

ASX RELEASE 5 February 2018

FINAL 2017 RC DRILLING RESULTS

- Step out drilling at Stanton cobalt resource confirms mineralisation open to south-east and north-west
- Highlights include
 - 19 metres at 0.29% cobalt (Co) on southern extension to Stanton Resource
 Including 1 metre @ 1.31% Co
 - 5 metres a 0.19% Co
 - 2 metres at 0.19% Co

Results from scout drillholes on regional targets to be combined with recent geophysics to define drilling planned in 2018.

- Potential for up to 6 (six) Stanton style cobalt deposits at Running Creek, east of Running Creek, Stanton 2, Stanton 3, Archangel, and north of Stanton from regional results
- Diamond drilling results due late March 2018

N27's Wollogorang Cobalt Project is a sediment hosted cobalt mineralisation system which has potential for low CAPEX and OPEX options due to:

- Non-refractory mineralisation (predominantly siegenite a cobalt sulphide mineral)
- Cobalt dominant mineralisation occurs from surface
- Flat lying sediment hosted mineralisation likely suitable for open pit operations

Stanton Cobalt Deposit

Northern Cobalt has drilled 70 RC and 10 diamond core holes on our existing Stanton Cobalt resource, aiming to upgrade the existing inferred Mineral Resource of 500,000 tonnes of 0.17% Co, 0.09% Ni, 0.11% Cu, and obtain material for metallurgy studies and use in scoping studies.

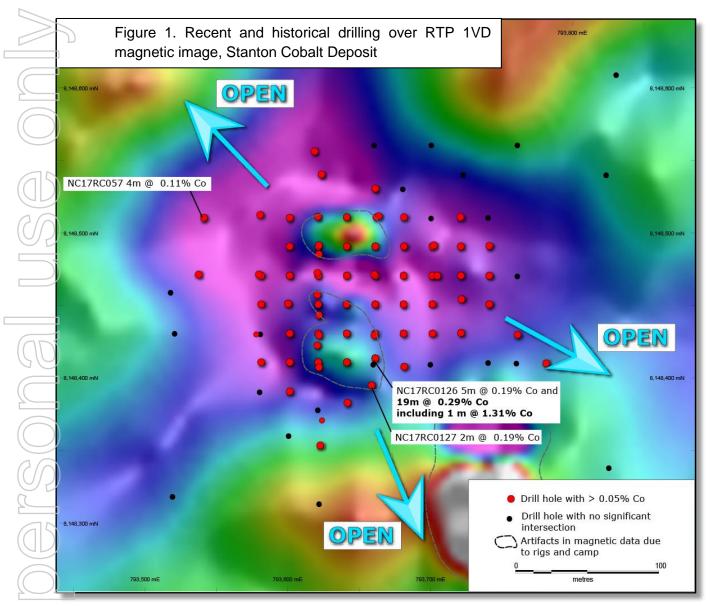
WEBINAR Q&A with our Managing Director at 2PM TODAY (Melbourne time) – register here...

CAPITAL STRUCTURE

Ordinary Shares Issued 38.9M

Options Listed 7.4 M @ 20c Unlisted 12.3 M @ 25c Performance Shares Class A 9.6 M Class B 3.6 M

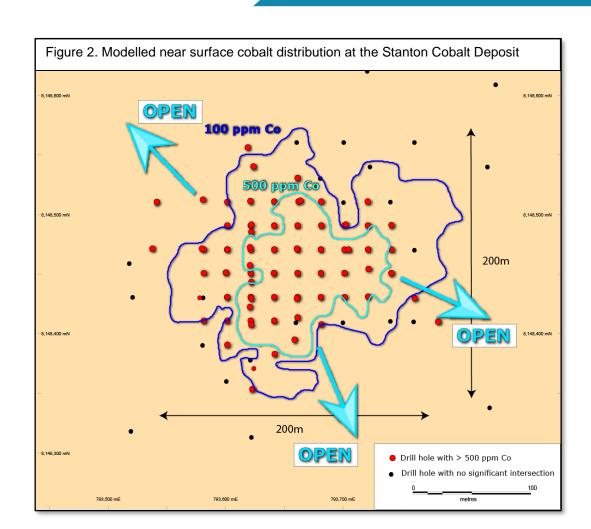
Last Capital Raise 20 Sept 2017 \$4.2M @ 20c (IPO)


EMAIL US

BOARD

Len Dean - Chair Michael Schwarz - MD Duncan Chessell - Exec Dir Andrew Shearer - NED Jarek Kopias - Co Sec

