

SX Announcement

20th July 2018

High Grade Gold Result Verified

Lake Carey Gold Project

Highlights

Individual 1 metre assays over recently announced bedrock gold mineralised zone at Fortitude North verifies high grade gold intercepts

1 metre assays received over key intercept at Fortitude North

8m @ 5.14 g/t Au

incl. 2m @ 15.6 g/t Au

within 26m @ 1.95 g/t Au

These new assays, which are considered to be more accurate, exceed first pass intercepts from 3 metre composite samples

Best individual assay received was 1m @ 19 g/t Au

Permitting for planned follow up RC drilling is underway

CORPORATE SUMMARY

Executive Chairman

Paul Poli

Director

Frank Sibbel

Director & Company Secretary

Andrew Chapman

Shares on Issue

176.93 million

Unlisted Options

13.70 million @ \$0.25 - \$0.30

Top 20 shareholders

Hold 51.68%

Share Price on 19th July 2018

16.5 cents

Market Capitalisation

\$29.19 million

Head Office: Bangkok Office: reception@matsa.com.au

Suite 11, 139 Newcastle Street, Perth Western Australia 6000 Unit 1801, Pacific Place 2, 142 Sukhumvit Road, Klongtoey, Bangkok 10110 Tel: +66 0 2653 0258 Fax: +66 0 2653 0258

Tel: +61 8 9230 3555 Fax: +61 8 9227 0370

www.matsa.com.au

Matsa Resources Limited ("Matsa" or "the Company" ASX: MAT) is pleased to announce further assay results, from its recently completed aircore drilling program within the Company's Lake Carey Gold Project in the Eastern Goldfields of Western Australia.

As previously announced (MAT announcement to the ASX 11th July 2018) drilling has resulted in:

- the discovery of a new bedrock gold mineralised zone at Fortitude North in excess of 1 km in length, which remains open to the south, and is located just 5km north of Matsa's Fortitude Gold Mine; and
- highly encouraging results from wide spaced drilling at the BE 4 prospect 20km NW of Fortitude North and located 4 kilometres east of Matsa's Red October Gold Mine.

New 1 metre Split Sample Results

Composite samples with anomalous gold values in variably weathered mafic and ultramafic basement rocks at both Fortitude North and BE 4, were resampled at 1 metre intervals to verify gold assays and more accurately define the upper and lower intercept limits. *Sampling protocols are shown in Appendix 1, with 1 metre assay results presented in Appendix 2.*

As previously announced a continuous linear north-south trending zone of bedrock gold mineralisation was defined by 5 lines of aircore drilling over a distance of >1km and remains open to the south under a lake.

A comparison between composite and 1 metre assay intercepts from drill holes defining the newly discovered basement gold mineralisation at Fortitude North is shown in Table 1. These results show that 1 metre sampling has verified the earlier results.

New assays of the highest grade intercept in drillhole 18FNAC036 returned as follows:

8m @ 5.41g/t Au from 76m to end of hole

incl. 2m @ 15 g/t Au from 76m,

all within a broader intercept of:

26m @ 1.95 g/t Au from 57m to end of hole*

Drill Hole	Prospect	Intercepts >0.1 g/t Au in Weathered Basement Rocks						
		Composite Intercept	New 1m Assay Intercept					
18FNAC31	Fortitude N	3m @ 0.2 from 78-EOH	3m @ 0.16 from 78-EOH					
	Fortitude N	27m @ 1.37 g/t Au from 57-EOH	26m @ 1.95 g/t Au from 58m to EOH including*					
18FNAC36	Fortitude N	9m @ 3.16 g/t Au from 75m - EOH	8m @ 5.41g/t Au from 76m to EOH including					
	Fortitude N	3m @ 5.71 g/t Au From 75m	2m @ 15 g/t Au from 76m					
18FNAC38	Fortitude N	3m @ 0.7 g/t Au from 69m	3m @ 0.49 from 69					

 * Insufficient material in the interval 72-73m so the same gold value for interval 71- 72m (0.07 g/t Au) used for the average

Table 1: Results of 1 metre sampling in newly discovered gold zone at Fortitude North

Given the highly encouraging aircore drilling results, immediate follow up drilling is proposed in the current quarter:

- reverse circulation drilling (RC) at Fortitude North as soon as permitting and rig availability has been confirmed
- aircore drilling at Fortitude North in the lake area, yet to be drilled, is proposed to determine the extent of the bedrock gold mineralisation which remains open to the south

The Lake Carey Gold Project

Matsa holds a ground position of ~ 600km² at Lake Carey which is highly prospective for new gold discoveries. The Company is committed to becoming a mid-tier gold mining company. The implementation of this vision commenced with its recently completed trial mining operation at Fortitude, impending commencement of mining at the Red Dog deposit. Furthermore, studies are continuing into the viability of a full scale open-pit gold mine at Fortitude and the re-commencement of underground production at the Red October gold mine (Refer to previous ASX announcements).

Matsa also sees substantial opportunities for further discoveries in favourable structural and stratigraphic settings within the Lake Carey Project area which have not been adequately explored. The Fortitude and Bindah Faults are examples of favourable corridors which contain gold mineralisation (eg. Bindah, Fortitude, Jubilee, Misery and Keringal) and Matsa's recently discovered gold targets (BE 1 -4).

Matsa's discovery at Fortitude North and earlier discoveries along the Bindah Fault, provides strong support for Matsa's belief that there are significant areas which remain under-explored despite 30 years of exploration since the discovery of Sunrise Dam in 1988.

