# ASX ANNOUNCEMENT



# Galena Mining Limited

# ASX : G1A (G1ADA)

Shares on Issue 278,000,000 (post 1:5 share split)

Cash (Dec Qtr) \$3.1m

**Directors & Management** 

**Non-Executive Chairman** Adrian Byass

**CEO** Edward Turner

**COO** Troy Flannery

**Non-Executive Directors** Jonathan Downes Oliver Cairns Tim Morrison

**Company Secretary** Stephen Brockhurst

Registered Office Level 11, 216 St Georges Tce Perth WA 6000 T 08 9481 0389

## <u>Contact</u>

5/245 Churchill Ave, Subiaco WA 6008

## T 08 6166 3750

E admin@galenamining.com.au W www.galenamining.com.au

# 22 March 2018

# WORK TO START ON GALENA'S OTHER BASE METAL PROJECTS WITHIN THE ABRA TENEMENT PACKAGE

# Highlights

- Imminent drilling at Woodlands Complex to test strong conductive plates identified by Galena for massive copper mineralisation
- Historic significant intersections at Woodlands of 60m @ 0.3% copper in WDH1 (inc. 0.4m @ 8.4% copper and 16g/t silver from 558m) and 3m @ 1.6% copper in JLWA-78-34
- Manganese Range and Quartzite Well Prospects also contain significant historic intersections that include 28m @ 2.3% lead, 32g/t silver & 1.2% zinc in JLWA75-7. A detailed review of the geology and geophysics is underway

Galena Mining Limited (ASX: G1A) ("Galena" or the "Company") is pleased to announce that it has commenced a work plan at its other exploration targets within the wider Abra tenement package at the Woodlands, Quartzite Well and Manganese Range Prospects, all 100% owned by Galena.

Galena CEO Ed Turner commented:

"The Company remains absolutely focussed on delivery of the PFS on Abra. Armed with the new high-grade resource, COO troy Flannery has engaged expert contractors and engineering groups to delivery this study and is on schedule for completion before Q4 2018. During this time, we will test our other Prospects which, like Abra, have undergone additional work and revised interpretation by our successful geological team."

"Whilst Abra as a standalone and globally significant lead-silver project is the core focus of the Company we are also particularly interested in giving some attention to the Woodlands, Quartzite Well and Manganese Range prospects. Work conducted by Galena using helicopter geophysics has supported a new interpretation of copper and precious metal drill results at Woodlands. Historic drill results have been compelling and thus we will be undertaking more work around these areas. Any positive results will only add upside to the overall Galena story."



# **Other Targets**

Galena's 100% owned tenement package also contains highly prospective base metal prospects targets (see Figure 1.

In late 2017 Galena commissioned New Resolution Geophysics (NRG<sup>™</sup>) Australia to carry out a highresolution helicopter hosted airborne electromagnetic (EM) survey over the Woodlands, Quartzite Well and Manganese Range Prospects (Figure 2). The airborne EM data were acquired using the Xcite<sup>™</sup> system. At the Woodlands Prospect, ten Xcite<sup>™</sup> survey traverses were carried out to follow up historic moving loop EM (MLEM) responses and anomalous VTEM<sub>MAX</sub> target areas. Survey flight lines were carried out using a NE-SE, NW-SE and N-S orientation. Xcite<sup>™</sup> survey lines at the Manganese Range Prospect area were designed by consultant geophysicists Resource Potentials to expand upon helicopter EM surveying carried out in the prospect area in 2014 using the VTEM<sub>MAX</sub> system. Xcite<sup>™</sup> surveying were carried out in the western part of the prospect area using N-S orientated flight lines that were spaced 200m apart.

The result was several clearly defined EM conductive plates at the Woodlands Complex which are coincidental with significant historic copper drill intersections including 60m @ 0.3% copper from 505m (inc. 0.4m @ 8.4% copper and 16g/t silver from 558m) in WDH1 and 3m @ 1.6% copper from 188m in JLWA-78-34 (see Figure 3). These conductive plates are potentially related to massive sulphide copper mineralisation and both will be drilled in Q2 this year.

The larger conductive plate is associated with the historic intersection of **60m @ 0.3% copper inc. 0.4m @ 8.4% copper and 16g/t silver.** The plate is plus 500m in size and therefore the previous drilling has not adequately tested it. Galena aims to intersect the plate closer to surface at shallower depths.

The second conductive plate is associated with the **3m @ 1.6% copper** intersection at another prospect nearby (see Figure 4). Importantly this historic drilling is now interpreted as being drilled at a sub-optimal direction and has not intersected the plate. Galena's planned drilling will therefore be drilled in a different direction to best test the plate.

Manganese Range and Quartzite Well Prospects also contain significant historic intersections that include **28m @ 2.3% lead, 32g/t silver & 1.2% zinc from 121m in JLWA75-7** (see Figure 3). A detailed review of the geology and geophysics is underway, with the highest priority targets to be followed up and drilled in due course.



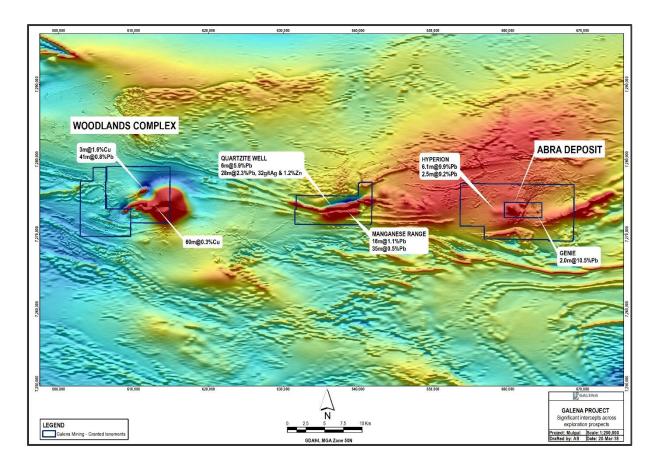



Figure 1: Galena's exploration prospect with significant historic drill intersections on magnetic background



