

17 January 2017

### Significant cobalt and manganese mineralisation identified at Ketchowla

### Highlights

- Ketchowla Cobalt Manganese Project exploration results upgraded to JORC 2012 status across large 75km x 4.5km mineralised system.
- Rock chip sampling identified **cobalt up to 0.59%** and manganese up to 48%.
- Shallow significant cobalt intercepted near surface:
  - o 11m @ 0.11% Co and 12%Mn from 6 to 17m.
  - $\circ~$  including 4m @ 0.14% Co and 15.6% Mn.
- Significant potential for additional resources, both locally and regionally.
- Project located within 35km of Trans Australian Railway and in close proximity to established power and water infrastructure.
- Leigh Creek magnesite remains the key primary focus to produce near term cash flow following successful bulk trial.

The Ketchowla Cobalt Manganese Project, is located north of Burra, South Australia, within the Nuccaleena Formation. Ketchowla is a cobalt and manganese project which includes the K1 Prospect (centred around the historic small Ketchowla Mine) and numerous outstanding exploration targets and prospects, including the K2 to K9 prospects.

### Location

The Ketchowla Project is located approximately 45km north of Burra and 200km north of Adelaide, South Australia. The main access route is via the Barrier Highway and the Collinsville Station access road (unsealed) and station tracks within Collinsville Station. The standard gauge east-west Trans Australian Railway line is located 35km north of the main project area. Established electricity and water infrastructure is also within close proximity.

# 7 S C 🕂 E S 🥚

The main project area is made up of a granted exploration licence (EL 5433) that covers an area of approximately 445km<sup>2</sup>.

#### Local geology

The coablt and manganese occurrences appear to be strataform, closely associated with Nuccaleena Dolomite and its contact with bleached purple shales within a sequence of sandstone, tillite and siltstones. The main manganese and cobalt bearing strata has been tightly folded folded with the main K1 Prospect present on the eastern limb of the fold structure (Figure 1).

The area has historically been explored for copper and molybdenum mineralisation. Most exploration was focused on the eastern side of the tenement where extensive shallow drilling did not identify significant copper targets however, low level gold (up to 01.g/t) and widespread manganese mineralisation was discovered over vast areas of the tenement.

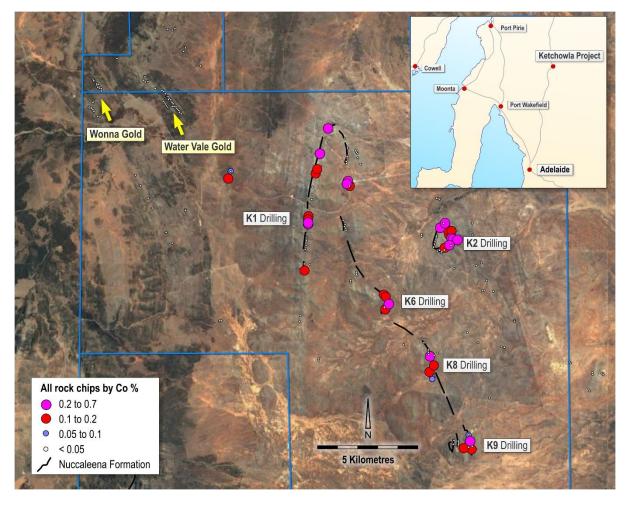



Figure 1: Location of prospects at Ketchowla Project with significant Co rock chips samples

# 7 S C H E S 🥚

### **Exploration by Archer**

Early rock chip sampling reported by Archer (ASX announcement 16/11/2009) reported grades of up to:

- **0.59% cobalt (Co)** and 42% manganese (Mn) at K1 (includes K1 northern and southern extensions).
- 0.50% Co and 48.1% Mn at K2.
- **0.29% Co** and 46.3% Mn at K3 K9.

Archer completed a small 678m RC drill program in early 2010 (ASX announcement 19/03/2010). Drilling was undertaken during the peak of the last mining boom and Archer was unable to gain access to a suitable drill rig meaning that only easily accessible areas were targeted in this first round of drilling. Archer is yet to drill test the best targets.

Shallow cobalt and manganese mineralisation was intercepted at K1 in both of two holes drilled at K1 (K1RC001 and K1RC004):

- K1RC001: 11m @ 0.11% Co and 12%Mn from 6 to 17m, including 4m @ 0.14% Co and 15.6% Mn.
- K1RC004: 4m @ 0.11%Co and 17.5%Mn from 11 to 15m.

Simple beneficiation and acid leach test work (ASX announcement 20/04/11) done by Archer showed that:

- cobalt and manganese could be easily upgraded using simple heavy media separation.
- Agitated sulphuric acid leaching resulted in metal recoveries of >90% for all elements tested (Co, Cu, Ni, Zn and Mn).

Archer has upgraded the early exploration results to JORC 2012 standard in response to third party interest in the tenement area and the market interest in good quality cobalt projects.

#### **Ketchowla Project**

The Ketchowla Cobalt Manganese Project comprises:

- K1 Prospect which is centred around a small historic manganese open pit mine (**Ketchowla Mine**) and located on the eastern limp of the main fold structure.
- K2 K9 prospects. Prospects K3 to K9 are located on the western limb of the main fold structure with K2 offset to the east of the fold. The known K2 to K9 mineralisation demonstrates the potential size (75km x 4.5km) of the mineralising system at Ketchowla.

# 7 S C H E S 🥚

### **K1 Prospect**

The K1 Prospect is part of a large-scale cobalt and manganese mineralised system. Archer has mapped K1 over a strike length of 5km.

