

THICK NEAR SURFACE COBALT AT OPUWO

HIGHLIGHTS

- Highlights from the latest batches of assays received from the recently completed resource drilling program include:
 - $\circ~~$ 17 m @ 0.14% Co and 0.42% Cu
 - o 10 m @ 0.12% Co and 0.59% Cu AND 4 m @ 0.13% Co and 0.55% Cu (same hole)
 - 7.7 m @ 0.11% Co and 0.52% Cu
 - 5 m @ 0.16% Co and 0.48% Cu
 - 4 m @ 0.18% Co and 0.50% Cu
 - 6 m @ 0.12% Co and 0.60% Cu
 - 5 m @ 0.14% Co and 0.54% Cu
 - $\circ~$ 4 m @ 0.17% Co and 0.41% Cu
- Final assays expected in the coming weeks, to be followed by maiden resource reporting.
- Downhole EM surveys complete, data processing and interpretation underway.
- Drilling continuing, initial focus on further defining mineralisation to the west of resource drilling area.

Celsius Resources Limited ("Celsius" or "the Company") is pleased to provide an update on exploration results at its 95% owned Opuwo Cobalt Project ("Project") in Namibia.

The latest results include significant thicker intercepts that are close to surface, including 17 m @ 0.14% Co and 0.42% Cu, (from 11 metres down hole DOFR0145), and 10 m @ 0.12% Co and 0.59% Cu (from 17 metres down hole DOFR0149). Notably, DOFR0149 also included a second DOF intercept, 4 m @ 0.13% Co and 0.55% Cu, from 32 metres down hole. All drillholes are angled at 55 degrees, designed to be approximately perpendicular to the mineralisation at Opuwo.

Celsius Managing Director, Brendan Borg commented:

"The latest batches of assays from Opuwo contain some of the best results seen to date at the Project, which is highly encouraging as we close in on reporting our maiden resource."

P: + 61 8 9226 4500 F: + 61 8 9226 4300 info@celsiusresources.com.au www.celsiusresources.com.au

Significant intersections from the latest batches of assays include (Figure 1/Appendix 1):

- 17 m @ 0.14% Co and 0.42% Cu, from 11 m (DOFR0145)
- 10 m @ 0.12% Co and 0.59% Cu, from 17 m AND 4 m @ 0.13% Co and 0.55% Cu, from 32 m (DOFR0149)
- 7.7 m @ 0.11% Co and 0.52% Cu, from 44 m (DOFD0100)
- 5 m @ 0.16% Co and 0.48% Cu, from 204 m (DOFR0111)
- 4 m @ 0.18% Co and 0.50% Cu, from 202 m (DOFD0117)
- 6 m @ 0.12% Co and 0.60% Cu, from 91 m (DOFR0154)
- 5 m @ 0.14% Co and 0.54% Cu, from 125 m (DOFR0132)
- 4 m @ 0.17% Co and 0.41% Cu, from 218 m (DOFD0113)
- 5.4 m @ 0.12% Co and 0.43% Cu, from 222 m (DOFD0102)
- 4 m @ 0.15% Co and 0.67% Cu, from 138 m (DOFR0147)
- 4 m @ 0.15% Co and 0.36% Cu, from 113 m (DOFR0116)
- 3 m @ 0.19% Co and 0.59% Cu, from 125 m (DOFR0106)
- 4 m @ 0.14% Co and 0.41% Cu, from 106 m (DOFR0133)
- 5 m @ 0.10% Co and 0.57% Cu, from 175 m (DOFR0129)
- 3.82m @ 0.13% Co and 0.44% Cu, from 218.18 m (DOFD0094)
- 3 m @ 0.17% Co and 0.61% Cu, from 45 m (DOFR0151)
- 4 m @ 0.12% Co and 0.38% Cu, from 249 m (DOFR0108)
- 3 m @ 0.15% Co and 0.76% Cu, from 213 m (DOFR0127)
- 4 m @ 0.11% Co and 0.64% Cu, from 45 m (DOFR0138)
- 4 m @ 0.11% Co and 0.41% Cu, from 125 m (DOFR0122)
- 3.27 m @ 0.13% Co and 0.51% Cu, from 136.54 m (DOFD0097)
- 4 m @ 0.11% Co and 0.35% Cu, from 182 m (DOFR0112)
- 3 m @ 0.14% Co and 0.68% Cu, from 179 m (DOFR0150)
- 3 m @ 0.13% Co and 0.43% Cu, from 208 m (DOFR0118)
- 3 m @ 0.12% Co and 0.54% Cu, from 52 m (DOFR0146)
- 3 m @ 0.12% Co and 0.50% Cu, from 208 m (DOFR0109)
- 4 m @ 0.09% Co and 0.64% Cu, from 56 m (DOFR0142)
- 2 m @ 0.05% Co and 0.24% Cu, from 10 m (DOFR0148)

