Presentation at the Transcatheter Cardiovascular Therapeutics Conference

San Diego, California and Sydney, Australia (Tuesday 8 November 2011, AEDT) – REVA Medical, Inc. (ASX: RVA) (“REVA” or the “Company”) is pleased to announce that Dr. Alexandre Abizaid, is presenting an update on the REVA bioresorbable stent program at the Transcatheter Cardiovascular Therapeutics Conference at 5:30 p.m. US PST on Tuesday, November 8, 2011 (or 12:30 p.m. Wednesday 9 November, 2011 AEDT). The conference is being held November 7 through 11, 2011 at the Moscone Center in San Francisco.

The presentation materials delivered at the conference are attached hereto. A copy of these presentation materials have also been filed with the U.S. Securities and Exchange Commission and are posted under the Investor Relations section of REVA’s website at www.revamedical.com.

About REVA

REVA is a development stage medical device company incorporated in Delaware, USA, that is focused on the development and eventual commercialisation of its proprietary, bioresorbable stent products. REVA’s lead product, the ReZolve™ stent, combines REVA’s proprietary stent design with a proprietary polymer that is metabolised and cleared from the body. The ReZolve stent is designed to offer full x-ray visibility, clinically relevant sizing and a controlled and safe resorption rate. In addition, by early encapsulation of the stent in the artery tissue coupled with the loss of stent structure over time, the ReZolve stent may reduce the incidence of late forming blood clots, or thrombosis, a rare but serious problem associated with drug-eluting metal stents currently on the market. REVA is in the process of finalising the design of its ReZolve stent and will require clinical results and regulatory approval before it can begin selling the ReZolve stent.

Forward-looking Statements

This announcement contains or may contain forward-looking statements that are based on management's beliefs, assumptions and expectations and on information currently available to management. All statements that are not historical, including those statements that address future operating performance and events or developments that we expect or anticipate will occur in the future, are forward-looking statements. You should not place undue reliance on these forward-looking statements. Although management believes these forward-looking statements are reasonable as and when made, forward-looking statements are subject to a number of risks and uncertainties that may cause our actual results to vary materially from those expressed in the forward-looking statements, including our ability to obtain the regulatory approvals required to market our ReZolve stent, our ability to timely and successfully complete our clinical trials, our ability to protect our intellectual property position, our ability to commercialize our products if and when approved, our ability to develop and commercialize new products, and our estimates regarding our

HEAD OFFICE: 5751 Copley Drive, Suite B, San Diego, CA 92111 • +1 (858) 966-3000 • +1 (858) 966-3099 (FAX) • www.revamedical.com
AUSTRALIAN OFFICE: Level 6, 175 Macquarie Street, Sydney, NSW 2000 • +61 2 9231 3322 • +61 9229 2727 (FAX) • ABN 146 505 777
REVA Medical, Inc., is a foreign company incorporated in Delaware, USA, whose stockholders have limited liability.
capital requirements and financial performance, including profitability. Other risks and uncertainties that may cause our actual results to vary materially from any forward-looking statements are described in the “Risk Factors” section of our Annual Report on Form 10-K filed with the United States Securities and Exchange Commission (the “SEC”) on March 30, 2011, as updated in our Quarterly Reports on Form 10-Q filed with the SEC for the periods ended March 31, 2011 and June 30, 2011. We may update our risk factors from time to time in our periodic reports or other current reports filed with the SEC. Any forward-looking statements in this presentation speak only as of the date when made. REVA does not assume any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events, or otherwise.

United States

Investor and Media Enquiries:
Cheryl Liberatore
Director, Investor Relations and Marketing
REVA Medical, Inc.
+1 858-966-3045

Australia

Investor Enquiries:
David Allen or Alan Taylor
Inteq Limited
+61 2 9231 3322

Media Enquiries:
Kyahn Williamson & Rebecca Wilson
Buchan Consulting
+61 3 9866 4722
Novel Methods to Evaluate Bioresorbable Scaffolds

REVA Medical Program Update

Dr. Alexandre Abizaid
Disclosure Statement of Financial Interest

Within the past 12 months, I have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship
• Consulting Fees