Figure 2: Helicopter-borne Electromagnetic (EM) survey underway at Woodlands



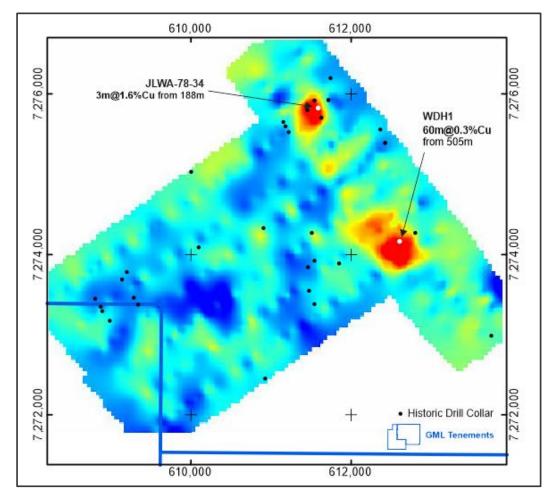



Figure 3: Plan view of two EM anomalies (red) at Woodlands that are associated with significant historic drill intersections

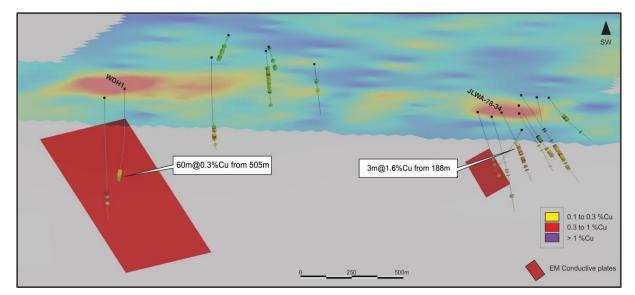



Figure 4: Woodlands 3D view looking south west of EM anomalies at surface, EM conductive plates and historic drill holes



# About Abra

Abra is a world class lead-silver-copper-gold-zinc deposit, wholly owned by Galena on a granted mining licence and located in the Gascoyne region of Western Australia. The sediment hosted polymetallic deposit is broadly zoned into an upper level of lead+silver overlying copper+gold mineralisation. Abra is located approximately 110km from Sandfire Resources high-grade Degrussa copper mine, is well serviced by infrastructure and located approximately halfway between Mt Newman and Meekatharra (see Figure 5).

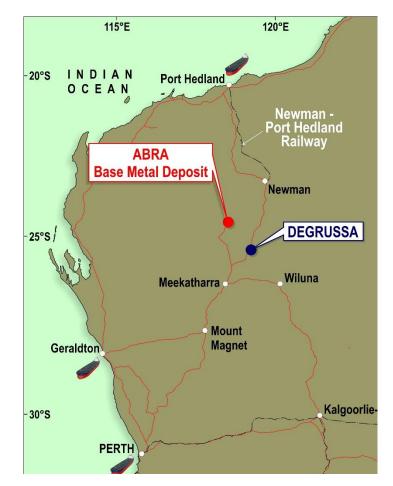



Figure 5: Abra Project location

For more information visit <u>www.galenamining.com.au</u>

## Contact

Ed Turner CEO Galena Mining Limited <u>eturner@galenamining.com.au</u> 08 6166 3750



#### **Competent Person Statement**

The information in this report related to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr E Turner B.App Sc, MAIG, and Mr A Byass, B.Sc Hons (Geol), B.Econ, FSEG, MAIG both an employee and a Director of Galena Mining Limited. Mr Turner and Byass have sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Targets, Mineral Resources and Ore Reserves. Mr Turner and Mr Byass consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

#### APPENDIX 1: JORC Code, 2012 Edition – Table 1

#### Section 1: Sampling Techniques and Data

| Criteria            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | • Nature and quality of sampling<br>(eg cut channels, random chips, or<br>specific specialised industry standard<br>measurement tools appropriate to<br>the minerals under investigation,<br>such as down hole gamma sondes, or<br>handheld XRF instruments, etc).<br>These examples should not be taken<br>as limiting the broad meaning of<br>sampling.                                                                                                                                                             | Mineralised intervals in Woodlands and Quartzite Well were drilled with NQ<br>diamond core and sampled by cutting the core with a diamond saw and the<br>half core submitted for assay. Manganese Range was drilled in 1977<br>(Diamond), 1989 (RC) and 1997 (RC). No details are available for RC sampling<br>methods.                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | • Include reference to measures<br>taken to ensure sample representivity<br>and the appropriate calibration of<br>any measurement tools or systems<br>used.                                                                                                                                                                                                                                                                                                                                                           | Core sample intervals varied from 0.4m in the mineralised area up to 8m in<br>the unmineralised section. The intervals were chosen depending on<br>geological intervals with the vast majority 2m in length. Sampling is<br>continuous throughout the mineralised intervals with no gaps.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | • Aspects of the determination of mineralisation that are Material to the Public Report.                                                                                                                                                                                                                                                                                                                                                                                                                              | The majority of the holes were integrally sampled with wider intervals out of the visible mineralisation and alteration areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sampling techniques |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | • In cases where 'industry<br>standard' work has been done this<br>would be relatively simple (eg<br>'reverse circulation drilling was used<br>to obtain 1 m samples from which 3<br>kg was pulverised to produce a 30 g<br>charge for fire assay'). In other cases<br>more explanation may be required,<br>such as where there is coarse gold<br>that has inherent sampling problems.<br>Unusual commodities or<br>mineralisation types (eg submarine<br>nodules) may warrant disclosure of<br>detailed information. | No core photography has been recorded but the majority of the core remains<br>on site.<br>Samples are taken according to geological controls on mineralisation. This<br>includes larger sample intervals representative of the wide mineralised<br>intervals. RC samples were taken on $1m - 4m$ intervals but further details are<br>not available relating to size of sample submitted to the laboratory.<br>All aspects of the determination of mineralisation are described in this table,<br>but of particular materiality to this Public report is the high quality and<br>completeness of core.<br>The core sampling method is considered appropriate for the Woodlands and<br>Quartzite Well mineralisation. |



