ASX RELEASE

HIGH GRADE ZINC, LEAD AND COPPER CONFIRMED

- Surface rock sampling results provide confirmation of historical high-grade mineralisation and the significant potential of the Milford Project as a major Zinc-Lead-Copper target. <u>Peak values recorded greater than 30% Zn</u>
- Results confirm that mineralisation is present across all three of the Company's prospects within the broader Milford Project. Significantly, high-grade Copper values were also returned in a large number of samples, <u>up to 8.52% Cu</u>, compared to historical samples from previous exploration work undertaken.
- Select rock chip assay results from the 100% owned Milford Project include:
 - ML18006 assay returned > 30% Zn & 3.52% Cu
 - <u>ML18030 assay returned > 30% Zn, 2.38% Pb & 1.06% Cu</u>
 - ML18007 assay returned 28.4% Zn
 - ML18035 assay returned 26.4% Zn, 10.65% Pb and 1.72% Cu
 - ML18044 assay returned 26.4% Zn, 12.75% Pb & 1.20% Cu
 - ML18019 assay returned 22.9% Zn & 10.5% Pb
 - ML18025 assay returned 20.9% Zn & 8.58% Pb
 - ML18031 assay returned 19.35% Zn
 - ML18009 assay returned 16.35% Zn & 5.22% Pb
 - ML18036 assay returned 14.05% Zn & 5.10% Pb
 - ML18024 assay returned 12.7% Zn, 5.67% Pb & 6.34% Cu
 - ML18021 assay returned 12.55% Zn & 12.20% Pb
 - ML18012 assay returned 12.15% Zn, 17.3% Pb & 2.81% Cu
 - ML18027 assay returned 2.87% Zn, >20% Pb & 8.32% Cu
- Follow-up mapping and trenching work is to commence immediately under the continued phase 1 exploration program to define drilling targets
- Permitting procedures are to be fast-tracked to advance toward a phase 2 exploration program, which will include the Company's maiden drilling program, scheduled for Q3 2018

Milford Claims Map T28S R11W, T28S R12W Beaver County, Utah ML Claims (100) Additional Claims (100)

Tao Commodities Limited ("TAO" or "the Company") (ASX: TAO) is pleased to announce that assays have been received from 88 rock chip samples collected recently at the 100% owned Milford Project located in Beaver County, Utah, USA.

ver Gulch

BLM

Tao Commodities Lt 22 Townshend Road Subiaco WA 6008

0.6 M

A

Tao Commodities Lt 22 Townshend Road Subiaco WA 6008 lilford Claims Map leaver County, Utah

ML Claims (100)

Additional Claims (100)

The assay results received provide confirmation of the historical work undertaken by Firestrike Limited (during 2013) and also confirms the significant potential of the Milford Project as a high grade Zinc, Lead and Copper target. Mineralisation was identified across all three of the prospects contained within the broader Milford Project. Peak Values for Zinc were recorded above the cutoff sampling grade of <u>30.0%</u> and also particularly encouraging to the Company was a number of assays returned significant values of Copper, ranging as high as <u>8.52% Cu</u>, which was not identified during the 2013 Firestrike exploration program.

Highlights of the rock chip sample assay results from the 100% owned Milford Project include:

- ML18006 assay returned > 30% Zn & 3.52% Cu

BLM

- <u>ML18030 assay returned > 30% Zn, 2.38% Pb & 1.06% Cu</u>
- ML18007 assay returned 28.4% Zn
- <u>ML18035 assay returned 26.4% Zn, 10.65% Pb and 1.72% Cu</u>
- <u>ML18044 assay returned 26.4% Zn, 12.75% Pb & 1.20% Cu</u>
- ML18019 assay returned 22.9% Zn & 10.5% Pb

- <u>ML18025 assay returned 20.9% Zn & 8.58% Pb</u>
- ML18031 assay returned 19.35% Zn
- ML18009 assay returned 16.35% Zn & 5.22% Pb
- ML18036 assay returned 14.05% Zn & 5.10% Pb
- ML18024 assay returned 12.7% Zn, 5.67% Pb & 6.34% Cu
- <u>ML18012 assay returned 12.15% Zn, 17.3% Pb & 2.81% Cu</u>
- <u>ML18027 assay returned 2.87% Zn, >20% Pb & 8.32% Cu</u>

Figure 3: Select assays from the phase 1 exploration sampling program

TAO Managing Director Patrick Glovac commented: "The results are extremely exciting for shareholders, confirming high-grade mineralisation is present, most importantly, at surface and at all three prospect areas within the broader Milford Project.

The Company is continuing with its Phase 1 exploration program with further sampling, trenching and structural mapping to commence in the coming weeks. The program has also been expanded to incorporate the recently announced additional 100 mining claims to the south west of the original Milford Project.

In addition, the Company is working with Harrison Land Services LLC to expedite the permitting process in an effort to be able to move into the Phase 2 exploration, which will include a maiden drilling program.

Figure 4 & 5. Outcropping and surface mineralisation found at Milford Project

Figure 6. Vegetation and elevation looking south from the Milford Project

The Company will continue to update shareholders on the exploration progress over the coming weeks.

