DIAMONDS RECOVERED FROM L46 KIMBERLITE PIPE

Highlights

• The L46 kimberlite at Lulo confirmed as a diamond-bearing pipe after two Type I diamonds weighing 1.24 carats recovered from preliminary bulk sampling.

• The L46 kimberlite pipe is considered a potential source of the high-grade diamonds which were recovered from the surrounding E46 alluvial terraces during the alluvial bulk sampling phase.

• L46 is located approximately 8km south of the high-priority L259 kimberlite, which has been identified as a potential source of the separate Mining Block 8 alluvial diamond field.

• While the diamond recoveries from L46 are considered significant, further testing of this diamond-bearing pipe will only resume once the L259 exploration program is completed or when additional earth moving capacity becomes available.

Figure 1: Diamonds recovered from the L46 kimberlite at Lulo
Lucapa Diamond Company Limited (ASX: LOM) (“Lucapa” or “the Company”) is pleased to announce the recovery of two diamonds, weighing a total of 1.24 carats, from preliminary bulk sampling of the L46 kimberlite at the Lulo Diamond Project in Angola.

The two kimberlite diamonds – weighing 0.78 carats and 0.46 carats (Figures 1 and 3) – have been tested on a Yehuda colorimeter and confirmed as Type I gems.

As announced to the ASX on 27 July 2015, Lucapa and its partners commenced what was planned to be an extensive bulk sampling program at L46 after this kimberlite was identified as one of the potential sources of the higher-grade diamonds recovered from the E46 alluvial terraces (Figure 2).

However, only two surface bulk samples were excavated from L46 before a decision was taken to redeploy the earth moving equipment to E259 (Figure 2) when this high-priority kimberlite target was identified as a potential source of the large valuable diamonds and coarse kimberlite indicator minerals being recovered from the prolific Mining Block 8 alluvial diamond area.

Figure 2: Location of the L46 and L259 kimberlites at Lulo
The two bulk samples excavated from L46 have now been processed through the 150 tonne per hour diamond plant at Lulo and the diamond recoveries verified (Table 1).

L46 is the fifth confirmed diamond-bearing kimberlite at Lulo, with diamonds previously recovered from the L257, L251 and L19 kimberlites and a micro diamond recovered from kimberlite L170 (Figure 2). As previously announced, Lucapa has sent drill core from L251 and L19, amongst other samples, to Cape Town for laboratory analysis and the results are expected soon.

The L46 kimberlite is located approximately 8km south of L259, which remains the high-priority focus of Lucapa’s kimberlite exploration program.

Lucapa believes the L46 and L259 kimberlites could be potential sources of separate alluvial diamond fields at Lulo, being the E46 alluvial terraces and Mining Block 8 respectively (Figure 2).

The preliminary results from L46 are considered significant. However, Lucapa and its Lulo partners will only be in a position to resume bulk sampling at L46 once the high-priority kimberlite program at L259 is completed, or when additional earth moving equipment capacity becomes available.

For further information, contact:

MILES KENNEDY
CHAIRMAN
Tel +61 8 9381 5995

STEPHEN WETHERALL
CHIEF EXECUTIVE OFFICER
Tel +61 8 9381 5995
DIAMONDS RECOVERED FROM L46 KIMBERLITE PIPE

Table 1: Summary of kimberlite sampling diamond recoveries – L46

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Type</th>
<th>Bulked sample</th>
<th>Size Distribution(^1)</th>
<th>Stones Recovered</th>
<th>Total Diamond Weight</th>
<th>Average Diamond Size</th>
<th>Largest Diamond</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(m(^3))</td>
<td><1 ct</td>
<td>(no.)</td>
<td>(ct)</td>
<td>(ct/stone)</td>
<td>(ct)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-2 ct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-5 ct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-10 ct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>10 ct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMB-15</td>
<td>Weathered kimberlite</td>
<td>898</td>
<td>1.24</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.24</td>
</tr>
<tr>
<td>(L46-182)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.62</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Notes:
1) Centroid: Easting: 268,888m Northing: 8,934,132m
2) The Lulo recovery plant uses a bottom cut off screen size of 1.2mm and a top screen size of 32mm.
3) Macro diamonds recovered. Lucapa does not report micro diamonds.
4) Grade (0.14 cphm\(^3\)) is quoted in carats per 100 cubic metres of sample.