| Criteria                | JORC Code explanation                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling techniques     | <ul> <li>Drill type (eg core, reverse<br/>circulation, open-hole hammer,<br/>rotary air blast, auger, Bangka, sonic,<br/>etc) and details (eg core diameter,<br/>triple or standard tube, depth of<br/>diamond tails, face-sampling bit or<br/>other type, whether core is oriented<br/>and if so, by what method, etc).</li> </ul> | Drilling type was HQ, NQ and BQ diamond core at Woodlands, Manganese<br>Range and Quartzite Well and Reverse Circulation at Manganese Range. The<br>diamond drill holes usually included an RC pre-collar.                                                                  |
|                         | • Method of recording and assessing core and chip sample recoveries and results assessed.                                                                                                                                                                                                                                           | Of the data available, the core was measured for recovery and recovery % recorded. Overall recovery was excellent due to the silicified nature of the rock, which resulted in 100% or close to 100% for a majority of the holes. Recovery in RC intervals was not recorded. |
| Drill sample recovery   | • Measures taken to maximise<br>sample recovery and ensure<br>representative nature of the samples.                                                                                                                                                                                                                                 | No additional measures were required during drilling to maximize recovery due to the silicified nature of the host rock and mineralised zones.                                                                                                                              |
|                         | • Whether a relationship exists<br>between sample recovery and grade<br>and whether sample bias may have<br>occurred due to preferential loss/gain<br>of fine/coarse material.                                                                                                                                                      | Sample recovery was excellent within unmineralised and mineralised zones.                                                                                                                                                                                                   |
|                         | • Whether core and chip samples<br>have been geologically and<br>geotechnically logged to a level of<br>detail to support appropriate Mineral<br>Resource estimation, mining studies<br>and metallurgical studies.                                                                                                                  | All cores and chips were logged geologically and only few geotechnical logs<br>have been reported. Mineral Resource estimation, mining studies and<br>metallurgical studies have not yet been considered.                                                                   |
| Logging                 | • Whether logging is qualitative<br>or quantitative in nature. Core (or<br>costean, channel, etc) photography.                                                                                                                                                                                                                      | All logging included lithology, texture, grain size, structure, mineralisation<br>and alteration. Most recent logging includes veining, hardness, fracture<br>density and RQD.                                                                                              |
|                         | • The total length and percentage of the relevant intersections logged.                                                                                                                                                                                                                                                             | Core logging was qualitative and quantitative. Lithological observations were qualitative. All geotechnical observations were quantitative. No core photography was recorded.                                                                                               |
|                         |                                                                                                                                                                                                                                                                                                                                     | 100% of all core which included all mineralised intervals was logged.                                                                                                                                                                                                       |
|                         | • If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                                                                                                                                                                         | All cut core was initially sampled as half core for assaying.                                                                                                                                                                                                               |
|                         | • If non-core, whether riffled, tube<br>sampled, rotary split, etc and<br>whether sampled wet or dry.                                                                                                                                                                                                                               | No information has been recorded for the RC chips sampling methodology.                                                                                                                                                                                                     |
| Sub-sampling techniques | • For all sample types, the nature,<br>quality and appropriateness of the<br>sample preparation technique.                                                                                                                                                                                                                          | No information has been recorded for sample preparation methodology.                                                                                                                                                                                                        |
| and sample preparation  | • Quality control procedures<br>adopted for all sub-sampling stages<br>to maximise representivity of<br>samples.                                                                                                                                                                                                                    | No sub sampling was completed.                                                                                                                                                                                                                                              |
|                         | • Measures taken to ensure that<br>the sampling is representative of the<br>in situ material collected, including<br>for instance results for field<br>duplicate/second-half sampling                                                                                                                                               | No information is available for duplicate sampling. Original sampling<br>intervals are considered to be representative of the in situ material based on<br>the orientation of the drill holes and that the sampling intervals were<br>selected based on the logged geology. |



|          | Criteria                              |  |
|----------|---------------------------------------|--|
| MUO BSD  | Criteria                              |  |
| JEU08JB( | and laboratory tests                  |  |
|          | Verification of sampling and assaying |  |

| Criteria                                      | JORC Code explanation                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | Whether sample sizes are     appropriate to the grain size of the     material being sampled.                                                                                                                                                           | Sample sizes are considered appropriate to the fine – medium grained grain common in the host rocks.                                                                                                                                                                                                                                          |
| )                                             | • The nature, quality and<br>appropriateness of the assaying and<br>laboratory procedures used and<br>whether the technique is considered<br>partial or total.                                                                                          | Assaying was completed using fire assay for Au. Pb, Ag, Cu, Zn, Fe, Mn, Mo<br>and Bi were assayed using 4 acid digest method followed with ICP-OES or<br>ICP-AES finish or with a B/AAS method. Ba and As were analysed using a XRF.<br>These methods are considered appropriate for ore grade analysis and are<br>considered total analysis. |
| Quality of assay data<br>and laboratory tests | • For geophysical tools,<br>spectrometers, handheld XRF<br>instruments, etc, the parameters<br>used in determining the analysis<br>including instrument make and<br>model, reading times, calibrations<br>factors applied and their derivation,<br>etc. | No downhole geophysical data was recorded.                                                                                                                                                                                                                                                                                                    |
|                                               | • Nature of quality control<br>procedures adopted (eg standards,<br>blanks, duplicates, external<br>laboratory checks) and whether<br>acceptable levels of accuracy (ie lack<br>of bias) and precision have been<br>established.                        | No original QAQC information on the intervals has been recorded. Re sample<br>of Woodlands and Quartzite Well has been completed later by Abra Mining<br>and the results have been positively compared with the historic assays.                                                                                                              |
| ]                                             | • The verification of significant intersections by either independent or alternative company personnel.                                                                                                                                                 | All significant intersections were verified by alternative company geologists.                                                                                                                                                                                                                                                                |
|                                               | • The use of twinned holes.                                                                                                                                                                                                                             | No twinned holes were drilled.                                                                                                                                                                                                                                                                                                                |
| Verification of sampling<br>and assaying      | • Documentation of primary data,<br>data entry procedures, data<br>verification, data storage (physical<br>and electronic) protocols.                                                                                                                   | All primary data was firstly recorded on paper and then when computer<br>became of general used the data were recorded in an electronic database. All<br>paper documents were scanned and electronic and paper copies kept.                                                                                                                   |
|                                               | • Discuss any adjustment to assay data.                                                                                                                                                                                                                 | There were no adjustments made to assay data.                                                                                                                                                                                                                                                                                                 |



