Confirmation of near surface gold mineralisation at No 11 Shaft Project

Highlights

- 14 NQ diamond holes completed testing near surface portions of the unmined Bird Reef package (the White Reef representing the lowermost reef and major gold bearing horizon)
- 13 of 14 holes intersected the Bird Reef package – gold grades were encountered in all holes
- Out of the 13 reef intersections, three holes have not intersected the target White Reef due to interference from a mafic sill the Western zone will be explored by trenching
- Best intercepts include
  - VSF111 - 0.29 m @ 10.2 g/t Au
  - VSF 112 - 0.14 m @ 9.99 g/t Au
  - VSF 110 - 0.21 m @ 7.15 g/t Au
  - VSF 104 - 0.22 m @ 5.70 g/t Au
- The new drilling data will be incorporated into the large pre-existing historic dataset of underground mining samples to facilitate the Estimation of a new Mineral Resource for the Number 11 Shaft Project

West Wits Mining Limited (“West Wits” or “the Company) is pleased to announce it has received the assay results for its maiden 14 diamond hole program at the Number 11 Shaft Project which forms part of the Company’s Soweto Cluster Gold Project, Gauteng Province, South Africa. The program was designed to test an unmined section of the Bird Reef on which the Number 11 Shaft is located. The “Number 11 Shaft" project is the Company’s current highest priority exploration prospect within its 66.6% owned Soweto Cluster on the Central Rand portion of the famous Witwatersrand Goldfield.

Michael Quinert, Chairman of West Wits said, “These new results confirm our interpretation that there is a significant extent of unmined Bird Reef centred around the historic position of the Number 11 Shaft. Excitingly 13 of the 14 holes intercepted the target mineralisation as planned and this gives us the confidence to commit to completing a new Resource Estimation for this portion of the project. We expect that the new estimation will be released to the Market within the coming few weeks".
Bird Reef Target Mineralisation

The Bird Reef package in the vicinity of the No 11 Shaft is the target for the recently completed drilling which represents a significant unmined portion of the Bird Reef that is centred around the existing underground infrastructure of a disused shaft on Rand Leases, at the eastern portion of the Soweto Cluster.
West Wits has previously published an Exploration Target for the “Number 11 Shaft” Project based on historic mining and sampling data. The current round of drilling will provide new data in an area above the historic underground sampling in preparation for a calculation of a Mineral Resource Estimate under the JORC Code 2012 guidelines.

### Table 1: The Exploration Target is stated as ranges of potential tonnes and grades. Number differences may occur due to rounding errors. The potential quantity and grade is conceptual in nature, there has been insufficient exploration and evaluation of historical information to estimate a Mineral Resource. It is uncertain if further exploration will result in the estimation of a Mineral Resource. Competent Person Dr Andrew Tunks.

<table>
<thead>
<tr>
<th>Category</th>
<th>Tonnes Thousands</th>
<th>Grade g/t</th>
<th>Ounces Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low range</td>
<td>600</td>
<td>4.5</td>
<td>85,000</td>
</tr>
<tr>
<td>Upper Range</td>
<td>700</td>
<td>6.0</td>
<td>140,000</td>
</tr>
</tbody>
</table>

In January 2016 West Wits Mining Limited restated the previous DRD (2000, JORC 1997) resources to 400 m depth from surface in compliance with JORC (2012) for the Soweto Cluster (Table 1).

### Table 2: Mineral Resource estimate for the Soweto Cluster at a 2.0 g/t cut-off published in the WWI ASX Announcement, January 2016. Number differences may occur due to rounding errors. The Company is not aware of any new information or data that materially affects the information included in the announcement and confirms that all material assumptions and technical parameters underpinning the estimates above continue to apply and have not materially changed. The form and context in which the Competent Persons findings are presented have not materially changed. Mineral Resource Estimate under the JORC 2012 Code (WWI ASX release 22 Jan 2016 Competent Person Hermanus Swart).

