

ABN 48 106 732 487

SX Announcement

11th July 2018

CORPORATE SUMMARY

Executive Chairman

Significant New Gold Results

Lake Carey Gold Project

Highlights

Matsa has discovered a new bedrock gold mineralised zone in excess of 1 km in length and open to the south

New discovery is located 5km north of Matsa's Fortitude Gold Mine at Fortitude North

A best intercept of 9m @ 3.16g/t Au incl. 3m @ 5.71g/t Au within a broader intercept of 27m @ 1.34g/t Au

Results confirm potential for new gold discoveries along the highly prospective Fortitude Fault, a favourable structural setting which has been subjected to only limited previous drilling

Mineralisation occurs in weathered, strongly deformed mafic and ultramafic volcanics along the Fortitude Fault in a similar setting to Matsa's Fortitude Gold Mine

Drilling targeted previously undrilled areas between small lakes. Unexplored lake areas provide potential strike extents of new bedrock mineralisation and remain to be drilled

Highly anomalous gold values were also received from wide spaced drilling at the BE 4 Prospect, 4 km east of Matsa's Red October Gold Mine

RC drilling program to commence ASAP to better define mineralisation at Fortitude North

Paul Poli Director Frank Sibbel **Director & Company Secretary** Andrew Chapman

Shares on Issue

176.93 million

Unlisted Options

13.70 million @ \$0.25 - \$0.30

Top 20 shareholders

Hold 51.68%

Share Price on 10th July 2018

16 cents

Market Capitalisation

\$28.31 million

Head Office: Bangkok Office:

Suite 11, 139 Newcastle Street, Perth Western Australia 6000 Unit 1801, Pacific Place 2, 142 Sukhumvit Road, Klongtoey, Bangkok 10110 Tel: +66 0 2653 0258 Fax: +66 0 2653 0258

Tel: +61 8 9230 3555 Fax: +61 8 9227 0370

reception@matsa.com.au

www.matsa.com.au

Matsa Resources Limited ("Matsa" or "the Company" ASX: MAT) is pleased to announce assay results from its recently completed aircore drilling program within the Company's Lake Carey Gold Project in the Eastern Goldfields of Western Australia.

Matsa completed 97 aircore drill holes for a total of 9,730 metres over two high priority targets, Fortitude North and BE 4 (*MAT announcement to ASX 9th May 2018*), and results from drilling are reported in this announcement.

Drilling has been highly successful and has resulted in the discovery of a new bedrock gold mineralised zone in excess of 1 km in length, which remains open to the south, and is located just 5km north of Matsa's Fortitude Gold Mine. Highly encouraging results were also received on wide spaced drilling at the BE 4 prospect located 4 kilometres east of Matsa's Red October Gold Mine.

The results confirm the potential for new gold discoveries in a highly prospective structural setting which has been subjected to only limited previous drilling.

Highlight Results Fortitude North

Significant gold assays in variably weathered mafic and ultramafic basement rocks have been received from the aircore drilling at the Fortitude North Prospect (Figures 1 and 2, and Appendix 2 and 3).

The best intersections were returned in drill hole 18FNAC38 and include:

9m @ 3.16g/t Au from 75m to end of hole

incl. 3m @ 5.71g/t Au from 75m, within

27m @ 1.37 g/t Au from 57m to end of hole

Results were returned from composite samples up to 3 metres in length in drill holes located approximately 5km north of Matsa's Fortitude Mine as shown in Figure 3. Drilling intersected significant gold values, and Fortitude North has now been prioritised for further, follow up drilling as soon as possible.

Key outcomes of drilling at Fortitude North:

- Drilling confirms potential for new discoveries in a highly prospective structural setting with only limited previous drilling;
- Drilling has defined a linear target which is interpreted to reflect steeply dipping, structurally controlled gold mineralisation along the Fortitude Fault over a distance of >1km which remains open under the lake to the south;
- Anomalous gold values in transported lake clays to the east and south are thought to represent dispersion from the bedrock gold target and are interpreted to, in part, mirror further bedrock mineralisation south of existing drilling; and
- Variable, shallow cover of up to 45 metres over the mineralised basement rocks was encountered in drilling.

Figure 1: Fortitude North Aircore Summary Result on Aeromagnetic image

Moderately elevated gold values in lake sediments to the east of the newly discovered zone of bedrock gold mineralisation represent a dispersion halo which supports the significance of the bedrock mineralisation.