The K1 Prospect is centred around the historic Ketchowla Hill Manganese Mine which was last worked in 1941 when it produced 358 tons of ore. Site investigations outlined a 320m strike length of manganese oxide outcrop centred on an old and shallow open pit.

Rock chip sampling by Archer (ASX announcement 23/09/2009 and 16/11/2009) over the strike length of the outcropping manganese at K1 Mine identified high grade cobalt, copper and manganese, mineralisation. The northern and southern extensions to the K1 deposit were also sampled with outcrop and small pits identified up to 4.7km north and 2.3km south of the K1 Mine.



Figure 2: Old workings (looking South) showing outcropping manganese.

In 2011 Archer drilled four RC holes North of the old Ketchowla Mine to test the extension of the known mineralisation. Two failed to reach target depths and two drill holes (K1RC001 and K1RC004) recorded the presence of manganese and cobalt as follows (Figures 3 and 4):

- K1RC001 6 17m, 11 metres @ 0.11% Co, 0.17%Cu, 0.2%Ni, 0.13%Zn and 12%Mn
- K1RC004 11-15m, 4 metres @ 0.11%Co, 0.34%Cu, 0.24%Ni, 0.15%Zn and 17.5%Mn



Holes K1RC001 and K1RC004 confirmed the extension of the mineralisation at depth. Scope exists for expansions of the manganese/cobalt mineralisation below the K1 Mine and along strike with additional drilling. The focus of future drilling will be on defining additional broad intervals of manganese and cobalt mineralisation.

### K2 – K9 Prospects

The K2 Prospect is offset 6km to the east of K1. K2 is on the eastern limb of a shallow dipping syncline with discontinuous manganese outcrops mapped by Archer over 1.3km. Manganese mineralisation occurs within the Nuccaleena Dolomite close to the contact with bleached grey siltstone where pods up to 9m thick are located.

The K3 – K9 Prospects are located on the eastern limb of the same fold structure as K1. K6, K8 and K9 are the more prominent ridges with outcrops of manganese mineralisation (K6, K8 and K9) separated by broad areas of shallow, sandy alluvium cover 9.2km strike length.

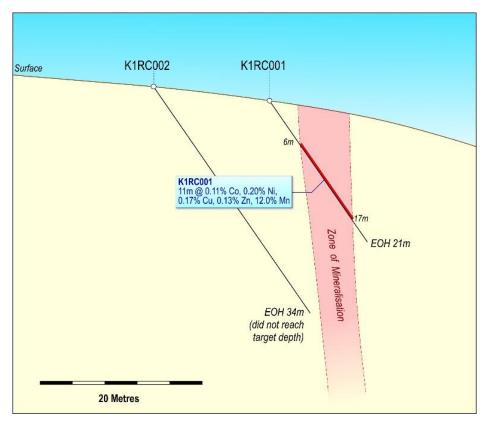
Drilling at K2, K8 and K9 intersected cobalt and manganese mineralisation within 1 - 5 metres of surface.

#### **Extractive and Beneficiation Studies**

Archer followed up the early drilling with simple beneficiation and acid leach test work (ASX announcement 20/04/11) which showed that:

- cobalt and manganese could be easily upgraded using simple heavy media separation.
- Agitated sulphuric acid leaching resulted in metal recoveries of >90% for all elements tested (Co, Cu, Ni, Zn and Mn).

#### **Next Steps**


Ketchowla forms an important part of Archer's larger tenement area that is prospective for cobalt. The exploration program at Ketchowla will be planned in conjunction with the next stage of development of the larger cobalt exploration effort.

By way of background, Archer has entered into a farmin and Joint Venture Agreement with Cobalt Bull Pty Ltd (**CB**) whereby CB can earn a 75% joint venture interest in the Ketchowla Project and other tenements by spending \$2.0m on exploration over 3 years (ASX announcement 31/08/16). The farmin and JV is subject to one outstanding condition precedent which must be satisfied by 31 January 2017.

For further information, please contact:

Mr Greg English Chairman Archer Exploration Limited Tel: (08) 8272 3288 Mr Cary Helenius Investor Relations Market Eye Tel: 03 9591 8906

# 





K1RC001 cross-section

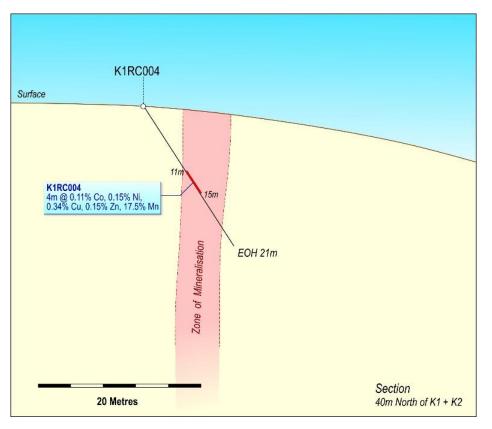



Figure 4: K1RC004 cross-section

## 75 C H E S 🥚

### **Competent Person Statement**

The information in this report that relates to Exploration Results is based on information compiled by Mr Wade Bollenhagen, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy and is a full-time employee of Archer Exploration Limited. Mr Bollenhagen has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Bollenhagen consents to the inclusion in the report of the matters based on his information in the form and context in which it appears

### Summary of drill hole information

The following table provides information on RC drilling completed by Archer at the Ketchowla Project during Feb/Mar 2010 and first reported by Archer on 19 March 2010.