| Criteria                                                      | JORC Code explanation                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | • Accuracy and quality of surveys<br>used to locate drill holes (collar and<br>down-hole surveys), trenches, mine<br>workings and other locations used in<br>Mineral Resource estimation.                                      | All of the collar have been re surveyed and validate by Abra Mining Limited<br>Geologists. Down hole surveys have been completed every 25 to 50m with a<br>magnetic tool in the diamond holes of Woodlands, Manganese Range and<br>Quartzite Well. No down hole survey has been recorded for Manganese<br>Range RC holes. |
| Location of data points                                       | • Specification of the grid system used.                                                                                                                                                                                       | All data were converted or directly captured in Map Grid of Australia GDA 94, Zone 50.                                                                                                                                                                                                                                    |
|                                                               | • Quality and adequacy of topographic control.                                                                                                                                                                                 | The RL were re-surveyed and validated using a handheld GPS60 which gives us with a satisfactory control over the topography.                                                                                                                                                                                              |
|                                                               | • Data spacing for reporting of<br>Exploration Results.                                                                                                                                                                        | Only a few exploration drill holes have been drilled in Woodlands, Quartzite<br>Well and Manganese Range so spacing is not yet important.                                                                                                                                                                                 |
| Data spacing and distribution                                 | • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | Data spacing is not yet sufficient to establish geological and grade continuity to establish a mineral resource estimate.                                                                                                                                                                                                 |
|                                                               | • Whether sample compositing has been applied.                                                                                                                                                                                 | No sample compositing has been applied.                                                                                                                                                                                                                                                                                   |
|                                                               | • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.                                                                   | The drilling was orientated at different angles to target the interpreted<br>mineralisation orientation however to date it is limited and may have not<br>been drilled at the optimal orientation; more drilling is needed following new<br>geophysical target interpretations.                                           |
| Orientation of data in<br>relation to geological<br>structure | • If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.                   | It is not considered that there is a sampling bias in the majority of the historic drill holes.                                                                                                                                                                                                                           |
| Sample security                                               | • The measures taken to ensure sample security.                                                                                                                                                                                | All sampled core have been transmitted from site to Perth assay laboratories either by company personnel or by courier. All remaining core is stored on site.                                                                                                                                                             |
| Audits or reviews                                             | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                        | No audits have been conducted to date.                                                                                                                                                                                                                                                                                    |

# Section 2: Reporting of Exploration Results



|               | Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                   |
|---------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference<br/>name/number, location<br/>and ownership including<br/>agreements or material<br/>issues with third parties<br/>such as joint ventures,<br/>partnerships, overriding<br/>royalties, native title<br/>interests, historical sites,<br/>wilderness or national<br/>park and environmental<br/>settings.</li> <li>The security of the<br/>tenure held at the time of<br/>reporting along with any</li> </ul> | Galena Mining<br>E52/1413 and<br>Within the adj                                                                                                                                                                                                                                                                                                              |
| $\mathcal{D}$ |                                                  | known impediments to<br>obtaining a licence to<br>operate in the area.                                                                                                                                                                                                                                                                                                                                                                | All tenements<br>in place. No m                                                                                                                                                                                                                                                                                                                              |
|               | Exploration done<br>by other parties             | • Acknowledgment<br>and appraisal of<br>exploration by other<br>parties.                                                                                                                                                                                                                                                                                                                                                              | Historic explor<br>the Bangemall<br>Mt Isa region a<br>phase of explo<br>geophysical pr<br>Subsequent ex<br>detection and<br>testing. In 198<br>2018 resource<br>Manganese Ra<br>base metal, co<br>took over the<br>mineralisation<br>drilling in 2006<br>Project. MMG<br>the project has<br>Further extens<br>completed wit<br>geochemical a<br>discovered. |
|               | Geology                                          | <ul> <li>Deposit type,<br/>geological setting and<br/>style of mineralisation.</li> </ul>                                                                                                                                                                                                                                                                                                                                             | The exploratio<br>lies within sed<br>within the Abr<br>sulphides asso<br>mineralisation<br>to the upper ze<br>silver.                                                                                                                                                                                                                                        |
|               |                                                  | • A summary of all<br>information material to<br>the understanding of the                                                                                                                                                                                                                                                                                                                                                             | The survey col<br>surveying was<br>Sample interva                                                                                                                                                                                                                                                                                                            |

| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference<br/>name/number, location<br/>and ownership including<br/>agreements or material<br/>issues with third parties<br/>such as joint ventures,<br/>partnerships, overriding<br/>royalties, native title<br/>interests, historical sites,<br/>wilderness or national<br/>park and environmental<br/>settings.</li> <li>The security of the<br/>tenure held at the time of<br/>reporting along with any<br/>known impediments to<br/>obtaining a licence to<br/>operate in the area.</li> </ul> | Galena Mining holds 100% interest in the Jillawarra Project, consisting of Exploration Lease<br>E52/1413 and E52/3575.<br>Within the adjoining Mulgul Project Galena Mining holds 100% of E52/1455 and M52/0776.<br>All tenements are in good standing and have existing Aboriginal Heritage Access Agreements<br>in place. No mining agreement has been negotiated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Exploration done<br>by other parties             | • Acknowledgment<br>and appraisal of<br>exploration by other<br>parties.                                                                                                                                                                                                                                                                                                                                                                                                                                           | Historic exploration was largely initiated in response to the recognition that the sediments of the Bangemall region and those units hosting large stratiform lead-silver-zinc deposits in the Mt Isa region are similar in geology and age. This recognition provided the basis for the initial phase of exploration by Amoco during the 1970s, and was accompanied by geochemical and geophysical prospecting in areas where the "prospective" host sequence was exposed. Subsequent exploration during the 1980's, in contrast, was heavily biased towards the detection and testing of magnetic anomalies followed by detailed geochemical and geophysical testing. In 1981 Amoco and Geopeko discovered the Abra deposit, now a known deposit with a 2018 resource estimation. In the meanwhile Amoco and Cyprus were exploring for gold in the Manganese Range. From 1995 the JV between RGC Exploration and North Limited results in base metal, copper and gold exploration around the Jillawarra Project. In 2000 Apex Minerals took over the project and was targeting polymetallic iron oxide copper gold (IOCG) style mineralisation. Then in 2005 the project was sold to Abra Mining Limited (AML) which resumes drilling in 2006 until 2015 when they entered in JV with MMG Exploration for the Jillawarra Project. MMG drilled few targets in the following year but due to head company reorganisation the project has been sold to Galena Mining in 2017. |
| Geology                                          | • Deposit type,<br>geological setting and<br>style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                              | The exploration in the Jilawarra Project targets an Abra style mineralisation. The Abra deposit lies within sediments of the Proterozoic Edmund Group. There are two styles of mineralisation within the Abra deposit; the upper mineralisation is strata-bound massive and disseminated sulphides associated with lead and silver mineralisation (dominantly galena), and the lower mineralisation consists of sulphide-rich hydrothermal veins that transported the mineralisation to the upper zone. This zone contains the copper and gold mineralisation as well as lead and silver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Drill hole<br>Information                        | • A summary of all<br>information material to<br>the understanding of the<br>exploration results<br>including a tabulation of<br>the following information                                                                                                                                                                                                                                                                                                                                                         | The survey collar, survey method, depth, drill method and downhole surveys follow. Downhole surveying was done with a magnetic tool.         Sample intervals were between 0.4m and 8m with the vast majority being 1 to 2m in length.         Dataset: 46-40 and Leader18 prospects are part of the regional Woodlands Area (Woodlands).         Dataset: Hole_ID       Hole_       Max       Orig_       Orig_       Orig_       Orig_       Orig_       Orig_       RL_Survey_       RL_Survey_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                  | for all Material drill holes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type Depth Grid_ID East North Ong_na Method Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