END

For further information, please contact

Patrick Glovac Managing Director TAO Commodities Limited info@taocommodities.com.au

				Recvd Wt.	Ag	Cu	Cu	Pb	Pb	Zn	Zn
SAMPLE	Sample			ka			0/		0/		0/
MI 18001	Chin	315/15 00	1251130 10	к <u>у</u> 036	130	8630	70	>10000	6.31	>10000	⁷⁰
MI 18002	Chip	315/15 00	4251130.10	0.30	213	41.2		>10000	10.31	369	0.01
MI 18003	Chip	315421 76	4251130.10	0.78	215	>10000	1 35	2330	15.2	501	
MI 18004	Chip	315386 56	4251221.55	0.20	57.2	16.9	1.55	>10000	5 3 3	301	
MI 18005	Chin	315386 56	4251198.48	0.32	34.2	40.5		>10000	18 15	>10000	63
MI 18006	Chin	315374 41	4251189 32	0.52	25.1	>10000	3 5 2	8710	10.15	>10000	>30.0
MI 18007	Chip	315376.44	4251189.09	0.52	9.18	8260	5.52	4340		>10000	28.4
MI 18008	Chip	315377.66	4251191.47	0.44	3.49	1625		676		>10000	2.12
MI 18009	Chip	315367.03	4251185.24	0.62	95.9	4780		>10000	5.22	>10000	16.35
ML18010	Chip	315309.98	4251225.22	0.3	36.5	>10000	1.31	>10000	7.4	>10000	1.535
ML18011	Chip	315309.98	4251225.22	0.32	25.6	2330		4620		>10000	9.93
ML18012	Chip	315305.04	4251263.83	0.36	147	>10000	2.81	>10000	17.3	>10000	12.15
ML18013	Chip	315325.13	4251288.72	0.34	316	4320		>10000	7.71	4770	
ML18014	Chip	315336.96	4251423.54	0.36	126	321		>10000	>20.0	>10000	3.71
ML18015	Chip	315336.96	4251423.54	0.36	2.2	321		3410		1530	
ML18016	Chip	315195.22	4251257.65	0.3	1.83	27.3		603		251	
ML18017	Chip	315057.77	4251233.97	0.52	1.07	40		647		355	
ML18018	Chip	315103.10	4251172.04	0.38	182	1245		>10000	5.9	8040	
ML18019	Chip	315215.32	4250990.89	0.48	511	9800		>10000	10.5	>10000	22.9
ML18020	Chip	315204.72	4250960.60	0.42	575	>10000	3.55	>10000	12.25	>10000	4.69
ML18021	Chip	315204.72	4250960.60	0.38	425	3840		>10000	12.2	>10000	12.55
ML18022	Chip	315204.72	4250960.60	0.34	156	1455		>10000	7.85	5090	
ML18023	Chip	315193.39	4250949.01	0.46	2.62	123.5		1220		472	
ML18024	Chip	315146.41	4250933.25	0.32	114	>10000	6.34	>10000	5.67	>10000	12.7
ML18025	Chip	315146.41	4250933.25	0.46	563	1740		>10000	8.58	>10000	20.9
ML18026	Chip	315138.47	4250936.02	0.32	3.4	110		2250		1140	
ML18027	Chip	315109.56	4250926.69	0.34	765	>10000	8.32	>10000	>20.0	>10000	2.87
ML18028	Chip	315103.94	4250923.25	0.32	179	905		>10000	9.32	>10000	1.3
ML18029	Chip	315108.16	4250935.42	0.36	15.3	1890		>10000	2.84	>10000	12.2
ML18030	Chip	315101.07	4250931.14	0.64	16.3	>10000	1.06	>10000	2.38	>10000	>30.0
ML18031	Chip	315083.93	4250920.62	0.34	10.7	4180		4140		>10000	19.35
ML18032	Chip	315105.87	4250899.69	0.36	0.79	45.1		111.5		1380	
ML18033	Chip	315138.63	4250873.28	0.36	0.43	386		230		556	
ML18034	Chip	315042.03	4250853.11	0.34	0.38	12.5		58.1		267	
ML18035	Chip	315042.03	4250853.11	0.44	443	>10000	1.72	>10000	10.65	>10000	26.4
ML18036	Chip	315042.03	4250853.11	0.44	584	904		>10000	5.1	>10000	14.05

COMMODI

	ML18037	(
	ML18038	(
	ML18039	
	ML18040	
	ML18041	(
	ML18042	(
	ML18043	
\bigcirc	ML18044	(
	ML18045	
	ML18046	(
(15)	ML18047	(
(QD)	ML18048	
20	ML18049	(
(0)	ML18050	
	ML18051	
	ML18052	(
	ML18053	(
	ML18054	
adi	ML18055	(
GO	ML18056	
	ML18057	
	ML18058	
\bigcirc	ML18059	(
	ML18060	(
20	ML18061	(
	ML18062	(
	ML18063	(
65	ML18064	(
	ML18065	(
\bigcirc	ML18066	(
	ML18067	(
	ML18068	(
	ML18069	(
	ML18070	(
(\bigcirc)	ML18071	(
Пп	ML18072	(
	ML18073	(
	ML18074	