The remaining assays from the resource drilling program are expected in the next two weeks, to be followed by completion of interpretation, geological modelling, resource estimation, and reporting of a maiden JORC Mineral Resource.

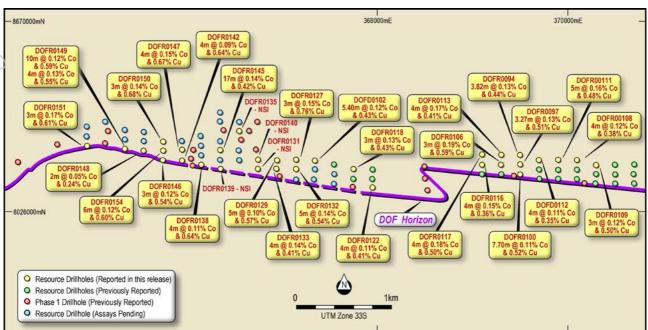


Figure 1: Resource Drilling – Latest significant intersections

Drilling recommencement

As previously advised, a diamond drill rig has remained on site at Opuwo, and has commenced drilling to the west of the resource definition drilling that was completed in late 2017. Three diamond drillholes have so far been completed in this area, all intersecting Dolomite Ore Formation (DOF) mineralisation.

Geophysical surveys

The Company's geophysical contractor has completed the planned downhole EM surveys at the Project, with data currently being modelled and interpreted. The aim of the surveys was to search for strong conductors in the vicinity of the holes surveyed, that may represent massive sulphide mineralisation. The ground based audio magnetotelluric (AMT) survey is currently in progress. Further information on the outcomes of both of these surveys will be provided as they become available.

About the Opuwo Cobalt Project

Celsius is aiming to define a long life, reliable source of cobalt at Opuwo. The Company considers the Project to have the following advantages:

- Large scale.
- Favourable mineralogy: cobalt and copper sulphide minerals.
- Low in deleterious elements: notably arsenic, cadmium and uranium.
- Mining friendly, politically stable and safe location with excellent infrastructure.
- Cobalt: best exposure to lithium ion battery boom.

The Opuwo Cobalt Project is located in northwestern Namibia, approximately 800 km by road from the capital, Windhoek, and approximately 750 km from the port at Walvis Bay (Figure 2). The Project has excellent infrastructure, with the regional capital of Opuwo approximately 30 km to the south, where services such as accommodation, fuel, supplies, and an airport and hospital are available. Good quality bitumen roads connect Opuwo to Windhoek and Walvis Bay. The Ruacana hydro power station (320 MW), which supplies the majority of Namibia's power, is located nearby, and a 66 kV transmission line passes through the eastern boundary of the Project.

The Opuwo Project consists of four Exclusive Prospecting Licences covering approximately 1,470 km².

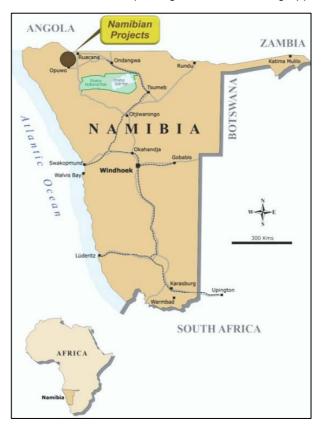


Figure 2: Location of the Opuwo Cobalt Project, Namibia

Celsius Resources Contact Information

Level 3, 216 St Georges Terrace Perth WA 6000 PO Box 7775 Cloisters Square Perth WA 6850 P: +61 8 9226 4500 F: +61 8 9226 4300 E: info@celsiusresources.com.au www.celsiusresources.com.au

Competent Persons Statement

Information in this report relating to Exploration Results and Exploration Targets is based on information reviewed by Mr. Brendan Borg, who is a Member of the Australasian Institute of Mining and Metallurgy and Managing Director of Celsius Resources. Mr. Borg has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Borg consents to the inclusion of the data in the form and context in which it appears.