ABOUT LUCAPA DIAMOND COMPANY LIMITED

Lucapa Diamond Company Limited is a miner of world-class diamonds. Lucapa is the operator of the 3,000km\(^2\) Lulo Diamond Concession in Angola’s Lunda Norte diamond heartland. Lulo is located within 150km of Catoca, the world’s fourth biggest kimberlite diamond mine, and on the same favourable geological trend (Lucapa Graben).

Lucapa and its partners commenced alluvial diamond mining operations at Lulo in January 2015. The Lulo alluvial diamonds sold to date have achieved exceptional average sale prices of A$1,966 per carat.

Lulo also hosts 296 kimberlite targets in two separate provinces, of which 96 have already been classified as proven and probable kimberlites and four confirmed as diamond-bearing pipes.

Lucapa’s board and management team has extensive diamond mining experience with companies including De Beers, Rio Tinto and Gem Diamonds. Lucapa operates Lulo in partnership with Endiama, the Angolan Government’s diamond concessionary, and private group Rosas & Petalas.

Lucapa is dual listed on the Australian Securities Exchange and the Frankfurt Stock Exchange.

ABOUT ANGOLA

Angola is the world’s fourth biggest producer of diamonds by value with forecast annual production of 10 million carats in 2014.

Angola introduced a new Mining Code in 2012 and is actively seeking foreign investment in its diamond industry.

Angola’s potential for new diamond discoveries has been recognised by the world’s two biggest diamond mining companies, Alrosa and De Beers.

Angola was appointed to chair the Kimberley Process Certification Scheme in 2015.
Competent Person's Statement

Information included in this announcement that relates to previously released exploration data disclosed under JORC Code 2012. The information has not materially changed since it was last reported and is based on and fairly represents information and supporting documentation supervised, prepared and compiled by Albert Thamm MSc F.Aus.IM (CP), who is a Corporate Member of the Australasian Institute of Mining and Metallurgy. New exploration data is disclosed under JORC Code 2012.

Mr Thamm is a Director of Lucapa Diamond Company Limited. Mr Thamm has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Thamm and consents to the inclusion in the announcement of the matters based on this information in the form and context in which it appears.

Forward-Looking Statements

This announcement has been prepared by Lucapa Diamond Company Limited. This document contains background information about Lucapa Diamond Company Limited and its related entities current at the date of this announcement. This is in summary form and does not purport to be all inclusive or complete.

Recipients should conduct their own investigations and perform their own analysis in order to satisfy themselves as to the accuracy and completeness of the information, statements and opinions contained in this announcement. This announcement is for information purposes only. Neither this document nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction.

This announcement may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply in their own jurisdiction. A failure to do so may result in a violation of securities laws in such jurisdiction. This document does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this representation are not intended to represent recommendations of particular investments to particular persons. Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments.

No responsibility for any errors or omissions from this document arising out of negligence or otherwise is accepted. This document does include forward-looking statements. Forward-looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of Lucapa Diamond Company Limited. Actual values, results, outcomes or events may be materially different to those expressed or implied in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward-looking statements.

Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and ASX Listing Rules, Lucapa Diamond Company Limited does not undertake any obligation to update or revise any information or any of the forward-looking statements in this document or any changes in events, conditions or circumstances on which any such forward-looking statement is based.
Appendix 1 - Reporting of diamond exploration results and resources for the Lulo Project