MINBORChipSinsopsisSins												
MI18038Chip31505.65425086.240.365.203.0001.3001.0201.0201.020MI18040Chip31502.924251085.70.360.453.0003.033.00001.023.0000MI18041Chip31532.044251085.20.2317.215.00002.75.00007.45.0000MI18041Chip31533.33251151.510.320.2031.0001.025.00007.495.0000MI18043Chip3153.1825114.620.426.071.0001.201.0001.2751.0000MI18044Chip31461.78425366.260.286.0281.0001.	ML18037	Chip	315050.56	4250862.91	0.34	618	>10000	2.05	>10000	8.78	>10000	9.99
MIL8039Chip3150505425086.290.341045100003.33>100007.382100MIL8041Chip31532.42425108.520.3620580607.05.00003.939.0000MIL8041Chip31532.51425118.520.327.027.00007.0	ML18038	Chip	315050.56	4250862.91	0.36	520	3060		>10000	10.2	>10000	7.99
MIL8040Chip31359.7225108.510.380.49536800.49.10003.1300.000MIL8041Chip31330.4325118.630.429.0500.229.0000.259.0000.259.0000.259.0000.259.0000.259.0000.259.0001.259.00<	ML18039	Chip	315050.56	4250862.91	0.34	1045	>10000	3.93	>10000	7	8270	
MI18041Chip315304.444251085.260.420.420.3830.2870.10000.100	ML18040	Chip	315259.72	4251085.17	0.36	295	8060		>10000	3.93	>10000	7.84
MIL8042Chip31532.514251136.290.0327.02>100002.27>100007.49>10000MIL804Chip31536.394251151.150.0410004.08100004.08100004.08100004.0810000MIL804Chip31551.18425186.050.046071000012.0510.0512.0510.0512.0510.0512.05 <td>ML18041</td> <td>Chip</td> <td>315304.44</td> <td>4251085.26</td> <td>0.42</td> <td>935</td> <td>3850</td> <td></td> <td>>10000</td> <td>19.5</td> <td>>10000</td> <td>6.13</td>	ML18041	Chip	315304.44	4251085.26	0.42	935	3850		>10000	19.5	>10000	6.13
MIL8043Chip31336.3042511.15.0.042.030>100004.08>100004.5810000MIL8044Chip31531.18425148.030.426.079.10001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100001.2059.100009.1000	ML18042	Chip	315322.51	4251136.29	0.32	712	>10000	2.27	>10000	7.49	>10000	1.695
MIL8044Chip31331.184251148.030.42600910001.2059100001.2.75910000ML18045Chip314671.784250866.560.341856590-4360-3430ML18047Chip314671.784251366.280.285381270910002.002.100ML18047Chip314671.78425136.280.285381005910002.0091000ML18049Chip314561.31425121.820.36109592-2.460-699ML18050Chip314578.41425121.820.36198050002.34910001.143160ML18051Chip314531.41425121.420.36618010009.097.8306.123143ML18051Chip314531.41425121.470.46198050002.449.0008.203100ML18051Chip314531.41425121.470.5816101.4001.0001.209.0001.143160ML18055Chip314531.41425121.470.5816204.150-1.0003.201.0001.00	ML18043	Chip	315336.39	4251151.15	0.34	2030	>10000	4.08	>10000	4.58	1360	
MIL8045Chip314288.574250866.560.3418856590()44360()34300MIL8046Chip314671.784251366.280.285.581270()510002.0012100MIL8047Chip314681.304251374.570.4118051501.0051000520.051000MIL8049Chip314578.18425129.230.381005510000.2021000510001.000	ML18044	Chip	315351.18	4251148.03	0.42	607	>10000	1.205	>10000	12.75	>10000	26.4
ML18046Chip314671.784251366.280.3483.36280.510004.833020ML18047Chip314671.784251366.280.285581270<	ML18045	Chip	314288.57	4250866.56	0.34	185	6590		4360		3490	
MI18047Chip314671.784251366.280.2855812700000.20.0.10100MI18048Chip314681.304251374.570.0411801500.1000.2.17.01000.3.68.01000MI18050Chip31457.044251261.860.06.100.9.000.2.1.10000.1.0.10100.1.0.10100MI18051Chip314563.2425120.104.0.4.5.87.5100.0.99.7.83.0.0.2.1MI18052Chip31453.18425120.17.0.6.1000.1.00.2.1.10000.2.0.10100.2.0.10100MI18054Chip31453.18425120.17.0.5.3620.1.00.2.0.10000.2.0.10100.2.0.10100MI18055Chip31453.40425120.17.0.38.1050.5.00.2.0.10000.2.0.10000.2.0.10100.2.0.10100.1.0	ML18046	Chip	314671.78	4251366.28	0.34	83.3	6280		>10000	4.83	3020	
MI18048Chip314681.304251374.570.0.411801509>10000>2.0.0>10000MI18040Chip31457.81425122.370.381005>100001.2.7>100001.4.60MI18050Chip31457.04425121.820.366.095.000.997.8.01.4.3160MI18051Chip31453.11425121.220.366.26010000.997.8.01.2.3.3.3MI18054Chip31453.131425121.470.5.3.6204.151.0.05.0.0 <td>ML18047</td> <td>Chip</td> <td>314671.78</td> <td>4251366.28</td> <td>0.28</td> <td>558</td> <td>1270</td> <td></td> <td>>10000</td> <td>>20.0</td> <td>2160</td> <td></td>	ML18047	Chip	314671.78	4251366.28	0.28	558	1270		>10000	>20.0	2160	
M18049ChipS1457.81425129.370.3810001.0001.111.00001.011.00001.011.00001.011.00001.0101.01001	ML18048	Chip	314681.30	4251374.57	0.4	1180	1590		>10000	>20.0	>10000	2.71
MI.18050Chip314577.044251261.860.0610959210246010MI.18051Chip314566.324251201.040.0458.75140105100011.43160MI.18052Chip314531.814251218.220.362680100000.99978302.04270MI.18053Chip314531.814251201.470.04362041502.05100052.051000MI.8055Chip314531.814251201.470.3815108520105100052.051000MI.8056Chip31453.404251173.100.4216355230105100051005000MI.8057Chip314534.074251173.100.322.6828301051000510051005100MI.8058Chip31352.41424917.370.38390039101051000510051005100MI.8059Chip31375.68424958.690.3859.738310510005100<	ML18049	Chip	314578.18	4251292.37	0.38	1005	>10000	2.17	>10000	3.68	>10000	9.21
ML18051Chip314566.32425121.0140.0.458.75140 <td>ML18050</td> <td>Chip</td> <td>314577.04</td> <td>4251261.86</td> <td>0.36</td> <td>109</td> <td>592</td> <td></td> <td>2460</td> <td></td> <td>699</td> <td></td>	ML18050	Chip	314577.04	4251261.86	0.36	109	592		2460		699	
