

ASX Announcement 16 February 2018

Announcement by FE Limited

Australian resources and investment company, Cape Lambert Resources Limited (ASX: CFE) (**Cape Lambert** or the **Company**) refers its shareholders to the announcement made by FE Limited (**FEL**) (ASX: FEL) today entitled "Drilling Results Received from Kasombo 5 Copper Project in DRC" and attached to this announcement.

Cape Lamberts holds 145,848,635 shares in FEL representing 39.63% of the total share capital.

Cape Lambert also advises that Mr Jason Brewer has tendered his resignation as a Non-Executive Director of the Company effective 28 February 2018 due to other work commitments.

The Board of Cape Lambert expresses their appreciation for Mr Brewer's contribution to the Company during his tenure and wishes him every success with his future endeavours.

Yours faithfully
Cape Lambert Resources Limited

Tony Sage
Executive Chairman

Cape Lambert Resources Limited (ASX: CFE) is a fully funded mineral development company with exposure to iron ore, copper, gold, uranium, manganese, lithium and lead-silverzinc assets in Australia, Europe, Africa and South America.

Australian Securities Exchange Code: CFE

Ordinary shares 873,625,369

Unlisted Options 23,500,000 (\$0.05 exp 31 Dec 2018)

Board of Directors

Tony Sage Executive Chairman

Tim Turner Non-executive Director

Stefan Muller Non-executive Director

Melissa Chapman Company Secretary

Cape Lambert Contact

Investor Relations Phone: +61 8 9380 9555 Email: info@capelam.com.au

www.capelam.com.au

ASX Announcement

16 February 2018

Australian Securities Exchange Code: **FEL**

Ordinary Shares:

368,065,463

Unlisted Options:

2,812,500

Board of Directors:

Tony Sage

Non-Executive Chairman

Kenneth Keogh

Non-Executive Director

Nicholas Sage
Non-Executive Director

Contact:

www.felimited.com.au
32 Harrogate St, West Leederville
Western Australia 6007 Australia
Telephone +61 8 6181 9793
Email info@felimited.com.au

Fe Limited is an Australian domiciled mineral resources exploration and development company.

Fe Limited ABN: 31 112 731 638

Drilling Results Received from Kasombo 5 Copper Project in DRC

Highlights:

High grade copper result from first drillhole at Kasombo 5

KSB001: 23 m @ 3.18% copper from 54 m; incl 10 m @ 5.18%

Drilling intersected two zones of mineralisation

Assay from first RC drillhole received; other assays awaited

Assay from cobalt prospective Kasombo 7 expected end of February

Fe Limited (**Company**) (ASX: **FEL**) is pleased to advise that it has recently received a long-awaited assay from the first drillhole completed at the Kasombo Copper-Cobalt Project (**Kasombo Project**). The assay was from drillhole KSB001 located at the Kasombo 5 prospect.

The assays show the drillhole intersected two zones of mineralisation:

- an upper zone from 25 to 30 m with copper grade of 1.98%
- a lower zone from 54 to 77 m with copper grade of 3.18%;
 - o including a higher-grade portion of 10 m @ 5.18%

Prospect	Hole_ID	From	То	Thick_m	Grade_%	Metal
Kasombo 5	KSB001	25	30	5	1.98	Copper
Kasombo 5	KSB001	54	77	23	3.18	Copper
Kasombo 5	KSB001		incl	10	5.18	Copper

Preliminary reverse circulation (RC) drilling was completed at Kasombo 5 and Kasombo 7 in late December 2017 and early January 2018 (ASX announcement 8 January 2018):

- Kasombo 5: targeting copper mineralisation mapped in the pitwall of an open cut:
 - o two completed RC holes for 149 m;
 - o two abandoned RC holes for 114 m (null result expected).
- <u>Kasombo 7</u>: targeting cobalt mineralisation observed in bedding cross-cutting breccias and in conformable bedding layers exposed by small-scale artisanal workings:
 - o four completed RC holes for 190 m;
 - mapping shows potential for cross-cutting breccia style mineralisation;

 a previous ASX announcement (dated 12/12/2018) highlight high-grade rockchip cobalt assay.