JORC Code (2012) requirements –

Sampling Techniques and Data

<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code Explanation</th>
<th>Lucapa Commentary</th>
</tr>
</thead>
</table>
| **Sampling** | 1. Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.) These examples should not be taken as limiting the broad meaning of sampling.
 2. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
 3. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where ‘industry standard’ work has been done this would be relatively simple (e.g. ‘reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulsed to produce a 30 g charge for fire assay’). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | At E46, sampling and assay result from bulk sampling.
 One bulk sample with diamonds recovered is reported. The pitting geology was recorded from surface excavations using an excavator and articulated trucks. Sandy overburden and recent age sand and gravels were stripped and weathered kimberlite, if present, was exposed. For alluvial samples overburden of recent sand and subcropping sand and silt were stripped and basal gravel exposed. The gravel and some underlying basement material (<30cm) was excavated.
 The bulk sampling is seeking to identify diamondiferous lithologies. Samples are relatively large and by their nature are representative. Bulk sampling is processed for diamond recovery.
 Diamonds occur in very low concentrations in most lithologies. They also occur as discrete crystal particles and these must be physically separated and recovered to determine grade. Individual diamonds are unique and their value depends on factors including size, shape, colour and clarity. Large samples (tens to many hundreds of tonnes) are required to identify the presence of commercial diamonds.
 Samples in the order of tens of or hundreds of thousands of tonnes are required to establish reliable grade and value for diamond deposits. |
| **Drilling** | 1. Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). | No drilling is reported in this document. | |
| **Drill sample recovery** | 1. Method of recording and assessing core and chip sample recoveries and results assessed.
 2. Measures taken to maximise sample recovery and ensure representative nature of the samples.
 3. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | No drilling is reported in this document
 Sample recovered using an excavator and front-end loader. Sample area visually inspected and all gravels excavated to basement. For kimberlite samples all materials within the sample interval are processed
 No relationship appears to exist between sample recovery and grade. All material within the sampled interval is collected for treatment. | |
| **Logging** | 1. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
 2. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. | Sample pits are lithologically logged and measured.
 Logging is semi-quantitative with edge thicknesses measured of the entire pit. Pits are photographed, but the photography is not systematic.
 All excavated faces of the pits are logged. | |
DIAMONDS RECOVERED FROM L46 KIMBERLITE PIPE

<table>
<thead>
<tr>
<th>Sub-sampling techniques and sample preparation</th>
</tr>
</thead>
</table>
| The total length and percentage of the relevant intersections logged.
If core, whether cut or sawn and whether quarter, half or all core taken.
If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.
For all sample types, the nature, quality and appropriateness of the sample preparation technique.
Quality control procedures adopted for all subsampling stages to maximise representivity of samples.
Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
Whether sample sizes are appropriate to the grain size of the material being sampled.
Not core. No sub-samples are taken. All material excavated is processed to recover diamonds.
Most of the samples are excavated dry and all material is taken.
The sampling and sample preparation are identical to those that would be used for mining and are considered appropriate for this type of sampling.
Samples are disaggregated during excavation and washed through a scrubber. The process is identical to that which would be used for mining and results are considered representative.
Sample size is appropriate for the material being sampled.

<table>
<thead>
<tr>
<th>Quality of assay data and laboratory tests</th>
</tr>
</thead>
</table>
| The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.
Samples are processed through a Dense Media Separation (DMS) plant. Recovery in the size fractions used on the plant is considered total.
Samples are processed through the Company’s DMS Plant to produce a heavy concentrate. Diamonds are recovered from the heavy concentrate using a Flowsort x-ray sorting machine followed by visual sorting.
DMS efficiency is monitored using density beads.

<table>
<thead>
<tr>
<th>Verification of sampling and assaying</th>
</tr>
</thead>
</table>
| The verification of significant intersections by either independent or alternative company personnel.
The use of twinned holes.
Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
Discuss any adjustment to assay data.
No verification of sample data at an independent facility has been undertaken due to the very large size of the samples and the lack of appropriate facilities in Angola.
Twinned holes are rarely used because of the size of the sample. Entry of primary data has been checked and loaded into a sampling spreadsheet.
Assay data are not adjusted.

<table>
<thead>
<tr>
<th>Location of data points</th>
</tr>
</thead>
</table>
| Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
Specification of the grid system used.
Quality and adequacy of topographic control.
Sample sites were located using a hand held GPS with a nominal accuracy of about 5m.
The grid system is WGS84 Zone 34L
Topographic control uses Digital Terrain Models collected during aeromagnetic surveys. In pit measurements are recorded with tape measures.