ML18052Chip31454.31425121.820.032680100000.99978.801.42ML18054Chip31451.81425121.410.0434006.24410005.205.1000ML18054Chip31451.81425121.410.03310145201.0105.205.10005.1005.1005.1005.1005.10005.1005.10005.1005.10005.1005.10005.1005.1000 <td>ML18051</td> <td>Chip</td> <td>314566.32</td> <td>4251201.04</td> <td>0.4</td> <td>58.7</td> <td>5140</td> <td></td> <td>>10000</td> <td>11.4</td> <td>3160</td> <td></td>	ML18051	Chip	314566.32	4251201.04	0.4	58.7	5140		>10000	11.4	3160	
ML18053Chip314531.814251201.470.041980>100002.04>100008.2233330ML18054Chip314531.814251201.470.05362014515>1000>20.0>10000ML18056Chip314531.814251173.100.4216355230IC>1000020.02000ML18057Chip31453.074251173.100.3212682830IC>100004.32>10000ML18058Chip31392.944249347.730.3839003910IC>100004.32>10000ML18050Chip313715.88424958.690.3829204870IC>100006.42>10000ML18064Chip31361.97424953.650.361140663IC>100009.04>10000ML18064Chip31361.97424953.650.32I140IG>100009.04>10000<1000	ML18052	Chip	314543.41	4251218.22	0.36	2680	10000	0.999	7830		427	
ML18054Chip314531.814251201.470.05316204150.>1000>20010100ML18055Chip314531.814251173.100.4216355230.>1000020.0020.00ML18057Chip314534.074251173.100.322682830.>1000011.854000ML18054Chip31329.944249347.730.383900391090004.32.ML18054Chip31329.944249347.730.3859.73839.0004.32.ML18054Chip31371.56424958.650.3859.7383ML18064Chip31371.56424958.650.3811406.63	ML18053	Chip	314531.81	4251201.47	0.46	1980	>10000	2.34	>10000	8.2	3330	
ML18055Chip31453.814251201.470.381510852091000092.0092.00ML18056Chip314534.074251173.100.421635523091000011.854040ML18057Chip31392.91424937.730.383900391091000011.854040ML18058Chip31392.91424937.730.386.973.839.100004.3251000ML18050Chip31371.58424958.960.5811.3044479.100006.4251000ML18061Chip31361.97424958.960.5611.3044479.100006.4251000ML18062Chip31361.97424958.950.3211.406639.0009.8851000ML18063Chip31361.97424958.950.3211.406639.100006.4251000ML18064Chip31361.97424958.950.3211.406639.100009.8851000ML18065Chip31361.97424958.950.3211.406639.100009.209.000ML18064Chip31401.61424917.390.3413.613.651.339.021.411.411.41ML18065Chip31401.61424981.730.361.633.60 <td>ML18054</td> <td>Chip</td> <td>314531.81</td> <td>4251201.47</td> <td>0.5</td> <td>3620</td> <td>4150</td> <td></td> <td>>10000</td> <td>>20.0</td> <td>106</td> <td></td>	ML18054	Chip	314531.81	4251201.47	0.5	3620	4150		>10000	>20.0	106	
ML18056Chip314534.074251173.100.421635552051000052.002000ML18057Chip314534.074251173.100.32268283051000011.854040ML18058Chip31392.414249347.730.38390039105100004.32510000ML18050Chip31375.68424958.690.38292048705100006.4251000ML18061Chip31375.68424958.690.5611304475100006.4251000ML18062Chip31361.97424953.650.36114066351000520051000ML18063Chip31361.97424953.650.321213375551000520051000ML18064Chip31361.97424953.650.321213375551000520051000ML18065Chip31401.61424917.390.38136136031574249ML18064Chip31401.61424981.730.381363353031574249ML18064Chip31401.61424981.730.38136331574249ML18065Chip31401.61424981.730.38136331574249ML18064Chip31401.61424981.730.381363	ML18055	Chip	314531.81	4251201.47	0.38	1510	8520		>10000	>20.0	>10000	2.79
ML18057Chip314534.074251173.000.322280283011.804040ML18058Chip31392.9414249347.730.3839003910	ML18056	Chip	314534.07	4251173.10	0.42	1635	5230		>10000	>20.0	2900	
ML18058Chip313929.414249347.730.03839009310(.)>100004.32910000ML18059Chip313929.414249347.730.3859.7383(.)2910(.)9.00ML18060Chip313715.68424958.690.3829204870(.)>100009.04>10000ML18061Chip313715.68424958.690.561130444(.)>100009.04>10000ML18062Chip313619.874249538.650.322133.75(.)>100009.88>10000ML18063Chip313619.874249538.650.322133.75(.)>100009.88>10000ML18064Chip31360.47424951.380.343.843.62(.)4.9009.88>10000ML18065Chip31401.61424981.730.381.633.60(.)3.135(.)4.44ML18064Chip31401.61424981.730.381.633.60(.)3.135(.)4.44ML18065Chip31401.61424981.730.561.338.90(.)3.1554.44ML18065Chip31401.61424981.730.561.338.90(.)3.1554.44ML18066Chip31401.61424981.730.581.633.60(.)3.1554.44ML18076Chip31433.60424981.730.581.63	ML18057	Chip	314534.07	4251173.10	0.32	268	2830		>10000	11.85	4040	
ML18059Chip31392.414249347.730.3859.7383.2910.1700ML18060Chip313715.684249586.960.3829204870.>100009.4>10000ML18061Chip313715.684249586.960.5611304447.>100006.42>10000ML18062Chip313619.874249538.650.361140663.>10000>2.00>10000ML18063Chip313619.874249538.650.32213375.>100009.88>10000ML18064Chip313605.474249520.850.4833.436.2.49000.6420ML18065Chip31401.014249817.390.381.63603.577413ML18066Chip31401.014249817.390.381.63603.3151.226ML18067Chip31401.014249817.390.561.33890.3151.444ML18068Chip31438.024249896.260.361.6330.4315.444ML18069Chip31438.024249896.260.361.71.1.45.5ML18070Chip31439.034249896.260.361.971.71.5.1.45.5<	ML18058	Chip	313929.41	4249347.73	0.38	3900	3910		>10000	4.32	>10000	2.61