Mapping works at the Kasombo Project (reported in ASX announcement dated 12/12/2017) showed two styles of mineralisation: the first conforming to a style typical of deposits of the Katangan Copper Belt; the second showing cross-cutting breccia style, which provides the potential to significantly increase deposit size. The drilling program recently completed was designed to test the concepts of mineralisation observed from that mapping program. The evaluation of this drilling will conclude on receipt of assay from three further batches. ALS is committed to finalising these assays by the end of February.

The Kasombo Project comprises three mineralised areas of approximately 600 hectares, Kasombo 5, 6 and 7, located within two granted mining licenses PE481 and PE4886 and situated approximately 25 km from the DRC's second largest city, Lubumbashi, in the Katanga Copper Belt.

Commenting on the commencement of the exploration works, Chairman Tony Sage said; "I am pleased to see that the early results of the preliminary drill program support our high hopes for this project. We are building the justification to proceed with a planned 5,500 m drill-out of Kasombo 5 and Kasombo 7."

Yours faithfully FE LIMITED

Tony Sage **Non-Executive Chairman**

Figure 1: Location of Kasombo Project and nearby Kipushi Processing Plant

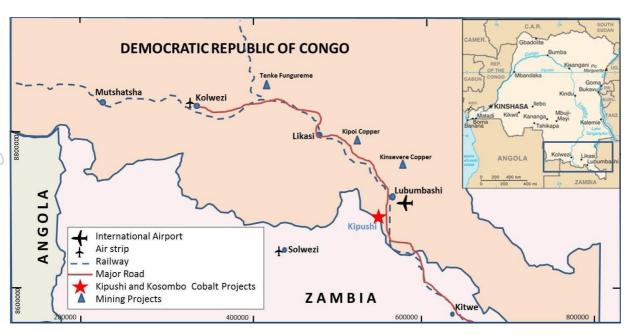


Figure 2: Kasombo Location Map

Figure 3; Kasombo 5 Prospect Drillhole KSB001; projection of drillhole shown with the dark green line, and bedding layes drawn on the pit-wall of the open cut; image of pit showing bedding (with light blue line, downdip projection as dotted line); basal fault (dark blue line); mineralisation target (red lines, downdip projection as dotted line); drill rig in position (but with its mast down) outside the rim of the pit.

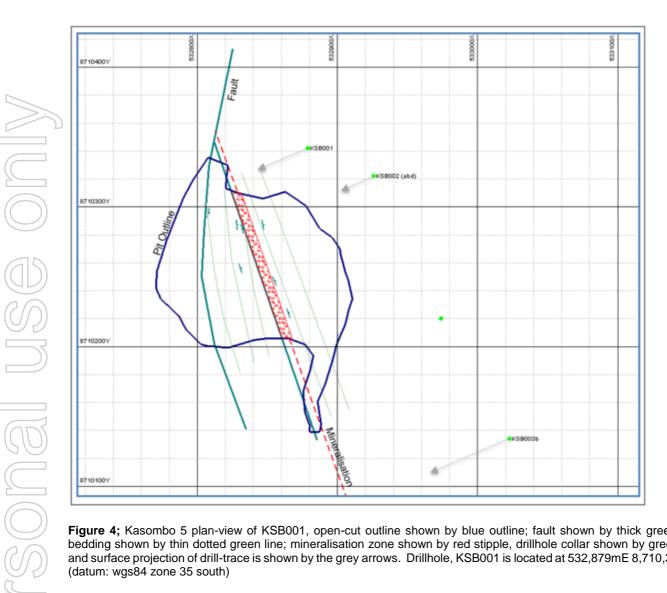


Figure 4; Kasombo 5 plan-view of KSB001, open-cut outline shown by blue outline; fault shown by thick green line, bedding shown by thin dotted green line; mineralisation zone shown by red stipple, drillhole collar shown by green dot, and surface projection of drill-trace is shown by the grey arrows. Drillhole, KSB001 is located at 532,879mE 8,710,342mN (datum: wgs84 zone 35 south)

Competent Person Statement

The information in this report is compiled and collected by Mr Jess Oram, Executive Director of Cauldron Energy (an affiliate company of FE Limited) who is a Member of the Australasian Institute of Geoscientists. Oram has sufficient experience that is relevant to the style of mineralisation, type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration, Results, Mineral Resource and Ore Reserves (JORC Code 2012). Oram consents to the inclusion in the report of the matters based on this information in the form and context in which it appears