Company
• REVA Medical, Inc.
Goals of the REVA Program

To develop a stent that provides the benefits of metal stents without their permanency

• Strength
 - Maintain lumen (passage) in vessel
 - Maintain support throughout healing process

• Performance
 - Expansion range to accommodate “real world” clinical use

• Visibility
 - Visualize entire stent during and after deployment

• Resorption
 - Dissolves once its job is done leaving the patient free of a permanent implant

Intent is to drive meaningful clinical benefits
The REVA Solution *Dissolves*

- Unique Stent Geometry
- Unique Material
ReZolve™ Sirolimus-Eluting Bioresorbable Coronary Stent

Stronger and More Resilient Polymer

Optimized Uniform Design

Drug-eluting (Sirolimus)
REVA’s Proprietary Technology

- ‘Slide & Lock’ design
 - Ratchet design
 - Strong
 - Minimal recoil

- Tyrosine-derived polycarbonate
 - Natural
 - Tunable
 - Visible
 - Safe
 - Sirolimus eluting

Top: Backbone and “U” piece of ReZolve™ stent
Bottom: X-ray in animal model of REVA and metal stent
ReZolve™ Elutes Sirolimus

• 80µg dose Sirolimus with abluminal delivery
• Delivery kinetics match commercial –limus eluting stents
• Drug embedded in stent polymer on the surface
• Thin coating layer (≤ 5µm)
• Reproducible coating process
Release Kinetics of Sirolimus

Elution profile comparable to commercially successful products
Bench and Preclinical Testing
Enhanced Test Methods Demonstrate Robustness

<table>
<thead>
<tr>
<th>Stent Type</th>
<th>Cycles</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Average</td>
</tr>
<tr>
<td>ReZolve</td>
<td>127,202 - 507,854</td>
<td>246,230</td>
</tr>
<tr>
<td>Metal Control</td>
<td>61,986 - 108,248</td>
<td>80,956</td>
</tr>
</tbody>
</table>
ReZolve™ Stented Porcine Coronary Artery

Implant

1 Month Relook

Mid-Stent
ReZolve™ Preclinical Time Sequence (bare)

3 Months 6 Months 12 Months

IVUS

OCT
Endothelialization
3-month SEM

ReZolve™ Stent

Metal Control
Novel Simulated Lesion Preclinical Models
Simulated Lesion Models
Pig and Rabbit Challenge Tests

- Porcine Chronic Partial Occlusion (“CPO”)
 - X-ray visible, highly mineralized plugs

- Watanabe Rabbit
 - Hypercholesterolemic “soft” plaque
Angiographic Images of Moderate CPO Lesion

Pre-Stenting
~55% Stenosis

Post-Stenting
OCT Images of Moderate CPO Lesion

Pre-Stenting
Note: After Pre-dilation with balloon

Post-Stenting
Angiographic Images of Severe CPO Lesion

Pre-Stenting
>80% Stenosis

Post-Stenting
OCT Images of Severe CPO Lesion

Pre-Stenting
Note: After Pre-dilation with balloon

Post-Stenting
ReZolve™ vs. Metal Control

ReZolve

Metal Control
Watanabe Rabbit vs. Human Coronary Lesion

- Watanabe Aortic Lesion
- Human LAD Lesion
ReZolve™ Stent Performance at One Month

Distal Reference (non-stented) Mid Stent (stented) Proximal Reference (non-stented)
RESTORE Clinical Trial
ReZolve Sirolimus-Eluting Bioresorbable Coronary Stent

Pilot Safety Study

- 50 Patient enrollment
 - Sites in Brazil & Europe
 - Principal Investigator:
 - Dr. Alexandre Abizaid

- Primary Endpoint(s):
 - Freedom from ischemic-driven target lesion revascularization at 6 months
 - Quantitative measurements at 12 months (QCA/IVUS)
Status of Pilot Clinical Trial

- Pilot clinical trial to begin this quarter
- All required regulatory approvals have been received to initiate the trial in both Brazil and Germany
- Pursuing additional clinical sites in Europe
- Pilot clinical trial will likely involve up to eleven hospitals
Thank you
Supplemental Slides
Fatigue Resistance Under Load
Lockout Robustness

