

**LIMITED** ACN 076 390 451

22 Lindsay Street PERTH, WA Australia Tel: +61 8 9200 3467 Fax: +61 8 9227 6390

# Contact:

Mark Sumner E: <u>info@valorresources.com.au</u>

🕥 @valorresources

## **Directors:**

Mark Sumner Brian McMaster Nicholas Lindsay Paula Smith

Company Secretary: Paula Smith

**Ordinary Shares:** 1,457,524,358

# **Options:**

86,333,333 (\$0.045 - 04/12/2019) 25,000,000 (\$0.02 - 31/12/2018) 133,333,334 (\$0.004 - 15/12/2018)

# Corona Delivers Excellent Copper-Silver Sampling Results

- Corona deposit located within the Berenguela concessions, continues to increase the potential resource base
- Outcropping copper and silver mineralisation present at Corona, further extend the strike of the "Berenguela-Style" mineralisation.
- Silver values exceeding 500 g/t Ag present at surface within Corona.
- Corona's potential as an important mineralised sector within the Berenguela project is highlighted by recent announcement of elevated levels of cobalt.

## **Key Sampling Results:**

| Sample<br>No. | Cu (%) | Ag (g/t) |
|---------------|--------|----------|
| 11017         | 1.44   | 136      |
| 11019         | 0.42   | 501      |
| 11022         | 1.08   | 244      |
| 11040         | 1.19   | 72       |
| 11042         | 0.51   | 115      |
| 11055         | 1.70   | 118      |
| 11067         | 1.02   | 162      |
| 11075         | 0.44   | 279      |
|               |        |          |

• Valor remains focused on the development of it's high grade coppersilver deposit at Berenguela, which includes the latest high grade discovery at Corona.

Valor Resources Limited ("VAL" or the "Company") is very pleased to report further high-grade copper and silver mineralisation at surface within the Corona project area. The Corona target sits 1,500m south-west of the Berenguela Central deposit. High concentrations of copper and silver continue to materialise at Corona, further expanding the size of the project area to the west.

#### Management Commentary

Valor Chairman, Mark Sumner said: "The success we are having in the exploration of Corona is completely transforming the Berenguela project. Since VAL took control of the project in May of last year, Resources at Berenguela have increased by over 80% and the discovery of Corona has increased the area of interest by two times. As we continue our efforts at Corona, it is becoming clear that the copper and silver mineralised system at surface extends much further west than we originally anticipated. We will continue the detailed geological mapping exercise, as well as sampling at Corona.

## **Management Commentary Continued:**

We are finding the high-grade copper-silver "Berenguela-Style" mineralisation outcropping across the Corona area, everywhere we go. It's likely we will continue to test the Corona target all the way to our property boundary.

The Company is also taking important steps towards commercialisation of the project as we approach commencement of PFS in June/July of this year. We have seen a lot of interest from globally recognised copper and silver off-take partners. These discussions are ongoing and we expect the results to provide significant support to the scoping study process and into PFS. The scoping study is now being complete in conjunction with these discussions and we expect to release the results in the coming weeks."

## **Corona Sampling Program Overview**

The expanded sampling campaign at Corona is intended to continue testing for high grade, Berenguela-style copper and silver mineralisation across the Corona area. Results from the sampling program at Corona continue to extend the total area of interest in the Corona prospect. A JORC compliant Exploration Target is currently being calculated for the Corona area, as the Company continues to plan its upcoming drill program. The Company's field program at Corona is ongoing with active geological mapping, as well as further surface sampling being conducted. The latest results for Corona surface sampling suggests that the Berenguela-style mineralisation continues to expand westward along the strike with numerous samples returning over 1% and 2% Cu and numerous samples returning over 100 g/t Ag and as high as 501 g/t Ag. Over 40% of all samples have returned over 0.50% Cu and over 100 g/t Ag. At this stage, Valor has not yet determined the lateral or vertical extent of the mineralisation within the Corona area, as the target area continues to grow with further sampling and mapping.

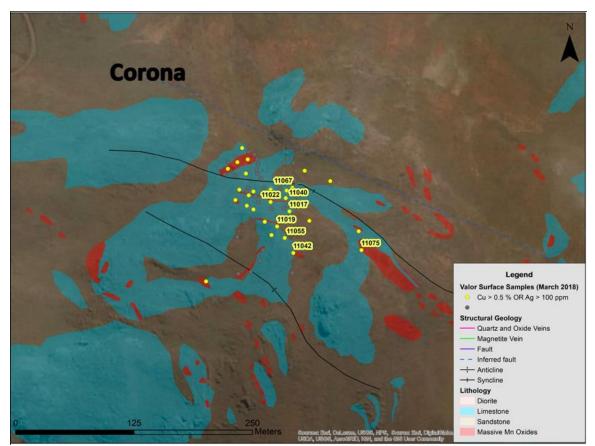



Figure 1. Surface sampling results from the Corona

## **Next Steps**

The Company has expanded the surface sampling campaign in order to delineate a generalized extent of interest at Corona. A detailed geological mapping exercise is underway, along with additional surface sampling moving to the southwest in the Corona area. This will continue to expand drilling potential at Corona in the 2018 campaign, which is scheduled to start in May. A steady stream of assays from ongoing sampling at Corona, extensions to Corona and Berenguela will continue to be reported.



Figure 2. Rock Chip Samples Gathered from Western Corona Target

-ENDS-

## About Valor Resources (www.valorresources.com.au)

Valor Resources ("Valor") is an Australian listed (ASX:VAL) company with copper assets in Peru, one the world's largest producers of base and precious metals. Valor's Berenguela Project consists of nearly 6,600 hectares of concessions in the Puno Department of southern Peru. The Berenguela Project currently has a JORC Resource of 46 million tonnes at 0.77% Cu, 86 g/t Ag, 5.1% Mn and 0.28% Zn, with over 772 million pounds of contained copper and over 127 million ounces of contained silver and significant potential for expansion as only 2.5% of the concession package has been explored. Valor also owns 100% of the Picha copper-silver project in the Moquegua Department of southern Peru.