Matsa is very encouraged by these early stage results because gold mineralisation is associated with highly deformed mafic/ultramafic lavas along the Fortitude Fault and appears to be very similar to mineralisation at Matsa's Fortitude gold deposit 5km further south on the same structure.

Significantly, the Fortitude Fault is interpreted to form part of the regional scale Barnicoat East Fault system which separates the prolifically gold mineralised Kurnalpi Terrane (which hosts the major Sunrise Dam, Granny Smith and Wallaby gold deposits) to the West from the Burtville Terrane to the east.

Drilling, sampling and assay protocols are described in Appendix 1, drill collars are listed in Appendix 2 and assays >0.1 g/t Au are listed in Appendix 3.

Figure 2: Fortitude North Cross Section 62800

Highlight Results BE 4

Aircore drilling was designed to test for further mineralisation along the Bindah Fault which is associated with strongly anomalous gold values at a number of locations including Matsa's BE 1 target where gold mineralisation is associated with a porphyry intrusion (Figure 3). Drilling was designed to test a previously untested section of the Bindah Fault north of where Matsa had intersected anomalous gold values in weathered basement at BE 4. (*MAT announcement to the ASX 27th July 2017*)

Drill collar locations and assay results >0.1 g/t Au are presented in Appendix 4 and Appendix 5.

A number of significantly anomalous gold values >0.1 g/t Au were received as listed in Appendix 5 with a maximum of **1m of 0.74 g/t Au** in weathered basaltic volcanics. Drilling was carried out on very wide spaced lines (vertical drill holes 400m x 100m apart) and follow up aircore drilling (including Lake Aircore) is proposed to better define this targets for RC drilling.

Overview of Aircore Drilling Program at Lake Carey Project

The drilling programme comprised a 97 drill hole, 9,730 metre of aircore drilling carried out over two high priority targets at Fortitude North and BE 4.

Drilling was carried out using a rubber-track mounted drilling rig designed to operate in areas where access is impeded by loose sandy cover encountered along the edges of Lake Carey. Both targets are partly underlain by salt lakes which will require a separate drilling stage using a specialised lake drilling rig and is planned to commence as soon as possible.

Vertical drill holes on 100 metre spacings were carried out along East-West lines between 200 and 400 metres apart with each hole drilled to "refusal" which in most cases occurs at or close to the base of weathering of basement rocks.

Drilling encountered transported clays and minor sands of the Lake Carey drainage basin to a depth of ~45 metres which overlie deeply weathered Archaean basement.

Composite samples up to 3 metres in length were collected from a depth of ~24m to the end of hole with each sample submitted for gold-only analysis. In addition, a 1m bottom of hole sample (representing the least weathered basement lithology present), was submitted for gold assay and for a suite of base metal and gold pathfinder elements. One duplicate sample per drill hole was submitted for gold only analysis in order to provide first pass QAQC information. To date gold only assays on

composite samples have been received and interpreted. Sampling and assay protocols are described in Appendix 1.

Figure 3: Lake Carey Project Aircore drilling 2018

Next Steps

Given the highly encouraging results of the aircore drilling, follow up drilling is proposed as a priority in the current quarter:

- Reverse circulation (RC) drilling at Fortitude North as soon as permitting has been obtained;
- Aircore drilling in the lake at Fortitude North Prospect to determine the extent of the bedrock mineralisation to the south of the recently completed drilling; and
- Infill aircore drilling including on the lake at BE 4, to better define targets for RC drilling.

The Lake Carey Gold Project

Matsa holds a ground position of ~ 600km² at Lake Carey. The Company is committed to developing a long term gold mining project, commencing with its recently completed trial mining operation at Fortitude, advanced plans to develop the Red Dog deposit and well advanced studies into the viability of a full scale open pit mine at Fortitude plus re-commencement of underground gold production at the Red October gold mine (Refer to previous ASX announcements).

Matsa also sees substantial opportunities for discovery in favourable structural and stratigraphic settings within the Lake Carey Project area which have not been adequately explored. The Fortitude and Bindah Faults are examples of favourable corridors which contain previously discovered mineralisation (Bindah, Fortitude, Jubilee, Misery and Keringal) and Matsa's recently discovered gold targets (BE 1 -4).