Appendix 1: Resource Drilling Program Significant Intercepts

		Easting	Northing		Planned	Final						
Ц		(UTM	(UTM	Planned	Azimuth	Depth	Intercept	Intercept	Interval	Cobalt	Copper	
	Hole ID	Zone 33S)	Zone 33S)	Dip (deg)	(grid)	(m)	from (m)	to (m)	(m)	(%)	(%)	Zinc (%)
DO	DFD0062	370503	8026297	-55	180	92.16	56.92	61.46	4.54	0.12	0.48	0.44
AN	ID						80.76	85.00	4.24	0.15	0.45	0.54
DC	DFR0064	372107	8026347	-55	180	267.00	260	264	4	0.12	0.29	0.31
DC	DFD0065	371902	8026153	-55	180	38.06	28	32.94	4.94	0.12	0.40	0.38
DC	DFD0066	371900	8026249	-55	180	143.37	136	140.37	4.37	0.17	0.46	0.47
DC	DFR0067	372100	8026245	-55	180	173.00	162	167	5	0.12	0.52	0.50
DC	DFR0068	371702	8026197	-55	180	75.00	66	69	3	0.11	0.54	0.23
DC	DFR0069	371707	8026396	-55	180	231.00	221	224	3	0.14	0.49	0.49
DC	OFR0070	371702	8026302	-55	180	151.00	143	147	4	0.14	0.36	0.55
DC	OFD0071	371901	8026350	-55	180	254.37	233	238	5	0.12	0.39	0.49
DC	DFR0073	371503	8026397	-55	180	227.00	219	223	4	0.14	0.34	0.49
DC	OFR0074	371500	8026197	-55	180	81.00		Minerali	sed below	500ррт Сс	cutoff	
DC	DFR0075	371503	8026295	-55	180	147.00	134	138	4	0.13	0.34	0.41
DC	DFR0076	371302	8026199	-55	180	73.00	59	66	7	0.12	0.46	0.34
DC	DFD0077	370901	8026747	-55	180	500.34	490	494	4	0.13	0.40	0.32
DC	DFR0078	371302	8026298	-55	180	153.00	146	147	1	0.08	0.56	0.56
DC	OFR0079	371303	8026398	-55	180	225.00		Minerali	sed below	500ррт Сс	cutoff	
DC	OFD0080	370503	8026398	-55	180	173.16	165.2	168	2.8	0.13	0.60	0.42
DC	DFR0081	371099	8026243	-55	180	78.00	66	71	5	0.09	0.33	0.27
DC	OFR0082	371099	8026347	-55	180	171.00	161	164	3	0.12	0.31	0.36
DC	OFR0083	370902	8026248	-55	180	84.00	69	73	4	0.09	0.33	0.32
DC	OFR0084	370700	8026301	-55	180	90.00	80	84	4	0.10	0.42	0.36
DC	DFD0085	370499	8026499	-55	180	251.18	241.20	244.38	3.18	0.15	0.52	0.74