<table>
<thead>
<tr>
<th>Data spacing and distribution</th>
</tr>
</thead>
</table>
| Data spacing for reporting of Exploration Results.
Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
Whether sample compositing has been applied.
Data in this report comes from individual pits where all the material from that pit has been, or will be processed.
The pit spacing is currently related to exploration and is not appropriate for Mineral Resource and Ore Reserve estimation.
Sample compositing has not been applied.
Orientation of data in relation to geological structure

- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.
- If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.
- The samples are considered spot samples within either an alluvial or kimberlitic body.
- Insufficient data exists to determine whether sample bias is present but given the nature of the body, bias is considered unlikely.

Sample security

- The measures taken to ensure sample security.
- Sample stockpiles are located near the company’s processing facility and are guarded by armed security personnel at all times.
- Security of processing and diamond recovery is monitored by company and Angolan State Diamond Security personnel.

Audits or reviews

- The results of any audits or reviews of sampling techniques and data.
- The sampling techniques are industry standard and no audits or reviews have been undertaken.

Reporting of Exploration Results

<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code Explanation</th>
<th>Lucapa Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral tenement and land tenure status</td>
<td>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</td>
<td>The 1994 legislation covering the Angolan diamond industry stipulates that only ENDIAMA (Empresa Nacional de Diamantes de Angola, the State Diamond Company) or joint ventures with ENDIAMA, can hold diamond mining rights awarded by the Council of Ministers. Under the terms of the Lulo Joint Venture Association Agreements, separate titles are granted for alluvial and kimberlite mining. The exploration for both alluvials and kimberlites on the Lulo Concession is a requirement under the Act. The Angolan Government Gazette, dated 24 December 2007, authorized the formation of a Joint Venture for the exercise of prospecting, evaluation and mining of secondary (alluvial) diamond deposits. These rights were granted for a maximum period of five years. Should the Joint Venture wish to extend the agreement beyond five years, then 50% of the Concession would be relinquished. The equity distribution is: ENDIAMA 32%, Lucapa Diamond Company Ltd 40%, Rosas e Petalas S.A. 28%. In May 2014, the authorization for the kimberlite exploration and mining was gazetted. The equity distribution is: ENDIAMA 51%, Lucapa Diamond Company Ltd 39*, Rosas e Petalas S.A. 19% (*This interest will be reduced to 30% after recoupment of the investment.). The Joint Ventures Alluvial licence was extended for two years to 25 May 2016. The application to extend Kimberlite Licence for two years until 25 May 2016 was also granted to the concession by the Angolan Ministry of Mines.</td>
</tr>
</tbody>
</table>
DIAMONDS RECOVERED FROM L46 KIMBERLITE PIPE

- A new 10 year, 1500km², alluvial mining licence was awarded at end July 2015 to “Sociedade Mineira Do Lulo, LDA.”, an Angolan incorporated company with which Lucapa Diamond Company Ltd has a 40% beneficial interest.

Exploration done by other parties
- Acknowledgment and appraisal of exploration by other parties.

Geology
- Deposit type, geological setting and style of mineralisation.

- Significant diamond bearing alluvial systems, of Mesozoic to Recent ages overlie a major, but relatively poorly explored, kimberlite field. The kimberlite pipes intrude flat-lying Proterozoic and younger Karoo sediments within the Lucapa Graben. The kimberlite field is believed to be the source of the alluvial diamonds.
- Paleoplacer diamonds appear to be eroded from the crater and diatreme facies in this kimberlite field. Three other kimberlites had been known to be diamond bearing (macro diamonds), one micro diamond recovered from a different kimberlite.
- Palaeoplacer diamond bearing gravels developed as terraces in the palaeo-Cacuilo River, of recent re-interpreted Pleistocene-Pliocene age gravels, developed on a Karoo age footwall.