Table 1; Kasombo Project – entire drillhole assay; selected elements

AREA		LOCATION				PREFERRE	D ASSAY		ME-MS61	ME-MS61	ME-MS61	ME-MS61
Prospect	SampleID	Drill_ID	From	То	Cu_ppm	Cu_meth	Co_ppm	Co_meth	Fe_%	Mn_ppm	Pb_ppm	S_ppm
KSB_05	404601	KSB001	0	1	650	ME-MS61	172.5	ME-MS61	7.12	306	20	0.03
KSB_05	404602	KSB001	1	2	338	ME-MS61	321	ME-MS61	4.85	43	20.1	0.01
KSB_05	404603	KSB001	2	3	421	ME-MS61	283	ME-MS61	7.32	82	15.7	0.01
KSB_05	404604	KSB001	3	4	297	ME-MS61	122	ME-MS61	7.86	85	16.8	0.01
KSB_05	404605	KSB001	4	5	327	ME-MS61	199	ME-MS61	8.46	28	12.1	0.01
KSB_05	404606	KSB001	5	6	238	ME-MS61	103.5	ME-MS61	7.68	39	13.5	0.01
KSB_05	404607	KSB001	6	7	144	ME-MS61	68.9	ME-MS61	3.83	35	8.8	0.02
KSB_05	404608	KSB001	7	8	134	ME-MS61	49.7	ME-MS61	3.86	28	9	0.01
KSB_05	404609	KSB001	8	9	235	ME-MS61	76.1	ME-MS61	4.21	32	6.8	<0.01
KSB_05	404610	KSB001	9	10	302	ME-MS61	99.8	ME-MS61	4.33	116	6.5	<0.01
KSB_05	404611	KSB001	10	11	280	ME-MS61	103	ME-MS61	4.82	168	9.4	<0.01
KSB_05	404612	KSB001	11	12	136	ME-MS61	111.5	ME-MS61	3.89	222	9.3	0.01
KSB_05	404613	KSB001	12	13	146.5	ME-MS61	76.8	ME-MS61	3.11	96	7.6	<0.01
KSB_05	404614	KSB001	13	14	759	ME-MS61	467	ME-MS61	3.75	859	12.5	< 0.01
KSB_05	404615	KSB001	14	15	417	ME-MS61	148.5	ME-MS61	5.36	91	11.2	0.01
KSB_05	404616	KSB001	15	16	715	ME-MS61	132.5	ME-MS61	5.23	138	8.2	0.01
KSB_05	404617	KSB001	16	17	1700	ME-MS61	1150	ME-MS61	11.8	1220	11.3	0.01
KSB_05	404618	KSB001	17	18	4640	ME-MS61	4020	ME-MS61	13	7220	13.7	0.01
KSB_05	404619	KSB001	18	19	1900	ME-MS61	1250	ME-MS61	10.05	2830	7.5	0.01
KSB_05	404620	standard			7850	ME-MS61	40	ME-MS61	6.97	932	37.7	0.98
KSB_05	404621	KSB001	19	20	604	ME-MS61	230	ME-MS61	4.85	205	7.5	0.01
KSB_05	404622	KSB001	20	21	448	ME-MS61	229	ME-MS61	4.76	171	8.9	0.01
KSB_05	404623	KSB001	21	22	2580	ME-MS61	209	ME-MS61	2.47	75	10.1	0.01
KSB_05	404624	KSB001	22	23	5360	ME-MS61	220	ME-MS61	3.57	44	6.7	0.01
KSB_05	404625	KSB001	23	24	4970	ME-MS61	254	ME-MS61	3.48	41	8.6	0.01
KSB_05	404626	KSB001	24	25	2720	ME-MS61	214	ME-MS61	2.68	46	10.1	0.01
KSB_05	404627	KSB001	25	26	22500	Cu-OG62	457	ME-MS61	3.07	145	5.3	0.02
KSB_05	404628	KSB001	26	27	19050	Cu-OG62	1015	ME-MS61	1.8	320	3.2	0.02
KSB_05	404629	KSB001	27	28	21200	Cu-OG62	431	ME-MS61	3.4	51	6.6	0.02
KSB_05	404630	KSB001	28	29	16500	Cu-OG62	305	ME-MS61	2.07	66	4.9	0.03
KSB_05	404631	KSB001	29	30	19850	Cu-OG62	650	ME-MS61	3.03	94	7	0.03
KSB_05	404632	KSB001	30	31	4340	ME-MS61	350	ME-MS61	2.64	74	5.7	0.01
KSB_05	404633	KSB001	31	32	4190	ME-MS61	258	ME-MS61	3.63	48	7.2	0.01
KSB_05	404634	KSB001	32	33	12100	Cu-OG62	243	ME-MS61	2.46	39	4.9	0.02
KSB_05	404635	KSB001	33	34	7870	ME-MS61	405	ME-MS61	3.85	171	4.8	0.01
KSB_05	404636	KSB001	34	35	12200	Cu-OG62	1985	ME-MS61	1.75	940	3.1	0.01
KSB_05	404637	KSB001	35	36	5580	ME-MS61	1985	ME-MS61	1.41	765	3	0.01