ML18060 Chip 313715.68 4249586.96 0.38 2920 4870 >10000 9.4 >10000 ML18061 Chip 313715.68 4249586.96 0.56 1130 447 >10000 6.42 >10000 ML18062 Chip 313619.87 4249538.65 0.32 213 375 >10000 9.88 >10000 ML18063 Chip 313619.87 4249520.85 0.32 213 375 >10000 9.88 >10000 ML18064 Chip 313619.87 4249520.85 0.48 33.4 36.2 4900 0.88 >10000 ML18065 Chip 31401.061 4249817.39 0.34 8.98 5330 0.577 0.413 ML18066 Chip 31401.061 4249817.39 0.56 1.33 890 3557 0.444 ML18067 Chip 31438.02 4249817.39 0.56 1.33 890 355 0.444 ML18068 Chip 31438.	ML18059	Chip	313929.41	4249347.73	0.38	59.7	383		2910		1700	
ML18061Chip 313715.68 4249586.96 0.56 1130 4447 \rightarrow \rightarrow 10000 6.42 \rightarrow 10000ML18062Chip 313619.87 4249538.65 0.36 1140 663 \rightarrow \rightarrow 10000 \rightarrow 2.00 \rightarrow 10000ML18063Chip 313619.87 4249538.65 0.32 213 375 \rightarrow \rightarrow 10000 9.88 \rightarrow 10000ML18064Chip 313605.47 4249520.85 0.48 33.4 36.2 \rightarrow 4900 0.642 ML18065Chip 314010.61 4249817.39 0.38 1.63 603 -577 -6420 ML18066Chip 314010.61 4249817.39 0.38 1.63 603 -577 -6420 ML18067Chip 314010.61 4249817.39 0.56 1.33 890 -577 -6420 ML18068Chip 31433.02 4249896.26 0.33 1.63 603 -577 -6420 ML18069Chip 31433.02 4249896.26 0.3 1.86 30.4 -522 -62 -62 ML18070Chip 31433.02 4249896.26 0.3 1.86 30.4 -622 -62 -62 ML18070Chip 31433.02 4249896.26 0.36 0.75 171.5 -642 -642 -92 ML18071Chip 314995.88 425034.16 0.28 1.16 8250 -162 -162 -162 ML18073Chip <td< td=""><td>ML18060</td><td>Chip</td><td>313715.68</td><td>4249586.96</td><td>0.38</td><td>2920</td><td>4870</td><td></td><td>>10000</td><td>9.4</td><td>>10000</td><td>6.09</td></td<>	ML18060	Chip	313715.68	4249586.96	0.38	2920	4870		>10000	9.4	>10000	6.09
ML18062Chip313619.874249538.65 0.36 1140 663 $<$ >10000 >20.0 >10000 ML18063Chip313619.874249538.65 0.32 213 375 $<$ >10000 9.88 >10000 ML18064Chip 313605.47 4249520.85 0.48 33.4 36.2 40900 9.88 6420 ML18065Chip 314010.61 4249817.39 0.34 8.98 5330 $<$ 577 $<$ 413 ML18066Chip 314010.61 4249817.39 0.56 1.33 890 $<$ 315 $<$ 424 ML18067Chip 314010.61 4249817.39 0.56 1.33 890 $<$ 3577 $<$ 444 ML18068Chip 31431.02 4249817.39 0.56 1.33 890 $<$ 3577 $<$ 444 ML18068Chip 31433.02 4249817.39 0.56 1.33 890 $<$ 357 $<$ 444 ML18068Chip 31433.02 4249896.26 0.36 1.66 30.4 202 142 $<$ $<$ 622 ML18070Chip 31434.04 4249892.22 0.42 0.8 171.5 $<$ 142.5 $<$ 308 ML18071Chip 314095.88 4250034.16 0.48 1.16 8250 1.62 $<$ 92.3 1.92 ML18074Chip 314995.88 4250034.16 0.49	ML18061	Chip	313715.68	4249586.96	0.56	1130	447		>10000	6.42	>10000	2.18
ML18063Chip313619.874249538.650.32213375>100009.88>10000ML18064Chip313605.474249520.850.4833.436.249006420ML18065Chip31401.0614249817.390.348.9853305777413ML18066Chip31401.0614249817.390.381.6366033135226ML18067Chip31401.0614249817.390.561.338903157444ML18068Chip31438.024249817.390.561.338903157424ML18068Chip31438.024249817.390.561.33890 <t< td=""><td>ML18062</td><td>Chip</td><td>313619.87</td><td>4249538.65</td><td>0.36</td><td>1140</td><td>663</td><td></td><td>>10000</td><td>>20.0</td><td>>10000</td><td>4.54</td></t<>	ML18062	Chip	313619.87	4249538.65	0.36	1140	663		>10000	>20.0	>10000	4.54
ML18064Chip313605.474249520.850.4833.436.249006490064420ML18065Chip314010.614249817.390.348.985330577413ML18066Chip314010.614249817.390.381.6366033103157226ML18067Chip314010.614249817.390.561.338903577444ML18068Chip31433.024249896.260.31.8630.4222622ML18069Chip31433.024249896.260.31.8630.4202531455555ML18070Chip31430.04424982.220.420.8179.5145.5162314ML18071Chip314095.884250034.160.281.168250116.51889308308ML18072Chip314095.884250034.160.440.75885792.3116.5319ML18074Chip314095.884250034.160.453060116.5319.5319ML18074Chip314095.884250034.160.453060116.5319.5319.5ML18074Chip314095.884250034.160.453060116.5319.5319.5ML18074Chip314095.884250034.160.453060116.5319.5319.5ML18074Chip31493.294245737.960.280.4947.289.9127.5<	ML18063	Chip	313619.87	4249538.65	0.32	213	375		>10000	9.88	>10000	15.7
ML18065Chip314010.614249817.390.348.985330553705577413ML18066Chip314010.614249817.390.381.63603315226ML18067Chip314010.614249817.390.561.33890357444ML18068Chip314338.024249896.260.31.8630.422262ML18069Chip314338.024249896.260.360.97171.5145.555ML18070Chip31430.404249829.220.420.8179.5142194ML18071Chip314095.884250034.160.281.168250189162308ML18073Chip314095.884250034.160.440.7585792.392.392ML18074Chip314095.884250034.160.440.7585792.39292ML18073Chip314095.884250034.160.4547.289.9116.5159ML18074Chip314095.884250034.160.450.493060116.5159ML18074Chip31493.124245864.120.340.4247.289.9177ML18075Chip314943.294245737.960.280.4917.1127.553ML18076Chip31498.30424568.600.320.4917.1127.553ML18076Chip31498.3042	ML18064	Chip	313605.47	4249520.85	0.48	33.4	36.2		4900		6420	
ML18066Chip314010.614249817.390.381.63603315226ML18067Chip314010.614249817.390.561.33890357444ML18068Chip314338.024249896.260.31.8630.42222622623ML18069Chip31438.024249896.260.360.97171.5145.555ML18070Chip31430.044249829.220.420.8179.5142.555ML18071Chip314095.884250034.160.281.168250189308ML18072Chip314095.884250034.160.440.7585792.392.3ML18073Chip314095.884250034.160.540.693060116.592.3ML18074Chip314095.884250034.160.540.693060116.5159ML18074Chip314095.884250034.160.540.693060116.5159ML18075Chip31493.124245864.120.340.4247.289.9157ML18075Chip31493.294245737.960.280.4917.1127.553ML18076Chip31498.30424585.600.320.3421.562.253ML18076Chip<	ML18065	Chip	314010.61	4249817.39	0.34	8.98	5330		577		413	
