

Benitec Biopharma's ddRNAi technology

The next therapeutic revolution?

This presentation contains forward looking statements that involve risks and uncertainties.

Although we believe that the expectations reflected in the forward looking statements are reasonable at this time, Benitec can give no assurance that these expectations will prove to be correct.

Actual results could differ materially from those anticipated. Reasons may include risks associated with drug development and manufacture, risks inherent in the regulatory processes, delays in clinical trials, risks associated with patent protection, future capital needs or other general risks or factors.

Benitec Biopharma

Overview:

- Potent long-lasting gene silencing platform technology
- Multiple patent protection internationally
- Proven clinical application
- Broad pipeline in multiple therapeutic areas
- Out-licenses achieved for infectious disease applications
- Benitec will realise value for investors through licensing its technology to big pharma companies, and codevelopment of its product pipeline to the clinic.

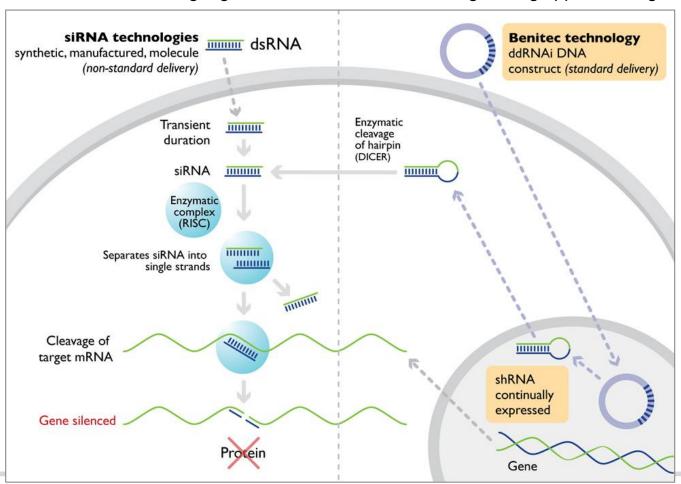
Benitec has developed the equivalent of a molecular gene silencing *penknife*

- ddRNAi can silence any gene
- Potential application for human disease is enormous
- Programs strategically selected to showcase the breadth of therapeutic applications

Each program is positioned to:

- Address concerns around gene therapy
- Enter the clinic in a short time frame
- 3. Provide a unique solution to a significant health issue

How to make a ddRNAi product in eight steps



- 1. **Identify the key gene** that is critical for the development / progression of the disease
- 2. Identify a short region(s) of that gene that is the gene's 'Achille's heel'
- 3. **Design and manufacture a DNA construct** that will produce the silencing molecule
- 4. **Test the construct in vitro** for its ability to silence the gene
- 5. **Identify a delivery vehicle** that will carry that construct to the target organ
- 6. **Test the construct** *in vivo*, looking for specific delivery and effective silencing
- 7. **Determine toxicity** and off-target effects in two species
- 8. **Test in clinical trials** safety and efficacy major inflection point for value creation

The ddRNAi technology

Benitec's *ddRNAi technology* platform utilises a DNA construct to *continually express shRNA molecules* which silence the target gene. This is a natural and long-lasting approach to gene silencing.

Benitec Biopharma Goals and Strategy

12 month corporate goal:

 To secure a big pharma partnering deal as a result of moving our technology into the clinic

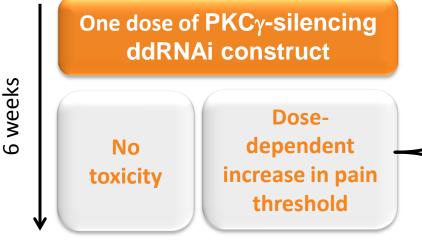
Strategy:

- Advancement of our in-house pipeline to the clinic
- Out-licensing to external groups with clinical potential
- Acquisition of relevant late stage ddRNAi programs (areas under consideration include infectious disease, stem cell and cardiac programs)
- Building stem cell delivery capacity
- Direct contact with big pharma awareness raising

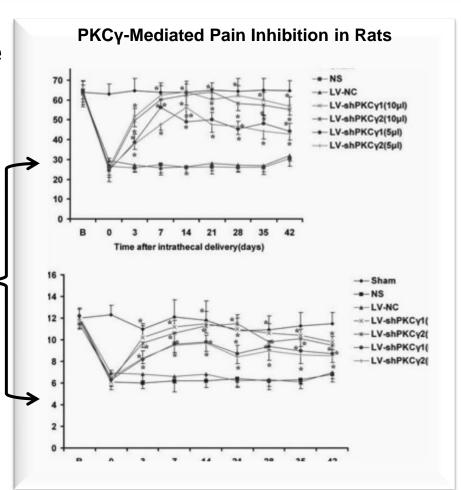
Advancement of in-house pipeline programs to the clinic