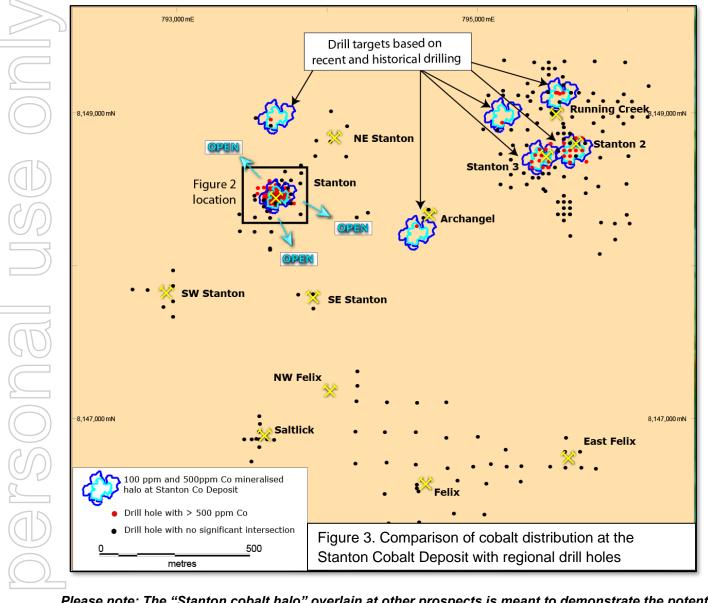
67 GOODWOOD ROAD WAYVILLE SA 5034 AUSTRALIA



Significant intersections from drilling at the Stanton Cobalt Deposit include:

- 4 metres at 0.11% Co from 80 metres (Drill hole NC17RC057)
- 5 metres at 0.19% Co from 5 metres (Drill hole NC17RC126) and
- 19 metres at 0.29% Co from 11 metres (Drill hole NC17RC126); including
 - 1 metre of 1.31% Co
- 2 metres at 0.19% Co from 1m, (Drill hole NC17RC127)

Importantly these results confirm that the Stanton Cobalt Deposit remains open to the south-east and north-west. A significant continuation of the magnetic low (purple area, Figure 1) occurs to the north-east of the currently defined mineralisation. This signature is associated with mineralisation at Stanton and indicates the significant potential for extensions of the resource in this direction.



Regional cobalt potential

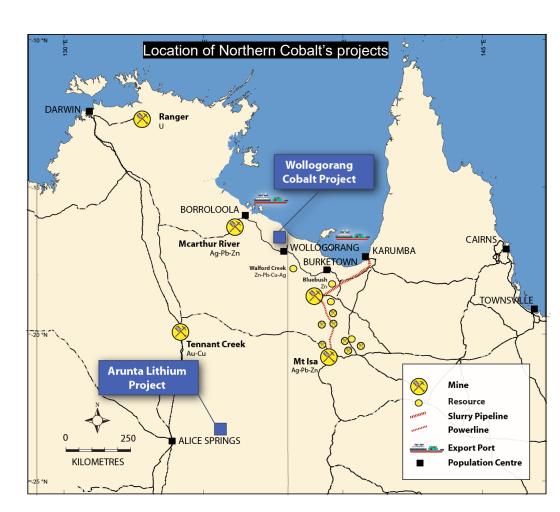
Prior to the onset of the wet season Northern Cobalt completed 57 drill holes on a broad spacing across a limited number of the previously identified targets. The spacing between most of the holes was ~100m, infill drilling was not possible due to the onset of the wet season. It is worth noting that the Stanton Deposit currently has a diameter of ~200m and that the spacing of the scout drilling will need to be infilled to best test the targets. Results from the regional drilling will be combined with the new geophysical and geochemical methods defined by Northern Cobalt to target the planned drilling in 2018.

Northern Cobalt has identified 6 (six) prospects, from recent and historical regional drilling, that have the potential to host cobalt mineralisation like the Stanton Cobalt Deposit. A further 15 targets were not tested last year due to the onset of the wet season.

Please note: The "Stanton cobalt halo" overlain at other prospects is meant to demonstrate the potential for similar mineralisation and does not represent a drilled resource

Figure 2, shows the distribution of near surface cobalt at Stanton modelled from drilling. Regional drill holes with cobalt intersections above 500 ppm have been identified and compared with the distribution of cobalt at Stanton (Figure 3). The diagram shows that drill holes at Stanton 2 and Stanton 3 prospects both have numerous intersections above 500ppm cobalt and have the potential to define a mineralising system on the scale of Stanton. Drill holes at Running Creek, east of Running Creek, Archangel and to the north of Stanton also have this potential. The company is currently incorporating this information into the upcoming drill program early this year.

Next steps


Northern Cobalt is in the process of finalising drill targets and submitting documentation for drilling approvals for the upcoming drilling program early this year. The company has also purchased a portable XRF device which specialises in the direct detection of cobalt in surface and drilling samples. An extensive research and development program of testing and validation against recent drill samples and analyses will be undertaken prior to deployment in the field. This device will allow analysis of drill samples as they are collected and immediate detection of mineralisation as drilling progresses as opposed to the >1 month turn around for sample analysis in the previous drilling program.

Competent Person's Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Michael Schwarz who is a member of the Australian Institute of Geoscientists. Mr Michael Schwarz is a full-time employee of the company and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Michael Schwarz consents to the inclusion in the report of the matters based on his information in the form in which it is appears.