AREA		LOCATION			PREFERRED ASSAY			ME-MS61	ME-MS61	ME-MS61	ME-MS61	
Prospect	SampleID	Drill_ID	From	То	Cu_ppm	Cu_meth	Co_ppm	Co_meth	Fe_%	Mn_ppm	Pb_ppm	S_ppm
KSB_05	404638	KSB001	36	37	4610	ME-MS61	1360	ME-MS61	2.24	1320	3.7	0.01
KSB_05	404639	KSB001	37	38	7120	ME-MS61	3280	ME-MS61	13.3	3270	9.8	0.01
KSB_05	404640	standard			7830	ME-MS61	41.1	ME-MS61	7.21	972	37.7	0.99
KSB_05	404641	KSB001	38	39	6880	ME-MS61	3080	ME-MS61	9.78	2750	10	0.01
KSB_05	404642	KSB001	39	40	6710	ME-MS61	2400	ME-MS61	6.84	2200	11.5	0.01
KSB_05	404643	KSB001	40	41	2910	ME-MS61	367	ME-MS61	3.38	60	17.5	0.01
KSB_05	404644	KSB001	41	42	3000	ME-MS61	641	ME-MS61	3.94	231	14.3	0.01
KSB_05	404645	KSB001	42	43	11300	Cu-OG62	328	ME-MS61	1.8	48	13.3	0.01
KSB_05	404646	KSB001	43	44	6020	ME-MS61	282	ME-MS61	2.98	29	14.6	0.01
KSB_05	404647	KSB001	44	45	16400	Cu-OG62	307	ME-MS61	2.32	30	10.6	0.01
KSB_05	404648	KSB001	45	46	2940	ME-MS61	439	ME-MS61	4.27	61	11.9	0.01
KSB_05	404649	KSB001	46	47	1890	ME-MS61	577	ME-MS61	4.1	374	6.2	0.01
KSB_05	404650	KSB001	47	48	2930	ME-MS61	1000	ME-MS61	2.77	994	5.5	0.01
KSB_05	404651	KSB001	48	49	3150	ME-MS61	939	ME-MS61	2.73	777	5.4	0.01
KSB_05	404652	KSB001	49	50	2870	ME-MS61	836	ME-MS61	3.8	443	7.4	0.01
KSB_05	404653	KSB001	50	51	4030	ME-MS61	973	ME-MS61	3.79	594	7	0.01
KSB_05	404654	KSB001	51	52	3250	ME-MS61	878	ME-MS61	4.08	597	6.8	0.01
KSB_05	404655	KSB001	52	53	4140	ME-MS61	1165	ME-MS61	3.94	911	7.1	0.01
KSB_05	404656	KSB001	53	54	8780	ME-MS61	2250	ME-MS61	5.7	3140	8.6	0.01
KSB_05	404657	KSB001	54	55	27600	Cu-OG62	2850	ME-MS61	10.9	4580	8.8	0.02
KSB_05	404658	KSB001	55	56	86900	Cu-OG62	1910	ME-MS61	10.05	1370	11.3	0.06
KSB_05	404659	KSB001	56	57	52900	Cu-OG62	673	ME-MS61	5.56	278	7.2	0.04
KSB_05	404660	standard			7400	ME-MS61	36.5	ME-MS61	6.78	891	34.8	0.92
KSB_05	404661	KSB001	57	58	23700	Cu-OG62	460	ME-MS61	3.85	164	5.1	0.02
KSB_05	404662	KSB001	58	59	88700	Cu-OG62	990	ME-MS61	7.14	738	8.2	0.62
KSB_05	404663	KSB001	59	60	108000	Cu-OG62	641	ME-MS61	8.12	217	9	0.71
KSB_05	404664	KSB001	60	61	41100	Cu-OG62	230	ME-MS61	2.18	112	3.6	0.19
KSB_05	404665	KSB001	61	62	19450	Cu-OG62	133.5	ME-MS61	1.24	146	4.2	0.12
KSB_05	404666	KSB001	62	63	23500	Cu-OG62	129	ME-MS61	1.48	138	3.3	0.12
KSB_05	404667	KSB001	63	64	46000	Cu-OG62	162	ME-MS61	2.09	56	5	0.08
KSB_05	404668	KSB001	64	65	15200	Cu-OG62	110.5	ME-MS61	2	73	4.1	0.06
KSB_05	404669	KSB001	65	66	13950	Cu-OG62	105	ME-MS61	1.79	79	3	0.06
KSB_05	404670	KSB001	66	67	14450	Cu-OG62	93.6	ME-MS61	1.75	79	2.5	0.06
KSB_05	404671	KSB001	67	68	23700	Cu-OG62	180	ME-MS61	3.05	109	4.6	0.03
KSB_05	404672	KSB001	68	69	20900	Cu-OG62	692	ME-MS61	3.07	546	4.2	0.02
KSB_05	404673	KSB001	69	70	17000	Cu-OG62	479	ME-MS61	2.07	622	3.3	0.02
KSB_05	404674	KSB001	70	71	14400	Cu-OG62	431	ME-MS61	2.48	701	2.3	0.02
KSB_05	404675	KSB001	71	72	8050	ME-MS61	423	ME-MS61	2.42	649	1.4	0.01