The discovery at Fortitude North (reported in this announcement) and earlier discoveries along the Bindah Fault including BE1, provides strong support for Matsa's belief that there are significant areas which remain under-explored in the area despite 30 years of exploration since the discovery of Sunrise Dam in 1988.

For further information please contact:

Paul Poli Executive Chairman

Phone+61 8 9230 3555Fax+61 8 9227 0370Emailreception@matsa.com.auWebwww.matsa.com.au

Appendix 1 - Matsa Resources Limited – Lake Carey Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. 	Aircore samples hand sampled at 1m intervals placed in piles on the ground. Composites Samples ~3kg in weight representing 3m downhole scooped from sample piles and submitted for gold only assay. Resampling based on anomalous first pass assays is carried out by hand scooping individual 1m sample piles. The last 1m interval of the hole is subjected to a different protocol whereby each sample is assayed for a multi element suite comprising gold, gold pathfinder elements and a suite of element used in lithogeochemistry. A field duplicate of this last metre (which represents the least weathered portion in the drill hole) is also submitted with the composite samples for QAQC purposes.
	• Measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Hand scoop, comparatively poor sample: The nature of the regolith encountered in lake aircore drilling being mostly sticky clays, prevents use of a splitter, so all samples are hand scooped.
	• Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Composite Samples and follow up 1m splits for anomalous composites submitted to ALS Laboratories Kalgoorlie for Aqua Regia digest ICP analysis. Detection limit 0.01ppm Au. No special measures were taken to account for coarse gold.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	Drilling was carried out using tracked drilling rig based around a Morooka base which is able to operate in areas of loose sand and mud which exist at Fortitude North. All drill holes are vertical.
Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recovery problematic in sticky clay sections with quite variable sample size.

Criteria	JORC Code explanation	Commentary
	• Measures taken to maximise sample recovery and ensure representative nature of the samples.	Every effort made to clean sample system at the end of each 3m rod. Significant effort made to clean cyclone and containers to avoid contamination.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not determined.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Simple qualitative geological logs using standard geological coding sheets.
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Logging is qualitative in nature.
	• The total length and percentage of the relevant intersections logged.	Logging was carried out on all cuttings produced by aircore.
Sub-sampling techniques and	• If core, whether cut or sawn and whether quarter, half or all core taken.	Non core
sample preparation	• If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Aircore samples were scooped or "grab" sampled from bulk residue piles on the ground.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample prep in Lab is standard for all assay procedures, whereby sample is dried, homogenized and pulverised.
	• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples	Anomalous composites repeated with individual 1m splits.
	• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling	Splits are in effect field duplicates of composites.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample weights of ~3kg documented are adequate for fine gold. Evidence of coarse gold suggests that special screen fire assays may be appropriate in some sections

Criteria	JORC Code explanation	Commentary				
Quality of assay data and laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were dispatched for low level gold determination by Fire Assay, which is an industry standard process. Assay accuracy determined by laboratory QACC process.				
	• For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable				
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	A field duplicate sample submitted together with composite samples for QAQC purposes.				
Verification of sampling and assaying	• The verification of significant intersections by either independent or alternative company personnel.	Composites validated by individual 1m splits. All assay and sampling procedures verified by company personnel. All results reviewed by Exploration Manager Dave Fielding				
• The use of twinned holes.		No twinned holes carried out.				
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Geological and sampling data recorded on Toughbook in the field to minimi- transcription errors. Hole locations recorded on GPS and compared prior upload to database.				
	Discuss any adjustment to assay data.					
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Data accuracy has been taken as +-5m for the purposes of designing follow up exploration.				
	• Specification of the grid system used.	GDA94 UTM co-ordinate system Zone 51.				
	• Quality and adequacy of topographic control.	+-10m from AHD has been assumed for regional exploration holes used in designing the follow up programme. For practical purposes the RL for all holes is given as the level of Lake Carey namely 400m AHD				
Data spacing and distribution	• Data spacing for reporting of Exploration Results.	Aircore drilling was designed as follow up of anomalous values in legacy drilling. Drill lines are spaced at ~200m apart with drilling along each line at 100m intervals.				
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral	Drill hole spacing too large to confidently assign continuity of anomalous values. But in the case of Fortitude North, the first pass interpretation is for a continuous				