ML18067Chip314010.614249817.390.561.33890357444ML18068Chip314338.024249896.260.31.8630.422262ML18069Chip31438.024249896.260.360.97171.5145.555ML18070Chip31430.404249829.220.420.8179.5142142194ML18071Chip314095.884250034.160.281.168250189308308ML18072Chip314095.884250034.160.440.75885792.392.392ML18073Chip314095.884250034.160.550.693060116.5159ML18074Chip31495.884250034.160.540.693060116.5159ML18075Chip314921.124245864.120.340.4247.2889.9101127.553ML18075Chip31493.094245737.960.280.4917.1127.55353ML18076Chip314983.054245685.000.320.3421.562.262.253ML18076Chip314983.054245685.000.320.3421.562.262.253ML18076Chip314983.054245685.000.320.3421.562.262.253ML18076Chip314983.054245685.000.320.3421.562.262.2	ML18066	Chip	314010.61	4249817.39	0.38	1.63	603		315		226	
ML18068Chip314338.024249896.260.31.8630.40222206ML18069Chip314338.024249896.260.360.97171.5145.5145.55ML18070Chip31430.004249829.220.420.88179.5142142194ML18071Chip314095.884250034.160.281.1682501893189308ML18072Chip314095.884250034.160.440.758571683192.3309ML18073Chip314095.884250034.160.550.693060116.53192.33193ML18074Chip31492.124245864.120.340.4247.2889.91613193ML18075Chip31493.094245737.960.280.4917.1127.5162.353ML18076Chip31493.09424585.000.320.3421.566.266.253ML18075Chip31493.09424585.000.320.3421.566.266.253ML18076Chip31498.05424585.000.320.3421.566.266.253ML18076Chip31498.05424585.000.320.3421.566.266.253ML18076Chip31498.05424585.000.320.3421.566.266.253ML18076Chip31498.05424585.00 <td< td=""><td>ML18067</td><td>Chip</td><td>314010.61</td><td>4249817.39</td><td>0.56</td><td>1.33</td><td>890</td><td></td><td>357</td><td></td><td>444</td><td></td></td<>	ML18067	Chip	314010.61	4249817.39	0.56	1.33	890		357		444	
ML18069 Chip 314338.02 4249896.26 0.36 0.97 171.5 145.5 145.5 ML18070 Chip 31430.40 4249829.22 0.42 0.8 179.5 142 142 194 ML18071 Chip 314095.88 4250034.16 0.28 1.16 8250 189 308 ML18072 Chip 314095.88 4250034.16 0.44 0.75 8857 92.3 92.3 92 ML18073 Chip 314095.88 4250034.16 0.44 0.75 8857 92.3 92.3 92 ML18073 Chip 314095.88 4250034.16 0.44 0.75 8857 92.3 165 159 ML18074 Chip 31495.88 4250034.16 0.53 0.69 3060 116.5 159 ML18074 Chip 314921.12 4245864.12 0.34 0.42 47.2 89.9 1177 ML18075 Chip 314943.29 4245737.96	ML18068	Chip	314338.02	4249896.26	0.3	1.86	30.4		222		62	
ML18070 Chip 314340.40 4249829.22 0.42 0.8 179.5 142 142 194 ML18071 Chip 314095.88 4250034.16 0.28 1.16 8250 189 308 308 ML18072 Chip 314095.88 4250034.16 0.44 0.75 857 92.3 92.3 92 ML18073 Chip 314095.88 4250034.16 0.5 0.69 3060 116.5 159 ML18074 Chip 314095.88 4250034.16 0.5 0.69 3060 116.5 159 ML18074 Chip 314921.12 4245864.12 0.34 0.42 47.2 89.9 171 127.5 153 ML18075 Chip 31493.29 4245737.96 0.28 0.49 171.1 127.5 153 ML18076 Chip 314983.05 4245685.06 0.32 0.34 21.5 62.2 62.2 153	ML18069	Chip	314338.02	4249896.26	0.36	0.97	171.5		145.5		55	
ML18071 Chip 314095.88 4250034.16 0.28 1.16 8250 189 308 ML18072 Chip 314095.88 4250034.16 0.44 0.75 857 92.3 92 ML18073 Chip 314095.88 4250034.16 0.44 0.75 857 92.3 92 ML18073 Chip 314095.88 4250034.16 0.5 0.69 3060 116.5 159 ML18074 Chip 314921.12 4245864.12 0.34 0.42 47.2 89.9 177 ML18075 Chip 31493.29 4245737.96 0.28 0.49 17.1 127.5 53 ML18076 Chip 314983.05 4245685.60 0.32 0.34 21.5 62.2 53	ML18070	Chip	314340.40	4249829.22	0.42	0.8	179.5		142		194	
ML18072 Chip 314095.88 4250034.16 0.44 0.75 8857 92.3 92.3 92 ML18073 Chip 314095.88 4250034.16 0.5 0.69 3060 116.5 159 ML18074 Chip 314921.12 4245864.12 0.34 0.42 47.2 89.9 177 ML18075 Chip 31493.29 4245737.96 0.28 0.49 17.1 127.5 153 ML18076 Chip 314983.05 4245685.06 0.32 0.34 21.5 62.2 62.2 53	ML18071	Chip	314095.88	4250034.16	0.28	1.16	8250		189		308	
ML18073 Chip 314095.88 4250034.16 0.5 0.69 3060 116.5 159 ML18074 Chip 314921.12 4245864.12 0.34 0.42 47.2 89.9 177 ML18075 Chip 31493.29 4245737.96 0.28 0.49 17.1 127.5 53 ML18076 Chip 314983.05 4245685.60 0.32 0.34 21.5 62.2 62.2 53	ML18072	Chip	314095.88	4250034.16	0.44	0.75	857		92.3		92	
ML18074 Chip 314921.12 4245864.12 0.34 0.42 47.2 89.9 177 ML18075 Chip 31493.29 4245737.96 0.28 0.49 17.1 127.5 53 ML18076 Chip 314983.05 4245685.60 0.32 0.34 21.5 62.2 62.2 53	ML18073	Chip	314095.88	4250034.16	0.5	0.69	3060		116.5		159	
ML18075 Chip 314943.29 4245737.96 0.28 0.49 17.1 127.5 53 ML18076 Chip 314983.05 4245685.60 0.32 0.34 21.5 62.2 53	ML18074	Chip	314921.12	4245864.12	0.34	0.42	47.2		89.9		177	
ML18076 Chip 314983.05 4245685.60 0.32 0.34 21.5 62.2 53	ML18075	Chip	314943.29	4245737.96	0.28	0.49	17.1		127.5		53	
	ML18076	Chip	314983.05	4245685.60	0.32	0.34	21.5		62.2		53	
ML18077 Chip 314981.24 4245568.50 0.34 0.25 66.7 56.4 45	ML18077	Chip	314981.24	4245568.50	0.34	0.25	66.7		56.4		45	
ML18078 Chip 314901.83 4245582.17 0.34 0.24 13.2 59.9 25	ML18078	Chip	314901.83	4245582.17	0.34	0.24	13.2		59.9		25	