| Hole ID | Easting | Northing | RL<br>(m) | Final Depth<br>(m) | Dip<br>(°) | Azimuth<br>(°) |
|---------|---------|----------|-----------|--------------------|------------|----------------|
| K1RC001 | 332017  | 6313318  | 366       | 21                 | -55        | 90             |
| K1RC002 | 332003  | 6313321  | 366       | 34                 | -55        | 90             |
| K1RC003 | 332025  | 6313370  | 365       | 15                 | -55        | 80             |
| K1RC004 | 332021  | 6313368  | 364       | 21                 | -55        | 81             |
| K2RC001 | 339158  | 6312405  | 284       | 6                  | -55        | 120            |
| K2RC002 | 339157  | 6312405  | 285       | 12                 | -90        | 0              |
| K2RC003 | 339131  | 6312382  | 286       | 11                 | -90        | 0              |
| K2RC004 | 339174  | 6312436  | 292       | 6                  | -55        | 100            |
| K2RC005 | 339163  | 6312436  | 284       | 12                 | -90        | 0              |
| K2RC006 | 338862  | 6312141  | 262       | 9                  | -55        | 104            |
| K2RC007 | 338857  | 6312141  | 260       | 9                  | -90        | 0              |
| K2RC008 | 338822  | 6312104  | 268       | 15                 | -55        | 150            |
| K2RC009 | 338821  | 6312106  | 265       | 12                 | -90        | 0              |
| K6RC001 | 336067  | 6309322  | 255       | 15                 | -55        | 90             |
| K6RC002 | 335819  | 6309687  | 255       | 9                  | -55        | 20             |
| K8RC001 | 338263  | 6305622  | 229       | 20                 | -55        | 90             |
| K8RC001 | 340549  | 6307366  | 218       | 9                  | -55        | 270            |
| K8RC002 | 338273  | 6305623  | 233       | 9                  | -55        | 270            |
| K8RC003 | 338090  | 6306732  | 244       | 30                 | -55        | 90             |
| K8RC004 | 338069  | 6306733  | 248       | 12                 | -55        | 85             |
| K8RC005 | 338050  | 6306735  | 246       | 19                 | -55        | 90             |
| K8RC006 | 338079  | 6306775  | 245       | 12                 | -55        | 90             |
| K8RC007 | 338063  | 6306777  | 249       | 15                 | -55        | 90             |
| K8RC008 | 338043  | 6306772  | 246       | 23                 | -55        | 90             |
| K8RC009 | 338072  | 6306865  | 252       | 9                  | -90        | 0              |
| K8RC010 | 338056  | 6306857  | 246       | 11                 | -90        | 0              |
| K8RC011 | 338108  | 6306719  | 245       | 18                 | -55        | 270            |
| K8RC012 | 338119  | 6306668  | 246       | 3                  | -90        | 0              |
| K8RC013 | 338106  | 6306650  | 243       | 6                  | -90        | 0              |

## A ? ( H E ? 🥑

| Hole ID  | Easting | Northing | RL<br>(m) | Final Depth<br>(m) | Dip<br>(°) | Azimuth<br>(°) |
|----------|---------|----------|-----------|--------------------|------------|----------------|
| K8RC014  | 338128  | 6306621  | 248       | 5                  | -90        | 0              |
| K8RC015  | 338242  | 6305666  | 223       | 6                  | -90        | 0              |
| K8RC016  | 338249  | 6305669  | 230       | 3                  | -90        | 0              |
| K8RC017  | 338255  | 6305623  | 228       | 15                 | -90        | 0              |
| K8RC018  | 338270  | 6305577  | 229       | 21                 | -90        | 0              |
| K9RC001  | 340266  | 6302236  | 216       | 39                 | -60        | 270            |
| K9RC002  | 340260  | 6302095  | 220       | 8                  | -60        | 90             |
| K9RC003  | 340265  | 6302092  | 223       | 24                 | -60        | 270            |
| K9RC004  | 340250  | 6302076  | 221       | 18                 | -55        | 90             |
| K9RC005  | 340242  | 6302074  | 220       | 30                 | -55        | 90             |
| K9RC006  | 340235  | 6302071  | 220       | 20                 | -55        | 90             |
| K9RC007  | 340254  | 6301986  | 219       | 12                 | -55        | 90             |
| K9RC008  | 340242  | 6301938  | 219       | 19                 | -55        | 90             |
| K9RC009  | 340237  | 6302235  | 212       | 10                 | -55        | 90             |
| K9RC010  | 340228  | 6302237  | 214       | 12                 | -55        | 90             |
| K9RC011  | 304148  | 6302458  | 211       | 6                  | -55        | 0              |
| K10RC001 | 340549  | 6307366  | 218       | 9                  | -55        | 270            |

### Summary of drilling results

The following table provides the significant intersections from Ketchowla Project RC drilling, first reported on 19 March 2010. The following table only reports intervals >100ppm Co with intervals <100ppm Co listed as "NSR" (No Significant Result).

Significant assays listed within the announcement to which this table is attached are summaries of the data below.