Criteria	JOR	C Code explanation	Commentary
		Resource and Ore Reserve estimation procedure(s) and classifications applied.	steeply dipping tabular zone of mineralisation.
	•	Whether sample compositing has been applied.	Compositing of aircore samples from 1m to a maximum of 3m was carried out.
Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling carried out on EW lines. Vertical holes not ideal for steeply dipping rocks but selected to minimize drilling difficulties in deep clays.
Structure	•	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling too wide spaced for bias to be a problem. Orientation of continuous in- situ mineralisation yet to be determined.
Sample security	•	The measures taken to ensure sample security.	Samples are delivered to the laboratory by Matsa Staff. No special security procedures are carried out in the field.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	No audit carried out yet.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary						
Mineral	• Type, reference name/number, location and ownership including	Exploration wa	as carried ou	it over the follo	owing tenem	nents:	1	
tenement and	agreements or material issues with third parties such as joint ventures,	Tenement	Status	Holder	Granted	Area	Units	
status	 <i>partnerships, overriding royalties, hative title interests, historical sites,</i> wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any 	E 39/1770*	LIVE	Matsa Gold Pty Limited	1/07/201 4	6	BL.	
known impediments to obtaining a license to operate in the area.	E 39/1752*	LIVE	Matsa Gold Pty Limited	6/02/201 4	11	BL.		
	E	E 39/1889**	LIVE	RAVEN RESOURCES PTY LTD	8/03/201 6	16	BL.	

Criteria	JORC Code explanation	Commentary
		E WILLIE Z7/02/20 E 39/1864*** LIVE LTD 17 10 BL
		*Transfer of two tenements to Matsa Gold Pty Ltd as announced to ASX 7 th October 2016. **JV tenement held by Raven Resources and explored under farm in and JV agreement E39/1889. *** Tenement purchased by Matsa Gold and subject to Caveat 502074
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	Past work which included anomalous gold values in aircore drilling at Fortitude North has been acknowledged as being carried out by Midas Gold Ltd in 2008.
Geology	• Deposit type, geological setting and style of mineralisation.	The deposit types being sought are orogenic syntectonic gold mineralisation similar to Fortitude which is located 5km south on the same major fault system
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Fortitude North: Drill hole, collar information for listed in Appendix 2 and significant assays (>0.1 g/t Au) listed in Appendix 3. BE 4 Drill hole, collar information for listed in Appendix 4 and significant assays (>0.1 g/t Au) listed in Appendix 5.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such 	Quoted intercepts refer either to individual composite samples or subsequent 1m splits. Aggregates are reported as simple averages of individual assay results, with higher grade intervals reported as "including"

Criteria	JORC Code explanation	Commentary		
	aggregations should be shown in detail.The assumptions used for any reporting of metal equivalent values should be clearly stated.			
Relationship between	• These relationships are particularly important in the reporting of <i>Exploration Results</i> .	All intercepts quoted relate to downhole depth and true width is unknown.		
mineralisation widths and	• If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Not known.		
intercept lengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	<i>d</i> Intercepts in aircore drill holes are expressed in downhole metres.		
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagram summarising salient aspects of drilling has been included in the text		
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All drilling information has been used to determine exploration targets.		
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The review made use of publically available aeromagnetics and gravity, past drilling by Midas Gold Ltd which was acquired with purchase of the Lake Carey Fortitude project.		
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The planned drilling is intended to test hypotheses regarding stratigraphic and structural targets Lake Carey.		