|                       | Criteria | JORC Code explanation                                  |
|-----------------------|----------|--------------------------------------------------------|
|                       |          | o easting and northing of the drill hole collar        |
|                       |          | o elevation or RL                                      |
|                       |          | (Reduced Level –                                       |
|                       |          | elevation above sea leve<br>in metres) of the drill ho |
|                       |          | collar                                                 |
|                       |          | <ul> <li>o dip and azimuth of the hole</li> </ul>      |
|                       |          | o down hole length an                                  |
| $\bigcirc$            |          | interception depth<br>o hole length.                   |
| $\bigcirc$            |          | o noie length.                                         |
|                       |          |                                                        |
| (QD)                  |          |                                                        |
|                       |          |                                                        |
| (())                  |          |                                                        |
|                       |          |                                                        |
| $\square$             |          |                                                        |
|                       |          |                                                        |
|                       |          |                                                        |
| GDI                   |          |                                                        |
| $(\zeta   U)$         |          |                                                        |
|                       |          |                                                        |
|                       |          |                                                        |
|                       |          | • If the exclusion of                                  |
|                       |          | this information is<br>justified on the basis tha      |
|                       |          | the information is not                                 |
| $(\langle / \rangle)$ |          | Material and this<br>exclusion does not detra          |
| C D                   |          | from the understanding                                 |
|                       |          | of the report, the<br>Competent Person shoul           |
| 65                    |          | clearly explain why this                               |
| UD                    |          | the case.                                              |
| $\bigcirc$            |          |                                                        |
|                       | 1        |                                                        |
| 7                     |          |                                                        |
|                       |          |                                                        |
|                       |          |                                                        |
| $\bigcirc$            |          |                                                        |
| ΠΠ                    |          |                                                        |
|                       |          |                                                        |
|                       |          |                                                        |
|                       |          |                                                        |