## **Competent Persons Statement**

The technical information in this release is based on compiled and reviewed data by Mr. Marcelo Batelochi. Mr. Batelochi is an independent consultant with MB Geologia Ltda and is a Chartered Member of AusIMM – The Minerals Institute. Mr. Batelochi has sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Batelochi consents to the inclusion in the report of the matters based on their information in the form and context in which it appears. Mr. Batelochi accepts responsibility for the accuracy of the statements disclosed in this release.

#### Annexure 1: Sample Locations & Full Results

| Sample ID | Este   | Norte   | Cota | Control  |
|-----------|--------|---------|------|----------|
| 11005     | 331258 | 8267296 | 4129 |          |
| 11006     | 331247 | 8267293 | 4133 |          |
| 11007     | 331245 | 8267279 | 4146 |          |
| 11008     | 331214 | 8267167 | 4143 |          |
| 11009     | 331256 | 8267281 | 4145 |          |
| 11011     | 331296 | 8267273 | 4154 |          |
| 11012     | 331317 | 8267200 | 4188 |          |
| 11013     | 331299 | 8267263 | 4159 |          |
| 11014     |        |         |      | STANDARD |
| 11015     | 331289 | 8267234 | 4178 |          |
| 11016     | 331300 | 8267247 | 4174 |          |
| 11017     | 331302 | 8267241 | 4176 |          |
| 11018     | 331283 | 8267216 | 4182 |          |
| 11019     | 331289 | 8267225 | 4179 |          |
| 11020     | 331283 | 8267244 | 4173 |          |
| 11021     | 331309 | 8267246 | 4176 |          |
| 11022     | 331282 | 8267251 | 4172 |          |
| 11024     |        |         |      | BLANK    |
| 11028     | 331237 | 8267286 | 4143 |          |
| 11029     | 331249 | 8267264 | 4151 |          |
| 11032     | 331282 | 8267263 | 4164 |          |
| 11033     | 331257 | 8267247 | 4164 |          |
| 11034     |        |         |      | STANDARD |
| 11035     | 331247 | 8267214 | 4166 |          |
| 11036     | 331309 | 8267251 | 4168 |          |
| 11038     | 331319 | 8267248 | 4170 |          |
| 11039     | 331310 | 8267247 | 4170 |          |
| 11040     | 331298 | 8267255 | 4170 |          |
| 11041     | 331375 | 8267220 | 4187 |          |
| 11042     | 331306 | 8267197 | 4186 |          |
| 11045     | 331268 | 8267281 | 4145 |          |
| 11047     | 331266 | 8267257 | 4163 |          |
| 11048     | 331264 | 8267262 | 4160 |          |
| 11049     | 331237 | 8267293 | 4146 |          |
| 11050     | 331296 | 8267292 | 4149 |          |
| 11051     | 331345 | 8267273 | 4167 |          |
| 11052     | 331316 | 8267218 | 4177 |          |
| 11053     | 331300 | 8267297 | 4149 |          |
| 11054     |        |         |      | STANDARD |
| 11055     | 331297 | 8267213 | 4177 |          |
| 11056     | 331248 | 8267175 | 4157 |          |

| 1     |        |         |      |           |
|-------|--------|---------|------|-----------|
| 11057 | 331261 | 8267177 | 4162 |           |
| 11058 | 331296 | 8267244 | 4174 |           |
| 11060 | 331318 | 8267284 | 4159 |           |
| 11061 | 331276 | 8267230 | 4172 |           |
| 11062 | 331297 | 8267228 | 4174 |           |
| 11063 | 331308 | 8267234 | 4172 |           |
| 11064 |        |         |      | BLANK     |
| 11065 | 331323 | 8267231 | 4178 |           |
| 11066 | 331309 | 8267269 | 4160 |           |
| 11067 | 331305 | 8267266 | 4158 |           |
| 11069 | 331245 | 8267253 | 4156 |           |
| 11070 | 331275 | 8267266 | 4161 |           |
| 11071 | 331304 | 8267217 | 4176 |           |
| 11074 |        |         |      | STANDARD  |
| 11075 | 331378 | 8267200 | 4190 |           |
| 11076 | 331282 | 8267264 | 4158 |           |
| 11077 | 331310 | 8267256 | 4167 |           |
| 11079 | 331252 | 8267308 | 4138 |           |
| 11083 | 331259 | 8267258 | 4160 |           |
| 11084 |        |         |      | DUPLICATE |
| 11085 | 331257 | 8267262 | 4157 |           |
| 11087 | 331264 | 8267243 | 4166 |           |

# Full Sampling Results

| El            |      | <b>A</b> | •      |        | •      |     |       |    | -  |       |
|---------------|------|----------|--------|--------|--------|-----|-------|----|----|-------|
| Element       | Ag   | Со       | Cu     | Mn     | Zn     | Ag  | Cu    | Pb | Zn | Mn    |
| Unit          | PPM  | PPM      | PPM    | PPM    | PPM    | G/T | %     | %  | %  | %     |
| Sample Number |      |          |        |        |        |     |       |    |    |       |
| 11005         | 48.1 | 98       | >10000 | >10000 | 3788.6 |     | 1.046 |    |    | 14.78 |
| 11006         | 39.8 | 51       | 9254.3 | >10000 | 2045   |     |       |    |    | 8.01  |
| 11007         | 20.2 | 63       | 4861.1 | >10000 | 3364   |     |       |    |    | 11.77 |
| 11008         | 71.9 | 35       | 7934.2 | >10000 | 3033.1 |     |       |    |    | 7.2   |
| 11009         | 31.7 | 50       | 7403   | >10000 | 2996.2 |     |       |    |    | 6.78  |
| 11011         | 17.8 | 69       | 4598.8 | >10000 | 1606.8 |     |       |    |    | 9.6   |
| 11012         | 5.3  | 3        | 1198   | 4023   | 225.4  |     |       |    |    |       |
| 11013         | 62.5 | 42       | 9198   | >10000 | 1512.6 |     |       |    |    | 6.38  |
| 11014         | 51.5 | 20       | 4517.5 | 499    | 2738   |     |       |    |    |       |
| 11015         | 27.5 | 11       | 2428.3 | >10000 | 758    |     |       |    |    | 1.74  |
| 11016         | 47.6 | 21       | 1703.6 | >10000 | 1259.6 |     |       |    |    | 3.05  |
| 11017         | >100 | 28       | >10000 | >10000 | 2275.8 | 136 | 1.435 |    |    | 4.66  |
| 11018         | >100 | 80       | 2383.1 | >10000 | 3120.6 | 163 |       |    |    | 15.37 |
| 11019         | >100 | 50       | 4193.7 | >10000 | 2495   | 501 |       |    |    | 14.58 |
| 11020         | 85.8 | 26       | 3660   | >10000 | 1338   |     |       |    |    | 4.78  |
| 11021         | 66.5 | 75       | 2216.4 | >10000 | 6786.3 |     |       |    |    | 10.63 |
| 11022         | >100 | 72       | >10000 | >10000 | 4037.3 | 244 | 1.077 |    |    | 9.52  |
| 11024         | <0.2 | <1       | 2.2    | 516    | 21.2   |     |       |    |    |       |