Rail Fails Before Lockout Tooth
ISO-10993 Testing Shows Polymer Safety

<table>
<thead>
<tr>
<th>ISO-10993 Test and NAMSA Protocol Title</th>
<th>Results from Non-Polar Test Solution</th>
<th>Results from Polar Test Solution</th>
<th>Study Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>10993-3 Genotoxicity</td>
<td>Passed</td>
<td>Passed</td>
<td>Nonmutagenic</td>
</tr>
<tr>
<td>Bacterial Reverse Mutation Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-3 Genotoxicity</td>
<td>Passed</td>
<td>Passed</td>
<td>Does not induce micronuclei in mice</td>
</tr>
<tr>
<td>Mouse Peripheral Blood Micronucleus Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-3 Genotoxicity</td>
<td>Passed</td>
<td>Passed</td>
<td>Does not induce structural chromosomal aberrations with or without metabolic activation</td>
</tr>
<tr>
<td>In Vitro Chromosomal Aberration in Mammalian Cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-4 Interactions with blood</td>
<td>Passed</td>
<td>Passed</td>
<td>Nonhemolytic</td>
</tr>
<tr>
<td>ASTM Hemolysis study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-4 Interactions with blood</td>
<td>Passed</td>
<td>Passed</td>
<td>No effect on clotting time</td>
</tr>
<tr>
<td>Lee-White Clotting Time Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-4 Interactions with blood</td>
<td>Passed</td>
<td>Passed</td>
<td>Not an activator of the complement system</td>
</tr>
<tr>
<td>C3a Complement Activation Assay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-4 Interactions with blood</td>
<td>Passed</td>
<td>Passed</td>
<td>Not an activator of the complement system</td>
</tr>
<tr>
<td>SC5b-9 Complement Activation Assay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-4 Interactions with blood</td>
<td>Passed</td>
<td>Passed</td>
<td>Minimal activator of thrombogenicity</td>
</tr>
<tr>
<td>ASTM Partial Thromboplastin Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-5 Cytotoxicity</td>
<td>Not Applicable</td>
<td>Passed</td>
<td>Noncytotoxic and Noncytolytic</td>
</tr>
<tr>
<td>Cytotoxicity Study Using the ISO Elution Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-10 Sensitization</td>
<td>Passed</td>
<td>Passed</td>
<td>Not a sensitizer</td>
</tr>
<tr>
<td>ISO Maximization Sensitization Study- Extract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-10 Irritation Intracutaneous reactivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO Intracutaneous Study in Rabbits- Extract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-11 Systemic toxicity</td>
<td>Passed</td>
<td>Passed</td>
<td>Nontoxic</td>
</tr>
<tr>
<td>ISO Systemic Toxicity Study in Mice-Extract</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10993-11 Pyrogenicity</td>
<td>Not Applicable</td>
<td>Passed</td>
<td>Nonpyrogenic</td>
</tr>
<tr>
<td>USP Pyrogen Study- Material Mediated</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Known Polymer Molecular Breakdown

I₂DTE

H₂O

I₂DT

Ethanol
CH₂CH₂OH

Enzymes

6-Hydroxyhexanoic Acid

I₂DAT

Tyrosine

I₂DAT

H₂O

1,6-Hexanediol

Tyrosine

Ethanol
CH₂CH₂OH

TEE

H₂O

Trihydroxyphenylpropionic Acid

I₂
Established Pilot Trial Sites

- **Brazil**
 - Institute Dante Pazzanese, Sao Paulo (Dr. Abizaid)

- **Austria**
 - Paracelsus Medical University, Salzburg (Prof. Dr. med Heigart)

- **Poland**
 - Jagiellonian University Medical College, Krakow (Drs. Dudek & Legutko)

- **Germany**
 - Bad Bevensen (Prof. Dr. med Remppis)
 - Bonn (Prof. Dr. med Werner)
 - Coburg (Prof. Dr. med Brachmann)
 - Frankfurt (Prof. Dr. med Schmermund)
 - Frankfurt (Prof. Dr. med Fichtelsherer)
 - Fulda (Prof. Dr. med Schächinger)
 - Kassel (PD Dr. med Appel)
 - Kiel (Prof. Dr. med Frey)