DC	OFR0086	370299	8026297	-55	180	90.00	77	81	4	0.13	0.43	0.42
D	OFR0087	371101	8026448	-55	180	282.00	265	269	4	0.14	0.39	0.48
DC	OFR0088	370102	8026348	-55	180	93.00	83	87	4	0.14	0.60	0.38
DC	OFR0089	369901	8026347	-55	180	62.00	50	53	3	0.11	0.43	0.37
DC	OFR0090	369701	8026353	-55	180	57.00	32	36	4	0.12	0.36	0.40
DC	DFR0091	369303	8026400	-55	180	66.00	39	43	4	0.13	0.60	0.46
DC	OFR0092	370699	8026400	-55	180	184.00	169	173	4	0.13	0.35	0.45
DC	DFR0093	369100	8026401	-55	180	69.00	21	28	7	0.07	0.60	0.40
D	OFD0094	369502	8026602	-55	180	278.42	218.18	222	3.82	0.13	0.44	0.48
D	OFR0095	370702	8026502	-55	180	279.00	269	271	2	0.11	0.42	0.48
DC	OFR0096	370304	8026398	-55	180	144.00	132	138	6	0.15	0.51	0.40
in	cluding						133	135	2	0.25	0.52	0.50
D	DFD0097	369502	8026503	-55	180	146.36	136.54	139.8	3.27	0.13	0.51	0.56
DC	DFR0098	370902	8026450	-55	180	372.00			Hole Aba	ndoned		
DC	DFR0099	370898	8026348		180	215.00	211	212	1	0.08	0.59	0.24
DC	DFD0100	369500	8026400	-55	180	59.18	44	51.7	7.7	0.11	0.52	0.50
DC	OFR0101	370101	8026447	-55	180	156.00	146	149	3	0.18	0.53	0.59
DC	DFD0102	367350	8026548	-55	180	236.40	222	227.4	5.4	0.12	0.43	0.58
DC	DFD0103	366551	8026947	-55	180	464.36			Assays P	ending		
DC	OFR0104	369903	8026447	-55	180	129.00	118	123	5		0.37	0.43
DC	OFR0105	369699	8026450	-55	180	126.00	110	113	3	0.21	0.41	0.37
ine	cluding						111	112	1	0.35	0.39	0.39
DC	OFR0106	369302	8026499	-55	180	137.00	125	128	3	0.19	0.59	0.56
DC	OFD0107	367349	8026451	-55	180	167.30			Assays P	ending		
DC	OFR0108	370102	8026551	-55	180	261.00	249	253	4	0.12	0.38	0.29
DC	OFR0109	370302	8026498	-55	180	221.00	205	206	1	0.06	0.15	0.77
DC	OFD0110	367349	8026352	-55	180	86.11			Assays P			
DC	DFR0111	369902	8026550	-55	180	219.00	204	209	5	0.16	0.48	0.63
DC	OFR0111	369902	8026550	-55	180	219.00	204	209	5	0.16	0.48	0.6