| <b></b> |      |    |        |        |        |     |       |      |      |       |
|---------|------|----|--------|--------|--------|-----|-------|------|------|-------|
| 11028   | 10.6 | 88 | 6113.3 | >10000 | 2946.1 |     |       |      |      | 10.72 |
| 11029   | 36.6 | 30 | 7172   | >10000 | 1716.3 |     |       |      |      | 4.15  |
| 11032   | 3.8  | 29 | 635.4  | >10000 | 1304.8 |     |       |      |      | 4.93  |
| 11033   | 65   | 24 | 9504.8 | >10000 | 678.9  |     |       |      |      | 4.35  |
| 11034   | 60.3 | 90 | >10000 | 678    | >10000 |     | 1.379 | 1.64 | 6.87 |       |
| 11035   | 2.1  | <1 | 141    | 2121   | 54.1   |     |       |      |      |       |
| 11036   | 73.6 | 31 | 4590.4 | >10000 | 1082.8 |     |       |      |      | 4.56  |
| 11038   | 27.2 | 56 | 5916.2 | >10000 | 1618.2 |     |       |      |      | 7.29  |
| 11039   | 35   | 76 | 6385.9 | >10000 | 1616.7 |     |       |      |      | 9.12  |
| 11040   | 72   | 19 | >10000 | >10000 | 725    |     | 1.191 |      |      | 2.73  |
| 11041   | 51.8 | 24 | 5581.6 | >10000 | 2144.3 |     |       |      |      | 4.59  |
| 11042   | >100 | 93 | 5096.3 | >10000 | 4656.4 | 115 |       |      |      | 19.01 |
| 11045   | 19.7 | 94 | 2009.1 | >10000 | 4144.5 |     |       |      |      | 16.24 |
| 11047   | 30.6 | 32 | 2860.5 | >10000 | 2858.4 |     |       |      |      | 6.36  |
| 11048   | 31.6 | 63 | 7077.1 | >10000 | 4553.1 |     |       |      |      | 10.18 |
| 11049   | 3.2  | 94 | 2837.5 | >10000 | 4355.1 |     |       |      |      | 16.7  |
| 11050   | 23.9 | 34 | 3253.7 | >10000 | 1226   |     |       |      |      | 5.61  |
| 11051   | 40.8 | 23 | 5923.6 | >10000 | 758    |     |       |      |      | 3.72  |
| 11052   | 4.7  | 2  | 616.6  | 9055   | 149    |     |       |      |      |       |
| 11053   | 33.7 | 27 | 4610.8 | >10000 | 1006.1 |     |       |      |      | 4.56  |
| 11054   | >100 | 22 | >10000 | 4762   | >10000 | 416 | 1.846 | 4.24 | 1.08 |       |
| 11055   | >100 | 37 | >10000 | >10000 | 1767.1 | 118 | 1.696 |      |      | 7.56  |
| 11056   | 55.2 | 36 | 4962.5 | >10000 | 1616.4 |     |       |      |      | 6.03  |
| 11057   | 46.1 | 74 | 3998.4 | >10000 | 3519.2 |     |       |      |      | 12.82 |
| 11058   | 46.6 | 18 | 3490.8 | >10000 | 1362.8 |     |       |      |      | 3.63  |
| 11060   | 66.8 | 75 | 5379.8 | >10000 | 2090.3 |     |       |      |      | 10.33 |
| 11061   | >100 | 25 | 7344.3 | >10000 | 1640.8 | 105 |       |      |      | 5.9   |
| 11062   | 21.8 | 9  | 2366.7 | 8860   | 526.4  |     |       |      |      |       |
| 11063   | >100 | 12 | 8034.7 | >10000 | 801.5  | 183 |       |      |      | 2.1   |
| 11064   | <0.2 | <1 | 2.6    | 611    | 23     |     |       |      |      |       |
| 11065   | 47   | 11 | 5822.3 | >10000 | 1111.4 |     |       |      |      | 2.56  |
| 11066   | 97.1 | 44 | 1865.3 | >10000 | 1950.8 |     |       |      |      | 7.08  |
| 11067   | >100 | 67 | >10000 | >10000 | 2240.7 | 162 | 1.022 |      |      | 9.66  |
| 11069   | 91.3 | 43 | 7942.1 | >10000 | 1506.4 |     |       |      |      | 6.93  |
| 11070   | 4.5  | 29 | 752.2  | >10000 | 1306.8 |     |       |      |      | 4.93  |
| 11071   | 2.2  | 1  | 414.7  | 5653   | 110.2  |     |       |      |      |       |
| 11074   | 58.8 | 91 | >10000 | 710    | >10000 |     | 1.345 | 1.6  | 6.85 |       |
| 11075   | >100 | 54 | 4381.9 | >10000 | 4376.5 | 279 |       |      |      | 10.15 |
| 11076   | 73.9 | 97 | 5209.7 | >10000 | 5086.2 |     |       |      |      | 13.76 |
| 11077   | 29.8 | 15 | 3806.4 | >10000 | 406.4  |     |       |      |      | 2.01  |
| 11079   | 44.4 | 85 | 5757.2 | >10000 | 4000.2 |     |       |      |      | 11.47 |
| 11083   | 39   | 14 | 6579.6 | >10000 | 977.7  |     |       |      |      | 3.01  |
| 11084   | 36.2 | 15 | 7490.8 | >10000 | 1068.8 |     |       |      |      | 3.31  |
| 11085   | 19.4 | 51 | 3350.4 | >10000 | 3242.3 |     |       |      |      | 9.68  |
| 11087   | >100 | 95 | 7091.2 | >10000 | 3295.1 | 113 |       |      |      | 18.51 |