AREA		LOCATION				PREFERRE	D ASSAY		ME-MS61	ME-MS61	ME-MS61	ME-MS61
Prospect	SampleID	Drill_ID	From	То	Cu_ppm	Cu_meth	Co_ppm	Co_meth	Fe_%	Mn_ppm	Pb_ppm	S_ppm
KSB_05	404676	KSB001	72	73	4360	ME-MS61	235	ME-MS61	1.76	506	1.2	0.01
KSB_05	404677	KSB001	73	74	15100	Cu-OG62	384	ME-MS61	9.61	736	3.8	0.01
KSB_05	404678	KSB001	74	75	39300	Cu-OG62	209	ME-MS61	11.1	792	3.9	0.01
KSB_05	404679	KSB001	75	76	15300	Cu-OG62	304	ME-MS61	9.55	328	3.2	0.01
KSB_05	404680	KSB001	76	77	11550	Cu-OG62	1485	ME-MS61	18.6	616	14.4	0.01
KSB_05	404681	KSB001	77	78	2580	ME-MS61	690	ME-MS61	8.31	624	4.7	0.01
KSB_05	404682	KSB001	78	79	2790	ME-MS61	237	ME-MS61	7.94	593	4.2	0.14

KEY:

KSB_05 is Kasombo 5 prospect

An assay of 10,000 ppm is equivalent to 1%; to convert units of concentration, divide ppm by 10000 to obtain units of % ME-MS61 is ALS analysis using a four-acid digest with ICP-MS and ICP-AES finish

OG62 is ALS method for over-range grade re-assay of ME-MS61

Standard is certified reference material GBMS911-3 manufactured by Geostats Pty Ltd

JORC Code, 2012 Edition - Table 1 Kasombo Mapping and Sampling

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	section apply to all succeeding sections.) JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC chip samples were collected from each one metre downhole drill increments commencing from the collar to the end of hole Samples collected plastic bags attached to cyclone Calico bags used to take a 3 kg assay sample We rely on ALS systems, a NATA certified laboratory, to ensure their ICP instruments are in calibration
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• 5.5" Reverse circulation; face sample hammer bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample mass was not measured Visual inspection used to identify potential intervals containing contaminated sample
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 Chip sample geologically logged and small specimen sample retained in chip trays The entire drillhole was geologically logged