	Easting	Northing		Planned	Final						
	(UTM		Planned	Azimuth	Depth		Intercept	Interval	Cobalt	Copper	(20)
Hole ID	Zone 33S)	Zone 33S)	Dip (deg)	(grid)	(m)	from (m)	to (m)	(m)	(%)	(%)	Zinc (%)
DOFR0112 DOFR0113	369700 369301	8026549 8026602	-55 -55	180 180	198.00 231.00	182 218	186 222	4	0.11	0.35 0.41	0.52 0.52
DOFR0113 DOFD0114	369301	8026602	-55	180	602.38	218	222	4 Assays P	-	0.41	0.52
DOFD0114 DOFD0115	370907	8027048	-55	180	428.50		N	Assays P o significan	Ũ		
	369100	8026450	-55	180	428.50	113	117	3 signincan 4	0.15	0.36	0.36
DOFR0116 DOFR0117	369100	8026499	-55	180	213.00	202	206	4	0.13	0.50	0.58
DOFR0117 DOFR0118	367751	8026601	-55	180	213.00	202	200	4	0.18	0.54	0.93
and	307731	8020430	-55	100	210.00	203	200	3	0.00	0.43	0.46
DOFR0119	367950	8026448	-55	180	209.00	200		ailed to rea			0.40
DOFR0120	367948	8026348	-55	180	225.00	213	218	5	0.11	0.36	0.53
DOFR0120	367751	8026352	-55	180	138.00	122	127	5	0.13	0.66	0.55
20110121	307731	0020332		100	100.00	122	124	2	0.15	1.11	0.96
DOFR0122	367954	8026251	-55	180	147.00	125	129	4	0.11	0.41	0.45
DOFR0123	367548	8026501	-55	180	210.00		110	Assays P			
DOFR0124	367548	8026403	-55	180	138.00	200	205	5	0.12	0.56	0.70
DOFD0125	366548	8026650	-55	180	254.49	200	200	Assays P	-		
DOFR0126	367548	8026299	-55	180	57.00			Assays P	-		
DOFR0127	367150	8026550	-55	180	226.00	213	216	3	0.15	0.76	0.68
DOFR0128	367151	8026343	-55	180	54.00	38	39	1	0.09	0.22	0.44
DOFR0129	366950	8026543	-55	180	189.00	175	180	5	0.10	0.57	0.61
DOFD0130	366148	8026799	-55	180	392.48			Assays P	ending		
DOFR0131	366750	8026453	-55	180	220.00		No	, significan			
DOFR0132	367150	8026451	-55	180	133.00	125	130	5	0.14	0.54	0.64
DOFR0133	366943	8026451	-55	180	117.00	106	110	4	0.14	0.41	0.50
DOFD0134	366351	8026950	-55	180	200.38			Assays P	ending		i
DOFR0135	366552	8026850	-55	180	290.50		No	, significan	-		i
DOFR0136	366553	8026545	-55	180	225.00			Assays P	ending		
DOFR0137	366154	8026600	-55	180	130.00			Assays P	ending		
DOFR0138	366153	8026504	-55	180	60.00	45	49	4	0.11	0.64	0.43
DOFR0139	366351	8026453	-55	180	99.00		No	o significan	t Intercept		
DOFR0140	366751	8026549	-55	180	261.00		No	o significan	t Intercept		
DOFR0141	366353	8026552	-55	180	157.00			Assays P	ending		
DOFR0142	365949	8026549	-55	180	75.00	56	60	4	0.09	0.64	0.67
DOFD0143	366150	8026699	-55	180	176.48			Assays P	ending		
DOFD0144	365948	8026749	-55	180	227.36			Assays P			
DOFR0145	366354	8026650	-55	180	184.00	11	28	17	0.14	0.42	0.53
DOFR0146	365749	8026551	-55	180	69.00	52	55	3	0.12	0.54	0.45
DOFR0147	365945	8026661	-55	180	147.00		142	4	0.15	0.67	0.70
DOFR0148	365550	8026650	-55	180	36.00			2	0.05	0.24	0.24
DOFR0149	365349	8026667	-55	180	45.00	17	27	10	0.12	0.59	0.52
and						32	36	4	0.13	0.55	0.43
DOFR0150	365750		-55	180	191.00		182	3	0.14	0.68	0.55
DOFR0151	364953	8026701	-55	180	54.00		42	1	0.07	0.15	0.40
and						45	48	3	0.17	0.61	0.69
DOFR0152	365550	8026850	-55	180	219.00			Assays P	-		
DOFD0153	365347	8026871	-55	180	206.36			Assays P		1	
DOFR0154	365751	8026650	-55	180	109.00		97	6	0.12	0.60	0.43
DOFR0155	365548		-55	180	150.00			Assays P	-		
DOFR0156	364952	8026898	-55	180	206.00			Assays P			
DOFR0157	365350		-55	180	129.00			Assays P	-		
DOFR0158	364951	8026798		180	126.00			Assays P	-		
DOFD0159	366351	8026746		180	101.33			Assays P	-		
DOFR0160	365149	8026949	-55	180	274.00			Assays P	ending		