# The Following Table and Sections are provided to ensure compliance with JORC Code (2012 Edition)

## TABLE 1 – Section 1: Sampling Techniques and Data

Note: Information from NI 43-101 report performed by James A. McCrea, audited and revised by Marcelo A. Batelochi (MAusimm – CP)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>In the Berenguela Deposit are 318 drill holes, 33,795.9 meters drilled, collected 30,525 assays and 1,462 density determination.         Provide acc is a stress of the stress of the</li></ul> |
| Drilling<br>techniques | • Drill type (eg core, reverse circulation, open-<br>hole hammer, rotary air blast, auger,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • Two drill programs were run almost back to back, one in the late fall of 2004 and the second ran from March 1st after the rains decreased and ended in early May 2005.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Criteria                                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | Bangka, sonic, etc) and details (eg core<br>diameter, triple or standard tube, depth of<br>diamond tails, face-sampling bit or other<br>type, whether core is oriented and if so, by<br>what method, etc).                                                                                                                                                                                                           | <ul> <li>AK Drilling International of Lima was the contractor who performed the drilling for both programs.</li> <li>During the first program fifty seven (57) RC holes were drilled and during the second program one hundred and sixty five (165) RC holes were drilled totalling 222 holes.</li> <li>AK Drilling used a 4x4 buggy mounted RC drill accompanied by a 4x4 support and water truck. The contractor typically had 3 personnel on the drill rig on each 12 hour shift, a driller and two helpers. None of their personnel helped with the sampling however they would assist SSR samplers at times.</li> <li>2010 and 2015 drill programmes using diamond drilling;</li> <li>2017 Drill program started in July and was performed by AK Drilling International of Lima was the contractor and AK Drilling used a 4x4 buggy mounted RC drill accompanied by a 4x4 support and water truck. The contractor and helped with the sample on the drill rig on each 12 hour shift, a driller and two helpers. None of their personnel helped with the sample on the drill accompanied by AK Drilling International of Lima was the contractor and AK Drilling used a 4x4 buggy mounted RC drill accompanied by a 4x4 support and water truck. The contractor typically had 3 personnel on the drill rig on each 12 hour shift, a driller and two helpers. None of their personnel helped with the sampling however they would assist SSR samplers at times</li> </ul> |
| Drill sample<br>recovery                                    | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                           | <ul> <li>Drilling conditions ranged from difficult to good. Drilling through dry highly manganese replaced limestone was good however clay altered carbonates when wet posed difficult drilling conditions. Where the rock was dry typically in the upper 20-50 meters drilling conditions were good and drilling was done without water. When the rock was wet at depth and clay zones were encountered drilling conditions were difficult. When these conditions were encountered the drillers had to inject water along with additives.</li> <li>During the first part of the first drilling program the drillers had numerous lost intervals. They learned how to drill the property by the end of the first program increasing recoveries and improving penetration rates. They learned that by using additives along with water and a face sampling hammer clay zones could be drilled while still recovering sample. A typical reason why there were zones with no recovery was that clay would clog the hammer and or tubes and the drillers would continue to drill. This usually occurred on night shift when the driller didn't want to take the time to check either the drill rods, tubes leading to the cyclone or the hammer. During the second program when it appeared that there might be clogging they immediately switched to water injection.</li> <li>In the RC drilling campaign 2017 the number of lost intervals was very small.</li> </ul>         |
| Logging                                                     | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul> | <ul> <li>Lithology, alteration, veining, mineralisation and weathering were logged from the RC chips and stored in<br/>Datashed. Chips from selected holes were also placed in chip trays and stored in a designated building at site for<br/>reference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> </ul>                                                                                                                                                                                                                 | <ul> <li>The RC Drill crews collected the samples and the samples were split 3 times, using a Jones Splitter, down to 1/8th size.</li> <li>The sample size ranges from approximately 2 to 10 kilograms. Approximately every 40th sample had a second, field duplicate sample collected.</li> <li>The samples were tagged with the hole number and depth and then sent to the warehouse for further</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Criteria                                               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data<br>and<br>laboratory<br>tests | <ul> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | preparation were personnel prepared the samples for shipment to the assay lab.         Plase Blank Duplicate       Villow Black Test Standards         Villow Black Test Standards         2005 2010         2005 2010         Villow Black Test Standards         Villow Black Te |
| Verification of sampling                               | • The verification of significant intersections by either independent or alternative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Data verification included surface samples to confirm the mineralization at Berenguela.</li> <li>James A. McCrea, in 2005, collected four randomly located surface grab samples (BER-01 to BER-04) from the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and<br>assaying                                                     | <ul> <li>company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                   | <ul> <li>property. Each sample location was surveyed with a GPS. Samples were taken over an area of approximately 1 square meter. Approximately 2 kilograms of material was taken from each sample site. The four samples were taken to represent different areas of the Berenguela Deposit.</li> <li>The author carried out a visual comparison (quick logging and grade checks) between 5 twin diamond drill holes completed in 2015 by Sliver Standard, which showed an excellent correlation between 2004/2005 RC Drilling (used for Mineral Resources Report) and 2015 diamond drilling (new information has been included in this Mineral Resource Evaluation).</li> <li>M. Batelochi collected 100 samples of high grade for checking the precision of high grade values of Copper and Silver.</li> </ul>                                                                                                                             |
| Location of<br>data points                                          | <ul> <li>Accuracy and quality of surveys used to<br/>locate drill holes (collar and down-hole<br/>surveys), trenches, mine workings and other<br/>locations used in Mineral Resource<br/>estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic<br/>control.</li> </ul>                                                                                                      | <ul> <li>Topographic survey was done of the property which included locating all roads, drill holes, claim boundaries, and topographic features in sufficient detail.</li> <li>A local surveyor did the work using a Total Station Laser instrument. Data during the day was loaded into the instrument and downloaded later directly into a computer for plotting.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Data<br>spacing and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> <li>Whether the data spacing and distribution is<br/>sufficient to establish the degree of<br/>geological and grade continuity appropriate<br/>for the Mineral Resource and Ore Reserve<br/>estimation procedure(s) and classifications<br/>applied.</li> <li>Whether sample compositing has been<br/>applied.</li> </ul>                                 | <ul> <li>The RC have been drilled up to a maximum 180 vertical metres below surface on an irregular35 m x 50 m drill pattern.</li> <li>The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred and Indicated Mineral resources under the 2012 JORC code.</li> <li>Drill hole samples have been composited to a nominal half bench composite (2.5 meters height) interval for the resource calculation.</li> <li>The 2017 RC campaign have been drilled up to a maximum 200 vertical metres below surface. The spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Measured Mineral resources under the 2012 JORC code.</li> </ul> |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling<br/>achieves unbiased sampling of possible<br/>structures and the extent to which this is<br/>known, considering the deposit type.</li> <li>If the relationship between the drilling<br/>orientation and the orientation of key<br/>mineralised structures is considered to have<br/>introduced a sampling bias, this should be<br/>assessed and reported if material.</li> </ul> | <ul> <li>The majority of drilling is orientated with a 350 – 20 degree azimuth and 45-50 dip northeast, but there are significant vertical orientated drill holes.</li> <li>Generally intercepts the mineralisation at a reasonable high angle of intersection.</li> <li>The 2017 RC drilling campaign had a minimum dip of 45 degrees</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Criteria           | JORC Code explanation                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                |
|--------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                         | Campaign From Azimuth To Azimuth From Dip To Dip Nb DrillHoles Meters Drilled                                                                                                                                                                                                                                                                             |
|                    |                                                                         | 2005 0 0 -80 -90 96 7,895.6                                                                                                                                                                                                                                                                                                                               |
|                    |                                                                         | 0         14         -45         -60         47         5,215.6           6         10         -43         -44         8         795.0                                                                                                                                                                                                                    |
|                    |                                                                         | 30 45 -45 -50 4 1,009.1                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                         | 90         90         -90         1         600.0           123         123         -45         -45         1         81.0                                                                                                                                                                                                                                |
|                    |                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                     |
|                    |                                                                         | 186 186 -44 -44 1 84.0                                                                                                                                                                                                                                                                                                                                    |
|                    |                                                                         | 210         220         -50         2         648.4           208         208         -43         -43         1         118.0                                                                                                                                                                                                                             |
|                    |                                                                         | 331 331 -45 -45 1 43.0                                                                                                                                                                                                                                                                                                                                    |