| Hole Id | From | То  | Intercept | Со              | Cu    | Ni    | Zn    | Mn    |
|---------|------|-----|-----------|-----------------|-------|-------|-------|-------|
|         | (m)  | (m) | (m)       | (ppm)           | (ppm) | (ppm) | (ppm) | (%)   |
| K1RC001 | 0    | 6   | 6         |                 |       | NSR   |       |       |
| K1RC001 | 6    | 7   | 1         | 454             | 2430  | 2620  | 1535  | 14.9  |
| K1RC001 | 7    | 8   | 1         | 508             | 1865  | 1870  | 1235  | 8.66  |
| K1RC001 | 8    | 9   | 1         | 465             | 1485  | 1220  | 1255  | 13.5  |
| K1RC001 | 9    | 10  | 1         | 1180            | 2010  | 2370  | 1495  | 12.95 |
| K1RC001 | 10   | 11  | 1         | 1470            | 2360  | 2660  | 1715  | 18.45 |
| K1RC001 | 11   | 12  | 1         | 2280            | 2660  | 3460  | 1850  | 20.5  |
| K1RC001 | 12   | 13  | 1         | 1810            | 1865  | 2530  | 1470  | 16.75 |
| K1RC001 | 13   | 14  | 1         | 2960            | 2450  | 2260  | 1290  | 18.8  |
| K1RC001 | 14   | 15  | 1         | 317             | 405   | 471   | 393   | 2.03  |
| K1RC001 | 15   | 16  | 1         | 487             | 474   | 1050  | 782   | 2.88  |
| K1RC001 | 16   | 17  | 1         | 669             | 656   | 1280  | 958   | 5.36  |
| K1RC001 | 17   | 18  | 1         | 125             | 120   | 360   | 487   | 1.7   |
| K1RC001 | 18   | 21  | 3         | NSR             |       |       |       |       |
| K1RC002 | 0    | 34  | 34        | NSR             |       |       |       |       |
| K1RC003 | 0    | 1   | 1         | 338 1390 592 26 |       | 260   | 2.34  |       |
| K1RC003 | 1    | 2   | 1         | 510             | 2940  | 1070  | 427   | 3.45  |
| K1RC003 | 2    | 3   | 1         | 139             | 2310  | 268   | 300   | 1.14  |

## A ? ( 🕂 E ? 🥑

| Hole Id            | From | То     | Intercept     | Со    | Cu         | Ni         | Zn    | Mn    |
|--------------------|------|--------|---------------|-------|------------|------------|-------|-------|
|                    | (m)  | (m)    | (m)           | (ppm) | (ppm)      | (ppm)      | (ppm) | (%)   |
| K1RC003            | 3    | 4      | 1             | 489   | 1930       | 881        | 476   | 4.08  |
| K1RC003            | 4    | 5      | 1             | 183   | 1030       | 559        | 450   | 1.5   |
| K1RC003            | 5    | 7      | 2             |       | -          | NSR        | -     |       |
| K1RC003            | 7    | 8      | 1             | 207   | 513        | 380        | 256   | 2.45  |
| K1RC003            | 8    | 9      | 1             | 605   | 619        | 626        | 320   | 2.71  |
| K1RC003            | 9    | 10     | 1             | 1030  | 669        | 588        | 388   | 3.35  |
| K1RC003            | 10   | 11     | 1             | 519   | 421        | 453        | 291   | 1.51  |
| K1RC003            | 11   | 12     | 1             | 462   | 439        | 639        | 404   | 2.11  |
| K1RC003            | 12   | 13     | 1             | 258   | 319        | 529        | 434   | 1.94  |
| K1RC003            | 13   | 14     | 1             | 101   | 199        | 717        | 895   | 1.87  |
| K1RC003            | 14   | 15     | 1             |       |            | NSR        |       |       |
| K1RC004            | 0    | 9      | 9             |       |            | NSR        |       |       |
| K1RC004            | 9    | 10     | 1             | 106   | 1150       | 633        | 950   | 5.01  |
| K1RC004            | 10   | 11     | 1             | 373   | 856        | 290        | 302   | 1.99  |
| K1RC004            | 11   | 12     | 1             | 1070  | 4080       | 1740       | 1060  | 25.2  |
| K1RC004            | 12   | 13     | 1             | 1420  | 3970       | 2380       | 1240  | 20.4  |
| K1RC004            | 13   | 14     | 1             | 1220  | 3390       | 2070       | 1340  | 15.15 |
| K1RC004            | 14   | 15     | 1             | 489   | 2170       | 3200       | 2100  | 9.17  |
| K1RC004            | 15   | 16     | 1             | 126   | 1130       | 1930       | 2260  | 4.16  |
| K1RC004            | 16   | 17     | 1             | _     |            | NSR        |       | _     |
| K1RC004            | 17   | 18     | 1             | 151   | 445        | 1350       | 1450  | 3.72  |
| K1RC004            | 18   | 21     | 3             |       |            | NSR        |       |       |
| K2RC001            | 1    | 2      | 1             | 152   | 23         | 121        | 288   | 3     |
| K2RC001            | 2    | 3      | 1             | 103   | 27         | 64         | 118   | 1.64  |
| K2RC001            | 3    | 4      | 1             | 240   | 30         | 243        | 202   | 2.22  |
| K2RC001            | 4    | 6      | 2             | 2.10  |            | NSR        |       |       |
| K2RC002            | 0    | 3      | 3             |       |            | NSR        |       |       |
| K2RC002            | 3    | 4      | 1             | 1090  | 31         | 560        | 1310  | 33.6  |
| K2RC002            | 5    | 6      | 1             | 1000  | 8          | 83         | 152   | 2.13  |
| K2RC002            | 6    | 12     | 6             | 101   | 0          | NSR        | 102   | 2.10  |
| K2RC003            | 0    | 1      | 1             |       |            | NSR        |       |       |
| K2RC003            | 1    | 2      | 1             | 780   | 64         | 256        | 746   | 31.7  |
| K2RC003            | 2    | 11     | 9             | 700   | 04         | NSR        | 740   | 01.7  |
| K2RC004            | 0    | 1      | 1             |       |            | NSR        |       |       |
| K2RC004            | 1    | 2      | 1             | 111   | 20         | 183        | 322   | 0.43  |
| K2RC004            | 2    | 3      | 1             | 159   | 16         | 99         | 174   | 0.45  |
| K2RC004            | 3    | 6      | 3             | 100   | 10         | NSR        | 117   | 0.10  |
| K2RC005            | 0    | 6      | 6             |       |            | NSR        |       |       |
| K2RC005            | 6    | 10     | 4             | 28    | 20         | 247        | 1009  | 0.45  |
| K2RC005            | 10   | 12     | 2             | 20    | 20         | NSR        | 1003  | 0.70  |
| K2RC005            | 0    | 3      | 3             |       |            | NSR        |       |       |
| K2RC006            | 3    | 4      | 1             | 176   | 203        | 131        | 114   | 3.31  |
| K2RC006            | 4    | 4<br>5 | 1             | 167   | 322        | 148        | 156   | 0.35  |
| K2RC006            | 5    | 9      | 4             | 107   | 522        | NSR        | 130   | 0.30  |
| K2RC006<br>K2RC007 | 0    | 9      | <u>4</u><br>1 |       |            | NSR        |       |       |
|                    | 1    | 2      | 1             | 101   | 150        |            | 110   | 1 17  |
| K2RC007            | 2    | 2      | 1             | 434   | 158<br>104 | 226        | 113   | 4.47  |
| K2RC007            |      |        |               | 319   | 104        | 199<br>NSD | 149   | 5.29  |
| K2RC007            | 3    | 6<br>7 | 3             | 220   | 400        | NSR        | 204   | 1.60  |
| K2RC007            | 6    | 1      | I             | 330   | 482        | 232        | 201   | 1.66  |