Note - Significant Intercepts reported at 0.05% (500ppm) Co cutoff Newly reported reuslts in green

Appendix 2: The following tables are provided to ensure compliance with the JORC Code (2012) requirements for the reporting of Exploration Results for the Opuwo Cobalt Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) and Diamond Core (DC) drilling using standard equipment. Sampling was undertaken at one metre intervals for RC and based on lithology/mineralisation changes for DC. Drilling designed to intersect the DOF horizon based on mapped or interpreted location.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Reverse circulation (RC) percussion and oriented Diamond Core (DC).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recovery generally recorded as good, with poor recovery in a small number of samples due to groundwater.

	Criteria	JORC Code explanation	Commentary
2	Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drilling logged in detail on a metre by metre basis for RC and on lithology/mineralisation for DC. Lithology, alteration and oxidation logged qualitatively. Sulphide and quartz vein content logged quantitatively. All DC holes are photographed, as are RC representative chip rays. A Niton portable XRF analyser is used to assist in determining mineralised horizons.
	Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material bies compled 	 RC drill samples split using a rig mounted cone splitter. Diamond Core is cut using a core saw. Generally, half core is submitted to the laboratory, except where a duplicate is taken, in which case quarter core is submitted for each. Field duplicates collected to confirm representivity of sampling from both RC and DC drilling.
	Quality of assay data and laboratory tests	 material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were prepared at Activation Laboratories Limited (ACTLABS) Windhoek laboratory, and assayed at ACTLABS in Ancaster, Canada. A total acid digestion sample preparation method and ICP finish were utilised. No geophysical tools were used to determine any element concentration in these results. A Niton hand held XRF analyser is used to assist in selection of samples to be sent to the laboratory. The drilling program included field duplicates, standards and blanks that were inserted into the drill sequence, in addition to the standard QA/QC samples and procedures used by the laboratory. A second (umpire) laboratory is being utilised to provide additional verification of key mineralised zones prior to resource modelling and estimation. One of the field inserted standards occasionally reported marginally outside acceptable tolerances for cobalt analysis, and is currently being investigated.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Mineralised zones reported in assays correspond approximately with the zones as logged in the field, and the tenor of grades is consistent with previous drilling and surface sampling. Several RC/DC twin holes have been completed, and do not show any systematic bias towards one drilling method or another. Further twin holes will be completed as part of the current drilling program. An electronic database containing collars, geological logging and assays is maintained by the Company. No adjustment to assay data has been made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All sampling located initially by hand held GPS. UTM grid WGS84 Zone 33 (South). Holes are surveyed using Differential GPS (DGPS) prior to resource modelling. Downhole surveys to measure hole deviation are being routinely completed.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing in the initial phase of drilling was approximately every 500 – 1,000 metres along the strike of the DOF horizon (based on mapping/interpretation). Current closer spaced drilling is on a nominal 200 metres x 100 metres grid. Optimum drill spacing to delineate a Mineral Resource, and the category of that resource, is not yet confirmed. This will be determined by consultant resource geologists from assay data/assessment of grade variability.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling of angled holes aimed to test perpendicular to DOF horizon. All current holes are angled at 55 degrees, which, based on visual observations in the drill core, intersects the mineralisation approximately perpendicular. Further drilling, and geological modelling, will more accurately define the orientation of the geological features and mineralisation and enable any biases to be determined.
Sample security	The measures taken to ensure sample security.	Drill samples delivered to laboratory by senior Celsius or Gecko Namibia staff.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of drilling methods and sampling procedures has been undertaken by the Company's external Resource Geologists. No significant issues were identified.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Opuwo Cobalt Project comprises four Exclusive Prospective Licences EPLs 4346, 4350, 4351 and 4540, currently undergoing the transfer process to a subsidiary of the Company. EPL 4346 is undergoing the renewal process for a further two year term from June 2017.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Previous work carried out by Kunene Resources includes geological mapping, outcrop sampling, soil sampling, high resolution magnetic and radiometric data and hyperspectral data. Two holes were drilled in 2015, which intersected cobalt, copper and zinc mineralisation.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Copper-cobalt mineralisation is developed in a sedimentary package of likely Nosib succession. Arkose quartzitic sandstones and conglomerates of the footwall Nosib Formation are exposed to the west and southwest The upper Nosib or Ombombo Formation consists of a sequence of finely intercalated siltstones and shales with minor sandstone, marlstone, limestone and dolostone layers.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All information detailed in Appendix 1. Drillholes are yet to be accurately surveyed using DGPS, however, this is planned prior to resource modeling.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high 	 Simple length weighted averages were used for reporting of significant intercepts. Significant intercepts were reported using a cutoff grade of 0.05% (or 500 ppm) cobalt.

Criteria	JORC Code explanation	Commentary
	 grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Orientation of drilling vs dip of DOF horizon likely means that the downhole length reported for angled holes (-55 degrees) approximates true width. Holes drilled straight (-90 degrees) would overestimate true thickness. More accurate determination of the orientations and thickness of mineralisation will be possible with further drilling and geological modelling.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer Figure 1.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All holes have been reported in Appendix 1.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geophysical and geological datasets detailed in previous releases. Aeromagnetic data is used as a guide to determining the presence of the mineralised horizon where it is not outcropping.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planned further work detailed in this, and previous releases, and in figures. Closer spaced drilling is currently being undertaken at the DOF Prospect, with the aim of delineating a Mineral Resource. Exploration on other parts of the Project will comprise geophysical surveys and surface sampling to define targets for further drilling.