<table>
<thead>
<tr>
<th>Category</th>
<th>Tonnes (kT)</th>
<th>Grade g/t</th>
<th>Ounces Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>2,214</td>
<td>4.25</td>
<td>302,300</td>
</tr>
<tr>
<td>Indicated</td>
<td>5,317</td>
<td>3.31</td>
<td>566,400</td>
</tr>
<tr>
<td>Measured &amp; Indicated</td>
<td>7,531</td>
<td>3.59</td>
<td>868,700</td>
</tr>
<tr>
<td>Inferred</td>
<td>3,452</td>
<td>3.15</td>
<td>350,000</td>
</tr>
<tr>
<td>Total</td>
<td>1,098</td>
<td>3.45</td>
<td>1,218,700</td>
</tr>
</tbody>
</table>
The Number 11 Shaft area (Figure 3 and Figure 4) was one of the main production areas of the former Rand Leases Mine. The area was previously mined in open pits on both sides of 11 Shaft and underground from 7 Level (Figure 4). With 11 Shaft and its associated metallurgical plant no longer operational, an opportunity arises to mine the remaining near surface ore (Figure 4).

![Figure 4: No 11 Shaft area indicating extent of historical mining and potential open pit area and unmined underground blocks of ore at the base of the potential pit.](image)

**Current Drilling Program**

The aims of the current program are threefold;

- Target the White Reef (lowermost reef of the Bird Reef package, main gold carrier, Figure 2)
- Test the payshoot model (to enable refinement of the geological model and estimation domains)
- Facilitate the upgrade of the declared Exploration Target category to Inferred and Indicated Resource categories (drill spacing of 50 m, intersection of White Reef in the middle of the proposed pit)

A total of 14 holes, numbered VSF101 to VSF114, were drilled inclined at 60 degrees along the strike of the Bird Reef package outcrop (Figure 3). The Bird Reef package dips at 45 degrees to the southwest. The holes were drilled by Professional Drilling Services (PDS), contracted by Shango Solutions. PDS utilised a XY44 spindle drive rig, with a wire line core recovery system. The holes were drilled NQ size (75.6 mm diameter holes with 47.6 mm diameter core).

Figure 5 details a cross-section through borehole VSF111, displaying the various reefs and associated grades. A strike section through boreholes VSF101 to VSF114 is depicted in Figure 6. A summary of White Reef intersections per borehole is provided in Table 3.
<table>
<thead>
<tr>
<th>Borehole ID</th>
<th>X (Long)</th>
<th>Y (Lat)</th>
<th>Z</th>
<th>Azimuth</th>
<th>Dip</th>
<th>Depth (m)</th>
<th>Sample ID</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Interval (m)</th>
<th>True Width (m)</th>
<th>Au (g/t)</th>
<th>Au (cmg/t)</th>
<th>Rock Type</th>
<th>Total CW (m)</th>
<th>Weighted Avg. Au (g/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSF101</td>
<td>27.864117</td>
<td>-26.189167</td>
<td>1705</td>
<td>12</td>
<td>-60</td>
<td>39.80</td>
<td>A0744</td>
<td>23.87</td>
<td>24.12</td>
<td>0.25</td>
<td>0.24</td>
<td>1.88</td>
<td>45</td>
<td>CONG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A0745</td>
<td>24.12</td>
<td>24.39</td>
<td>0.27</td>
<td>0.26</td>
<td>1.91</td>
<td>50</td>
<td>CONG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A0746</td>
<td>24.39</td>
<td>24.54</td>
<td>0.15</td>
<td>0.14</td>
<td>0.12</td>
<td>2</td>
<td>QTZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A0747</td>
<td>24.54</td>
<td>24.79</td>
<td>0.25</td>
<td>0.24</td>
<td>3.57</td>
<td>86</td>
<td>CONG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A0748</td>
<td>24.79</td>
<td>25.09</td>
<td>0.30</td>
<td>0.29</td>
<td>0.08</td>
<td>2</td>
<td>QTZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A0749</td>
<td>25.09</td>
<td>25.29</td>
<td>0.20</td>
<td>0.19</td>
<td>1.91</td>
<td>37</td>
<td>CONG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**For personal use only**

**Table 3: Drilling and assay data for significant intercepts of the White Reef.**
Figure 5: Cross-section through borehole VSF111 displaying the various reefs and associated grades.