## 7 S C 🕂 E S 🥚

| Hole Id | From            | To<br>(m)       | Intercept       | Co              | Cu<br>(nnm) | Ni<br>(nnm)  | Zn    | Mn    |  |
|---------|-----------------|-----------------|-----------------|-----------------|-------------|--------------|-------|-------|--|
| K2RC007 | <u>(m)</u><br>7 | <b>(m)</b><br>9 | <b>(m)</b><br>2 | (ppm)           | (ppm)       | (ppm)<br>NSR | (ppm) | (%)   |  |
| K2RC007 | 0               | 15              | 15              | NSR             |             |              |       |       |  |
| K2RC009 | 0               | 7               | 7               |                 | NSR         |              |       |       |  |
| K2RC009 | 7               | 8               | 1               | 287             | 652         | 491          | 597   | 0.06  |  |
| K2RC009 | 8               | 9               | 1               | 168             | 268         | 272          | 471   | 0.08  |  |
| K2RC009 | 9               | 10              | 1               | 108             | 160         | 182          | 366   | 0.17  |  |
|         | <u> </u>        | 10              | 2               | 109             | 160         | NSR          | 300   | 0.19  |  |
| K2RC009 |                 | 12              | 15              |                 |             |              |       |       |  |
| K6RC001 | 0               |                 |                 |                 |             | NSR<br>NSR   |       |       |  |
| K6RC002 | <u>0</u><br>1   | 1<br>2          | 1               | 610             | 1500        |              | 514   | 7 10  |  |
| K6RC002 |                 |                 |                 | 610<br>612      | 1500        | 341          |       | 7.19  |  |
| K6RC002 | 2               | 3               | 1               | 012             | 1100        | 356          | 475   | 5.75  |  |
| K6RC002 | 3               | 9               | 6               | <u> </u>        | <u> </u>    | NSR          | 00    | 7 50  |  |
| K8RC001 | 0               | 1               | 1               | 698             | 66          | 339          | 89    | 7.59  |  |
| K8RC001 | 1               | 2               | 1               | 399             | 34          | 179          | 65    | 4.93  |  |
| K8RC001 | 2               | 3               | 1               | 237             | 25          | 171          | 59    | 2.84  |  |
| K8RC001 | 3               | 20              | 17              | NSR             |             | 50           | 00    | 0.0   |  |
| K8RC002 | 0               | 1               | 1               | 102             | 55          | 50           | 63    | 2.8   |  |
| K8RC002 | 2               | 3               | 1               | 744             | 530         | 263          | 206   | 21.5  |  |
| K8RC002 | 3               | 4               | 1               | 474             | 345         | 179          | 122   | 13.5  |  |
| K8RC002 | 4               | 9               | 5               |                 |             | NSR          |       |       |  |
| K8RC003 | 0               | 2               | 2               |                 | 1           | NSR          | 1     |       |  |
| K8RC003 | 2               | 4               | 2               | 29.5            | 70          | 97           | 30    | 12.03 |  |
| K8RC003 | 4               | 30              | 26              |                 |             | NSR          |       |       |  |
| K8RC004 | 0               | 12              | 12              |                 |             | NSR          |       |       |  |
| K8RC005 | 0               | 17              | 17              |                 | n           | NSR          |       |       |  |
| K8RC005 | 17              | 18              | 1               | 145             | 167         | 156          | 97    | 1.87  |  |
| K8RC005 | 18              | 19              | 1               |                 |             | NSR          |       |       |  |
| K8RC006 | 0               | 1               | 1               |                 |             | NSR          |       |       |  |
| K8RC006 | 1               | 2               | 1               | 130             | 18          | 139          | 100   | 5.67  |  |
| K8RC006 | 2               | 4               | 2               | 54              | 20          | 140          | 48    | 18.9  |  |
| K8RC006 | 4               | 9               | 5               |                 |             | NSR          |       |       |  |
| K8RC007 | 0               | 4               | 4               |                 |             | NSR          |       |       |  |
| K8RC007 | 4               | 5               | 1               | 421             | 373         | 412          | 238   | 3.93  |  |
| K8RC007 | 5               | 7               | 2               | NSR             |             |              |       |       |  |
| K8RC007 | 7               | 8               | 1               | 456             | 277         | 352          | 182   | 12.1  |  |
| K8RC007 | 8               | 9               | 1               | 340             | 387         | 306          | 151   | 13    |  |
| K8RC007 | 9               | 10              | 1               | 158             | 129         | 185          | 93    | 7.43  |  |
| K8RC007 | 10              | 11              | 1               | 314             | 19          | 273          | 174   | 6.88  |  |
| K8RC007 | 11              | 12              | 1               | 216             | 19          | 223          | 158   | 6.27  |  |
| K8RC007 | 12              | 15              | 3               | NSR             |             |              | -     |       |  |
| K8RC008 | 0               | 1               | 1               | 182 159 138 199 |             | 0.75         |       |       |  |
| K8RC008 | 1               | 5               | 4               |                 |             | NSR          |       |       |  |
| K8RC008 | 5               | 6               | 1               | 132             | 214         | 161          | 231   | 0.16  |  |
| K8RC008 | 6               | 7               | 1               |                 |             | NSR          |       | _     |  |
| K8RC008 | 7               | 8               | 1               | 126             | 65          | 192          | 345   | 0.14  |  |
| K8RC008 | 8               | 9               | 1               | 103             | 61          | 191          | 386   | 0.01  |  |
| K8RC008 | 9               | 10              | 1               | 342             | 348         | 388          | 328   | 1.75  |  |
| K8RC008 | 10              | 11              | 1               | 469             | 407         | 531          | 615   | 4.84  |  |
|         | 11              | 17              | 6               |                 |             | NSR          | 5.5   |       |  |