This report contains historical exploration results announced on 20 September 2017 as "Prospectus" (historical estimate). The Company confirms it is not in possession of any new information or data relating to the historical estimate that materially impacts on the reliability of the estimates or the Company's ability to verify the historical estimate. Supporting information provided in the announcement of 20 September 2017 continues to apply and has not materially changed. This report also contains exploration results announced on 24 November 2017 as "High Grade First Drill Results - Stanton Cobalt Deposit", and 29 November 2017 as "Further High-Grade Cobalt Results - Stanton Cobalt Deposit", on 7 December 2017 "Stanton Cobalt Resource Remains Open in Multiple Directions"

Project Location

The Wollogorang Cobalt Project occurs in the far north-eastern corner of the Northern Territory, a mining friendly jurisdiction. The Project area is 180 km to the south-east of the population centre of Borroloola. The capital city of Darwin is 870 km to the north-west and the McArthur River Mine is approximately 150 km to the west-northwest.

For further information please contact: Michael Schwarz Managing Director, Northern Cobalt Ltd M: +61 402 101 790 E: mschwarz@northerncobalt.com.au

Please sign up to our newsletter via our website for invitations to webinars and important announcements <u>www.northerncobalt.com.au</u>

Appendix 1. Significant intersections from drill holes – Stanton Cobalt Resource

Note: Significant intercepts reported using a cut-off grade of 0.05 % Co (500ppm) with maximum internal dilution of 2m of average 0.02% Co (200ppm)

	Hole_ID	Prospect	Easting (MGAZ53)	Northing (MGAZ53)	RL (MGAZ53)	Dip	Azimuth (mag)	Total depth (m)	Intercept From (m)	Intercept To (m)	Interval (m)	Co (%)	Cu (%)	Ni (%)
)	NC17RC001	Stanton	793620	8148511	75.7	-90	360	100	2	6	4	0.05	0.05	0.03
									20	22	2	0.05	0.33	0.03
	NC17RC002	Stanton	793620	8148490	75.9	-90	360	100	10	14	4	0.05	0.06	0.03
Ĺ									70	86	16	0.10	0.09	0.06
1	NC17RC003	Stanton	793620	8148470	76.1	-90	360	100	5	12	7	0.15	0.24	0.10
j									15	16	1	0.19	0.24	0.11
									19	20	1	0.12	0.27	0.17
									22	23	1	0.05	0.13	0.03
)									25	62	37	0.28	0.12	0.16
	NC17RC004	Stanton	793620	8148450	76.3	-90	360	100	0	14	14	0.11	0.18	0.06
									20	50	30	0.17	0.07	0.11
	including								34	44	10	0.33	0.10	0.17
									55	56	1	0.18	0.00	0.01
1	NC17RC005	Stanton	793620	8148430	76.4	-90	360	100	5	9	4	0.08	0.27	0.04
									13	15	2	0.14	0.41	0.05
_									17	20	3	0.08	0.10	0.06
									22	28	6	0.11	0.09	0.06
									32	50	18	0.33	0.07	0.08
	including								32	33	1	2.13	0.15	0.18
	and								44	45	1	1.50	0.15	0.17
									54	55	1	0.08	0.00	0.01
	NC17RC005	Stanton	793620	8148430	76.4	-90	360	100	64	68	4	0.08	0.00	0.01
									72	80	8	0.15	0.01	0.03
	NC17RC006	Stanton	793620	8148410	76.6	-90	360	100	1	10	9	0.25	0.14	0.06
									12	19	7	0.12	0.08	0.08

	Hole_ID	Prospect	Easting (MGAZ53)	Northing (MGAZ53)	RL (MGAZ53)	Dip	Azimuth (mag)	Total depth (m)	Intercept From (m)	Intercept To (m)	Interval (m)	Co (%)	Cu (%)	Ni (%)
									20	23	3	0.09	0.02	0.04
\geq	NC17RC007	Stanton	793600	8148390	77.4	-90	360	91	6	7	1	0.07	0.18	0.03
2	NC17RC008	Stanton	793600	8148410	77.0	-90	360	96	33	34	1	0.21	0.01	0.15
									76	77	1	0.13	0.11	0.06
5	NC17RC009	Stanton	793600	8148430	76.7	-90	360	100	12	13	1	0.07	0.05	0.02
9									15	18	3	0.10	0.23	0.05
5									19	20	1	0.05	0.04	0.03
2									23	35	12	0.15	0.03	0.06
2)									38	45	7	0.23	0.64	0.14
3									72	80	8	0.11	0.13	0.06
9	NC17RC010	Stanton	793599	8148450	76.4	-90	360	100	3	4	1	0.14	1.62	0.03
									20	26	6	0.15	0.08	0.08
2									27	28	1	0.05	0.10	0.05
									31	39	8	0.12	0.00	0.02
									40	41	1	0.09	0.00	0.01
)									66	67	1	0.07	0.10	0.03
2									69	70	1	0.08	0.01	0.03
Y									73	83	10	0.15	0.33	0.08
	NC17RC011	Stanton	793600	8148470	76.2	-90	360	100	9	13	4	0.08	0.16	0.04
D									23	24	1	0.06	0.17	0.03
5									26	27	1	0.07	0.12	0.05
									34	35	1	0.06	0.00	0.01
_									44	45	1	0.06	0.00	0.00
5									66	67	1	0.05	0.03	0.02
シ									69	84	15	0.21	0.63	0.12
_	NC17RC012	Stanton	793600	8148490	76.1	-90	360	100	25	26	1	0.05	0.32	0.03
									84	88	4	0.05	0.02	0.02
	NC17RC013	Stanton	793600	8148510	76.1	-90	360	100	87	88	1	0.10	0.02	0.01
	NC17RC014	Stanton	793580	8148470	76.6	-90	360	100	74	82	8	0.09	0.05	0.05
												8	5	