|                    |                                                                         | 348         348         -55         -55         1         110.0           2015         0         0         -90         6         612.0                                                                                                                                                                                                                    |
|                    |                                                                         | 69.7 69.7 -45 -45 1 320.0                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                         | 133.7         133.7         -45         -45         1         261.7           179         179         -45         -45         1         255.0                                                                                                                                                                                                             |
|                    |                                                                         | 198.3 198.3 -45 -45 1 225.8                                                                                                                                                                                                                                                                                                                               |
|                    |                                                                         | 241.8         241.8         -44         1         201.2           2017         0         0         -90         3         420.0                                                                                                                                                                                                                            |
|                    |                                                                         | 2017         0         0         -90         3         420.0           0         15         -46         -75         18         2,292.0                                                                                                                                                                                                                    |
|                    |                                                                         | 15 15 -44 -45 4 643.0                                                                                                                                                                                                                                                                                                                                     |
|                    |                                                                         | 50         50         -45         9         990.0           50         50         -44         -45         3         360.0                                                                                                                                                                                                                                 |
|                    |                                                                         | 150 150 -65 1 140.0                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                         | 150         150         -43         -45         3         350.0           195         195         -75         -75         1         80.0                                                                                                                                                                                                                  |
|                    |                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                     |
|                    |                                                                         | 195 195 -43 1 150.0<br>197 197 197 197 197 197 197 197 197 197                                                                                                                                                                                                                                                                                            |
|                    |                                                                         | 215         215         -50         -70         2         220.0           230         230         -44         -45         2         200.0                                                                                                                                                                                                                 |
|                    |                                                                         | 290 290 -61 -61 1 120.0                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                         | 330         330         -45         -66         635.0           330         330         -45         -45         2         235.0                                                                                                                                                                                                                           |
|                    |                                                                         |                                                                                                                                                                                                                                                                                                                                                           |
| Sample<br>security | <ul> <li>The measures taken to ensure sample security.</li> </ul>       | <ul> <li>All samples were stored and preserved in the warehouse in Chorrillos, metropolitan Lima region– Peru, in a dry and ventilated place.</li> <li>In 2017 drilling campaign samples were first stored and preserved at site prior to being sent to Laboratory. After the tests, samples have been stored at Chorrillos warehouse in Lima.</li> </ul> |
| Audits or          | • The results of any audits or reviews of                               | Geology audits and site visit were completed in 2005 by James A. McCrea, P.Geo, independent consultants to                                                                                                                                                                                                                                                |
| reviews            | • The results of any dualts of reviews of sampling techniques and data. | <ul> <li>Geology adults and site visit were completed in 2005 by James A. McCrea, P.Geo, independent consultants to<br/>review sampling procedures and QAQC practices. This visit concluded the sampling to be at an industry<br/>standard, and of sufficient quality to carry out a Mineral Resource Estimation.</li> </ul>                              |
|                    |                                                                         |                                                                                                                                                                                                                                                                                                                                                           |
|                    |                                                                         | • In 2017, this author visited the project and revised the NI-43101 Mineral Resources carried out by James A.                                                                                                                                                                                                                                             |
|                    |                                                                         | McCrea, endorsing his conclusion and recommended an immediate revision of Mineral Resources, updating with the 2011/2015 diamond drilling information and also the geological knowledge, which improved considerably                                                                                                                                      |
|                    |                                                                         | since 2005.                                                                                                                                                                                                                                                                                                                                               |
|                    |                                                                         |                                                                                                                                                                                                                                                                                                                                                           |
|                    |                                                                         | <ul> <li>SOMINBESA staff which are fulltime dedicated to receive the remain chemical analysis of 12 drill holes and</li> </ul>                                                                                                                                                                                                                            |
|                    |                                                                         | consolidate 2017 drilling campaign database including QAQC and update of grade shell domains. This staff in                                                                                                                                                                                                                                               |
|                    |                                                                         | also in charge of validating historical data, searching and organizing on Silver Standard dataroom all relevant                                                                                                                                                                                                                                           |
|                    |                                                                         | information of the project.                                                                                                                                                                                                                                                                                                                               |
|                    |                                                                         | • After the 2017 drilling campaign was finalized and the historical data was consolidated, it was recommended                                                                                                                                                                                                                                             |
|                    |                                                                         | that the Company complete an updated Mineral Resources Estimate, and reporting of Measured Mineral                                                                                                                                                                                                                                                        |
|                    |                                                                         |                                                                                                                                                                                                                                                                                                                                                           |
|                    |                                                                         | Resources for the future feasibility studies of the deposit                                                                                                                                                                                                                                                                                               |
|                    |                                                                         | • SOMINBESA collected 100 samples to carry out duplicate studies to confirm copper and silver values due to the                                                                                                                                                                                                                                           |