## 7 S C H E S 🥚

| Hole Id            | From      | To               | Intercept     | Co                  | Cu           | Ni<br>(mmm) | Zn    | Mn    |
|--------------------|-----------|------------------|---------------|---------------------|--------------|-------------|-------|-------|
| Kapcooa            | (m)<br>17 | <b>(m)</b><br>18 | (m)           | <b>(ppm)</b><br>102 | (ppm)<br>22  | (ppm)       | (ppm) | (%)   |
| K8RC008            | 17        | 18               | 1             | 102                 | 22           | 188<br>NSR  | 102   | 5.41  |
| K8RC008<br>K8RC008 | 18        | 20               | 1             | 100                 |              |             |       | 4.07  |
|                    |           |                  |               | 132                 | 155          |             | 131   | 4.07  |
| K8RC008<br>K8RC009 | 20        | 23               | <u>3</u><br>9 |                     |              | NSR<br>NSR  |       |       |
|                    | 0         | 9<br>11          |               |                     |              |             |       |       |
| K8RC010            | 0         |                  | 11            |                     |              | NSR         |       |       |
| K8RC011            | 0         | 18               | 18            | 400                 | 50           | NSR         | 470   | 4.00  |
| K8RC012            | 0         | 1                | 1             | 122                 | 56           | 150         | 170   | 4.98  |
| K8RC012            | 1         | 3                | 2             |                     |              | NSR         |       |       |
| K8RC013            | 0         | 6                | 6             |                     |              | NSR         |       |       |
| K8RC014            | 0         | 5                | 5             |                     |              | NSR         |       |       |
| K8RC015            | 0         | 2                | 2             | 700                 | 000          | NSR         | 400   | 0.40  |
| K8RC015            | 2         | 3                | 1             | 702                 | 693          | 233         | 102   | 3.43  |
| K8RC015            | 3         | 4                | 1             | 281                 | 470          | 160         | 57    | 3.9   |
| K8RC015            | 4         | 6                | 2             | 0.45                |              | NSR         | 100   |       |
| K8RC016            | 0         | 1                | 1             | 645                 | 606          | 224         | 180   | 29.8  |
| K8RC016            | 1         | 2                | 1             | 276                 | 231          | 170         | 103   | 7.7   |
| K8RC016            | 2         | 3                | 1             |                     |              | NSR         |       |       |
| K8RC017            | 0         | 5                | 5             |                     |              | NSR         |       |       |
| K8RC017            | 5         | 6                | 1             | 206                 | 19           | 161         | 53    | 1.43  |
| K8RC017            | 6         | 8                | 2             |                     |              | NSR         |       |       |
| K8RC017            | 8         | 9                | 1             | 252                 | 73           | 102         | 55    | 3.87  |
| K8RC017            | 9         | 15               | 6             |                     |              | NSR         |       |       |
| K8RC018            | 0         | 21               | 21            |                     |              | NSR         |       |       |
| K9RC001            | 0         | 39               | 39            |                     |              | NSR         |       |       |
| K9RC002            | 0         | 8                | 8             |                     |              | NSR         |       |       |
| K9RC003            | 0         | 24               | 24            |                     |              | NSR         |       |       |
| K9RC004            | 0         | 1                | 1             |                     |              | NSR         |       |       |
| K9RC004            | 1         | 2                | 1             | 260                 | 381          | 248         | 985   | 20.7  |
| K9RC004            | 2         | 3                | 1             | 220                 | 100          | 228         | 1035  | 20.6  |
| K9RC004            | 3         | 4                | 1             | 115                 | 66           | 161         | 547   | 15.95 |
| K9RC004            | 4         | 18               | 14            |                     |              | NSR         |       |       |
| K9RC005            | 0         | 3                | 3             |                     |              | NSR         |       |       |
| K9RC005            | 3         | 4                | 1             | 455                 | 213          | 569         | 921   | 8.16  |
| K9RC005            | 4         | 5                | 1             | 326                 | 34           | 452         | 1035  | 6.38  |
| K9RC005            | 5         | 6                | 1             | 157                 | 43           | 239         | 396   | 8.77  |
| K9RC005            | 6         | 30               | 24            |                     |              | NSR         |       |       |
| K9RC006            | 0         | 4                | 4             | 1.6.1               | <b>a</b> : - | NSR         |       |       |
| K9RC006            | 4         | 5                | 1             | 184                 | 343          | 250         | 759   | 5.24  |
| K9RC006            | 5         | 6                | 1             | 791                 | 279          | 744         | 1790  | 28.9  |
| K9RC006            | 6         | 7                | 1             | 640                 | 91           | 445         | 1825  | 36.1  |
| K9RC006            | 7         | 8                | 1             | 457                 | 39           | 274         | 1275  | 30.2  |
| K9RC006            | 8         | 9                | 1             | 334                 | 27           | 204         | 935   | 21.8  |
| K9RC006            | 9         | 10               | 1             | 145                 | 19           | 120         | 434   | 8.92  |
| K9RC006            | 10        | 20               | 10            |                     |              | NSR         |       |       |
| K9RC007            | 0         | 12               | 12            |                     |              | NSR         |       |       |
| K9RC008            | 0         | 19               | 19            |                     |              | NSR         |       |       |
| K9RC009            | 0         | 1                | 1             | 205                 | 177          | 365         | 659   | 1.21  |
| K9RC009            | 1         | 2                | 1             | 813                 | 777          | 725         | 1325  | 8.25  |