- Cancer-associated pain
- Drug-resistant lung cancer
- Hepatitis B infection
- Muscular dystrophy

Program 1: Cancer-Associated Pain


- Approximately 65% of all cancer patients experience pain
- 11.7 million people in the US with cancer

The global market for cancer-associated pain products is valued at \$2 billion and is expected to increase to \$2.9 billion by 2016.


Identifying the key target pain gene

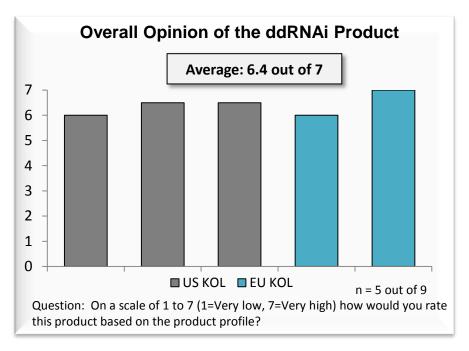
• Increased PKC γ found in the spinal cord in cancer pain

Switching off PKC_γ also overcomes morphine tolerance

www.benitec.com

Introducing Nervarna

Nervarna development



1. Identify the key gene	•	PKCγ (DAO) (patent application lodged)
2. Identify a short effective region(s)	•	2 PKCγ sequences conserved across all key regulatory species and humans
3. Design and manufacture a DNA construct	/	Single and double cassettes
4. Test the construct in vitro	/	>80% silencing singly
5. Identify a delivery vehicle	V	EIAV (Oxford Biomedica) manufacturing in progress
6. Test the construct in vivo	V	Neuropathic pain rat model (preliminary)
7. Determine toxicity		Q3-4 2012
8. Test in clinical trials		2013

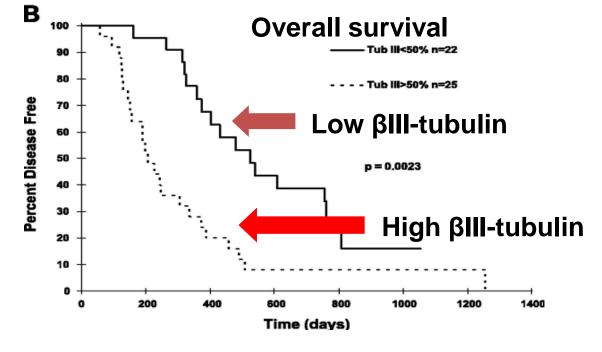
Program 1: Feedback on Nervarna

Healthcare Professional opinions (from Campbell Alliance, NY):

Such a product with a new mechanism of action was said to be...

"sorely needed"

Program 2: Drug-resistant lung cancer (NSCLC)



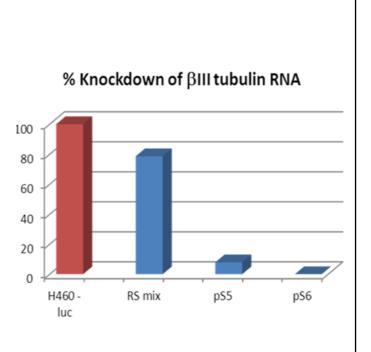
Most common cancer: 1.6 M new cases per year globally

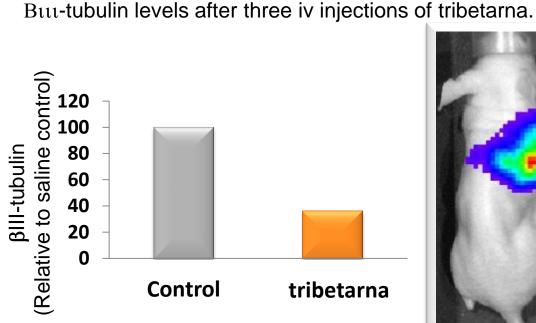
 Dismal prognosis, with a high proportion becoming resistant to conventional drug therapy within a short

period of time.