Drill hole Information
- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
 - easting and northing of the drill hole collar
 - elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar
 - dip and azimuth of the hole
 - down hole length and interception depth hole length.
 - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

- No drilling is reported in this document.
- The location of the sample pit is shown on maps within this report and in Appendix 1. The maps provide data on the location and relative elevations of the samples. The sample pits are surface excavations and other data required in the code is not material and its exclusion does not detract from the understanding of the report.
- Drillhole information not pertinent to bulk sampling results.
- Where bulk sampling results are reported these are in toto. Thus no material information has been excluded.

Data aggregation methods
- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

- No weighting, averaging, grade truncations or cut-off grades have been used.
- No short or long length aggregation applicable.
- No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths
- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. ‘down hole length, true width not known’).

Diagrams
- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.

Balanced reporting
- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.

Other substantive exploration data
- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.

Further work
- The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

Estimation and Reporting of Diamonds and Other Gemstones

<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code Explanation</th>
<th>Lucapa Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator minerals</td>
<td>Reports of indicator minerals, such as chemically/physically distinctive garnet, ilmenite, chrome spinel and chrome diopside, should be prepared by a suitably qualified laboratory.</td>
<td>Samples were collected from mechanically excavated prospecting pits up to approximately to ~10m deep. Indicator minerals were concentrated and recovered in the field by hand panning of samples. Indicator grains were identified and counted by an experienced Lucapa geologist using a x10 Loupe. Only +1mm indicator minerals were counted.</td>
</tr>
<tr>
<td>Source of diamonds</td>
<td>Details of the form, shape, size and colour of the diamonds and the nature of the source of diamonds (primary or secondary) including the rock type and geological environment.</td>
<td>The diamonds reported have a variety of sizes, shapes and colours. The diamonds were recovered from alluvial gravels of Pleistocene – Pliocene age. These are essentially fanglomerates and braided stream sediments. At Lucapa the primary, kimberlitic source of the diamonds are believed to be kimberlites located within the Lulo Concession.</td>
</tr>
</tbody>
</table>
Diamonds Recovered from L46 Kimberlite Pipe

Sample Collection
- Type of sample, whether outcrop, boulders, drill core, reverse circulation drill cuttings, gravel, stream sediment or soil, and purpose (e.g. large diameter drilling to establish stones per unit of volume or bulk samples to establish stone size distribution).
- Sample size, distribution and representivity.

Sample Treatment
- Type of facility, treatment rate, and accreditation.
- Sample size reduction. Bottom screen size, top screen size and re-crush.
- Processes (dense media separation, grease, X-ray, hand-sorting, etc.).
- Process efficiency, tailings auditing and granulometry.
- Laboratory used type of process for micro diamonds and accreditation.

Carat
- One fifth (0.2) of a gram (often defined as a metric carat or MC).

Sample Grade
- Sample grade in this section of Table 1 is used in the context of carats per units of mass, area or volume.
- The sample grade above the specified lower cut-off sieve size should be reported as carats per dry metric tonne and/or carats per 100 dry metric tonnes. For alluvial deposits, sample grades quoted in carats per square metre or carats per cubic metre are acceptable if accompanied by a volume to weight basis for calculation.
- In addition to general requirements to assess volume and density there is a need to relate stone frequency (stones per cubic metre or tonne) to stone size (carats per stone) to derive sample grade (carats per tonne).

Reporting of Exploration Results
- Complete set of sieve data using a standard progression of sieve sizes per facies. Bulk sampling results, global sample grade per facies. Spatial structure analysis and grade distribution. Stone size and number distribution. Sample head feed and tailings particle granulometry.
- Sample density determination.
DIAMONDS RECOVERED FROM L46 KIMBERLITE PIPE

- Per cent concentrate and undersize per sample.
- Sample grade with change in bottom cut-off screen size.
- Adjustments made to size distribution for sample plant performance and performance on a commercial scale.
- If appropriate or employed, geostatistical techniques applied to model stone size, distribution or frequency from size distribution of exploration diamond samples.
- The weight of diamonds may only be omitted from the report when the diamonds are considered too small to be of commercial significance. This lower cut-off size should be stated.