COMMODITI

ML18079	Chip	314844.36	4245574.23	0.4	0.31	3.9	31.4	23	
ML18080	Chip	314876.54	4245604.58	0.38	2.57	10.7	66	60	
ML18081	Chip	314876.54	4245604.58	0.4	0.89	9.4	91.3	65	
ML18082	Chip	314876.54	4245604.58	0.48	1.73	13.5	107	65	
ML18083	Chip	314813.41	4245755.93	0.32	0.19	12.9	29.5	39	
ML18084	Chip	314647.97	4246446.66	0.38	98	3540	2580	123	
ML18085	Chip	314647.97	4246446.66	0.3	12.1	415	580	124	
ML18086	Chip	314656.86	4246541.95	0.26	20.5	15	58.7	168	
ML18087	Chip	314656.86	4246541.95	0.28	0.86	5.5	40.4	74	
ML18088	Chip	314510.98	4245882.98	0.42	1110	1645	1070	353	

Appendix 2:

Competent Persons Statement – JORC Code 2012

The information in this Report that relates to Exploration Results of the Company has been reviewed by Bradley C. Peek, MSc. who is a Member of the American Institute of Professional Geologists (CPG #11299). Mr. Peek is a consultant to independent contractor Harrison Land Services, LLC and has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which they are undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code 2012"). Mr. Peek consents to the inclusion in this Report of the matters based on the information in the form and context in which they appear.