## 7 S C 🕂 E S 🥚

| Hole Id | From<br>(m) | To<br>(m) | Intercept<br>(m) | Co<br>(ppm) | Cu<br>(ppm) | Ni<br>(ppm) | Zn<br>(ppm) | Mn<br>(%) |
|---------|-------------|-----------|------------------|-------------|-------------|-------------|-------------|-----------|
| K9RC009 | 2           | 3         | 1                | 552         | 944         | 755         | 747         | 4.06      |
| K9RC009 | 4           | 5         | 1                | 120         | 646         | 398         | 288         | 1.5       |
| K9RC009 | 5           | 6         | 1                | 247         | 664         | 500         | 553         | 6.25      |
| K9RC009 | 6           | 10        | 4                |             |             | NSR         |             |           |
| K9RC010 | 0           | 3         | 3                |             |             | NSR         |             |           |
| K9RC010 | 3           | 4         | 1                | 311         | 211         | 441         | 935         | 3.29      |
| K9RC010 | 4           | 5         | 1                | 428         | 295         | 350         | 877         | 6.55      |
| K9RC010 | 5           | 6         | 1                | 521         | 913         | 286         | 1020        | 17.6      |
| K9RC010 | 6           | 7         | 1                | 189         | 568         | 407         | 531         | 1.56      |
| K9RC010 | 7           | 8         | 1                | 612         | 858         | 244         | 497         | 18.8      |
| K9RC010 | 8           | 9         | 1                | 160         | 128         | 214         | 413         | 3.38      |
| K9RC010 | 9           | 12        | 3                | NSR         |             |             |             |           |
| K9RC011 | 0           | 6         | 6                | NSR         |             |             |             |           |
| K9RC011 | 5           | 6         | 1                | 351         | 42          | 98          | 64          | 3.57      |
| K10RC01 | 0           | 9         | 9                |             |             | NSR         |             |           |



### JORC Code, 2012 Edition – Table 1

### Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria           | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| npling<br>chniques | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Samples comprise intervals that were reported as containing manganese from drilling on 2010</li> <li>Sampling was guided by Archer's protocols as the program was exploratory in nature. No standards were submitted by the company during analyses.</li> <li>All samples were sent to ALS laboratory in Adelaide for preparation and forwarded to Peth for multi-element analyses.</li> <li>All samples are crushed using LM2 mill to -4 mm and pulverised to nominal 80% passing -75 µm.</li> <li>The assays being reported were analysed during routine analyses of the drill samples in 2010.</li> </ul> |
| lling<br>chniques  | • Drill type (e.g. core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • All material being reported comes from drill pulps created<br>during the assay for base metals, the samples at the time were<br>generated from aircore drilling for manganese and base metal<br>exploration. All drilling was undertaken in 2010 by the current<br>tenement owner and the pulps stored for future reference.                                                                                                                                                                                                                                                                                        |

# **₩ E S**

| Criteria                                                    | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill Sample<br>Recovery                                    | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                       | <ul> <li>The nature was grass roots exploration as no drilling has ever<br/>been performed in the area for mineral exploration, no attempt<br/>was made to assess the recovery of the sample material during<br/>this phase of drilling.</li> <li>All efforts were made to ensure that the sample was<br/>representative.</li> <li>No relationship is believed to exist, but no work has been done<br/>to confirm this.</li> </ul> |
| Logging                                                     | <ul> <li>Whether core and chip samples have been geologically and<br/>geotechnically logged to a level of detail to support appropriate Mineral<br/>Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean,<br/>channel, etc.) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                | <ul> <li>All samples were geologically logged, as the hole collars were never accurately surveyed no data can be used for mineral resource estimation.</li> <li>Logging was qualitative and quantitative, i.e. percentages of vein material and host rock were estimated as well as noted.</li> </ul>                                                                                                                              |
| Sub-<br>Sampling<br>Techniques<br>and Sample<br>Preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>All drilling was Air-core</li> <li>All samples were riffle split on a 2-tiered splitter</li> <li>All sample material was dry.</li> <li>No additional quality control measures were taken for the sample submission.</li> <li>The sample sizes are considered appropriate for the material being sampled.</li> </ul>                                                                                                       |