βIII-tubulin associated with drug resistance

Tribetarna development

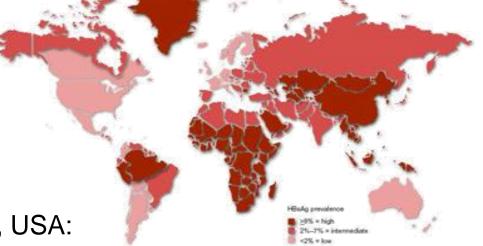

In collaboration with Children's Cancer Institute Australia, UNSW



1. Identify the key gene	✓	βIII tubulin
2. Identify a short effective region(s)	✓	three sequences
3. Design and manufacture a DNA construct	✓	A triple promoter triple cassette
4. Test the construct in vitro	✓	95% silencing
5. Identify a delivery vehicle	✓	JetPEI specific for lung
6. Test the construct in vivo	V	Orthotopic mouse model (preliminary data)
7. Determine toxicity		Q3 2012
8. Test in clinical trials		2013

Tribetarna data- silencing of βIII tubulin *in vitro* and *in vivo*

Ongoing success with tribetarna expected in 2012, including preparations for a clinical study


Program 3: Hepatitis B

 More than 2,000 million people alive today have been infected with HBV at some time in their lives

~350 million remain chronically infected and become carriers of the

Global Business Intelligence Hepatitis Market to 2017

- For example, USA:
 - Over 1.25 million people living with the consequences of chronic active HBV
 - Over 60,000 new cases per year

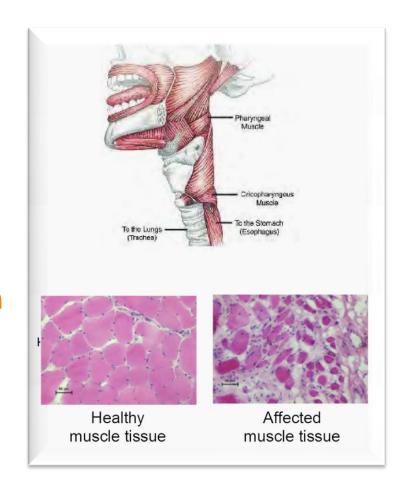
Hepbarna development

Collaboration with Biomics Biotechnologies Co Ltd, China

hepbarna

1. Identify the key gene	'	HBV DNA polymerase
2. Identify a short effective region(s)	✓	5 out of 5000 possibilities
3. Design and manufacture a DNA construct	V	A multicassette with modified promoters – May completion
4. Test the construct in vitro		May-June
5. Identify a delivery vehicle	✓	AAV-8 (specific for liver)
6. Test the construct in vivo		Mouse model of HBV available June-Dec 2012
7. Determine toxicity		Q1 2013
8. Test in clinical trials		mid-late 2013

Program 4: OPMD


(oculopharyngeal muscular dystrophy)

- A rare genetic disease
- No effective treatment exists
- Symptoms: Drooping of the eyelids, limb weakness, swallowing difficulties leading to choking and death

OPMD is classified as an orphan disease.

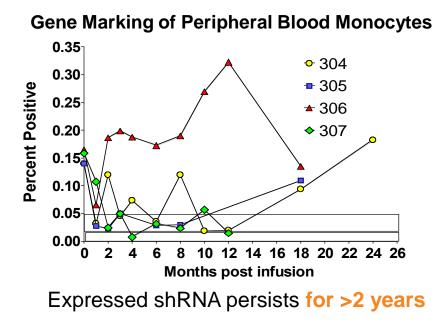
It is a rare condition
(1 in 100 000 in Europe)
with a worldwide distribution.

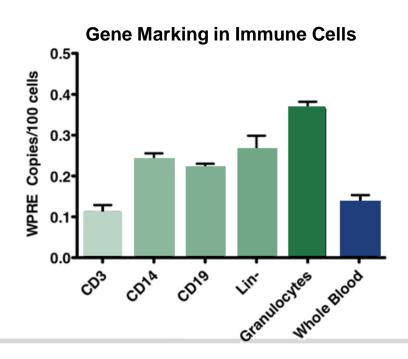
Pabparna development


In collaboration with Royal Holloway, University of London

1. Identify the key gene	•	PABPN1
2. Identify a short effective region(s)	•	Candidate sequences
3. Design and manufacture a DNA construct	/	In progress
4. Test the construct in vitro		
5. Identify a delivery vehicle	V	AAV-8 or lentivirus (TBD)
6. Test the construct in vivo		Mouse model available
7. Determine toxicity		
8. Test in clinical trials		Likely 2014-15

Other potential applications...


