ASX Announcement

AdAlta to present eye fibrosis data at Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting

MELBOURNE Australia, 8 May, 2017: AdAlta Limited (ASX:1AD), the biotechnology company advancing its lead i-body candidate towards clinical development, announces that the AdAlta, La Trobe University and The University of Melbourne team will present data on the lead compound, AD-114, for the treatment of eye fibrosis at the Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting.

The ARVO Annual Meeting to be held May 7-11 2017, in Baltimore, Maryland, is the largest gathering of eye and vision researchers in the world, attracting over 11,000 attendees from more than 75 countries. The meeting provides a platform for individuals from academia to industry to discuss novel targets and disease pathways as well as the most promising emerging therapies.

Members of the collaboration, including AdAlta Chief Scientific Officer A/Prof Mick Foley and collaborator Professor Erica Fletcher from The University of Melbourne, will present data on AdAlta’s lead candidate, AD-114, for the treatment of eye fibrosis. AD-114 may provide a novel treatment for wet-AMD that has a different mechanism of action to currently-approved therapies.

Details of the poster presentation:
Presentation Number - Posterboard Number: 2259 - B0213
Presentation Type: Poster Session
Session Number: 281
Session Title: Bruch’s membrane and choroid in macular disease
Session Date/Time: May 8, 2017 from 3:45 PM to 5:30PM

The poster entitled “Inhibition of the chemokine receptor CXCR4 reduces pathology in a laser induced mouse model of choroidal neovascularization” is attached and available on the company’s website www.adalta.com.au.

AdAlta Limited
15/2 Park Drive
Bundoora VIC 3083 Australia
T +61 3 9479 5159
E enquiries@adalta.com.au
ABN 92 120 332 925
adalta.com.au
Notes to Editors
About AdAlta

AdAlta Limited is an Australian based drug development company headquartered in Melbourne. The Company is focused on using its proprietary technology platform to generate i-bodies, a new class of protein therapeutics, with applications as therapeutic drugs to treat disease.

I-bodies are a promising, novel class of drugs that offer a new and more effective approach to treating a wide range of human diseases. They are identified and developed using our proprietary technology platform.

We have pioneered a technology that mimics the shape and stability of a crucial antigen-binding domain, that was discovered initially in sharks and then developed as a human protein. The result is a range of unique compounds, now known as i-bodies, for use in treating serious diseases.

AdAlta is developing its lead i-body candidate, AD-114, for the treatment of idiopathic pulmonary fibrosis (IPF) and other human fibrotic diseases, for which current therapies are sub-optimal and there is a high-unmet medical need.

The Company also plans to continue further drug discovery and development directed towards other drug targets and diseases with its i-body technology platform.

Further information can be found at: www.adalta.com.au.

For more information, please contact:

AdAlta Limited
Sam Cobb, CEO
Tel: +61 (0)3 9479 5159
E: s.cobb@adalta.com.au

Media (Australia)
Andrew Geddes
Tel: +61 (0)408 677 734
E: adalta@instinctif.com

Media (International)
Sue Charles / Daniel Gooch
Tel: +44 (0)20 7866 7905
E: adalta@instinctif.com
Inhibition of the chemokine receptor CXCR4 reduces pathology in a laser induced mouse model of choroidal neovascularization

Wang, Xilian A; Foley, Michael; Venables, Gene and Fletcher, Erica
La Trobe Institute for Molecular Science, La Trobe University and School of Biosciences, University of Melbourne

Posterboard Number: 2259 - B0213

Purpose

Age related macular degeneration (AMD) is currently treated with a range of anti-VEGF inhibitors. Although these treatments have had a profound effect on the acute pathology, in the longer term, vision loss continues for many patients. New drugs are needed to effectively treat wet-AMD. One approach is to target cytokine signalling, which has been implicated in the development of neovascularization pathology. The central aim of this project was to evaluate the role of the chemokine receptor CXCR4 in a mouse model of choroidal neovascularization (CNV).

Aim

To determine if anti-CXCR4 single domain antibodies (i-bodies) reduce retinal pathology and fibrosis in a laser induced model of choroidal neovascularization.

Methods

Four CNV lesions per eye were induced in 8 week old female C57BL6 mice (n= 10 eyes/group) using a continuous wave laser (Micron III, 532nm, 350 mw). Animals were intravitreally injected with either a single domain like antibody known as an i-body targeting CXCR4 (AD-114 12µg/ml), a negative control i-body (AD-2H5 12µg/ml) or vehicle (PBS). Leakage was assessed using fluorescein angiography and lesion size was quantified using image J at 7 days. The eyes were then removed, fixed and stained using Masson’s trichrome stain. CNV lesion height/choroid height ratio was measured using image J. mRNA expression levels were compared using qPCR arrays (84 fibrosis associated genes). Significantly expressed genes relative to control (p< 0.05, fold change ±1.5) underwent overrepresentation testing on the Panther GO platform to identify any potential gene networks modified by CXCR4 inhibiting i-bodies.

Results

i-bodies were injected at day 0 immediately following laser injury and lesion leakage and area of fibrosis were measured following 7 days. VEGF trap (Eylea) and CXCR4 antagonist i-body AD-114 both reduced leakage by ~50% (p<0.001). Another anti-CXCR4 i-body AD-523 showed no effect on either leakage or fibrosis as did a negative control i-body AD-21H5. Epitope mapping of AD-114 demonstrated that it bound to residues deep in the CXCR4 binding pocket while AD-523 bound predominantly within an extracellular domain.

Conclusions

- Treatment with an anti-CXCR4 i-body AD-114 reduced lesion leakage and fibrosis when evaluated 7 days are laser induced injury.
- RT-PCR analysis demonstrated that AD-114 significantly altered TGF-β signaling, cytokine signaling pathways and regulation of fibroblast proliferation.
- Overall, treatment with anti-CXCR4 i-body AD-114 may offer an alternative treatment mechanism than currently available with anti-VEGF agents.

References


Conflicts of interest statement: Wang, Venables, Fletcher,Code N: None; Michael Foley is the Chief Scientific Officer for Adalta: Code E Employmen

This project was funded by a Development grant #1113654 from the NH&MRC (Australia) to EFL & MF

Acknowledgements

Materials were provided by Adalta Limited