Figure 6: Strike section through boreholes VSF101 to VSF114 displaying the various reefs and associated grades.
Interpretation of Results

Scrutiny of the gold grades relative to the stratigraphic position of the conglomerates reveals the following:

- The White Reef Hangingwall Bands yield low (1-2 g/t) to moderate (2-5 g/t) gold grades. Significant single gold grades were observed in several samples, e.g. VSF103 (1.99 g/t), VSF104 (5.7 g/t), and VSF110 (7.15 g/t) (Table 3).
- Payshoot trends exhibit east-southeast trend (Figure 7).
- The White Reef gold grades vary considerably, this can be contributed to:
  - The highest gold grades are present in the upper portion of the White Reef (Table 3). This is especially pronounced in boreholes VSF108 to VSF114. This is in line with previous published studies that indicate that 90% of the gold is concentrated at the top of the channel, along the payshoot orientation within the Bird Reef package in the Rand Leases area.
  - Current understanding of the geological setting suggests that VSF101 to VSF103 were stopped in the White Reef Hangingwall Bands. A sill was intersected below the Hangingwall Bands and it is suspected that the White Reef is preserved below the sill. Alteration associated with the sill complicates reef identification. This will be clarified and if required, rectified during future exploration activities.
  - The White Reef has been faulted out in borehole VSF107 (Figure 6).

Figure 7: Payshoot model for the Number 11 Shaft project -based on extensive underground sampling.
Future Activities

The following future activities are planned:

- Resource estimation, including the drilling results of the recent drilling campaign and the results of the geological modelling, will assist in establishing the feasibility of potential future mining. This resource will also include the White Reef Hangingwall Bands.
- Regional and local sedimentological and structural models will enable the projection of trends and the definition of domains. These domains will serve as input for resource estimation to avoid mixing of geostatistically distinct populations. Detailed facies descriptions will enhance the understanding of the geological setting and enable detailed palaeo environmental reconstruction of the Bird Reef package.
- Future drilling will also consider downdip drilling and possibly trenching. A lower gold tenor may be observed in the oxidised zone and this will also be tested.

For and on behalf of the board

Michael Quinert
Chairman
West Wits Mining Limited

For further information visit www.westwitsmining.com
Or Contact
Tim Chapman Telephone: +61 3 8692 9049

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Hermanus Berhardus Swart, a Competent Person who is a Professional Natural Scientist registered with South African Council for Natural Scientific Professions accredited (No. 400101/00) and a Member of the Geological Society of South Africa, each of which is a “Recognised Professional Organisation” (RPO) that is included in a list that is posted on the ASX website from time to time.

Hermanus Berhardus Swart is employed by Dunrose Trading 186 (PTY) Ltd trading as Shango Solutions, which provides services as geological consultants to the Company.

Hermanus Berhardus Swart has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the “Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves”. Hermanus Berhardus Swart consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Dr Andrew J. Tunks MAIG

The peer review of the exploration program and results was undertaken by Dr. Andrew Tunks and represents an accurate representation of the available data. Dr. Tunks (Member Australian Institute Geoscientists) is a consultant to the Company and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the ‘Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves’. Dr Tunks consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.’
Appendix 1