Appendix 2: Fortitude North Aircore Drill Hole Collar Locations

Hole_Id	Туре	Grid	East	North	RL	Depth	Azimuth	Dip
18FNAC001	AC	MGA94_51	455796	6763003	400	102	0	-90
18FNAC002	AC	MGA94_51	455707	6762998	400	123	0	-90
18FNAC003	AC	MGA94_51	455621	6763000	400	115	0	-90
18FNAC004	AC	MGA94_51	455798	6762802	400	97	0	-90
18FNAC005	AC	MGA94_51	455696	6762805	400	107	0	-90
18FNAC006	AC	MGA94_51	455600	6762804	400	122	0	-90
18FNAC007	AC	MGA94 51	455527	6762802	400	132	0	-90
18FNAC008	AC	MGA94 51	455898	6762603	400	94	0	-90
18FNAC009	AC	MGA94_51	455799	6762603	400	98	0	-90
18FNAC010	AC	MGA94 51	455705	6762602	400	109	0	-90
18FNAC011	AC	MGA94 51	455596	6762603	400	113	0	-90
18FNAC012	AC	MGA94 51	455521	6762597	400	125	0	-90
18FNAC013	AC	MGA94 51	455704	6762400	400	99	0	-90
18FNAC014	AC	MGA94 51	455587	6762399	400	111	0	-90
18FNAC015	AC	MGA94 51	455788	6762396	400	98	0	-90
18FNAC016	AC	MGA94 51	455669	6762215	400	90	0	-90
18FNAC017	AC	MGA94 51	455601	6762201	400	103	0	-90
18FNAC018	AC	MGA94 51	455623	6762000	400	106	0	-90
18FNAC019	AC	MGA94 51	455702	6761803	400	105	0	-90
18FNAC020	AC		455803	6761601	400	95	0	-90
18FNAC021	AC	MGA94 51	455705	6761602	400	83	0	-90
18FNAC022	AC	MGA94 51	455902	6761401	400	92	0	-90
18FNAC023	AC	MGA94 51	455806	6761402	400	106	0	-90
18FNAC024	AC	MGA94 51	455699	6761403	400	82	0	-90
18FNAC025	AC	MGA94 51	455609	6761203	400	89	0	-90
18FNAC026	AC	MGA94 51	455709	6761198	400	75	0	-90
18FNAC027	AC	MGA94 51	455803	6761190	400	97	0	-90
18FNAC028	AC	MGA94 51	455305	6763005	400	109	0	-90
18FNAC029	AC	MGA94 51	455197	6763004	400	96	0	-90
18FNAC030	AC	MGA94 51	455098	6762995	400	91	0	-90
18FNAC031	AC	MGA94 51	454998	6762999	400	81	0	-90
18FNAC032	AC	MGA94 51	454896	6763003	400	70	0	-90
18FNAC033	AC	MGA94 51	454600	6762997	400	159	0	-90
18FNAC034	AC	MGA94 51	454499	6762998	400	60	0	-90
18FNAC035	AC	MGA94 51	455201	6762812	400	59	0	-90
18FNAC036	AC	MGA94 51	455097	6762800	400	84	0	-90
18FNAC037	AC	MGA94 51	454996	6762805	400	99	0	-90
18FNAC038	AC	MGA94 51	455213	6762444	400	90	0	-90
18FNAC039	AC	MGA94 51	455054	6762399	400	94	0	-90
18FNAC040	AC	MGA94 51	454999	6762399	400	97	0	-90
18FNAC041	AC	MGA94 51	454897	6762400	400	135	0	-90
18FNAC042	AC	MGA94 51	454802	6762395	400	118	0	-90
18FNAC043	AC	MGA94 51	454707	6762402	400	76	0	-90
18FNAC044	AC	MGA94 51	454595	6762398	400	102	0	-90
18FNAC045	AC	MGA94 51	455093	6762189	400	28	0	-90
18FNAC046	AC	MGA94 51	455082	6762188	400	111	0	-90
18FNAC047	AC	MGA94 51	454999	6762200	400	66	0	-90
18FNAC048	AC	MGA94 51	454891	6762189	400	54	0	-90
18FNAC049	AC	MGA94 51	455204	6762010	400	119	0	-90
18FNAC050	AC	MGA94 51	455106	6762002	400	80	0	-90
18FNAC051	AC	MGA94 51	455001	6761997	400	113	0	-90
18FNAC052	AC	MGA94 51	455202	6761156	400	105	0	-90
18FNAC053	AC	MGA94 51	455112	6761098	400	99	0	-90
18FNAC054	AC	MGA94 51	455015	6761034	400	114	0	-90