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	 The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Assay sample were sub-sampled from the large (about 30 kg) plastics using a spear Four spear traverses were taken across the entire sample bag material No duplicates taken from this hole Malachite mineralisation is fine grained and distributed on a scale smaller than metre increments collected downhole
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were prepared and analysed by ALS; with samples crushed and pulverised in ALS' Lubumbashi, DRC laboratory, and ICP-AES or ICP-MS finish in ALS' Johannesburg laboratory. Preparation: crush and pulverise so that 80% of sample pass minus 80 micron ALS method ME-MS61, having a low lower level of detection Over-range assay re-analysed by ALS ore grade method OG-62 Digest: four acid digest on a 0.25g charge Element Suite (with lower level of detection in brackets in ppm): Ag(0.01), Al(100), As(0.2), Ba(10), Be(0.05), Bi(0.01), Ca(100), Cd(0.02), Ce(0.01), Co(0.1), Cr(1), Cs(0.05), Cu(0.2), Fe(100), Ga(0,05), Ge(0,05), Hf(0.1), In(0.005), K(100), La(0.5), Li(0.2), Mg(100), Mn(5), Mo(0.05), Na(100), Nb(0.1), Ni(0.2), P(10), Pb(0.5), Rb(0.1), Re(0.002), S(100), Sb(0.05), Sc(0.1), Se(1), Sn(0.2), Sr(0.2), Ta(0.05), Te(0.05), Th(0.2), Ti(0.005), Tl(0.02), U(0.1), V(1), W(0.1), Y(0.1), Zn(2), Zr(0.5) Certified Reference Material (CRM) where inserted in the sample stream at every 20th consecutive sample Two CRM's used in the drill program (only one used for this first drillhole) – manufactured by Geostats Pty Ltd

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No verification work has been conducted Only first hole of program, data stored in spreadsheets - no database developed as yet No adjustment to assay – reported as is from ALS except with the addition of locational information (HoleID, DepthFrom and DepthTo)
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Samples were located with handheld GPS, having an accuracy of plus or minus 10 m. No downhole surveys were taken to measure drillhole deviation Collar location described in datum WGS84 Zone 35south
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Results from only one drillhole taken to the north of the mineralized structure The data is not suitable for Mineral Resource estimation; much more drilling is required No sample compositing
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drillholes were set up with an azimuth orthogonal to strike and a dip of 60 degrees dip at the collar – azimuth WSW; mineralisation contained in bedding mapped in pit exposures was dipping 40 ENE; drill intercepts will be close to true thickness, but slightly less
Sample security	The measures taken to ensure sample security.	Samples kept under supervision of geological/sampling crew and transported to ALS laboratory by drill crew
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been completed

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The licence is held by state owned company Gecamines and is the subject of a rights agreement between Gecamines and Paragon SARL. Paragon has a joint venture with Cape Lambert Resources and Cape Lambert Resources has entered in to an agreement with Fe Limited to assign its rights to the Kasombo Project to Fe Limited.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Gecamines mapping completed in 1990's.
Geology	Deposit type, geological setting and style of mineralisation.	 Cu-Co mineralisation of the Katangan style; where stratabound mineralisation is located in the Lower Roan Supergroup Breccia style cross-cutting Cu-Co mineralisation in vertically dipping structures
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drillhole KSB001 collar location is at 532,879mE 8,710,342mN Drillhole KSB001 datum: wgs84 zone 35 south Drillhole KSB001 collar elevation: 1290mASL Drillhole KSB001 collar setup: -60 dip towards 240 true Drillhole KSB001 end of hole: 79 m

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No length weighted averaging applied as lengths all same width No mass weighted averaging as mass of sample was not measured
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The drillholes were set up with an azimuth orthogonal to strike and a dip of 60 degrees dip at the collar – azimuth WSW; mineralisation contained in bedding mapped in pit exposures was dipping 40 ENE; drill intercepts will be close to true thickness, but slightly less
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Presented in the body of the report
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Full reporting of results presented here
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Proof of concept stage drilling only, further data to be collected on next phase of drilling – if appropriate
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further assays from initial drill-test are awaited Step-out drilling and infill drilling required