| Commen                                                                            |                                                                                                                                                                                                                                                                                                                                        |                                                              | -                                                                                                                     |                                                      | -      |                                                      |                                                          |                                                                                                                                                                   |                                                                    |                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46-40                                                                             | JLWA-76-<br>25                                                                                                                                                                                                                                                                                                                         | DDH                                                          | 327                                                                                                                   | MGA94_50                                             | 611544 | 7275915                                              | 584                                                      | GPS 60                                                                                                                                                            | UNK                                                                |                                                                                                                                                                                                         |
| 46-40                                                                             | JLWA-78-<br>34                                                                                                                                                                                                                                                                                                                         | DDH                                                          | 365                                                                                                                   | MGA94_50                                             | 611582 | 7275825                                              | 579                                                      | GPS 60                                                                                                                                                            | UNK                                                                |                                                                                                                                                                                                         |
| Woodlands                                                                         | WDDD005                                                                                                                                                                                                                                                                                                                                | DDH                                                          | 320.23                                                                                                                | MGA94_50                                             | 610098 | 7274084                                              | 593                                                      | GPS 60                                                                                                                                                            | UNK                                                                |                                                                                                                                                                                                         |
| Leader 18                                                                         | WDH1                                                                                                                                                                                                                                                                                                                                   | DDH                                                          | 650                                                                                                                   | MGA94_50                                             | 612601 | 7274162                                              | 557                                                      | GPS 60                                                                                                                                                            | UNK                                                                |                                                                                                                                                                                                         |
| Manganese<br>Range                                                                | JLWA-77-<br>27                                                                                                                                                                                                                                                                                                                         | DDH                                                          | 402                                                                                                                   | MGA94 50                                             | 639366 | 7272787                                              | 621                                                      | GPS 60                                                                                                                                                            | GPS                                                                |                                                                                                                                                                                                         |
| Manganese<br>Range                                                                | MRC-89-6                                                                                                                                                                                                                                                                                                                               | RC                                                           | 103                                                                                                                   | MGA94_50                                             | 638801 | 7272835                                              | 651                                                      | GPS 60                                                                                                                                                            | GPS                                                                |                                                                                                                                                                                                         |
| Manganese<br>Range                                                                | MRRC004                                                                                                                                                                                                                                                                                                                                | RC                                                           | 197                                                                                                                   | MGA94_50                                             | 637540 | 7272754                                              | 586                                                      | PRJ                                                                                                                                                               | EST                                                                |                                                                                                                                                                                                         |
| Quartzite<br>Well                                                                 | JLWA-75-<br>7                                                                                                                                                                                                                                                                                                                          | DDH                                                          | 209.86                                                                                                                | MGA94_50                                             | 636523 | 7273640                                              | 622                                                      | GPS 60                                                                                                                                                            | UNK                                                                |                                                                                                                                                                                                         |
| Quartzite<br>Well                                                                 | JLWA-76-<br>10                                                                                                                                                                                                                                                                                                                         | DDH                                                          | 162                                                                                                                   | MGA94_50                                             | 636599 | 7273665                                              | 621                                                      | GPS 60                                                                                                                                                            | UNK                                                                |                                                                                                                                                                                                         |
| wen                                                                               | 10                                                                                                                                                                                                                                                                                                                                     |                                                              |                                                                                                                       |                                                      |        | <u>                                     </u>         |                                                          |                                                                                                                                                                   |                                                                    |                                                                                                                                                                                                         |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                              |                                                                                                                       |                                                      |        |                                                      |                                                          |                                                                                                                                                                   |                                                                    |                                                                                                                                                                                                         |
| Dat                                                                               | aSet                                                                                                                                                                                                                                                                                                                                   |                                                              | ile_ID                                                                                                                | Depth                                                | DHSu   | rvey_Metho                                           |                                                          |                                                                                                                                                                   | g_Azimuth                                                          | _                                                                                                                                                                                                       |
| <b>Dat</b><br>46                                                                  | aSet                                                                                                                                                                                                                                                                                                                                   |                                                              | <b>ile_ID</b><br>4-76-25                                                                                              | 0                                                    | DHSu   | i <b>rvey_Metho</b><br>UNK                           | d Dij<br>-60                                             |                                                                                                                                                                   | <mark>g_Azimuth</mark><br>337                                      |                                                                                                                                                                                                         |
| <b>Dat</b><br>46<br>46                                                            | <b>aSet</b><br>-40<br>-40                                                                                                                                                                                                                                                                                                              | JLWA                                                         | _                                                                                                                     |                                                      | DHSu   |                                                      |                                                          | )                                                                                                                                                                 |                                                                    | 1976                                                                                                                                                                                                    |
| <b>Dat</b><br>46<br>46                                                            | aSet                                                                                                                                                                                                                                                                                                                                   | JLW#                                                         | 4-76-25                                                                                                               | 0                                                    | DHSu   | UNK                                                  | -60                                                      | 2                                                                                                                                                                 | 337                                                                | 1976<br>1976                                                                                                                                                                                            |
| <b>Dat</b><br>46<br>46<br>46                                                      | <b>aSet</b><br>-40<br>-40                                                                                                                                                                                                                                                                                                              | JLWA<br>JLWA                                                 | 4-76-25<br>4-76-25                                                                                                    | 0                                                    | DHSu   | UNK                                                  | -60                                                      | 2<br>3                                                                                                                                                            | 337<br>337                                                         | 1976<br>1976<br>1976                                                                                                                                                                                    |
| Dat<br>46<br>46<br>46<br>46                                                       | <b>aSet</b><br>-40<br>-40<br>-40                                                                                                                                                                                                                                                                                                       | JLWA<br>JLWA<br>JLWA                                         | 4-76-25<br>4-76-25<br>4-76-25                                                                                         | 0<br>50<br>100                                       | DHSu   | UNK<br>UNK<br>UNK                                    | -60<br>-52<br>-52                                        | 2<br>2<br>3                                                                                                                                                       | 337<br>337<br>337<br>337                                           | 1976<br>1976<br>1976<br>1976                                                                                                                                                                            |
| Dat<br>46<br>46<br>46<br>46<br>46                                                 | <b>aSet</b> 40<br>-40<br>-40<br>-40<br>-40                                                                                                                                                                                                                                                                                             | JLWA<br>JLWA<br>JLWA                                         | A-76-25<br>A-76-25<br>A-76-25<br>A-76-25                                                                              | 0<br>50<br>100<br>175                                | DHSu   | UNK<br>UNK<br>UNK<br>UNK                             | -6(<br>-5;<br>-5;                                        | 2<br>2<br>3<br>1<br>9                                                                                                                                             | 337<br>337<br>337<br>337<br>337                                    | 1976<br>1976<br>1976<br>1976<br>1976                                                                                                                                                                    |
| Dat<br>46<br>46<br>46<br>46<br>46<br>46                                           | aSet                                                                                                                                                                                                                                                                                                                                   | JLW/<br>JLW/<br>JLW/<br>JLW/                                 | A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25                                                                   | 0<br>50<br>100<br>175<br>250                         | DHSu   | UNK<br>UNK<br>UNK<br>UNK<br>UNK                      | -6(<br>-5;<br>-5;<br>-5;<br>-5;                          | 0     1       1     1       5     1                                                                                                                               | 337<br>337<br>337<br>337<br>337<br>337<br>337                      | 1976<br>1976<br>1976<br>1976<br>1976<br>1976                                                                                                                                                            |
| Dat<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46                         | aSet         I           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -                                                                                                                                                                         | JLWA<br>JLWA<br>JLWA                                         | A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25                                                        | 0<br>50<br>100<br>175<br>250<br>300                  |        | UNK<br>UNK<br>UNK<br>UNK<br>UNK                      | -60<br>-52<br>-52<br>-52<br>-52<br>-52<br>-56            | 2<br>2<br>3<br>1<br>5<br>5                                                                                                                                        | 337<br>337<br>337<br>337<br>337<br>337<br>337<br>337               | 1976<br>1976<br>1976<br>1976<br>1976<br>1976<br>1976                                                                                                                                                    |
| Dat<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46                         | aSet         I           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -                                                                                                                         | JLWA<br>JLWA<br>JLWA<br>JLWA                                 | A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-78-34                                  | 0<br>50<br>100<br>175<br>250<br>300<br>0             | DHSu   | UNK<br>UNK<br>UNK<br>UNK<br>UNK<br>UNK<br>MAG        | -60<br>-52<br>-53<br>-55<br>-56<br>-56                   | )     )       2     )       3     )       1     )       5     )       5     )                                                                                     | 337<br>337<br>337<br>337<br>337<br>337<br>337<br>337<br>337        | SYea           1976           1976           1976           1976           1976           1976           1976           1976           1976           1976           1976           1978           1978 |
| Dat<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46             | aSet         I           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -           -40         -           -40         - | JLWA<br>JLWA<br>JLWA<br>JLWA<br>JLWA<br>JLWA<br>JLWA         | A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-78-34<br>A-78-34                       | 0<br>50<br>100<br>175<br>250<br>300<br>0<br>40       | DHSu   | UNK<br>UNK<br>UNK<br>UNK<br>UNK<br>MAG<br>MAG        | -60<br>-52<br>-53<br>-55<br>-55<br>-56<br>-58            | )     )       2     )       3     )       1     )       5     )       5     )       5     )       5     )                                                         | 337<br>337<br>337<br>337<br>337<br>337<br>337<br>337<br>337<br>337 | 1976<br>1976<br>1976<br>1976<br>1976<br>1976<br>1977<br>1978                                                                                                                                            |
| Dat<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | aSet                                                                                                                                                                                                                                                                                                                                   | JLWA<br>JLWA<br>JLWA<br>JLWA<br>JLWA<br>JLWA<br>JLWA<br>JLWA | A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-76-25<br>A-78-34<br>A-78-34<br>A-78-34<br>A-78-34 | 0<br>50<br>100<br>175<br>250<br>300<br>0<br>40<br>84 |        | UNK<br>UNK<br>UNK<br>UNK<br>UNK<br>MAG<br>MAG<br>MAG | 60<br>53<br>53<br>54<br>54<br>54<br>54<br>58<br>58<br>61 | )     )       2     )       3     )       1     )       5     )       5     )       5     )       5     )       5     )       5     )       5     )       5     ) | 337<br>337<br>337<br>337<br>337<br>337<br>337<br>337<br>337<br>337 | 1976<br>1976<br>1976<br>1976<br>1976<br>1976<br>1978<br>1978<br>1978                                                                                                                                    |