# TABLE 1 – Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

# Note: Information from NI-43101 report performed by James A. McCrea, audited and revised by Marcelo A. Batelochi (MAusimm – CP)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The Berenguela Property encompasses approximately 141.33 hectares<br/>situated in the eastern part of the Western Cordilleran of south-central<br/>Peru and consists of two mineral concessions. The Berenguela<br/>concessions are located within the Department of Puno and lie within<br/>Peruvian National Topographic System (NTS) map area Lagunillas, No.<br/>32-U. The centre of the Berenguela concessions is at 15° 40' South<br/>Latitude and 70° 34' West Longitude</li> </ul>                                                                                             |
| Exploration<br>done by other<br>parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>In March of 2004, SSR entered into an option agreement with<br/>SOMINBESA (KCA) to purchase 100% of the silver resources contained<br/>in the Berenguela Project. SSR completed the exploration drill program<br/>in July of 2005 after completing 222 reverse circulation drill holes.</li> <li>In 2017 SSR agrees to a sale of the Berenguela deposit to Valor<br/>Resources, under terms disclosed to the market in February 2017.</li> </ul>                                                                                                                                       |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Based on the distribution and form of the potentially economic bodies<br/>of Mn-Cu-Ag-Zn mineralization within the structurally deformed<br/>limestone formation there is little doubt that Berenguela represents a<br/>type of epigenetic, replacement-type ore deposit (Clark et al., 1990).<br/>Silver- and copper-mineralized veins of quartz and/or carbonate appear<br/>to be a very minor component of the deposit. What is debateable at<br/>Berenguela is whether or not, or to what extent supergene processes<br/>played a role in the formation of the deposit.</li> </ul> |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>More specifically, is the extensive development of manganese oxides<br/>the result of the surface oxidation of hypogene manganiferous<br/>carbonates (manganocalcite and/or rhodochrosite) which had replaced<br/>calcite and dolomite adjacent to fractures in the precursor limestone<br/>and where silver, copper and zinc were deposited as sulphides<br/>synchronous with or subsequent to the Mn-carbonate replacement<br/>event. Or are the Mn- and Fe-oxides the direct metasomatic products of</li> </ul>                                                                     |

| Criteria                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>a hydrothermal system marked by strongly oxidized fluids enriched in Ag, Cu.</li> <li>Considering that the replacement-type ore bodies at Uchucchacua have vertical extents of up to 300 meters, one could presume that good exploration potential still exists at Berenguela for the discovery of hypogene Ag-Cu-Mn mineralization at depths of 150 meters or greater. A possible indication of additional and extensive metasomatic alteration at depth is represented by the thick gypsum zone that has been intersected by several of the deeper holes in the deposit. (Strathern, 1969) While this gypsum may be of sedimentary origin, it could also be explained as forming a well-developed zone of sulphate alteration (perhaps originally occurring as anhydrite) that is related to a high level intrusion which exsolved a large volume of sulphur-rich fluids and/or vapour</li> </ul> |
| Drill hole<br>Information      | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>Drill hole information has not been included due to the large quantity of<br/>information. The SOMIBESA team is organizing this information that are<br/>available in digital basis in the project data room</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Data<br>aggregation<br>methods | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                     | <ul> <li>Drill hole information has not been included due to the large quantity of information. The SOMINBESA team is organizing this information that are available in digital basis in the project data room</li> <li>Report of updated resources in 2017 was done using CuEq using as base of calculus prices from LME, and considering Cu, Ag and Zn. Mn grades were not considered for eCu calculations.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</li> </ul>           | <ul> <li>Since few drill holes completed at Berenguela are longer than 150 m,<br/>there are few accounts of hypogene, sulphide-rich mineralization.<br/>However, this is not to say that such mineralization does not exist in<br/>altered limestones at greater depths.</li> </ul> |
| Diagrams                                                                        | • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                           | • Diagrams, maps and sections have not been included due to the large quantity of information. This information is available in digital basis in the project data room.                                                                                                             |
| Balanced<br>reporting                                                           | • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                                                                   | <ul> <li>Weekly and Monthly reports are not included due to the large quantity<br/>of information. This information is available in digital basis in the project<br/>data room.</li> </ul>                                                                                          |
| Other<br>substantive<br>exploration data                                        | <ul> <li>Other exploration data, if meaningful and material, should be reported<br/>including (but not limited to): geological observations; geophysical survey<br/>results; geochemical survey results; bulk samples – size and method of<br/>treatment; metallurgical test results; bulk density, groundwater,<br/>geotechnical and rock characteristics; potential deleterious or contaminating<br/>substances.</li> </ul> | <ul> <li>Other substantive exploration data information has not been included<br/>due to the large quantity of information. This information is available in<br/>digital basis in the project data room.</li> </ul>                                                                 |
| Further work                                                                    | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                         | <ul> <li>Berenguela deposit remain open at depth and there are other orebodies near the deposit.</li> <li>Is strongly recommended the update of the Mineral Resources, including the consolidated historical dataset and 11 drill holes of 2017 RC Drilling on the lab;</li> </ul>  |