For bersonal use only

	Hole_ID	Prospect	Easting (MGAZ53)	Northing (MGAZ53)	RL (MGAZ53)	Dip	Azimuth (mag)	Total depth (m)	Intercept From (m)	Intercept To (m)	Interval (m)	Co (%)	Cu (%)	Ni (%)
	NC17RC015	Stanton	793580	8148450	76.7	-90	360	100	80	84	4	0.13	0.12	0.05
\geq	NC17RC016	Stanton	793580	8148430	76.9	-90	360	100			No significant	intersection	on	
	NC17RC017	Stanton	793580	8148410	77.3	-90	360	100	10	14	4	0.05	0.11	0.02
	NC17RC018	Stanton	793640	8148410	76.3	-90	360	100	3	9	6	0.40	0.28	0.04
$\overline{)}$	including								4	5	1	1.10	0.26	0.07
9									12	17	5	0.20	0.10	0.09
15									20	24	4	0.07	0.03	0.04
2									27	30	3	0.49	0.09	0.20
D	NC17RC019	Stanton	793640	8148430	76.1	-90	360	100	0	2	2	0.12	0.13	0.03
5									4	6	2	0.20	0.78	0.03
									27	28	1	0.08	0.07	0.04
									32	35	3	0.14	0.08	0.04
D)									41	46	5	0.14	0.06	0.07
	NC17RC020	Stanton	793640	8148450	76.1	-90	360	100	1	6	5	0.16	0.34	0.05
									10	15	5	0.37	0.94	0.11
)									21	22	1	0.17	0.18	0.03
									25	26	1	0.10	0.13	0.02
									40	41	1	0.06	0.11	0.03
15	NC1700001	Chamban	702640	0140470	76.0	00	200	100	42	53	11	0.19	0.20	0.07
9	NC17RC021	Stanton	793640	8148470	76.0	-90	360	100	5	14 9	9	0.35	0.19	0.09 0.06
\mathbb{D}	including								16	23	7	0.29	0.18	0.08
									27	47	20	0.29	0.19	0.11
	NC17RC022	Stanton	793640	8148490	75.7	-90	360	100	0	2	20	0.18	0.10	0.18
)		Stanton	755040	0140490	73.7	-50	500	100	16	23	7	0.13	0.05	0.02
									75	83	8	0.10	0.03	0.05
	NC17RC023	Stanton	793640	8148510	75.5	-90	360	100	17	21	4	0.06	0.13	0.00
		Stanton	, 550 +0	51,0510	, 5.5	50	500	100	76	81	5	0.17	0.13	0.08
	NC17RC024	Stanton	793660	8148560	74.8	-90	360	100	,0	51	No significant			0.00
		otanton	, 55000	01,0000	,	50	500	100			. io significant			

Hole_ID	Prospect	Easting (MGAZ53)	Northing (MGAZ53)	RL (MGAZ53)	Dip	Azimuth (mag)	Total depth (m)	Intercept From (m)	Intercept To (m)	Interval (m)	Co (%)	Cu (%)	Ni (%)
NC17RC025	Stanton	793660	8148530	75.1	-90	360	100	0	1	1	0.06	0.06	0.02
	Stanton	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0110000	, , , , ,			100	68	69	1	0.06	0.04	0.03
								75	76	1	0.06	0.18	0.03
NC17RC026	Stanton	793661	8148510	75.2	-90	360	100	0	9	9	0.07	0.09	0.05
								13	14	1	0.15	0.22	0.11
NC17RC027	Stanton	793660	8148490	75.4	-90	360	100	1	7	6	0.10	0.15	0.04
								9	10	1	0.09	0.31	0.02
								15	17	2	0.11	0.09	0.06
								18	20	2	0.11	0.10	0.04
								75	78	3	0.11	0.17	0.06
								79	80	1	0.11	0.36	0.06
NC17RC028	Stanton	793660	8148470	75.6	-90	360	100	2	13	11	0.29	0.23	0.08
								2	3	1	2.30	0.41	0.13
								16	17	1	0.36	0.13	0.05
								20	34	14	0.23	0.06	0.14
								36	39	3	0.10	0.04	0.05
NC17RC029	Stanton	793660	8148450	75.8	-90	360	100	1	5	4	0.11	0.16	0.03
								6	8	2	0.07	0.17	0.04
								34	36	2	0.10	0.14	0.07
								39	43	4	0.18	0.04	0.07
1								49	50	1	0.06	0.00	0.01
NC17RC030	Stanton	793660	8148430	75.8	-90	360	100	1	13	12	0.24	0.21	0.09
								16	24	8	0.13	0.24	0.04
								30	36	6	0.23	0.28	0.18
								36	39	4		no sample	
								39	40	1	0.60	0.44	0.76
								41	50	9	0.34	0.07	0.15
including								41	42	1	2.33	0.45	1.01
											10)	