| ion of<br>sisis that<br>not<br>t detract<br>unding<br>n should<br>y this is |
|-----------------------------------------------------------------------------|

| 10 10                  | JLVVA-70-25        | 100        | UNK  | -55          | 557          | 1976         |
|------------------------|--------------------|------------|------|--------------|--------------|--------------|
| 46-40                  | JLWA-76-25         | 175        | UNK  | -51          | 337          | 1976         |
| 46-40                  | JLWA-76-25         | 250        | UNK  | -59          | 337          | 1976         |
| 46-40                  |                    |            |      |              |              |              |
|                        | JLWA-76-25         | 300        | UNK  | -56          | 337          | 1976         |
| 46-40                  | JLWA-78-34         | 0          | MAG  | -55          | 337          | 1978         |
| 46-40                  | JLWA-78-34         | 40         | MAG  | -58.5        | 337          | 1978         |
| 46-40                  | JLWA-78-34         | 84         | MAG  | -61.5        | 337          | 1978         |
| 46-40                  | JLWA-78-34         | 105        | MAG  | -62          | 334          | 1978         |
| 46-40                  | JLWA-78-34         | 129        | MAG  | -62.5        | 313          | 1978         |
| 46-40                  | JLWA-78-34         | 156        | MAG  | -62          | 313          | 1978         |
| 46-40                  | JLWA-78-34         | 185        | MAG  | -62          | 313          | 1978         |
| 46-40                  | JLWA-78-34         | 213        | MAG  | -61.5        | 313          | 1978         |
| 46-40                  | JLWA-78-34         | 233        | MAG  | -61          | 356          | 1978         |
| 46-40                  | JLWA-78-34         | 280        | MAG  | -58.5        | 358          | 1978         |
| 46-40                  | JLWA-78-34         | 330        | MAG  | -56          | 358          | 1978         |
| Woodlands              | JLWA-78-34         | 365        | MAG  | -55<br>-60.8 | 356          | 1978         |
| Woodlands              | WDDD005            | 54         | UNK  | -58.3        | 184          | 1996<br>1996 |
|                        | WDDD005            | 102        |      |              | 185.5        |              |
| Woodlands<br>Woodlands | WDDD005            | 157<br>205 | UNK  | -58.5<br>-58 | 187<br>188.5 | 1996         |
| Woodlands              | WDDD005<br>WDDD005 | 205        | UNK  | -58          | 188.5        | 1996<br>1996 |
| Woodlands              | WDDD005            | 304        | UNK  | -57          | 190          | 1996         |
| Leader 18              | WDDD005            | 0          | MAG  | -90          | 0            | 1991         |
| Leader 18              | WDH1               | 35         | MAG  | -88.5        | 197          | 1991         |
| Leader 18              | WDH1               | 62         | MAG  | -82          | 222          | 1991         |
| Leader 18              | WDH1               | 89         | MAG  | -75          | 220          | 1991         |
| Leader 18              | WDH1               | 127.5      | MAG  | -73.5        | 218          | 1991         |
| Leader 18              | WDH1               | 160.5      | MAG  | -72.8        | 217          | 1991         |
| Leader 18              | WDH1               | 190        | MAG  | -70          | 215          | 1991         |
| Leader 18              | WDH1               | 220.5      | MAG  | -86          | 212          | 1991         |
| Leader 18              | WDH1               | 250        | MAG  | -66          | 212          | 1991         |
| Leader 18              | WDH1               | 280        | MAG  | -64.5        | 210          | 1991         |
| Leader 18              | WDH1               | 280.5      | MAG  | -64.5        | 210          | 1991         |
| Leader 18              | WDH1               | 319.5      | MAG  | -62.5        | 208          | 1991         |
| Leader 18              | WDH1               | 349        | MAG  | -60          | 208          | 1991         |
| Leader 18              | WDH1               | 379        | MAG  | -58          | 206          | 1991         |
| Leader 18              | WDH1               | 409        | MAG  | -56          | 206          | 1991         |
| Leader 18              | WDH1               | 439        | MAG  | -54.75       | 208          | 1991         |
| Leader 18              | WDH1               | 476        | MAG  | -54          | 206          | 1991         |
| Leader 18              | WDH1               | 519        | MAG  | -52          | 205.5        | 1991         |
| Leader 18              | WDH1               | 550        | MAG  | -50          | 212          | 1991         |
| Leader 18              | WDH1               | 580        | MAG  | -49.5        | 214          | 1991         |
| Leader 18              | WDH1               | 613        | MAG  | -48          | 206          | 1991         |
| Leader 18              | WDH1               | 649        | MAG  | -46          | 207.5        | 1991         |
| Manganese Range        | JLWA-77-27         | 0          | COLL | -55          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 25         | COLL | -55          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 50         | COLL | -57          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 75         | COLL | -59          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 100        | COLL | -60          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 125        | COLL | -60          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 150        | COLL | -60          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 200        | COLL | -58          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 250        | COLL | -46          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 300        | COLL | -38          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 350        | COLL | -34          | 360          | 1977         |
| Manganese Range        | JLWA-77-27         | 400        | COLL | -31          | 360          | 1977         |
| Manganese Range        | MRC-89-6           | 0          | UNK  | -60          | 360          | 1989         |
| Manganese Range        | MRC-89-6           | 103        | UNK  | -60          | 360          | 1989         |
| Manganese Range        | MRRC004            | 0          | UNK  | -60          | 0            | 1997         |