# TABLE 1 – Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section) Note: Information from NI-43101 report performed by James A. McCrea, audited and revised by Marcelo A. Batelochi (MAusimm – CP)

| Criteria                                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Database<br>integrity                     | <ul> <li>Measures taken to ensure that data has not been corrupted<br/>by, for example, transcription or keying errors, between its<br/>initial collection and its use for Mineral Resource estimation<br/>purposes.</li> <li>Data validation procedures used.</li> </ul>                                                                                                                                                                      | <ul> <li>32% of samples in the historical database have been checked against the original raw data with respect to drill collar locations and down-hole surveys, and final drill hole depths. A 100% verification will be complete in January 2018.</li> <li>All data with respect to sample intervals has been (overlaps and duplicate records) have been verified.</li> <li>No issues were identified with the data.</li> </ul>                                                                                                                                                                                      |
| Site visits                               | <ul> <li>Comment on any site visits undertaken by the Competent<br/>Person and the outcome of those visits.</li> <li>If no site visits have been undertaken indicate why this is the<br/>case.</li> </ul>                                                                                                                                                                                                                                      | <ul> <li>Mr Marcelo A. Batelochi is a member of The Australian Institute of Mining and Metallurgy and is a Competent Person who has visited this site.</li> <li>In the opinion of the competent person, the drilling, sampling and mining practices used on site are of a high industry standard.</li> </ul>                                                                                                                                                                                                                                                                                                           |
| Geological<br>interpretation              | <ul> <li>Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.</li> <li>Nature of the data used and of any assumptions made.</li> <li>The effect, if any, of alternative interpretations on Mineral Resource estimation.</li> <li>The use of geology in guiding and controlling Mineral Resource estimation.</li> <li>The factors affecting continuity both of grade and geology.</li> </ul> | <ul> <li>The mineralized zone on the property is bowl shaped and elongated in an east west direction. North south sections for the entire property were created to domain the mineralization. The sectional interpretations were base for a intrinsic model performed by SOMINBESA, that decides at this moment perform 4 independent grade shells for Copper, Silver, Manganese, Zinc reference grades.</li> <li>The reference grades to perform the grade shell wireframes are:         <ul> <li>Cu % -&gt; 0.20;</li> <li>Ag (g/t) -&gt; 25;</li> <li>Zn % -&gt; 0.50</li> <li>Mn% -&gt; 2,0</li> </ul> </li> </ul> |
| Dimensions                                | • The extent and variability of the Mineral Resource expressed<br>as length (along strike or otherwise), plan width, and depth<br>below surface to the upper and lower limits of the Mineral<br>Resource.                                                                                                                                                                                                                                      | <ul> <li>The Berenguela Ag-Cu-Mn-Zn deposit trends in a WNW direction for more than 1,400 meters along a whale-back ridge that separates two valleys, the broader one being to the south.</li> <li>The eastern and western limits of the deposit roughly correspond to where steep slopes truncate the ridge and descend to the pampa valleys some 200 metres below the ridge-crest.</li> <li>Moderately to isoclinally folded limestones and dolomites of the Cretaceous-age Ayavacas Formation are the dominant lithologies exposed along the ridge and host the deposit mineralization.</li> </ul>                  |
| Estimation and<br>modelling<br>techniques | <ul> <li>The nature and appropriateness of the estimation<br/>technique(s) applied and key assumptions, including<br/>treatment of extreme grade values, domaining, interpolation<br/>parameters and maximum distance of extrapolation from</li> </ul>                                                                                                                                                                                         | <ul> <li>database including 2004/2005 RC Drilling, 2015 DD Drilling and 2017 RC Drilling campaign (BER-280 – there are more 12 drill holes in the lab to be updated);</li> <li>grade shell wireframes, using reference grades as follow:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                    |