JORC TABLE 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Number 11 Shaft Drilling</th>
</tr>
</thead>
</table>
| **Sampling Techniques** | • Diamond drilling was utilised. The 47.6mm diameter core was split and half core was submitted for assays. The samples included 2cm waste on the footwall and hangingwall contacts of the reef. Minimum sample length was 10cm with a maximum of 40cm.  
  • Suitable references and blanks were inserted after every 10th sample. The laboratory also performed own internal validation by analysing duplicate samples and inserting standards as part of their accreditation.  
  • Primary preparation involved crushing of the entire samples. The samples were split with a riffle splitter to obtain a sub-fraction, which was then pulverised in a vibrating pulveriser. Fire assay of an approximately 40g portion of the sample was utilised. |
| **Drilling Techniques** | • Diamond drilling with a 47.6mm inside diameter (NQ), was conducted to ascertain reef locality and grade. A standard tube core barrel and diamond impregnated bit was utilised. Core was not oriented. |
| **Drill Sample Recovery** | • A minimum of 95% core recovery was required, otherwise holes were redrilled. Core was fitted and reconciled against drill meters provided by driller. |
| **Logging** | • Core samples were geologically and geotechnically logged to a detail required for appropriate Mineral Resource estimations, mining studies and metallurgical studies.  
  • Core logging was qualitative in nature. Each core tray was photographed and the White Reef intersections scanned.  
  • The total length (100%) of the relevant core intersections was logged. |
| **Sub-sampling Techniques and Sample Preparation** | • Core samples were diamond cut and one half submitted for assays.  
  • Core samples were sorted, dried and weighed. Primary preparation was by crushing of the entire sample. The samples were split with a riffle splitter to obtain a sub-fraction, which was then pulverised in a vibrating pulveriser.  
  • Suitable references and blanks were inserted after every 10th sample. The laboratory also performed internal checks by analysing duplicate samples and inserting their own standards as part of their accreditation.  
  • Sample sizes are appropriate to the grain size of the material being sampled. |
Quality of Assay Data and Laboratory Tests

- Fire assay of an approximately 40g portion of the sample was utilised to allow separation of gold in the sample. Gold content has been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. Uranium content was determined by X-Ray Fluorescence (XRF) Spectrometry on glass beads cast using 12:22 flux of the sample with 10% lithium-nitrate.
- No geophysical tools were used.
- Suitable references and blanks were inserted after every 10th sample. The laboratory also performed their own internal validation by analysing duplicate samples and inserting their own standards as part of their accreditation.

Verification of Sampling and Assaying

- The remaining half core was split (i.e. quarter of original 47.6 mm diameter core) and a second sample was taken to account for the nugget effect. If samples yielded anomalous results, then the returned pulps were resubmitted as a new sample.
- All the logging and sampling data was captured into a Microsoft Access database. Statistics of sample precision were performed in graphical format.
- The average of repeat and original samples was utilised.

Location of Data Points

- Collar surveys were performed utilising a Garmin handheld GPS.
- WGS1985 coordinates were converted to Cape LO27, a South African grid system.
- Topographic control was achieved by surveying from official surface beacons and is deemed accurate and adequate for the purpose.

Data Spacing and Distribution

- The data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for a Mineral Resource estimation. The drill spacing should be sufficient for at least an Inferred Resource category.
- Modelling will consider all individual samples before compositing of each sample section to represent the total reef intersection.

Orientation of Data in Relation to Geological Structure

- Structures have no known influence on the mineralisation of the Witwatersrand placer type reefs, other than displacements.
- Holes were drilled approximately perpendicular to the dip of the Witwatersrand placer type reefs, which will prevent a bias as opposed to when drilling is conducted semi parallel to the strata.

Sample Security

- Samples were delivered to laboratory sample receiving staff directly by the Competent Person after each completed borehole. Line of custody procedures were in place and have been applied.