Appendix 3 Fortitude North Aircore Samples with gold assays >=0.1 g/t Au

Drill Hole	From	To (m)	Sample	Туре	au_ppm	au_ppb
18FNAC005	48	51	155272	3m Composite	0.13	130
18FNAC007	42	45	155331	3m Composite	0.1	100
18FNAC007	131	132	155361	Original	0.14	140
18FNAC010	45	48	155416	3m Composite	0.14	140
18FNAC010	48	51	155417	3m Composite	0.26	260
18FNAC011	48	51	155445	3m Composite	0.12	120
18FNAC011	57	60	155448	3m Composite	0.1	100
18FNAC012	124	125	155502	Original	0.1	100
18FNAC014	45	48	155533	3m Composite	0.16	160
18FNAC016	89	90	155602	Original	0.1	100
18FNAC018	45	48	155635	3m Composite	0.11	110
18FNAC018	48	51	155636	3m Composite	0.11	110
18FNAC019	45	48	155662	3m Composite	0.2	200
18FNAC019	48	51	155663	3m Composite	0.31	310
18FNAC019	51	54	155664	3m Composite	0.84	840
18FNAC020	54	57	155692	3m Composite	0.23	230
18FNAC024	33	36	155779	3m Composite	0.12	120
18FNAC026	51	54	155827	3m Composite	0.14	140
18FNAC031	36	39	155967	3m Composite	0.12	120
18FNAC031	39	42	155968	3m Composite	0.14	140
18FNAC031	78	80	155981	3m Composite	0.27	270
18FNAC031	80	81	155983	Original	0.11	110
18FNAC032	33	36	155985	3m Composite	0.1	100
18FNAC036	57	60	156074	3m Composite	1.86	1860
18FNAC036	60	63	156075	3m Composite	0.18	180
18FNAC036	63	66	156076	3m Composite	0.26	260
18FNAC036	66	69	156077	3m Composite	0.27	270
18FNAC036	72	75	156079	3m Composite	0.39	390
18FNAC036	75	78	156080	3m Composite	5.71	5710
18FNAC036	78	81	156081	3m Composite	2.4	2400
18FNAC036	81	83	156082	2m Composite	1.63	1630
18FNAC036	83	84	156084	Original	0.83	830
18FNAC038	60	63	156120	3m Composite	0.5	500
18FNAC038	69	72	156123	3m Composite	0.7	700
18FNAC038	78	81	156126	3m Composite	0.14	140
18FNAC038	84	87	156128	3m Composite	0.15	150
18FNAC038	87	89	156129	2m Composite	0.11	110
18FNAC050	75	78	156390	3m Composite	0.11	110
18FNAC051	36	39	156396	3m Composite	0.48	480
18FNAC051	45	48	156399	3m Composite	0.13	130
18FNAC051	60	63	156404	3m Composite	0.13	130
18FNAC051	69	72	156407	3m Composite	0.14	140
18FNAC051	84	87	156412	3m Composite	0.12	120
18FNAC051	87	90	156413	3m Composite	0.18	180