For bersonal use only

ľ	Hole_ID	Prospect	Easting (MGAZ53)	Northing (MGAZ53)	RL (MGAZ53)	Dip	Azimuth (mag)	Total depth (m)	Intercept From (m)	Intercept To (m)	Interval (m)	Co (%)	Cu (%)	Ni (%)
I	NC17RC031	Stanton	793680	8148430	75.6	-90	360	100	3	10	7	0.11	0.48	0.03
									14	16	2	0.13	0.14	0.06
									19	31	12	0.06	0.01	0.02
									47	68	21	0.11	0.02	0.07
)									73	84	11	0.07	0.09	0.04
	NC17RC032	Stanton	793680	8148450	75.5	-90	360	100	0	1	1	0.10	0.11	0.02
									6	10	4	0.21	0.10	0.05
<u> // // // // // // // // // /</u>									13	14	1	0.05	0.13	0.04
)									15	16	1	0.32	0.86	0.07
3									21	23	2	0.07	0.04	0.04
_ ا									29	31	2	0.13	0.00	0.01
-									68	72	4	0.14	0.05	0.08
31	NC17RC033	Stanton	793680	8148470	75.3	-90	360	100	1	5	4	0.06	0.22	0.07
									11	12	1	0.08	0.10	0.03
-									14	15	1	0.19	0.13	0.03
)_									16	21	5	0.19	0.11	0.13
5_									22	23	1	0.06	0.02	0.02
ッ									32	37	5	0.13	0.02	0.03
									46	50	4	0.06	0.00	0.01
)									71	75	4	0.10	0.06	0.05
) [NC17RC034	Stanton	793680	8148490	75.1	-90	360	100	0	9	9	0.10	0.09	0.04
<u> </u>									14	17	3	0.20	0.48	0.06
									68	76	8	0.07	0.02	0.02
	NC17RC035	Stanton	793680	8148510	74.9	-90	360	100	20	21	1	0.16	0.00	0.00
	NC17RC036	Stanton	793680	8148530	74.7	-90	360	100	38	39	1	0.06	0.00	0.01
	NC17RC037	Stanton	793720	8148620	73.4	-90	360	100			No significant			
	NC17RC038	Stanton	793700	8148560	74.1	-90	360	100	1	2	1	0.05	0.06	0.02
I	NC17RC039	Stanton	793700	8148510	74.5	-90	360	100	0	1	1	0.06	0.05	0.01
									7	8	1	0.05	0.04	0.01
												11	1	

For bersonal use only

	Hole_ID	Prospect	Easting (MGAZ53)	Northing (MGAZ53)	RL (MGAZ53)	Dip	Azimuth (mag)	Total depth (m)	Intercept From (m)	Intercept To (m)	Interval (m)	Co (%)	Cu (%)	Ni (%)
	NC17RC040	Stanton	793700	8148470	75.0	-90	360	100	4	18	14	0.18	0.30	0.06
\geq	NC17RC041	Stanton	793700	8148450	75.2	-90	360	100	0	4	4	0.08	0.10	0.04
									9	10	1	0.09	0.58	0.03
_									13	20	7	0.18	0.16	0.03
5	NC17RC042	Stanton	793700	8148430	75.4	-90	360	100	0	8	8	0.09	0.11	0.04
2									60	64	4	0.05	0.00	0.03
15									68	72	4	0.06	0.02	0.03
넷	NC17RC043	Stanton	793720	8148430	75.1	-90	360	100	0	8	8	0.10	0.14	0.10
\mathcal{O}									32	36	4	0.06	0.00	0.02
3									64	70	6	0.12	0.02	0.07
2	NC17RC044	Stanton	793720	8148470	74.8	-90	360	100	0	6	6	0.13	0.08	0.03
									67	68	1	0.07	0.05	0.04
Ы									71	76	5	0.07	0.02	0.03
\leq	NC17RC045	Stanton	793720	8148490	74.5	-90	360	100	0	2	2	0.06	0.06	0.02
_									7	8	1	0.07	0.27	0.02
\supset	NC17RC046	Stanton	793720	8148510	74.3	-90	360	100	0	1	1	0.07	0.07	0.02
2	NC17RC047	Stanton	793760	8148560	73.3	-90	360	100			No significant			
שי	NC17RC048	Stanton	793740	8148510	74.0	-90	360	100			No significant			
	NC17RC049	Stanton	793740	8148490	74.3	-90	360	100	0	2	2	0.08	0.08	0.02
D)	NC17RC050	Stanton	793760	8148470	74.2	-90	360	100			No significant	intersection		
2	NC17RC051	Stanton	793740	8148470	74.4	-90	360	100	1	3	2	0.11	0.09	0.02
-4									72	76	4	0.07	0.00	0.03
	NC17RC052	Stanton	793740	8148450	74.5	-90	360	100	3	4	1	0.05	0.04	0.05
5									5	6	1	0.11	0.09	0.04
ノ									72	76	4	0.05	0.01	0.03
	NC17RC053	Stanton	793760	8148410	74.7	-90	360	100			No significant			
_	NC17RC054	Stanton	793600	8148360	77.4	-90	360	100			No significant intersection			
	NC17RC055	Stanton	793580	8148390	77.4	-90	360	100			No significant			
	NC17RC056	Stanton	793520	8148430	77.8	-90	360	100			No significant	intersection	on	

