study using the preceding Mineral Resource estimates. These optimisations supported an open pit mining methodology with near surface resources indicating low strip ratios. Revised pit optimisations are to be completed during the Preliminary Feasibility Study in support of Ore Reserve estimation.
	Metallurgical factors or assumptions	•	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Detailed metallurgical studies completed for the Preliminary Feasibility Study have examined a processing pathway comprising four primary stages of ore treatment: Concentrate: Preparation of a sulphide concentrate from the ore Calcine: Calcination (thermal treatment) of the concentrate Leaching: Leaching of the calcine Product Recovery: purification of leach liquor, followed by crystallisation of cobalt sulphate Results from test work related to the stages above are summarised in the following: Concentrate Ore was processed by crushing to p100 at 1.2 mm and passed through a gravity spiral circuit. The tails were screened, with the fines subjected to froth flotation. The gravity and flotation concentrates were combined into a single concentrate. Approximately 144kg of concentrate was produced from the 820 kg of ore composite, with a recovery of 92% of the cohalt to concentrate

recovery of 92% of the cobalt to concentrate.

Criteria	JORC Code Explanation	Commentary
Metallurgical factors or assumptions		 Further work examining finer grind sizing was then conducted. Results indicated that varying the particle size down to 425um permitted 94% recovery of cobalt to concentrate.
(continued)		Calcine and Leach
		A total of 90 kg of gravity-float concentrate has been calcined by ALS Metallurgy in Perth, producing approximately 70 kg of calcine. Process conditions have been varied to determine the optimum parameters for selection as design criteria set-point for the PFS engineering design study. Importantly, the target conversion of >95% of the pyrite into pyrrhotite has been repeatedly achieved, with no loss of cobalt to the sulphur collected from the off-gas. Further, the typical
		removal of sulphur from the head feed has increased from 35% (27 Dec 2017) to 40% in recent tests. Potential equipment vendors are presently involved with the PFS engineering study. Preliminary marketing studies have now commenced for the elemental sulphur product.
		A total of 56 leach tests have been completed on the calcine by ALS Metallurgy Burnie, systematically varying temperature, liquor composition, solids density, residence time, particle size, and oxygen uptake. The optimum conditions have achieved repeatable cobalt extractions of 95-98% with the average being 96%.
Environ- mental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 In acid mine drainage terms, both economic and waste material contain significant amounts potentially acid forming materials (Pyrite and sulphur bearing minerals > 0.05% Sulphur). Sulphur has been estimated in both the Resource and waste material where information is available. A background S value of 0.05% S has been included where no assay information is available and where expected lithology types are typically below the 0.05% S value. The construction of a suitable tailings facility is assumed for processing waste. It is considered a portion of water from such a facility could be recovered for re-use as process water.

Criteria	JORC Code Explanation	Commentary
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials 	Bulk density has been determined using the Archimedes method (weigh in water weight in air). Some 1527 core samples between 1.2m and 0.1m from across the deposit have been utilised. These samples are examined statistically to eliminate errors and outliers. The valid samples are then matched with the Co, Fe and S assay values for their respective intervals. Good linear regressions are obtained with all three elements. The final densities are assigned on a block by block basis using a linear regression derived from the combined Co Fe and S assays. The regression equation is: Bulk density = 0.0143*(Co ppm /10000 + Fe % + S %) + 2.5722
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Classification is based on the kriging regression slope with class surfaces created from viewing the regression slopes of the estimated blocks in section. Indicated is defined as all material above the 0.5 kriging regression slope surface and Inferred as all material above the 0 kriging regression slope surface and below the 0.5 kriging regression slope surface. There is some Indicated material near surface that has regression slopes less than 0.5 and this is included as Indicated due to the known mapped outcrop at surface. In addition to this a depth limit has been imposed at Railway and Big Hill. The depth limit at Big Hill is 150m elevation. The depth limit at Railway is mostly at 50m elevation with a section between 6540950mN and 6451400mN at 0m elevation. These depth limits are imposed approximately 50m below the base of the previous 2017 pit optimisations. Material below these depths is currently considered not to have reasonable prospects of eventual economic extraction. These depths may change in the future when additional metallurgical, geotechnical and additional exploration studies have been completed.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 No audits or external reviews of this Resource have been completed to date.

	*	
Criteria	JORC Code Explanation	Commentary
Discussion of relative accuracy/confidence	 Where appropriate, a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 Accuracy and confidence in the estimation is expressed by the Indicated and Inferred classification applied. No additional confidence measures have been estimated or applied. Global change of support calculations indicate that the estimate still contains an amount of smoothing that may be underestimating the grade and overestimating the tonnage above 500ppm in the order of 5% to 10%. The current estimate is therefore a compromise between local block and global grade and tonnage accuracy which is considered appropriate in the competent persons view and experience. No mining or production has taken place.