Outlicensed projects utilising Benitec Biopharma's ddRNAi technology


HIV/AIDS - Calimmune, USA
Hepatitis C - Tacere Therapeutics, USA

First human ddRNAi clinical trial: HIV/AIDS (City of Hope)

- Following only one stem cell-delivered treatment, constructs still present and active in stem cells and all immune cells after 3 years (data not shown)
- A completely new and resistant immune system potentially

Three groups using ddRNAi to tackle HIV/AIDS

Berkhout Group, Amsterdam

- Extensive research using multicassette
- Potential spin off and licensing opportunity

City of Hope, US

2nd clinical trial underway

Calimmune, US

 non-ex license agreement with Benitec Biopharma

24

Calimmune HIV ddRNAi product development

1. Identify the key gene	✓	
2. Identify a short effective region(s)	✓	
3. Design and manufacture a DNA construct	✓	
4. Test the construct in vitro	/	
5. Identify a delivery vehicle	✓	
6. Test the construct in vivo	?	
7. Determine toxicity	?	
8. Test in clinical trials		Expected in 2012

Hepatitis C

Hepatitis C is attracting huge interest in and deals for clinical assets

Nov 2011: Gilead paid \$11 billion to buy Pharmasset's oral compound in Phase II

testing.

Mar 2012: Gilead announced the compound failed to suppress HCV in difficult-to-

treat - or null - patients who had also failed prior therapy. Of eight with genotype 1, the most common form of the virus, all relapsed within

four weeks after stopping the 12-week regimen.

Jan 2012: Achillion's CEO projected HCV treatments would fetch \$20 billion by

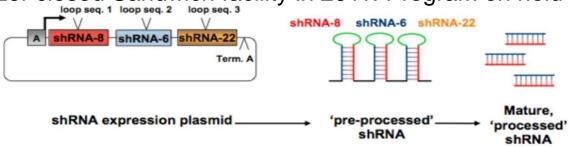
the end of this decade.

Jan 2012: "Our goal is to be a leader in hepatitis C, and we will do what it takes to

get there," Merck CEO Pomerantz said. "We would consider small deals

to large deals, whatever is necessary to lead in hepatitis."

Hepatitis C Program



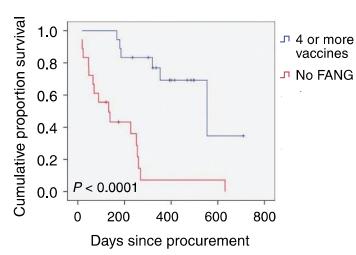
TT-0034 – a ddRNAi-based therapeutic targeting Hepatitis C virus genome

- Multi-target construct (three sequences) to prevent viral escape in a single drug "cocktail"
- Delivered using AAV-protein coat encapsidation
- Licensed to Tacere Therapeutics Inc USD\$143M deal with Pfizer Inc
- Benitec has an equity stake in Tacere

Pfizer closed Sandwich facility in 2011. Program on hold

Tacere/Pfizer HCV TT-0034 product development

1. Identify the key gene	'	HCV genome target
2. Identify a short effective region(s)	/	Three sequences
3. Design and manufacture a DNA construct	/	Triple cassette with modified promoters
4. Test the construct in vitro	/	
5. Identify a delivery vehicle	'	AAV-8 (specific for liver)
6. Test the construct in vivo	•	NHPs
7. Determine toxicity	/	Minimal toxicity
8. Test in clinical trials		



Many other groups using ddRNAi technology

5700 publications in 2011

ddRNAi construct within a vaccine: "FANG" anti-cancer vaccine (Gradalis) BENITEC BIOPHARMA

- Phase I clinical trial of systemically-delivered, monthly vaccine delivering a bifunctional shRNA:
 - Targeting over expressed immunosuppressive factors promoting tumour growth
 - Tested in advanced stage cancer patients.