	Hole_ID	Prospect	Easting (MGAZ53)	Northing (MGAZ53)	RL (MGAZ53)	Dip	Azimuth (mag)	Total depth (m)	Intercept From (m)	Intercept To (m)	Interval (m)	Co (%)	Cu (%)	Ni (%)
	NC17RC057	Stanton	793540	8148510	76.8	-90	360	100	72	76	4	0.06	0.01	0.03
\geq	2								80	84	4	0.11	0.07	0.05
2	NC17RC058	Stanton	793700	8148490	74.9	-90	360	25	0	2	2	0.06	0.03	0.01
_	NC17RC059	Stanton	793701	8148491	74.8	-90	360	100	0	2	2	0.09	0.04	0.01
5									10	11	1	0.06	0.36	0.03
9 5	NC17RC060	Running Creek	795334	8149193	62.7	-90	360	80			No significant	intersecti	on	
9)	NC17RC061	Running Creek Running	795334	8149111	62.5	-90	360	80			No significant	intersecti	on	
3	NC17RC062	Creek	795331	8148987	59.6	-90	360	80			No significant	intersecti	on	
	NC17RC063	Running Creek	795335	8148891	58.4	-90	360	80			No significant	intersecti	on	
9	NC17RC064	Running Creek	795226	8148891	58.5	-90	360	80			No significant	intersecti	on	
\mathbb{Z}	NC17RC065	Running Creek	795133	8148890	58.6	-90	360	80			No significant	intersecti	on	
2	NC17RC066	Running Creek	795039	8148895	58.8	-90	360	80			No significant	intersecti	on	
5	NC17RC067	Running Creek	795328	8148788	57.2	-90	360	80			No significant	intersecti	on	
)	NC17RC068	Running Creek	795236	8148789	57.5	-90	360	80			No significant	intersecti	on	
_	NC17RC069	Running Creek	795223	8148695	56.5	-90	360	80			No significant	intersecti	on	
)	NC17RC070	Running Creek	795222	8148597	55.1	-90	360	80			No significant	intersecti	on	
=	NC17RC071	Running Creek	795222	8148515	53.8	-90	360	80			No significant	intersecti	on	
	NC17RC072	Running Creek	795438	8148504	52.5	-90	360	78			No significant	intersecti	on	

	Hole_ID	Prospect	Easting (MGAZ53)	Northing (MGAZ53)	RL (MGAZ53)	Dip	Azimuth (mag)	Total depth (m)	Intercept From (m)	Intercept To (m)	Interval (m)	Co (%)	Cu (%)	Ni (%)
\gg	NC17RC073	Running Creek	795618	8148195	51.3	-90	360	80			No significan	t intersecti	on	
	NC17RC074	Running Creek	795814	8148080	49.9	-90	360	80			No significan	t intersecti	on	
\bigcirc	NC17RC075	Running Creek	795918	8148174	49.8	-90	360	80			No significan	t intersecti	on	
15)	NC17RC076	Running Creek	796012	8148277	49.7	-90	360	80			No significan	t intersecti	on	
D	NC17RC077	Running Creek	795914	8148279	50.4	-90	360	80			No significan	t intersecti	on	
J	NC17RC078	Running Creek	795822	8148286	50.9	-90	360	80			No significan	t intersecti	on	
	NC17RC079	Running Creek	795721	8148477	53.3	-90	360	80			No significan	t intersecti	on	
	NC17RC080	Running Creek	795723	8148576	54.5	-90	360	80			No significan	t intersecti	on	
\bigcirc	NC17RC081	Running Creek	795576	8148584	54.9	-90	360	80			No significan	t intersecti	on	
D	NC17RC082	Running Creek	795725	8148683	56.0	-90	360	80	1	2	1	0.05	0.10	0.02
D	NC17RC083	Running Creek	795833	8148880	57.3	-90	360	78			No significan	t intersecti	on	
\mathbb{D}	NC17RC084	Running Creek	795836	8148974	57.9	-90	360	78			No significan	t intersecti	on	
	NC17RC085	Running Creek	795836	8149080	58.5	-90	360	80			No significan	t intersecti	on	
) 1	NC17RC086	Running Creek	795935	8149078	57.5	-90	360	80			No significan	t intersecti	on	
<u> </u>	NC17RC087	Running Creek	796029	8149077	56.2	-90	360	78			No significan	t intersecti	on	