Grade estimation for reporting Mineral Resources and Ore Reserves

- Description of the sample type and the spatial arrangement of drilling or sampling designed for grade estimation.
- The sample crush size and its relationship to that achievable in a commercial treatment plant.
- Total number of diamonds greater than the specified and reported lower cut-off sieve size.
- Total weight of diamonds greater than the specified and reported lower cut-off sieve size.
- The sample grade above the specified lower cut-off sieve size.

Value estimation

- Valuations should not be reported for samples of diamonds processed using total liberation method, which is commonly used for processing exploration samples.
- To the extent that such information is not deemed commercially sensitive, Public Reports should include:
 - diamonds quantities by appropriate screen size per facies or depth.
 - details of parcel valued.
 - number of stones, carats, lower size cut-off per facies or depth.
- The average $/carat and $/tonne value at the selected bottom cut-off should be reported in US Dollars. The value per carat is of critical importance in demonstrating project value.
- The basis for the price (e.g. dealer buying price, dealer selling price, etc.).
- An assessment of diamond breakage.

Security and integrity

- Accredited process audit.
- Whether samples were sealed after excavation.
- Valuer location, escort, delivery, cleaning losses, reconciliation with recorded sample carats and number of stones.
- Core samples washed prior to treatment for micro diamonds.
- Audit samples treated at alternative facility.
- Results of tailings checks.
- Recovery of tracer monitors used in sampling and treatment.

- Percent concentrate and undersize have not been measure and are not considered material to the understanding of this report.
- Variation in grade with change in bottom cut-off screen size has not been determined.
- Lucapa's DMS plant is considered to be a pilot plant and plant parameters are the same as would be used on a commercial plant.
- Geostatistical studies have not been undertaken because of the relatively small number of diamonds recovered and uncertainties of using this data for alluvial deposits.
- The total weight of diamonds recovered is reported in the text as are the upper and lower cut-off sizes.

- No Mineral Resources nor Ore Reserves are included in the report.

- Value estimates are based on recoveries from a commercial scale DMS plant. Total liberation methods have not been employed.
- Much of the detailed diamond valuation data is considered commercially sensitive and the independent valuers have not allowed details of the valuation to be released.
- Details of the last parcel valued and sold has been reported to the ASX.
- The parcel of diamonds sold includes all diamond held by Lucapa at the time the valuation was undertaken.
- The bottom cut-off used is the same as the plant, +1.2 mm slotted screen.
- Values are reported in US and Australian Dollars.
- The price quoted is the sale price.
- No significant diamond breakage was recognised.

- There has been no accredited process audit.
- Samples were monitored by armed guards after excavation and the process operation was monitored by Angolan State Diamond Security personnel.
- Diamonds recovered are stored in a locked vault and retained on site. The diamonds have not yet been cleaned or valued.
- Microdiamonds were not processed
- No audit samples were collected because of the size of the bulk samples.
- Tailings have not been checked.
DIAMONDS RECOVERED FROM L46 KIMBERLITE PIPE

| Classification | Geophysical (logged) density and particle density.
| | Cross validation of sample weights, wet and dry, with hole volume and density, moisture factor.
| | Tracer monitors were used in sample treatment with tracer recovery in all tested size fractions >95% for tracers of density 3.5 g/cc
| | Geophysical densities were not determined.
| | Gross validation of weights with hole volume and density is not considered appropriate for the stage of exploration
| In addition to general requirements to assess volume and density there is a need to relate stone frequency (stones per cubic metre or tonne) to stone size (carats per stone) to derive grade (carats per tonne). The elements of uncertainty in these estimates should be considered, and classification developed accordingly. | Insufficient diamonds have been recovered to allow Lucapa to quantify the uncertainty in stone frequency, stone size or diamond grade, as yet, for kimberlite samples.
| | Type IIa diamonds are common throughout the alluvial distribution. Rare fancy diamonds are also reported in the latter.
| | No representative valuation of kimberlite diamonds has been undertaken.

For personal use only