### A?(₩E? ●

| Criteria                                               | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                     |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>Assay Data<br>and<br>Laboratory<br>Tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</li> </ul> | <ul> <li>Only laboratory standards were used in the assessment of the analyses.</li> <li>Analyses was by ALS Perth using their ME-MS61 technique for multi-elements</li> </ul>                                 |
| Verification<br>of Sampling<br>and Assaying            | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                           | <ul> <li>No verification of sampling, no use of twinned holes.</li> <li>Data is exploratory in nature and exists as excel spread sheets.</li> <li>No data adjustment.</li> </ul>                               |
| Location of<br>Data Points                             | <ul> <li>Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                                       | <ul> <li>MGA94 Zone 54 grid coordinate system is used.</li> <li>A hand-held GPS was used to identify the sample location</li> <li>Quality and adequacy is appropriate for this level of exploration</li> </ul> |



| Criteria                                                            |   | JORC Code Explanation                                                                                                                                                                                                                                                                                            |   | Commentary                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Spacing<br>and<br>Distribution                                 | • | Data spacing for reporting of Exploration Results.<br>Whether the data spacing and distribution is sufficient to establish the<br>degree of geological and grade continuity appropriate for the Mineral<br>Resource and Ore Reserve estimation procedure(s) and classifications<br>applied.                      | • | There is no pattern to the sampling, the spacing is random, the location of the holes was determined by the land surface as no clearing was undertaken for the drill rig so many sites were unsuitable to drill. Some of these may have produced different results to the one being reported. |
|                                                                     | • | Whether sample compositing has been applied.                                                                                                                                                                                                                                                                     | • | Data spacing and distribution are sufficient to establish the degree of geological and grade continuity for future drill planning, but not for resource reporting.<br>Sample compositing has occurred at the time for the sample                                                              |
|                                                                     |   |                                                                                                                                                                                                                                                                                                                  | • | being taken, i.e. there are composited intervals being reported.                                                                                                                                                                                                                              |
| Orientation of<br>Data in<br>Relation to<br>Geological<br>Structure | • | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.<br>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling | • | It is unknown whether the drill holes have interested the<br>mineralisation in a perpendicular manner. The mineralised<br>horizon is folded and has a variable dip strike over the length of<br>the mineralisation<br>It is believed there is no bias has been introduced.                    |
| Sampla                                                              |   | bias, this should be assessed and reported if material.                                                                                                                                                                                                                                                          |   | It is assumed that hast practices were undertaken at the time                                                                                                                                                                                                                                 |
| Sample<br>Security                                                  | • | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                    | • | It is assumed that best practices were undertaken at the time<br>All residual sample material (pulps) are stored securely.                                                                                                                                                                    |
| Audits or<br>Reviews                                                | • | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                            | • | None undertaken.                                                                                                                                                                                                                                                                              |



### Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>Tenement<br>and Land<br>Tenure Status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>Tenement status confirmed on SARIG.</li> <li>All work being reported is from EL 5433 (owned by SA Exploration Pty Ltd, a subsidiary of AXE).</li> <li>The tenement is in good standing with no known impediments.</li> <li>Results are from drilling undertaken in 2010, when it was drilled under its former EL number (EL 4266)</li> </ul>                                                                                                                                   |
| Exploration<br>Done by<br>Other Parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>The most significant exploration was undertaken by Aberfoyle in the early 1980's focussing on Cu-Mo mineralisation associated with granite intrusive.</li> <li>A large program of 1-5m deep holes were completed with little success.</li> <li>As a part of follow up to Mn exploration, in 2012 Archer flew EM over selected parts of the tenement and successfully identified buried anomalies that are not associated with the conductive Tapley Hill Formation.</li> </ul> |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>The mineralisation is strataform and associated with<br/>Manganese.</li> <li>The orientation of the mineralisation is unknown.</li> </ul>                                                                                                                                                                                                                                                                                                                                      |



| Criteria                                                                        | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drillhole<br>Information                                                        | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul> <li>Easting and northing of the drill hole collar</li> <li>Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>Dip and azimuth of the hole</li> <li>Downhole length and interception depth</li> <li>Hole length</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>Refer to announcement to which this document is attached, in particular tables titled:</li> <li>"Summary of drill hole information"</li> <li>"Summary of drilling results"</li> </ul>                                                                                                                                                                         |
| Data<br>Aggregation<br>Methods                                                  | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                           | <ul> <li>Interval length weighted assay results are reported</li> <li>Significant Intercepts are chosen based on the context of the results, for example significant intercepts &gt; 100ppm cobalt are reported</li> </ul>                                                                                                                                             |
| Relationship<br>Between<br>Mineralisation<br>Widths and<br>Intercept<br>Lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                                                         | <ul> <li>All assay intervals are down hole length, the true width not known.</li> <li>The mineralisation is interpreted to be steeply dipping. Drill holes have been angled to intercept the mineralisation as close to perpendicular as possible.</li> <li>Down hole intercepts are reported. True widths are likely to be 60-70% of the down hole widths.</li> </ul> |
| Diagrams                                                                        | • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See main body of report.                                                                                                                                                                                                                                                                                                                                               |



|   | Criteria                                    | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                           |
|---|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ) | Balanced<br>Reporting                       | • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                             | The reporting is considered to be balanced.                                                                                                                                                                          |
|   | Other<br>Substantive<br>Exploration<br>Data | • Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | • The mineralisation is restricted to within the Nuccaleena<br>Formation which has been mapped by the SA govt geologists<br>and reports up to 17m wide in locations. The unit is mappable<br>over 10's of kilometres |
|   | Further Work                                | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                   | <ul> <li>Further drilling is required along strike as well as testing for mineralisation under cover.</li> <li>Figures in the body of this report highlight the gaps in the data.</li> </ul>                         |