Appendix 4: BE 4 Aircore Drill Hole Collar Locations

Hole_ID	Hole_Type	Depth	Grid	East	North	RL	Depth	Azimuth	Dip
18BNAC001	AC	108	MGA94 51	447244	6769137	400	108	0	-90
18BNAC002	AC	107	MGA94 51	447320	6769138	400	107	0	-90
18BNAC003	AC	97	MGA94 51	447301	6769543	400	97	0	-90
18BNAC004	AC	106	MGA94_51	447384	6769539	400	106	0	-90
18BNAC005	AC	108	MGA94_51	447487	6769546	400	108	0	-90
18BNAC006	AC	114	MGA94 51	447593	6769541	400	114	0	-90
18BNAC007	AC	96	MGA94 51	447698	6769535	400	96	0	-90
18BNAC008	AC	132	MGA94_51	447791	6769559	400	132	0	-90
18BNAC009	AC	103	MGA94_51	448799	6766330	400	103	0	-90
18BNAC010	AC	116	MGA94 51	448905	6766336	400	116	0	-90
18BNAC011	AC	109	MGA94 51	448649	6766738	400	109	0	-90
18BNAC012	AC	96	MGA94_51	448750	6766742	400	96	0	-90
18BNAC013	AC	88	MGA94_51	448848	6766739	400	88	0	-90
18BNAC014	AC	118	MGA94 51	448499	6767138	400	118	0	-90
18BNAC015	AC	114	MGA94_51	448604	6766141	400	114	0	-90
18BNAC016	AC	97	MGA94_51	448247	6766540	400	97	0	-90
18BNAC017	AC	84	MGA94 51	448351	6766541	400	84	0	-90
18BNAC018	AC	137	MGA94 51	447912	6767943	400	137	0	-90
18BNAC019	AC	121	MGA94_51	448000	6767943	400	121	0	-90
18BNAC020	AC	90	MGA94 51	448104	6767939	400	90	0	-90
18BNAC021	AC	87	MGA94 51	448202	6767940	400	87	0	-90
18BNAC022	AC	51	MGA94 51	447649	6768340	400	51	0	-90
18BNAC023	AC	75	MGA94_51	447744	6768343	400	75	0	-90
18BNAC024	AC	101	MGA94 51	447839	6768339	400	101	0	-90
18BNAC025	AC	105	MGA94 51	447946	6768339	400	105	0	-90
18BNAC026	AC	84	MGA94 51	448051	6768344	400	84	0	-90
18BNAC027	AC	88	MGA94 51	448147	6768343	400	88	0	-90
18BNAC028	AC	81	MGA94 51	447501	6768742	400	81	0	-90
18BNAC029	AC	69	MGA94 51	447594	6768738	400	69	0	-90
18BNAC030	AC	41	MGA94 51	447699	6768741	400	41	0	-90
18BNAC031	AC	66	MGA94 51	447712	6768743	400	66	0	-90
18BNAC032	AC	76	MGA94 51	447796	6768739	400	76	0	-90
18BNAC033	AC	95	MGA94 51	447901	6768741	400	95	0	-90
18BNAC034	AC	103	MGA94 51	448002	6768737	400	103	0	-90
18BNAC035	AC	114	MGA94 51	448097	6768740	400	114	0	-90
18BNAC036	AC	103	MGA94 51	448156	6769149	400	103	0	-90
18BNAC037	AC	90	MGA94 51	448054	6769143	400	90	0	-90
18BNAC038	AC	111	MGA94 51	447951	6769141	400	111	0	-90
18BNAC039	AC	131	MGA94 51	447831	6769142	400	131	0	-90
18BNAC040	AC	122	MGA94 51	447750	6769143	400	122	0	-90
18BNAC041	AC	103	MGA94 51	447649	6769140	400	103	0	-90
18BNAC042	AC	120	MGA94 51	447552	6769144	400	120	0	-90
18BNAC043	AC	115	MGA94 51	447897	6769541	400	115	0	-90
18BNAC044	AC	124	MGA94 51	447996	6769542	400	124	0	-90
18BNAC045	AC	110	MGA94 51	448096	6769546	400	110	0	-90

Appendix 5: BE 4 Aircore Samples with gold assays >=0.1 g/t Au

Hole_ID	From (m)	To (m)	Sample ID	Sample_Type	Au_ppm	Au_ppb
18BNAC014	75	78	MHGM8881	3m Composite	0.1	100
18BNAC014	102	105	MHGM8890	3m Composite	0.33	330
18BNAC014	111	114	MHGM8893	3m Composite	0.86	860
18BNAC015	72	75	MHGM8911	3m Composite	0.25	250
18BNAC016	81	84	MHGM8944	3m Composite	0.1	100
18BNAC018	120	123	MHGM9001	3m Composite	0.1	100
18BNAC027	69	72	MHGM9202	3m Composite	0.22	220
18BNAC027	87	88	MHGM9209	Original	0.14	140
18BNAC028	48	51	MHGM9216	3m Composite	0.29	290
18BNAC028	63	66	MHGM9221	3m Composite	0.34	340
18BNAC028	80	81	MHGM9228	Original	0.16	160
18BNAC029	33	36	MHGM9230	3m Composite	0.14	140
18BNAC029	36	39	MHGM9231	3m Composite	0.28	280
18BNAC029	66	68	MHGM9241	2m Composite	0.28	280
18BNAC029	68	69	MHGM9243	Original	0.74	740
18BNAC032	57	60	MHGM9269	3m Composite	0.51	510
18BNAC034	102	103	MHGM9325	Original	0.1	100
18BNAC035	78	81	MHGM9343	3m Composite	0.32	320
18BNAC035	81	84	MHGM9344	3m Composite	0.17	170
18BNAC037	33	36	MHGM9384	3m Composite	0.22	220
18BNAC037	54	57	MHGM9391	3m Composite	0.23	230
18BNAC041	96	99	155025	3m Composite	0.17	170
18BNAC041	99	102	155026	3m Composite	0.17	170
18BNAC045	48	51	155130	3m Composite	0.11	110