	Hole_ID	Prospect	Easting (MGAZ53)	Northing (MGAZ53)	RL (MGAZ53)	Dip	Azimuth (mag)	Total depth (m)	Intercept From (m)	Intercept To (m)	Interval (m)	Co (%)	Cu (%)	Ni (%)
>>	NC17RC088	Running Creek	796139	8149178	55.2	-90	360	80			No significant	t intersecti	on	
	NC17RC089	Running Creek	796133	8148977	54.3	-90	360	80			No significant	t intersecti	on	
5	NC17RC090	Running Creek	796032	8148977	55.4	-90	360	80			No significant	t intersecti	on	
15	NC17RC091	Running Creek	795937	8148978	56.7	-90	360	84			No significant	t intersecti	on	
Ď	NC17RC092	Running Creek	795738	8149082	59.7	-90	360	80			No significant	t intersecti	on	
3	NC17RC093	Running Creek	795631	8148978	59.6	-90	360	80			No significant			
3	NC17RC094	NE Stanton	793928	8148819	69.6	-90	360	80			No significant			
0	NC17RC095 NC17RC096	NE Stanton NE Stanton	794023 794027	8148814 8149014	69.0 68.0	-90 -90	360 360	80 80			No significant No significant			
	NC17RC097	NE Stanton	794134	8148914	67.5	-90	360	74			No significant			
5	NC17RC098	NE Stanton	794127	8148717	68.2	-90	360	80			No significant	t intersecti	on	
2	NC17RC099	NE Stanton	793923	8148719	70.4	-90	360	80			No significant	t intersecti	on	
IJ	NC17RC100	SW Stanton	792706	8147845	82.2	-90	360	80			No significant			
5	NC17RC101	SW Stanton	792805	8147841	82.8	-90	360	80			No significant			
2	NC17RC102 NC17RC103	SW Stanton Stanton	792912 793418	8147733 8148227	83.8 80.8	-90 -90	360 360	80 80			No significant No significant			
)	NC17RC103	Stanton	793517	8148227	79.6	-90	360	76			No significant			
	NC17RC105	Stanton	793519	8148318	78.7	-90	360	80			No significant			
	NC17RC106	SE Stanton	793909	8147722	73.1	-90	360	80			No significant			
ノ	NC17RC107	SE Stanton	793907	8147814	73.4	-90	360	80			No significant	t intersecti	on	
_	NC17RC108	SE Stanton	793809	8147813	75.9	-90	360	80			No significant			
	NC17RC109	Stanton	793621	8148117	79.0	-90	360	80			No significant			
	NC17RC110	East Felix	795788	8146673	60.1	-90	360	80			No significant			
	NC17RC111	East Felix	795683	8146782	60.1	-90	360	80			No significant	t intersecti	on	

	Hole_ID	Prospect	Easting (MGAZ53)	Northing (MGAZ53)	RL (MGAZ53)	Dip	Azimuth (mag)	Total depth (m)	Intercept From (m)	Intercept To (m)	Interval (m)	Co (%)	Cu (%)	Ni (%)
	NC17RC112	East Felix	795693	8146681	60.9	-90	360	80			No significant	intersecti	on	
\gg	NC17RC113	East Felix	795590	8146876	59.9	-90	360	80			No significant	intersecti	on	
	NC17RC114	East Felix	795584	8146782	61.0	-90	360	84			No significant	intersecti	on	
	NC17RC115	East Felix	795585	8146680	62.0	-90	360	80			No significant	intersecti	on	
2	NC17RC116	East Felix	795484	8146687	63.0	-90	360	80			No significant	intersecti	on	
9	NC17RC117	East Felix	795288	8146589	67.0	-90	360	80			No significant	intersecti	on	
15	NC17RC118	East Felix	795293	8146689	65.2	-90	360	80			No significant	intersecti	on	
U	NC17RC119	East Felix	795187	8146795	63.9	-90	360	80			No significant	intersecti	on	
\mathcal{D}	NC17RC120	East Felix	795089	8146701	65.9	-90	360	80			No significant	intersecti	on	
5	NC17RC121	Stanton	793760	8148429	74.5	-90	360	48	6	8	2	0.08	0.10	0.03
2	NC17RC122	Stanton	793780	8148410	74.3	-90	360	48	0	1	1	0.09	0.09	0.02
	NC17RC123	Stanton	793740	8148410	75.0	-90	360	48			No significant	intersecti	on	
R	NC17RC124	Stanton	793657	8148394	76.2	-90	360	60	4	5	1	0.06	0.13	0.05
									8	10	2	0.06	0.15	0.05
	NC17RC125	Stanton	793640	8148382	76.6	-90	360	60	9	10	1	0.07	0.09	0.02
$\overline{)}$	NC17RC126	Stanton	793660	8148413	76.1	-90	360	78	0	5	5	0.19	0.10	0.04
									7	8	1	0.05	0.09	0.01
צו									11	30	19	0.29	0.07	0.09
10	including								13	14	1	1.31	0.20	0.07
ID)									39	40	1	0.05	0.18	0.12
5									42	43	1	0.06	0.35	0.17
	-								53	60	7	0.08	0.00	0.05
									70	71	1	0.08	0.17	0.03
5	NC17RC127	Stanton	793680.4	8148407	75.9	-90	360	60	1	3	2	0.19	0.11	0.04
2									8	9	1	0.06	0.18	0.01
									18	19	1	0.08	0.00	0.00

Appendix 2. The following tables are provided to ensure compliance with the JORC Code (2012) requirements for the reporting of the exploration results for the **Wollogorang Cobalt Project**