- 93.5% reduction of targeted overexpressed TGF-β isoforms
- >4 treatments significantly increased survival
- No adverse effects

Gradalis has plans for a Phase II clinical trial

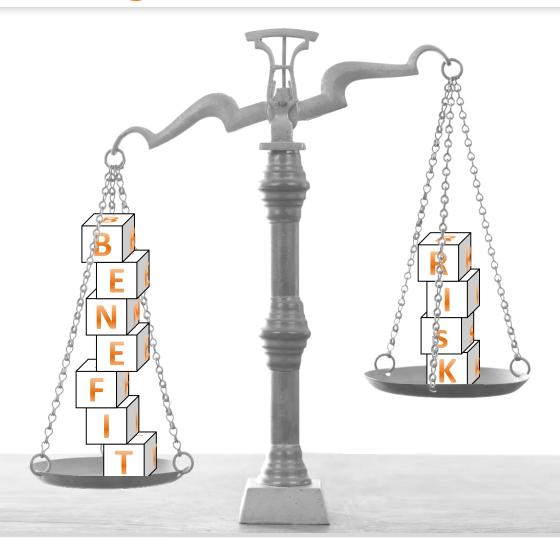
Progress in ddRNAi-based programs

Indication	Discovery	Pre- clinical	Human clinical	External party(s)	Market
Cancer-associated pain				University of Queensland (Australia)	\$2.6 billion by 2016
Drug resistant lung cancer				University of New South Wales (Australia)	Leading form of cancer worldwide
Hepatitis B				Biomics Biotechnologies (China)	400 million globally, resulting in 60-80% of all primary liver cancers
Oculopharyngeal muscular dystrophy				Royal Holloway, University of London	Orphan disease effecting 1 in 100,000 in Europe, no treatment available
Hepatitis C			,	Tacere (Pfizer) (US)	>170 million people worldwide, 3-4 million new infections each year
HIV/AIDS				Calimmune (US), City of Hope (US), Berkhout Group (Holland)	1/200 infected with HIV worldwide
Anti-cancer vaccine				Gradalis (US)	11.7 million in the US alone

Delivery proven both directly and systemically

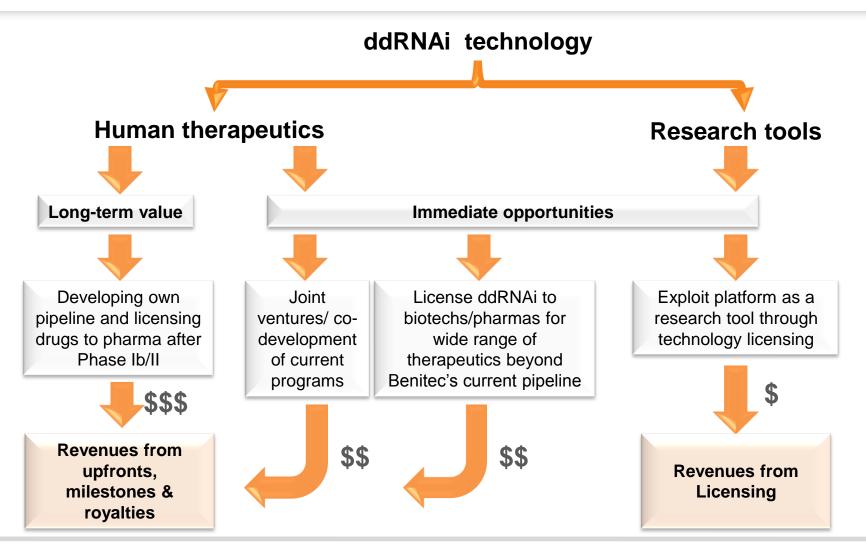
Safety demonstrated in animal models and clinically in humans

Efficacy already proven in more than one therapeutic area



Regulatory is the next hurdle

Benitec Biopharma's strategy gives more weight to benefit



Strategy to build value

Big Pharma are doing big deals in Benitec's program areas

Phase 1 clinical trials are Benitec Biopharma's next significant inflection point.

Companies	Condition	Stage	Deal	When
Xenon / Genentech	Pain	Phase II	A \$646 million deal – undisclosed	Jan 2012
Genentech		11	upfronts and milestones.	2012
Enanta /	Нер С	Phase	\$36 million up front, as much as \$404	March
Novartis		I	million more on clinical, regulatory,	2012
			and commercial milestones	
Gilead /	Нер В	Phase	undisclosed upfront payment plus	Oct
Globelmmune		la	additional milestone payments and, potentially, royalties	2011
Avila / Clovis	Non small cell	Pre	unspecified upfront and regulatory	May
	lung cancer	clinic	and sales milestones that add up to \$209 million	2010

In summary:

- Potent long-lasting gene silencing platform technology
- Multiple patent protection internationally
- Proven clinical application
- Broad pipeline in multiple therapeutic areas
- Goal is to secure multiple big pharma partnering deals following commencement of clinical trials