Forward looking statements

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licenses and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give

any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the company does not undertake any obligation to publicly update or revise any of the forward looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based

Appendix 3:

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in tl	is section apply to all succeeding sectio	ons.)
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information 	 A total of 88 geochem samples were collected as random chips from historically existing mining and exploration workings. This includes from sites such as mine dumps, prospect pits & trenches, and adjacent mineralised outcrops. Equipment used was predominately hand-held hammer for the collection of rock fragments. Samples were not necessarily representative of average grade of the area being sampled.

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No drilling conducted.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No drilling conducted.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Brief descriptions of samples have been collected in field notes but not to a level of detail that would support mineral estimation, mining studies and metallurgical studies.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Chip samples were placed directly into calico bags at the site location from which they were collected. No repeat or check samples have yet been submitted for analysis. Each sample was weighed at the preparation laboratory and the weights recorded along with the analytical results. No specific quality control procedure has been adopted for the collection of samples other than due care was exercised to maintain a uniform sample. Samples were shipped to ALS Global laboratories in Reno, Nevada for drying, pulverizing, and splitting to prepare a pulp of approximately 200g which was then shipped to ALS Global laboratories in Vancouver, Canada for analytical determinations.
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and 	 Assays were prepared and performed by ALS Global – Geochemistry Analytical Labs in

Criteria	JORC Code explanation	Commentary
laboratory tests	 whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Reno, Nevada USA and Vancouver, BC Canada using a four acid digestion method with an ICP-MS finish. Average sample weight submitted for prep was 0.38kg and range from 0.26kg to 0.64kg. Samples were pulverized to minus 75 microns before a 250g riffle split was sent to ALS Vancouver lab for analysis. This is an accepted industry analytical process appropriate for the nature and style of mineralization under investigation. No company generated standards or blanks were incorporated into the sampling procedure. ALS undertook their own internal checks and blanks.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Little verification work has been conducted yet due to the preliminary stage of the project. This will be incorporated into the future work programs now that analytical results from this initial sampling are known. No adjustment to the assay data has been performed.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Location of samples were recorded by hand held GPS. The GPS recorded locations used the NAD83 datum UTM Zone 12N. Accuracy is limited to approximately 3 meters.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Samples were collected at previously known mining and prospect sites. The data is not expected to be incorporated into any Mineral and Ore Reserve estimation and is primarily an initial exploration reconnaissance sampling program.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if 	• Not applicable.

соммор

Criteria	JORC Code explanation	Commentary
	material.	
Sample security	 The measures taken to ensure sample security. 	 Company personnel collected the samples and transported them to the assay laboratory in Reno, Nevada. The samples remained in the possession of the personnel or under lock and key at all times prior to their delivery to the laboratory.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	The Competent Person and other company personnel have reviewed the data for accuracy and completeness.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.) Criteria JORC Code explanation Commentary Mineral Type, reference name/number, The TAO Commodities Ltd. project is tenement and located on unpatented Federal lode location and ownership including land tenure mining claims in the USA on land agreements or material issues with administered by the U.S. Bureau of Land status third parties such as joint ventures, Management. The Competent Person has partnerships, overriding royalties, accessed the USA Federal government native title interests, historical sites, websites to confirm that all of the mining wilderness or national park and claims are held by the party indicated in environmental settings. the agreement. The security of the tenure held at the TAO Commodities Ltd. will obtain local, time of reporting along with any known impediments to obtaining a licence to state and/or federal permits to operate in their project areas as required. operate in the area. Exploration Acknowledgment and appraisal of Extensive historical mining and ٠ done by other exploration by other parties. exploration activity beginning in the late parties 1800's is evident within the project area. Limited modern-day exploration techniques and methods have been conducted. Firestrike Resources Ltd and J/V partner Escalante Mines LLC performed rock chip sampling of historic mine dumps and prospect pits during 2011-2013. They also completed a 2000m RC drilling program during 2012 on the Coronado Prospect which lies outside of the current project area. Results of this campaign are contained in Firestrike Resources Limited ASX announcement release dated 5 February 2013, "Widespread high grade silver, lead and zinc along with elevated copper and gold discovered at surface."

> Tao Commodities Limited | ABN: 84 618 935 372 | +61 8 6380 2470 22 Townshend Road Subiaco WA 6008 | enquiry@taocommodities.com.au

Agricola Mining Consultants Pty Ltd completed an independent technical review of the project during September

COMMODITIES LTD

	Ge
	Dr Inf
AD C	
	Da ag me
	Re be mi

Criteria	JORC Code explanation	Commentary
		2017.
Geology	 Deposit type, geological setting and style of mineralisation. 	• The project area lies within a structurally controlled Basin & Range type mountain range. Epithermal and replacement type mineralisation occurs along structural corridors in reactive sedimentary host rocks.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No drilling conducted.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The assay results are based on random chip sample assays. No data aggregation methods, weighting of results or top cuts have been applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 	These are point assays of chip samples from historic mines and prospect sites. The relationship between assay results and mineralisation widths has yet to be determined.

COMMODITIES LTD

Criteria	JORC Code explanation	Commentary			
	'down hole length, true width not known').				
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A 1:4,000 scale sample location map with highlighted assay results is contained in the announcement. 			
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All results have been reported, unmodified. 			
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The evaluation of old workings, previous mining activity, and interpretations of satellite imagery is ongoing. At this stage, the sample results in this release simply relate to the surface sampling as it stands. Further geological work including detailed prospect scale mapping and verification of samples and sample sited will be needed to improve confidence in the results. 			
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Follow-up mapping and trenching work will commence immediately under the continued phase 1 exploration program to define drilling targets. Permitting procedures are be fast tracked to advance towards a Phase 2 exploration program, which will include the Company's maiden drilling program, tentatively scheduled for Q3 2018.			