Audits or Reviews

- The exploration process was reviewed by Dr. Andrew Tunks a Member of the Australian Institute for Geoscientists.
Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Number 11 Shaft Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral tenement and land tenure status</td>
<td>Tenure is held via a Prospecting Right GP 30/5/1/1/2/183 (10035) (“PR”) issued pursuant to the Mineral and Petroleum Resources Development Act 28 of 2002 of the Republic of South Africa (“MPRDA”). The PR has been granted in respect of the farms Roodepoort 237 IQ, Roodepoort 236 IQ, Doornkop 239 IQ, Vogelstruisfontein 231 IQ, Vogelstruisfontein 233 IQ, Witpoortjie 245 IQ and Vlakfontein 238 IQ in the Magisterial District of Roodepoort, South Africa. The PR is held by Mintails SA Soweto Cluster (Pty) Ltd (“MSSC”) and is in the process of being transferred to West Wits MLI (Pty) Ltd (“WWM”) under Section 11 of the MPRDA which requires the submission of an application to the Minister of Mineral Resources. The application has been prepared and is expected to be submitted in the near future. MSSC has agreed to effect the transfer of the PR and WWM has discharged its obligations under those arrangements. WWM’s share capital is held to 26% by a Black Economic Empowered (“BEE”) partner, Dikgosi Gold (Pty) Ltd which is a requirement for transfer of the PR with the remaining 74% held by a wholly owned subsidiary of West Wits Mining Limited. The PR covers prospecting activities for gold, silver and uranium. The PR does not include tailings dumps material in the area prospective for gold and uranium which dumps are retained by the MSSC and/or its associated entities. On 10 April 2015 the Department of Mineral Resources for South Africa (“DMR”) upheld an appeal against an earlier decision not to extend the PR and the PR was thereby extended for a further period of 3 years from that date. The conduct of prospecting activities on the PR is to be undertaken in accordance with a prospecting works programme and an environmental management plan lodged with the DMR in August 2015.</td>
</tr>
<tr>
<td>Exploration done by other parties</td>
<td>No other parties have performed exploration in the No 11 Shaft area since 2008. If Mineral Resource estimation is to be performed over this area, an appraisal of the previous exploration activities will have to be conducted.</td>
</tr>
<tr>
<td>Geology</td>
<td>The No 11 Shaft Project forms part of the Central Rand Goldfield hosted by the Witwatersrand Supergroup sediments. The Central Rand Goldfield is situated immediately to the south of Johannesburg and has been host to one of the most extensive gold reserves in the world. The reefs have been mined continuously on strike for approximately 46km in an east/west direction, bounded by the former DRD mine (now West Wits MLI PR) in the west to East Rand Proprietary Mine in the east. Reefs were mined down-dip, to the south, for about 6km from its outcrop position, to depths of approximately 3km. Between 1897 and 1984, approximately 9 000 tons of gold were extracted from the Central Rand Goldfield. The reef...</td>
</tr>
</tbody>
</table>
horizons are channelised conglomerates. The major orebodies mined in the Central Rand Goldfield are the Main Reef, Main Reef Leader, South Reef, Bird reefs and Kimberley reefs. The White Reef is the lowermost, gold bearing reef of the predominantly uranium bearing Bird reefs.

**Drill hole Information**
- All Boreholes drilled at -60° perpendicular with the strike of the known Bird Reef outcrop. The holes were drilled by the contracted drilling company Professional Drilling Services (PDS). PDS utilised a XY44 spindle drive rig, with a wire line core recovery system. The holes were drilled NQ size, which resulted in 75.6 mm diameter holes from which 47.6 mm diameter core was obtained.

**Data aggregation methods**
- Weighting was conducted against relative sample lengths due to similar waste and ore bulk densities. Minimum grades were dependent on laboratory detection limits (0.001 ppm gold and 2ppm U₃O₈). No cutting of low and high grade samples was performed.
- No allowance was made to differentiate between short lengths of high grade results and longer lengths of low grade results. However, minimum sample lengths were not less than 10cm.
- Metal equivalent values were not applicable.

**Relationship between mineralisation widths and intercept lengths**
- All down hole lengths were converted to true widths by correcting for the dip of the strata.

**Diagrams**
- See Report - Figures 1 through 7.

**Balanced reporting**
- Exploration Results for all boreholes were reported.

**Other substantive exploration data**
- Geology of reef intercepts were noted in detail on standardised logging sheets.
- Geophysical and geochemical survey results were not conducted.
- Bulk samples were not conducted.
- Bulk density was measured for each sample utilising the Archimedes principles.
- Groundwater intersections were not encountered.
- Geotechnical and rock characteristics were noted during logging.
- Deleterious or contaminating substances such as methane were not encountered.

**Further work**
- Re-run of Resource Estimation for No 11 Shaft Target.
- Establishment of regional and local sedimentological models.