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) drilling using standard equipment. Sampling was undertaken at one metre intervals when mineralisation was visually identified and as four metre composites when not. Drilling was designed to intersect the mineralised ore zone based historical drilling
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative 	 Reverse circulation percussion (RC) Recovery generally good, with poor recovery in a small number of samples due to groundwater.
	nature of the samples.Whether a relationship exists between	

Criteria	JORC Code explanation	Commentary
	sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drilling logged in detail on a metre by metre basis. Lithology, alteration and oxidation logged qualitatively. Sulphide content and type logged quantitatively and qualitatively.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in- situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC drill samples split using a rig mounted cone splitter. Sample duplicates collected, and standards used to confirm representivity of sampling.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Sample Preparation - The samples have been sorted and dried. Primary preparation has been by crushing the whole sample. The samples have been split with a riffle splitter to obtain a sub-fraction which has then been pulverised in a vibrating pulveriser. Analytical Methods - The samples have been analysed by Firing a 40 g (approx) portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of Gold Platinum and Palladium in the sample. Au, Pt, Pd determined by Inductively

Criteria	JORC Code explanation	Commentary
		 Coupled Plasma (ICP) Optical Emission Spectrometry. The sample(s) have been digested and refluxed with a mixture of acids, including Hydrofluoric, Nitric, Hydrochloric and Perchloric Acids. This extended digest approaches a Total digest for many elements, however, some refractory minerals are not completely attacked. Ca, Cr, Fe, K, Mg, Mn, Na, P, S, V, Co, Cu, Ni and Zn determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. The sample(s) have been digested and refluxed with a mixture of acids including Hydrofluoric, Nitric, Hydrochloric and Perchloric Acids. This extended digest approaches a Total digest for many elements however some refractory minerals are not completely attacked. Ag, As, Ba, Bi, Cd, Li , Mo, Pb, U, Th Standards (OREAS 181), blanks and duplicates have all been applied in the QAQC methodology. Sufficient accuracy and precision have been establish for the type of mineralisation encountered.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data 	assays is maintained by the Company
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine working and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Differential GPS (DGPS). UTM grid MGA94 Zone 53 was used A majority of holes have had down hole surveys completed.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade 	 Drill hole spacing approximately every 20m on a grid across the existing mineral resource. Spacing and distribution is considered to be appropriate.

Criteria	JORC Code explanation	Commentary
	 continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Sample relationship to mineralisation and structure is unknown at this stage.
Sample security	The measures taken to ensure sample security.	• Samples are bagged and sealed on pallets on site and transported to the analytical laboratories by commercial transport companies.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits undertaken at this stage as the drilling program has only recently commenced.

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Wollogorang Cobalt Project exploration area occurs on EL 31272 which is 100% owned by Mangrove Resources Pty Ltd a wholly owned subsidiary to Northern Cobalt Ltd. The licence is currently in good standing with the relevant authorities.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The Stanton Cobalt deposit and surrounding prospects were discovered by CRA Exploration Pty Ltd in the period 1990-1996 period under a farm in arrangement with W J (Joe) Fisher.
	 Deposit type, geological setting and style of mineralisation. 	 The local geology is dominated by the Gold Creek Volcanics of the Tawallah Group. This formation is a series of basaltic lavas and shallow intrusives, interlayered with thin oxidised sandstone, carbonate and siltstone units. It is conformably underlain by reduced sedimentary facies of the Wollogorang Formation, which includes dolostones, sandstones and carbonaceous shales. A regional dolerite sill, the Settlement Creek Dolerite, was emplaced synchronous with effusion of the Gold Creek Volcanics. The Wollogorang Formation and Settlement Creek Dolerite do not outcrop on the Stanton prospect area, but are however intersected in a number of drill holes on the tenement. Within the district, the Gold Creek Volcanics are disconformably overlain by a felsic volcanic package that includes a rhyolitic rheoignimbrite sheet (Hobblechain Rhyolite), proximal epiclastics (Pungalina Member) and distal reworked clastics (Echo Sandstone). Mineralisation is interpreted to be largely controlled by stratigraphy within the flat lying interbedded

Criteria	JORC Code explanation	Commentary
		sediment and volcanic rock units of the Proterozoic Gold Creek Volcanics. Brecciation and faulting has a strong control on the intensity and limits of mineralisation. In fresh rock the cobalt-nickel is located in disseminated siegenite (cobalt-nickel sulphide). Chalcocite and pyrite are also noted. Weathering to a variable depth of approximately 30m has resulted in cobalt oxide secondary mineralisation in a large proportion of the deposit.
Drill hole Informati	 to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly 	• See Appendix 1.
Data aggregat methods		 Simple length weighted averages were used for reporting of significant drill intercepts with a cut-off grade of 0.05% (500ppm) Co and a maximum internal dilution of 1m.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Any observations made are down hole length and true width is not known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See this release and Appendix 1.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant drill intersections have been reported and it has been noted when no significant intersection has been encountered.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other relevant data to report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planned further work detailed in this, and previous releases, and in figures. This work includes comprises drill testing along a significant portion of the surface geochemical anomaly.