| Criteria                                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                 |                    |              |               |              |             |        |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|--------------|---------------|--------------|-------------|--------|
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manganese Range                            | MRRC004            | 197          | UNK           | -60          | 0           | 1997   |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-75-7          | 0            | UNK           | -60          | 345         | 1975   |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-75-7          | 25           | UNK           | -59          | 345         | 197    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-75-7          | 50           | UNK           | -53          | 345         | 1975   |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-75-7          | 75           | UNK           | -51.5        | 345         | 197    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-75-7          | 100          | UNK           | -48          | 345         | 197    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-75-7          | 150          | UNK           | -48          | 345         | 197    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-75-7          | 200          | UNK           | -45          | 345         | 197    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-76-10         | 0            | UNK           | -55.5        | 345         | 197    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-76-10         | 30           | UNK           | -52          | 345         | 197    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-76-10         | 60           | UNK           | -47          | 345         | 197    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-76-10         | 90           |               | -47          | 345         | 197    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                    |              | UNK           |              |             |        |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-76-10         | 120          | UNK           | -46          | 345         | 197    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quartzite Well                             | JLWA-76-10         | 160          | UNK           | -41          | 345         | 197    |
| Data                                                                         | <ul> <li>In reporting</li> <li>Exploration Results,</li> <li>weighting averaging</li> <li>techniques, maximum</li> <li>and/or minimum grade</li> <li>truncations (eg cutting of</li> <li>high grades) and cut-off</li> <li>grades are usually</li> <li>Material and should be</li> <li>stated.</li> <li>Where aggregate</li> <li>intercepts incorporate</li> </ul>                                                                                                    | Significant intersect<br>greater than 4m@C |                    | •            |               |              |             | vals   |
| aggregation<br>methods                                                       | short lengths of high<br>grade results and longer<br>lengths of low grade<br>results, the procedure<br>used for such aggregation<br>should be stated and<br>some typical examples of<br>such aggregations should<br>be shown in detail.                                                                                                                                                                                                                               | A maximum interna                          | I dilution interva | l of 2m@ <0. | 1% Pb or Cu w | as applied.  |             |        |
|                                                                              | • The assumptions<br>used for any reporting of<br>metal equivalent values<br>should be clearly stated.                                                                                                                                                                                                                                                                                                                                                                | No metal equivalen                         | t calculations we  | re made.     |               |              |             |        |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | <ul> <li>These relationships<br/>are particularly important<br/>in the reporting of<br/>Exploration Results.</li> <li>If the geometry of<br/>the mineralisation with<br/>respect to the drill hole<br/>angle is known, its nature<br/>should be reported.</li> <li>If it is not known<br/>and only the down hole<br/>lengths are reported,<br/>there should be a clear<br/>statement to this effect<br/>(eg 'down hole length,<br/>true width not known').</li> </ul> | The knowledge of g<br>reported thicknesse  |                    |              | is not known  | enough to b  | e reported  | . All  |
| Diagrams                                                                     | Appropriate maps<br>and sections (with scales)<br>and tabulations of<br>intercepts should be<br>included for any<br>significant discovery<br>being reported These<br>should include, but not be<br>limited to a plan view of<br>drill hole collar locations<br>and appropriate sectional<br>views.                                                                                                                                                                    | A plan showing the holes is included in    |                    | of the Wood  | lands, Mangar | nese Range a | and Quartzi | te Wel |



| Criteria                                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced<br>reporting                    | • Where<br>comprehensive reporting<br>of all Exploration Results<br>is not practicable,<br>representative reporting<br>of both low and high<br>grades and/or widths<br>should be practiced to<br>avoid misleading<br>reporting of Exploration<br>Results.                                                                                                                                                                                  | The quantity of drill results is limited given there are only nine holes being reported on. It is considered that this reporting is balanced and representative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Other<br>substantive<br>exploration data | • Other exploration<br>data, if meaningful and<br>material, should be<br>reported including (but<br>not limited to): geological<br>observations; geophysical<br>survey results;<br>geochemical survey<br>results; bulk samples –<br>size and method of<br>treatment; metallurgical<br>test results; bulk density,<br>groundwater,<br>geotechnical and rock<br>characteristics; potential<br>deleterious or<br>contaminating<br>substances. | Other historic exploration drilling data has been previously announced by AML and is also summarised in the IGR within Galena's Prospectus.<br>In September 2017 Galena commissioned New Resolution Geophysics (NRG <sup>™</sup> ) Australia to carry out a high-resolution helicopter hosted airborne electromagnetic (EM) survey over the Woodlands, Quartzite Well and Manganese Range Well Prospects. The airborne EM data were acquired using the Xcite <sup>™</sup> system. At the Woodlands Prospect, ten Xcite <sup>™</sup> survey traverses were carried out to follow up historic moving loop EM (MLEM) responses and anomalous VTEM <sub>MAD</sub> target areas. Survey flight lines were carried out using a NE-SE, NW-SE and N-S orientation Xcite <sup>™</sup> survey lines at the Mn Range Prospect area were designed by consultant geophysicists Resource Potentials to expand upon helicopter EM surveying carried out in the prospect area in 2014 using the VTEM <sub>MAX</sub> system. Xcite <sup>™</sup> surveying were carried out in the western part of the prospect area using N-S orientated flight lines that were spaced 200 m apart. Results from this survey are described in the text of this announcement. |
| Further work                             | <ul> <li>The nature and<br/>scale of planned further<br/>work (eg tests for lateral<br/>extensions or depth<br/>extensions or large-scale<br/>step-out drilling).</li> <li>Diagrams clearly<br/>highlighting the areas of<br/>possible extensions,<br/>including the main<br/>geological interpretations<br/>and future drilling areas,<br/>provided this information<br/>is not commercially<br/>sensitive.</li> </ul>                    | Future work is still in the process of being planned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |