

30 May 2017

MORE THICK ZONES OF SPODUMENE-BEARING PEGMATITE INTERSECTED IN LATEST DRILL-HOLES AT SEYMOUR LAKE, CANADA

North Aubry continues to impress with thick intercepts of spodumene-bearing pegmatites expanding the scale and potential of the Seymour Lake Lithium Project

HIGHLIGHTS:

- Phase 2 resource drilling program progressing well with a further five diamond holes now completed.
- Multiple shallow and deeper spodumene-bearing pegmatites intersected in latest holes, including thick mineralised zones with a combined down-hole width of up to 35m (SL-17-22).
- Drilling continues to confirm the interpreted mineralised extensions and the presence of multiple pegmatite zones at the North Aubry prospect with the mineralisation remaining open to the east, west and down-dip.
- Drilling is providing a greater level of geological understanding and confidence while also steadily increasing the overall scale of the project.
- Phase 2 results to underpin a maiden JORC 2012 Mineral Resource.

Diversified minerals explorer and developer Ardiden Limited (ASX: ADV) is pleased to advise that it continues to make excellent progress with the ongoing Phase 2 resource delineation diamond drilling program at its Seymour Lake Lithium Project in Ontario, Canada, with the latest drill-holes intersecting multiple thick spodumene-bearing pegmatites from close to surface.

NORTH AUBRY PROSPECT DRILLING

The latest five drill-holes (SL-17-14, SL-17-16 and SL-17-21 - SL-17-23) have now been completed and logged by the geological team. This batch of drill holes has again intersected multiple spodumene-bearing pegmatites both close to surface and at depth over various widths, confirming the presence of multiple pegmatite layers, including:

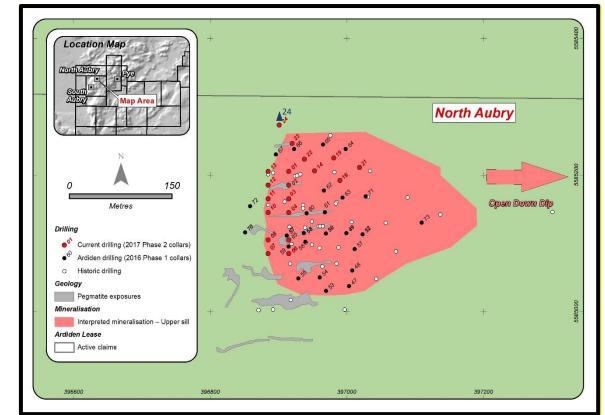
- Hole SL-17-22, which intersected a total of **35.14m** (including **18.06m** zone from 35.90m down-hole) of spodumene-bearing sills over a total down-hole width of 123m;
- Hole SL-17-14, which intersected a total of **26.11m** (including **19.76m** zone from 26.84m down-hole) of spodumene bearing sills over a total down-hole width of approximately 118m; and
- Hole SL-17-16, which intersected a total of **18.07m** (including **11.20m** zone from 41.45m down-hole) of spodumene bearing sills over a total down-hole width of approximately 118m (refer to Table 1 below).

Ardiden Limited

Suite 6, 295 Rokeby Road Subiaco WA 6008 Tel: +61 (0) 8 6555 2950 Fax: +61 (0) 8 9382 1222 www.ardiden.com.au

Figure 1. Drill core showing large Spodumene crystals from SL-17-22.

The drilling has continued to validate the known primary mineralised zones, further defining the boundaries of the main outcropping area and extensions of the secondary spodumene-bearing pegmatites at the project. Once the drill core has been logged, cut and prepared, the drill samples will be sent to Activation Laboratories in Thunder Bay for assay.


Ardiden notes although the pegmatites at Seymour Lake can be somewhat difficult to model and predict due to the variable fluid pathways, confirmation of the interpreted extensions of the spodumene-bearing pegmatites and the verification of multiple pegmatite layers in the latest drilling provides the Company with a greater level of understanding and confidence in the project, while also steadily expanding the overall scale of the project and its future resource potential.

As previously advised, the first portion of the current drilling program was designed with close-spaced drilling to ensure a high level of confidence in the data to support initial maiden JORC 2012 Mineral Resource.

Once a sufficient number of drill results and geological data have been obtained during this drill program, it will provide the Company a solid basis of understanding about the multiple spodumene-bearing mineralisation zones contained in the central portion of the North Aubry prospect – underpinning an initial JORC 2012 Mineral Resource for Seymour Lake.

Once the basis for an initial JORC 2012 Mineral Resource in the central mineralised zone at North Aubry has been established, Ardiden will conduct wider-spaced drilling in order to confirm the extensions of the spodumene mineralised zones which can be incorporated in future resource estimates.

As previously advised, the current diamond drilling program is designed to target the immediate project area around the North Aubry prospect, which is located within an extensive 5km long pegmatite zone identified during the mapping and sampling campaign completed in 2016.

Figure 2. Overview showing the Phase 2 drill hole locations (Red) and the pegmatite exposures at North Aubry prospect, with interpreted extensions.

These drill holes have continued to verify the western and northern extension of the multiple pegmatite mineralised sills. The continued intersection of multiple high quality spodumene-bearing pegmatite reinforces the potential to establish a maiden JORC 2012 Mineral Resource estimate for the Seymour Lake Project.

\smile		0 0 1							ake Element roject.		
R	Hole ID	East	North	End of Hole (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Description	
_	SL-17-14	396953	5585206	118	200	-60	0.00	2.80	2.80	Overburden	
$\frac{15}{10}$	SL-17-14	396953	5585206	118	200	-60	2.80	26.84	24.04	Mafic Volcanic: Fgr, Generally massive but laced or riddled with carb/qtz veining	
	SL-17-14	396953	5585206	118	200	-60	26.84	46.60	19.76	Spodumene Nb/Ta Pegmatite	
\bigcirc	SL-17-14	396953	5585206	118	200	-60	46.60	83.24	37.64	Mafic Volcanic: Fgr, Generally massive	
	SL-17-14	396953	5585206	118	200	-60	83.24	86.20	2.96	Spodumene Nb/Ta Pegmatite	
	SL-17-14	396953	5585206	118	200	-60	86.20	95.61	9.41	Mafic Volcanic: Fgr phaneritic, Massive or locally foliated	

2

	SL-17-14	396953	5585206	118	200	-60	95.61	99.00	3.39	Spodumene Nb/Ta Pegmatite
	SL-17-14	396953	5585206	118	200	-60	99.00	118.00	19.00	Mafic Volcanic: Fgr Light to med gry. Foliated or finely banded
	\mathcal{D}							TOTAL	26.11	
	SL-17-16	396990	5585192	120	200	-60	0.00	3.15	3.15	Overburden
	SL-17-16	396990	5585192	120	200	-60	3.15	24.95	21.80	Mafic volcanic; Pillowed basalt
	SL-17-16	396990	5585192	120	200	-60	24.95	26.35	1.40	Granitic dyke; Vfgr felsic grndms spotted throughout with white fsp mm pheno's
\bigcirc	SL-17-16	396990	5585192	120	200	-60	26.35	38.70	12.35	Mafic volcanic; massive basalt
	SL-17-16	396990	5585192	120	200	-60	38.70	39.47	0.77	Nb/Ta Pegmatite
60	SL-17-16	396990	5585192	120	200	-60	39.47	41.45	1.98	Mafic volcanic; Massive basalt
	SL-17-16	396990	5585192	120	200	-60	41.45	52.65	11.20	Spodumene Nb/Ta Pegmatite
	SL-17-16	396990	5585192	120	200	-60	52.65	78.40	25.75	Mafic volcanic; Pillowed basalt
	SL-17-16	396990	5585192	120	200	-60	78.40	78.55	0.10	Nb/Ta Pegmatite
	SL-17-16	396990	5585192	120	200	-60	78.55	78.84	0.29	Fault, late brittle; sand, gravel and some clay
	SL-17-16	396990	5585192	120	200	-60	78.84	88.12	9.57	Mafic volcanic; Pillowed basalt
$(\bigcirc$	SL-17-16	396990	5585192	120	200	-60	88.12	94.12	6.00	Spodumene Nb/Ta Pegmatite
	SL-17-16	396990	5585192	120	200	-60	94.12	120.00	25.88	Mafic volcanic; Pillowed basalt
	/							TOTAL	18.07	
	SL-17-21	397019	5585211	144	200	-60	0.00	1.45	1.45	Overburden
	SL-17-21	397019	5585211	144	200	-60	1.45	5.79	4.34	Mafic volcanic; fgr- mgr massive basalt
-	SL-17-21	397019	5585211	144	200	-60	5.79	7.08	1.29	Massive felsic dyke

	SL-17-21	397019	5585211	144	200	-60	7.08	49.20	42.12	Mafic volcanic; Fgr- mgr massive basalt
	SL-17-21	397019	5585211	144	200	-60	49.20	65.40	16.20	Spodumene Nb/Ta Pegmatite
	SL-17-21	397019	5585211	144	200	-60	65.40	87.30	21.90	Mafic volcanic; pillowed basalt
	SL-17-21	397019	5585211	144	200	-60	87.30	88.72	1.42	Spodumene Nb/Ta Pegmatite
	SL-17-21	397019	5585211	144	200	-60	88.72	111.00	22.28	Mafic volcanic; pillowed basalt
\bigcirc)							TOTAL	17.62	
	SL-17-22	396938	5585223	123	145	-60	0.00	1.10	1.10	Overburden
	SL-17-22	396938	5585223	123	145	-60	1.10	35.90	34.80	Mafic Volcanic: Fgr, pillowed basalt with local carb/amph/qtz selvages
	SL-17-22	396938	5585223	123	145	-60	35.90	53.96	18.06	Spodumene Nb/Ta Pegmatite
AD	SL-17-22	396938	5585223	123	145	-60	53.96	59.00	5.04	Mafic Volcanic: Mafic to intermediate tuff
	SL-17-22	396938	5585223	123	145	-60	59.00	92.21	33.21	Mafic volcanic; Fgr & mgr generally massive basalt
	SL-17-22	396938	5585223	123	145	-60	92.21	107.21	15.00	Nb/Ta Pegmatite
	SL-17-22	396938	5585223	123	145	-60	107.21	107.72	0.51	Mafic volcanic: Fgr & mgr generally massive
	SL-17-22	396938	5585223	123	145	-60	107.72	109.80	2.08	Spodumene Nb/Ta Pegmatite
	SL-17-22	396938	5585223	123	145	-60	109.80	123.00	13.20	Mafic volcanic: Fgr - mgr. gen massive
]							TOTAL	35.14	
\bigcirc	SL-17-23	396920	5585246	114	145	-60	0.00	3.50	3.50	Overburden
	SL-17-23	396920	5585246	114	145	-60	3.50	7.13	3.63	Mafic volcanic: Fgr- mgr, Amph (hble) rich
	SL-17-23	396920	5585246	114	145	-60	7.13	7.34	0.21	Nb/Ta Pegmatite
	SL-17-23	396920	5585246	114	145	-60	7.34	16.40	9.06	Mafic volcanic: Fgr- mgr, Amph (hble) rich

[SL-17-23	396920	5585246	114	145	-60	16.40	17.24	0.84	Nb/Ta Pegmatite
	SL-17-23	396920	5585246	114	145	-60	17.24	34.30	17.06	Mafic volcanic: Fgr- mgr, Amph (hble) rich
	SL-17-23	396920	5585246	114	145	-60	34.30	39.20	4.90	Mafic volcanic: Mafic to intermediate bedded tuff
	SL-17-23	396920	5585246	114	145	-60	39.20	47.10	7.90	Mafic volcanic: Fgr, Moderate Amph (hble)
\bigcirc	SL-17-23	396920	5585246	114	145	-60	47.10	51.44	4.34	Spodumene Nb/Ta Pegmatite
	SL-17-23	396920	5585246	114	145	-60	51.44	53.30	1.86	Mafic volcanic: Fgr- mgr, Amph (hble) rich
$\bigcirc 2$	SL-17-23	396920	5585246	114	145	-60	53.30	54.46	1.86	Spodumene Nb/Ta Pegmatite
	SL-17-23	396920	5585246	114	145	-60	54.46	55.17	0.71	Mafic volcanic: Fgr- mgr, Amph (hble) rich
AD	SL-17-23	396920	5585246	114	145	-60	54.46	56.96	2.50	Spodumene Nb/Ta Pegmatite
	SL-17-23	396920	5585246	114	145	-60	56.96	61.40	4.44	Mafic volcanic: Fgr- mgr, Massive with local irregular or wavy foliation
\mathbb{Q}	SL-17-23	396920	5585246	114	145	-60	61.40	63.35	1.95	Spodumene Nb/Ta Pegmatite
	SL-17-23	396920	5585246	114	145	-60	63.35	72.77	9.42	Mafic volcanic: Fgr- mgr, Massive with localized foliation
	SL-17-23	396920	5585246	114	145	-60	72.77	75.60	2.83	Massive very dark - blk and vfgr diabase dyk
	SL-17-23	396920	5585246	114	145	-60	75.60	92.30	16.70	Mafic volcanic: Fgr- mgr, Massive with localized foliation
	SL-17-23	396920	5585246	114	145	-60	92.30	92.70	0.40	Nb/Ta Pegmatite
	SL-17-23	396920	5585246	114	145	-60	92.70	114.00	21.30	Mafic volcanic: Fgr- mgr
								TOTAL	12.10	

The identification of pegmatites either at or close to surface represents a strategic advantage for the project, potentially allowing easier access to high-quality mineralisation in a future mining scenario. The proximity of the pegmatites to surface is likely to reduce the required pre-strip, resulting in lower extraction costs and therefore improved project economics.

ADDITIONAL CLARIFYING INFORMATION

Ardiden has received queries from some Ardiden shareholders and others about certain aspects of the drilling log tables that were included in the ASX announcements for Seymour Lake dated 13 April 2017, 27 April 2017, 17 May 2017 and 22 May 2017.

In order to provide additional information and clarification about these drill logs, Ardiden has now included the Azimuth and a more detailed description about the various forms of mineralisation contained in the drill core. An updated table for drill holes SL-17-01 to SL-17-06, SL-17-10 to SL-17-13 and SL-17-24 at Seymour Lake Lithium Project, has been attached to the end of this announcement (refer to Table 2).

Ardiden looks forward to providing further updates as they come to hand.

ENDS

For further information:

Investors: Brad Boyle Ardiden Ltd Tel: +61 (0) 8 6555 2950 Media: Nicholas Read Read Corporate Mobile: 0419 929 046

About Ardiden Ltd

Ardiden Limited (ASX: ADV) is an emerging international strategic metals company which is focused on the exploration, evaluation and development of multiple projects located in the established mining jurisdiction of Ontario, Canada.

The Seymour Lake Lithium Project comprises 7,019 Ha of mining claims and has over 4,000m of historic drilling. Mineralisation is hosted in extensive outcropping spodumene-bearing pegmatite structures with widths up to 26.13m and grades of up to 6.0% Li₂O. These high-grade pegmatite structures have been defined over a 5km strike length.

The 100%-owned Root Lake Lithium Project is located in Ontario, Canada. The project comprises 1,013 Ha of mining claims and has over 10,000m of historic drilling. Mineralisation is hosted in extensive outcropping spodumene-bearing pegmatite structures with widths up to 19m and grades of up to 5.10% Li2O. In addition, tantalum grades of up to 380 ppm were intersected.

The 100%-owned Root Bay lithium project is strategically located approximately 5km to the east of the recently acquired Root Lake Lithium Project and consists of three claim areas, totalling 720 hectares. The project was staked by Ardiden as part of its regional exploration focus in and around the Root Bay spodumene-bearing pegmatite.

Initial observations of the exposed pegmatite are characterized by coarse white albite, grey quartz and pale grey-green spodumene crystals up to 10cm long.

The 100%-owned Manitouwadge Flake Graphite Project covers an area 5,300 Ha and has a 20km strike length of EM anomalies with graphite prospectivity. Previous preliminary metallurgical testwork indicated that up to 80% of the graphite at Manitouwadge is high value jumbo or large flake graphite. Testwork also indicated that simple, gravity and flotation beneficiation can produce graphite purity levels of up to 96.8% for jumbo flake and 96.8% for large flake. With the proven caustic bake process, ultra-high purity (>99.95%) graphite can be produced. The graphite can also be processed into high value expandable graphite, high quality graphene and graphene oxide.

All projects located in an established mining province, with good access to infrastructure (road, rail, power, phone and port facilitates) and local contractors and suppliers.

Competent Person's Statement

The information in this report that relates to exploration results for the Seymour Lake Lithium project and is based on, and fairly represents, information and supporting geological information and documentation in this report has been reviewed by Mr Robert Chataway who is a member of the Association of Professional Geologists of Ontario. Mr Chataway is not a full-time employee of the Company. Mr Chataway is employed as a Consultant Geologist. Mr Chataway has more than five years relevant exploration experience, and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Chataway consents to the inclusion of the information in this report in the form and context in which it appears.

Forward Looking Statement

This announcement may contain some references to forecasts, estimates, assumptions and other forward-looking statements. Although the company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved. They may be affected by a variety of variables and changes in underlying assumptions that are subject to risk factors associated with the nature of the business, which could cause actual results to differ materially from those expressed herein. All references to dollars (\$) and cents in this presentation are to Australian currency, unless otherwise stated. Investors should make and rely upon their own enquires and assessments before deciding to acquire or deal in the Company's securities.

 Table 2. Drilling Logs for holes SL-17-01 to SL-17-06, SL-17-10 to SL-17-13, SL-17-24 at Seymour Lake Lithium Project.

Hole	ID	East	North	End of Hole (m)	Azimuth	Dip	From (m)	То (m)	Interval (m)	Description
SL-17	'-01	396915	5585205	111	90	-60	0.00	1.40	1.40	Overburden
SL-17	'-01	396915	5585205	111	90	-60	1.40	16.93	15.53	Mafic Volcanic: Fg to Mgr phaneritic massive to weakly basalt
SL-17	-01	396915	5585205	111	90	-60	16.93	31.60	14.97	Spodumene Nb/Ta Pegmatite
SL-17	-01	396915	5585205	111	90	-60	31.60	32.10	0.50	Mafic Volcanic: Fg massive
SL-17	-01	396915	5585205	111	90	-60	32.10	48.04	15.94	Spodumene Nb/Ta Pegmatite
) SL-17	'-01	396915	5585205	111	90	-60	48.04	95.17	47.13	Mafic Volcanic: Foliated pillowed basalt
SL-17	-01	396915	5585205	111	90	-60	95.17	96.00	0.83	Spodumene Nb/T Pegmatite
SL-17	'-01	396915	5585205	111	90	-60	96.00	111.00	15.00	Mafic Volcanic: Foliated pillowed basalt
								Total	31.74	
SL-17	-02	396915	5585185	110	90	-60	0.00	0.60	0.60	Overburden
SL-17	-02	396915	5585185	110	90	-60	0.60	24.92	24.32	Spodumene Nb/T Pegmatite
SL-17	-02	396915	5585185	110	90	-60	24.92	30.75	5.83	Mafic Volcanic: fin grain, massive.
SL-17	-02	396915	5585185	110	90	-60	30.75	31.27	0.52	Spodumene Nb/T Pegmatite
SL-17	-02	396915	5585185	110	90	-60	31.27	81.82	50.55	Mafic Volcanic: fin grain, massive
SL-17	-02	396915	5585185	110	90	-60	81.82	83.82	2.00	Spodumene Nb/T Pegmatite
SL-17	-02	396915	5585185	110	90	-60	83.82	103.00	19.18	Mafic Volcanic: Massive basalt
SL-17	-02	396915	5585185	110	90	-60	103.00	105.55	2.55	Spodumene Nb/T Pegmatite
SL-17	-02	396915	5585185	110	90	-60	105.55	110.00	4.45	Massive Mafic Volcanic

]	Total	29.39	
	SL-17-03	396915	5585165	111	90	-60	0.00	2.60	2.60	Overburden
	SL-17-03	396915	5585165	111	90	-60	2.60	3.20	0.60	Massive Mafic Volcanic: Fgr dk gry to blk
	SL-17-03	396915	5585165	111	90	-60	3.20	23.60	20.40	Spodumene Nb/Ta Pegmatite
	SL-17-03	396915	5585165	111	90	-60	23.60	30.07	6.47	Massive Mafic Volcanic: Fgr
\bigcirc	SL-17-03	396915	5585165	111	90	-60	30.07	30.43	0.36	Nb/Ta Pegmatite
	SL-17-03	396915	5585165	111	90	-60	30.43	80.75	50.32	Massive Mafic Volcanic: Fgr
	SL-17-03	396915	5585165	111	90	-60	80.75	85.40	4.62	Spodumene Nb/Ta Pegmatite
99	SL-17-03	396915	5585165	111	90	-60	85.40	111.00	25.60	Massive Mafic Volcanic: Fgr
)							TOTAL	25.38	
	SL-17-04	396915	5585145	111	90	-60	0.00	3.55	3.55	Overburden
30	SL-17-04	396915	5585145	111	90	-60	3.55	19.05	15.50	Spodumene Nb/Ta Pegmatite
	SL-17-04	396915	5585145	111	90	-60	19.05	44.70	26.65	Massive Mafic Volcanic: Fgr phaneritic
)	SL-17-04	396915	5585145	111	90	-60	44.70	45.20	0.50	Nb/Ta Pegmatite
	SL-17-04	396915	5585145	111	90	-60	45.20	70.25	25.05	Massive Mafic Volcanic: Fgr phaneritic
	SL-17-04	396915	5585145	111	90	-60	70.25	78.22	7.97	Spodumene Nb/Ta Pegmatite
	SL-17-04	396915	5585145	111	90	-60	78.22	111.00	32.78	Mafic Volcanic: Fgr massive pillowed basalt
\bigcirc)							TOTAL	23.97	
	SL-17-05	396915	5585105	131	90	-60	0.00	8.63	8.63	Spodumene Nb/Ta Pegmatite
	SL-17-05	396915	5585105	131	90	-60	8.63	68.80	60.17	Mafic Volcanic: Pillowed basalt
	SL-17-05	396915	5585105	131	90	-60	68.80	71.18	2.38	Spodumene Nb/Ta Pegmatite

	SL-17-05	396915	5585105	131	90	-60	71.18	131.00	59.82	Mafic Volcanic: Pillowed basalt
						1		TOTAL	11.01	
	SL-17-06	396915	5585085	111	90	-60	0.00	3.00	3.00	Overburden
	SL-17-06	396915	5585085	111	90	-60	3.00	9.77	6.77	Spodumene Nb/Ta Pegmatite
	SL-17-06	396915	5585085	111	90	-60	9.77	111.00	101.23	Mafic Volcanic: Fgr- mgr
]							TOTAL	6.77	
\bigcirc	SL-17-10	396885	5585145	108	90	-60	0.00	5.00	5.00	Overburden
05	SL-17-10	396885	5585145	108	90	-60	5.00	13.80	8.80	Mafic Volcanic: tuff; Well developed bedding
$C\overline{O}$	SL-17-10	396885	5585145	108	90	-60	6.10	6.45	0.35	Nb/Ta Pegmatite
	SL-17-10	396885	5585145	108	90	-60	6.45	64.20	57.75	Mafic Volcanic: Basalt flow. Fgr mostly massive
	SL-17-10	396885	5585145	108	90	-60	64.20	68.50	4.30	Spodumene Nb/Ta Pegmatite
	SL-17-10	396885	5585145	108	90	-60	68.50	69.45	0.95	Mafic Volcanic: Fgr to mgr very dk
	SL-17-10	396885	5585145	108	90	-60	69.45	70.40	0.95	Nb/Ta Pegmatite
	SL-17-10	396885	5585145	108	90	-60	70.40	108.00		Mafic Volcanic: intermediate tuff; bedded to Fgr to locally mgr
615)							TOTAL	5.60	
	SL-17-11	396885	5585165	107	90	-60	0.00	0.90	0.90	Overburden
\bigcirc)				90		0.90	1.70	0.80	Mafic Volcanic: Fgr and mgr
(SL-17-11	396885	5585165	107	90	-60	1.70	1.90	0.20	Nb/Ta Pegmatite
	SL-17-11	396885	5585165	107	90	-60	1.90	11.80	9.90	Mafic Volcanic: Fgr and mgr
	SL-17-11	396885	5585165	107	90	-60	11.80	12.23	0.43	Nb/Ta Pegmatite
	SL-17-11	396885	5585165	107	90	-60	12.23	17.27	5.04	Mafic Volcanic: Fgr and mgr
	SL-17-11	396885	5585165	107	90	-60	17.27	18.05	0.78	Nb/Ta Pegmatite
					90		18.05	70.12	52.07	Mafic Volcanic: Fgr and mgr, Bedded (compositionally

										banded) mafic to intermediate tuff
_	SL-17-11	396885	5585165	107	90	-60	70.12	77.00	6.88	Spodumene Nb/Ta Pegmatite
	SL-17-11	396885	5585165	107	90	-60	77.00	107.00	30.00	Mafic Volcanic: Fgr and mostly massive
	9							TOTAL	8.29	
	SL-17-12	396885	5585185	110	90	-60	0.00	16.10	16.10	Mafic Volcanic: Mgr amph (hble) rich basalt
\bigcirc	SL-17-12	396885	5585185	110	90	-60	16.10	18.53	2.43	Nb/Ta Pegmatite
	SL-17-12	396885	5585185	110	90	-60	18.53	63.30	44.77	Mafic Volcanic: Mgr amph (hble) rich pillowed basalt
	SL-17-12	396885	5585185	110	90	-60	63.30	64.75	1.45	Nb/Ta Pegmatite
	SL-17-12	396885	5585185	110	90	-60	64.75	80.20	15.45	Mafic Volcanic: pillowed basalt; Fgr phaneritic
60	SL-17-12	396885	5585185	110	90	-60	80.20	86.40	6.20	Spodumene Nb/Ta Pegmatite
	SL-17-12	396885	5585185	110	90	-60	86.40	96.23	9.83	Mafic Volcanic: pillowed basalt; Fgr phaneritic
	SL-17-12	396885	5585185	110	90	-60	96.23	98.10	1.87	Nb/Ta Pegmatite
	SL-17-12	396885	5585185	110	90	-60	98.10	110.00	11.90	Mafic Volcanic: Bedded mafic (to intermediate) tuff
(15)								TOTAL	11.95	
	SL-17-13	396885	5585205	121	90	-60	0.00	3.50	3.50	Overburden
(\bigcirc)	SL-17-13	396885	5585205	121	90	-60	3.50	8.80	5.30	Mafic Volcanic: Fgr- mgr, pillowed basalt
2	SL-17-13	396885	5585205	121	90	-60	8.80	9.00	0.20	Nb/Ta Pegmatite
\bigcirc	SL-17-13	396885	5585205	121	90	-60	9.00	33.49	24.49	Mafic Volcanic: Fgr- mgr, pillowed basalt
	SL-17-13	396885	5585205	121	90	-60	33.49	38.20	4.71	Spodumene Nb/Ta Pegmatite
	SL-17-13	396885	5585205	121	90	-60	38.20	95.00	56.80	Mafic Volcanic: Fgr- mgr, pillowed basalt
	SL-17-13	396885	5585205	121	90	-60	95.00	111.13	16.13	Spodumene Nb/Ta Pegmatite

	SL-17-13	396885	5585205	121	90	-60	111.13	121.00	9.87	Mafic Volcanic: Fgr- mgr
								TOTAL	21.04	
	SL-17-24	396901	5585273	140	145	-60	0.00	3.40	3.40	Overburden
	SL-17-24	396901	5585273	140		-60	3.40	105.52	102.12	Mafic Volcanic: Mafic to
					145					intermediate tuff
	SL-17-24	396901	5585273	140	145	-60	105.52	105.68	0.16	Nb/Ta Pegmatite
	SL-17-24	396901	5585273	140		-60	105.68	106.30	0.62	Mafic Volcanic: Mafic to
\bigcirc)				145					intermediate tuff
615	SL-17-24	396901	5585273	140	145	-60	106.30	106.95	0.65	Nb/Ta Pegmatite
	SL-17-24	396901	5585273	140		-60	106.95	108.00	1.05	Mafic Volcanic: Fgr weakly foliated
$(\mathcal{O}\mathcal{O}$)				145					Basalt
	SL-17-24	396901	5585273	140	145	-60	108.00	110.25	2.25	Spodumene Nb/Ta Pegmatite
	SL-17-24	396901	5585273	140	145	-60	110.25	110.68	0.43	Mafic Volcanic:
	SL-17-24	396901	5585273	140		-60	110.68	110.79	0.11	Basalt, quite massive
					145					Pegmatite
	SL-17-24	396901	5585273	140	145	-60	110.79	112.25	1.46	Mafic Volcanic: Basalt, quite massive
	SL-17-24	396901	5585273	140	145	-60	112.25	113.17	0.92	Pegmatite
	SL-17-24	396901	5585273	140	145	-60	113.17	117.38	4.21	Mafic Volcanic: Basalt, quite massive
	SL-17-24	396901	5585273	140	145	-60	117.38	120.33	2.95	Spodumene Nb/Ta Pegmatite
	SL-17-24	396901	5585273	140		-60	120.33	121.04	0.71	Mafic Volcanic: Fgr
$(\bigcirc$)				145					Mafic (to intermediate) tuff
	SL-17-24	396901	5585273	140	145	-60	121.04	121.60	0.56	Pegmatite
	SL-17-24	396901	5585273	140		-60	121.60	140.00	18.40	Mafic Volcanic: Mafic to intermediate tuff,
					145					Fgr Basalt
	1							TOTAL	7.60	

Table 1: Seymour Lake Lithium Project (Claim Title 1245661)

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Diamond Drill Core was cut in half using a core saw along the core axis. Bagging of the half core samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the core tray in the position of the sample interval. Standard sample intervals averaged 1 m. Sampling continued through intervening barren rock (if less than 10m width) where multiple Spodumene Pegmatite zones were intersected The sample preparation and assaying techniques are industry standard and appropriate for this type of mineralisation.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond wireline core drilling. The drill core size is CHD 76, core diameter is 43.5 millimetres Drill holes were orientated using the Reflex ACT II RD core orientation tool
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 The sample interval of core was measured and recorded along with a description and incorporated in the completed drill logs. Core within the mineralised zone tended to be uniform and competent so loss was minimal and samples represent the true nature of the mineralisation No relationship between sample recovery and grade is evident.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	• Samples represent half the core width, and are logged in detail to support appropriate Mineral Resource estimation at a later stage of exploration.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Core is split in half using a core saw with the remaining half retained in the core tray. Mineralisation is massive and relatively uniform so assay samples closely represent the in-situ material. Samples were taken on an average of 1 meter intervals and were determined to be appropriate for the mineralised material being sampled
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 All samples will be analysed by Actlabs in Thunder Bay, Ontario Canada a SCC (Standards Council of Canada) accredited laboratory. The assay technique will be FUS-Na202 Quality control procedures included the insertion of certified standards and blanks into the sample stream. Results of the Heavy Liquid Separation tests are outlined in Table 3.
verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	• Drill logs and sample information is documented and stored digitally in field laptop units and backed up on the Ardiden server.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Drill holes were located with handheld WAAS enabled handheld GPS units set for recording UTM NAD83 Zone 16N projection coordinates. Drill holes were orientated using the Reflex ACT II RD core orientation

Criteria	JORC Code explanation	Commentary
	 Specification of the grid system used. Quality and adequacy of topographic control. 	tool
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Core samples of the mineralised zone were taken at approximately 1 meter intervals and deemed appropriate to represent the in situ nature of the mineralization. Further drilling and sampling will be required to adequately establish the geologic and grade continuity for any Mineral Resource and Ore Reserve estimation procedure.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill hole locations were designed to intercept the mineralised zone as close to true width as possible to avoid sampling bias.
Sample security	The measures taken to ensure sample security.	• Samples were secured and delivered to the assay lab under chain of custody controls by the Caracle Creek Consulting group
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits or reviews of sampling techniques have been conducted

(Criteria listed in the preceding section also apply to this section.)

)	Criteria	JORC Code explanation	Commentary
)	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 All claims in the Seymour Lake Lithium project are in good standing and these include claims 1245661 1245648 1245662 1245664 1245646, which are 100% owned by Stockport Exploration Inc. Ardiden has exercised option to acquire 100% ownership of the project claims. Ardiden staked and owns additional claims around the project including claims:
]			4270593, 4270594, 4270595, 4270596, 4270597, 4270598, 4279875, 4279876, 4279877, 4279878, 4279879, 4279880, 4279881, 4279882, 4279883, 4279884, 4279885, 4279886, 4279887, 4279888, 4279889, 4279890, 4279891, 4279869, 4279870, 4279871, 4279872, 4279873 and

Criteria	JORC Code explanation	Commentary
		4279874
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	Other parties have not appraised the exploration carried out to date
Geology	• Deposit type, geological setting and style of mineralisation.	 Seymour Lake area pegmatites have been classified as belonging to the Complex-type, Spodumene-subtype. Mineralization is dominated by spodumene (Li), with lesser tantalite(Ta) hosted in a series of variably steeply dipping pegmatite dykes and and sills.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 See Tables 1 and 2 and Figure 2 for the location of the drill collars and other dill hole information.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	With the homogeneity of the mineralised material, sample intervals for the most part were kept at one metre intervals
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should 	• Mineralised zones were determined to be shallow dipping and drill holes were drilled at -60 degrees so that drilling orientation bias was minimised

Criteria	JORC Code explanation	Commentary
intercept lengths	be a clear statement to this effect (e.g. 'down hole length, true width not known').	
diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See Figure 2 for the location of the drill hole collars
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	No comprehensive report has been completed to date to include the latest Ardiden exploration results.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All meaningful and material data is reported
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Refer to text within the report.