| Criteria              | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | <ul> <li>data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.</li> <li>The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.</li> <li>The assumptions made regarding recovery of by-products.</li> <li>Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).</li> <li>In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.</li> <li>Any assumptions about correlation between variables.</li> <li>Description of how the geological interpretation was used to control the resource estimates.</li> <li>Discussion of basis for using or not using grade cutting or capping.</li> <li>The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.</li> </ul> | <ul> <li>CU Wireframe - Cu % -&gt; 0.20;<br/>-AG Wireframe - Ag (g/t) -&gt; 25;<br/>-ZN Wireframe - Ag (g/t) -&gt; 25;<br/>-ZN Wireframe - Mn% -&gt; 2,0</li> <li>EDA (Exploratory data Analysis) for Variables and Domains;</li> <li>Sample composites based on the half bench (2.5 meters height) of samples due to the multiples azimuth and dip of the drill holes, the half bench composite is an appropriated technique;</li> <li>top grade capping definition - treatment of outliers;</li> <li>-Variography in 3 direction - N15E; N80W and vertical, based on main directions defined by the geology;</li> <li>Block model definition:</li> <li>The solid models were used to code the rock type model and control the interpolation. The block model was coded for air (above topography), background and for the mineralized zone by coding blocks using a 50% threshold. Blocks with more then 50% of the block inside the solid were given the code of the solid. During the interpolation of the model, the background zone was not interpolated and the ore zone was not allowed to use data points from the background zone</li> <li>Grade Estimation - Ordinary Kriging Parameters based on Variography. Each variable was estimated hard boundary - Variable applied capping inside respective wireframe (Percent Model)</li> <li>-grade estimates validation - visual inspection and Nearest Neighbourhood comparison;</li> <li>-Classification into Indicated and Inferred due to the necessity to finalize the ongoing database validation (mainly historical data), update of wireframes and 11 drill hole data (in lab when mineral resources estimates started);</li> <li>-Density Estimates, applying simple mean inside the Manganese wireframe;</li> <li>Post processing, diluting the grades to a block basis (5 x 5 x 5 m) to calculate the equivalent Copper Grade with valuation of Silver and Zinc.</li> </ul> |
| Moisture              | • Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All tonnages were calculated using dry density basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cut-off<br>parameters | • The basis of the adopted cut-off grade(s) or quality parameters applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • A reference grade of 0.50 eCu% (equivalent Copper Grade) was used to report mineral resources. It is considered for calculus diluted Cu, Ag, Zn grades in a block support (Grades were estimated inside the solids on Percent Model).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                         |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mining factors<br>or assumptions           | <ul> <li>Assumptions made regarding possible mining methods,<br/>minimum mining dimensions and internal (or, if applicable,<br/>external) mining dilution. It is always necessary as part of the<br/>process of determining reasonable prospects for eventual<br/>economic extraction to consider potential mining methods,<br/>but the assumptions made regarding mining methods and<br/>parameters when estimating Mineral Resources may not<br/>always be rigorous. Where this is the case, this should be<br/>reported with an explanation of the basis of the mining<br/>assumptions made.</li> </ul>                                                                                                                              |                                                                                                                                                                                                                                                                    |
| Metallurgical<br>factors or<br>assumptions | <ul> <li>The basis for assumptions or predictions regarding<br/>metallurgical amenability. It is always necessary as part of the<br/>process of determining reasonable prospects for eventual<br/>economic extraction to consider potential metallurgical<br/>methods, but the assumptions regarding metallurgical<br/>treatment processes and parameters made when reporting<br/>Mineral Resources may not always be rigorous. Where this is<br/>the case, this should be reported with an explanation of the<br/>basis of the metallurgical assumptions made.</li> </ul>                                                                                                                                                              | <ul> <li>Kappes, Cassiday &amp; Associates, after purchasing Berenguela collected bulk samples and carried<br/>out metallurgical testing at their Reno facilities</li> </ul>                                                                                       |
| Environmental<br>factors or<br>assumptions | <ul> <li>Assumptions made regarding possible waste and process<br/>residue disposal options. It is always necessary as part of the<br/>process of determining reasonable prospects for eventual<br/>economic extraction to consider the potential environmental<br/>impacts of the mining and processing operation. While at this<br/>stage the determination of potential environmental impacts,<br/>particularly for a greenfield project, may not always be well<br/>advanced, the status of early consideration of these potential<br/>environmental impacts should be reported. Where these<br/>aspects have not been considered this should be reported with<br/>an explanation of the environmental assumptions made.</li> </ul> | <ul> <li>An environmental permit was obtained from the Ministerio de Minas, in Lima in order to drill<br/>and was amended in order to sink shafts. A blasting permit was also obtained in order to sink<br/>the shafts</li> </ul>                                  |
| Bulk density                               | <ul> <li>Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.</li> <li>The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit.</li> <li>Discuss assumptions for bulk density estimates used in the</li> </ul>                                                                                                                                                                                          | <ul> <li>An extensive database of density measurements were recorded at 2015 drilling campaign, collecting 1462 samples, used on this mineral resources estimates.</li> <li>On going a complete validation of the raw data set of density determination</li> </ul> |

| Criteria                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | evaluation process of the different materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Classification                                       | <ul> <li>The basis for the classification of the Mineral Resources into varying confidence categories.</li> <li>Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).</li> <li>Whether the result appropriately reflects the Competent Person's view of the deposit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>The Mineral Resource classification was carried out by mathematical script based on the spatial distribution of the data, number of samples to estimate a block, range of the semivariogram and Slope of Regression of Copper, Silver and Zinc ordinary kriging outputs. Blocks estimated with more than one variable, considered minimum values among them.</li> <li>Measured Mineral not classified due to the on going process of database validation. After validated the current information, the drill grid has enough distribution to convert an order of magnitude of 20% of indicated to measured mineral resources.</li> <li>Indicated Mineral resources were those tons coming from block estimated on second neighbourhood, at least 4 Samples and Maximum of 16, using octant search and minimum of 2 Drill Holes and slope of Regression &gt;= 0.35;</li> <li>Inferred Mineral resources were those with tons coming from blocks which did not meet the requirements for block classification as measured and indicated.</li> <li>There are some "spotted dogs" in this mathematical classification that suggested to make manual adjustment on next mineral resource estimates.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Audits or<br>reviews                                 | • The results of any audits or reviews of Mineral Resource estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Discussion of<br>relative<br>accuracy/<br>confidence | <ul> <li>Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.</li> <li>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</li> <li>These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</li> </ul> | <ul> <li>The stated resources are not materially affected by any known environmental, permitting, legal, title, taxation, socio-economic, marketing, political or other relevant issues, unless stated in this report, to the best knowledge of the author.</li> <li>There are no known mining, metallurgical, infrastructure, or other factors that materially affect this resource.</li> <li>The Berenguela Property contains a large potentially exploitable resource of silver and copper. The objective of the exploration program was to delineate and possibly expand the resource at Berenguela. The property is now ready for advancement towards production.</li> <li>In 2017, this author visited the project in February and in August, revising the NI-43101 Mineral Resources carried out by James A. McCrea, and checked all procedures applied in the Company's 2017 RC Drilling campaign.</li> <li>The methods and techniques utilised to complete the mineral resource estimates for Berenguela were done in compliance with JORC – 2012.</li> <li>The recommendation has been performed by SOMINBESA staff which are fulltime dedicated to receive the remain chemical analysis of 12 drill holes and consolidate 2017 drilling campaign database including QAQC and update of grade shell domains. This staff in also in charge of validating historical data, searching and organizing on Silver Standard dataroom all relevant information of the project.</li> <li>After completion of the 2017 drilling campaign and technical review of the consolidated historical data, it was strongly recommended that the Company complete an update of the Mineral Resources Estimates, reporting Measured Mineral Resources for the future feasibility</li> </ul> |

| Criteria | JORC Code explanation | Commentary              |
|----------|-----------------------|-------------------------|
|          |                       | studies of the deposit. |
|          |                       |                         |