For further information please contact:

Paul Poli Executive Chairman

Phone	+61 8 9230 3555
Fax	+61 8 9227 0370
Email	reception@matsa.com.au
Web	www.matsa.com.au

Competent Person

The information in this report that relates to Exploration results, is based on information compiled by David Fielding, who is a Fellow of the Australasian Institute of Mining and Metallurgy. David Fielding is a full time employee of Matsa Resources Limited. David Fielding has sufficient experience which is relevant to the style of mineralisation and the type of ore deposit under consideration and the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. David Fielding consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1 - Matsa Resources Limited – Lake Carey Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. 	Aircore samples hand sampled at 1m intervals placed in piles on the ground. Composites Samples ~3kg in weight representing 3m downhole scooped from sample piles and submitted for gold only assay. This release documents results of resampling based on anomalous first pass assays is carried out by hand scooping individual 1m sample piles. The last 1m interval of each drill hole was submitted for an assay protocol for a multi element suite comprising gold, gold pathfinder elements and a suite of element used in lithogeochemistry. A field duplicate of this last metre (which represents the least weathered portion in the drill hole) was also submitted with the composite samples for QAQC purposes.
	• Measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Hand scoop, comparatively poor sample: The nature of the regolith encountered in lake aircore drilling being mostly sticky clays, prevents use of a splitter, so all samples are hand scooped.
	• Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Composite Samples and follow up 1m splits for anomalous composites submitted to ALS Laboratories Kalgoorlie for Aqua Regia digest ICP analysis. Detection limit 0.01ppm Au. No special measures were taken to account for coarse gold.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Drilling was carried out using tracked drilling rig based around a Morooka base which is able to operate in areas of loose sand and mud which exist at Fortitude North. All drill holes are vertical.
Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recovery problematic in sticky clay sections with quite variable sample size.

Criteria	JORC Code explanation	Commentary			
	• Measures taken to maximise sample recovery and ensure representative nature of the samples.	Every effort made to clean sample system at the end of each 3m rod. Significant effort made to clean cyclone and containers to avoid contamination.			
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not determined.			
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Simple qualitative geological logs using standard geological coding sheets.			
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Logging is qualitative in nature.			
	• The total length and percentage of the relevant intersections logged.	Logging was carried out on all cuttings produced by aircore.			
Sub-sampling techniques and	• If core, whether cut or sawn and whether quarter, half or all core taken.	Non core			
sample preparation	• If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Aircore samples were scooped or "grab" sampled from bulk residue piles on the ground.			
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample prep in Lab is standard for all assay procedures, whereby sample is dried, homogenized and pulverised.			
	• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples	Anomalous composites repeated with individual 1m splits.			
	• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling	Splits are in effect field duplicates of composites.			
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample weights of ~3kg documented are adequate for fine gold. Evidence of coarse gold suggests that special screen fire assays may be appropriate in some sections			

Criteria	JORC Code explanation	Commentary			
Quality of assay data and laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were dispatched for low level gold determination by Fire Assay, which is an industry standard process. Assay accuracy determined by laboratory QACC process.			
	• For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable			
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	A field duplicate sample submitted together with composite samples for QAQC purposes.			
Verification of sampling and assaying	• The verification of significant intersections by either independent or alternative company personnel.	Composites validated by individual 1m splits. All assay and sampling procedures verified by company personnel. All results reviewed by Exploration Manager Dave Fielding			
•	• The use of twinned holes.	No twinned holes carried out.			
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Geological and sampling data recorded on Toughbook in the field to minimise transcription errors. Hole locations recorded on GPS and compared prior to upload to database.			
	Discuss any adjustment to assay data.				
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Data accuracy has been taken as +-5m for the purposes of designing follow up exploration.			
	• Specification of the grid system used.	GDA94 UTM co-ordinate system Zone 51.			
	• Quality and adequacy of topographic control.	+-10m from AHD has been assumed for regional exploration holes used in designing the follow up programme. For practical purposes the RL for all holes is given as the level of Lake Carey namely 400m AHD			
Data spacing and distribution	• Data spacing for reporting of Exploration Results.	Aircore drilling was designed as follow up of anomalous values in legacy drilling. Drill lines are spaced at ~200m apart with drilling along each line at 100m intervals.			
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral	Drill hole spacing too large to confidently assign continuity of anomalous values. But in the case of Fortitude North, the first pass interpretation is for a continuous			

Criteria	JOR	C Code explanation	Commentary
		Resource and Ore Reserve estimation procedure(s) and classifications applied.	steeply dipping tabular zone of mineralisation.
	•	Whether sample compositing has been applied.	Compositing of aircore samples from 1m to a maximum of 3m was carried out.
Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling carried out on EW lines. Vertical holes not ideal for steeply dipping rocks but selected to minimize drilling difficulties in deep clays.
	•	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling too wide spaced for bias to be a problem. Orientation of continuous in- situ mineralisation yet to be determined.
Sample security	•	The measures taken to ensure sample security.	Samples are delivered to the laboratory by Matsa Staff. No special security procedures are carried out in the field.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	No audit carried out yet.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary						
Mineral	• Type, reference name/number, location and ownership including	Exploration wa	as carried ou	it over the follo	owing tenem	nents:	1	٦
tenement and	agreements or material issues with third parties such as joint ventures,	Tenement	Status	Holder	Granted	Area	Units	_
status	 <i>wilderness or national park and environmental settings.</i> The security of the tenure held at the time of reporting along with any 	E 39/1770*	LIVE	Matsa Gold Pty Limited	1/07/201 4	6	BL.	
	known impediments to obtaining a license to operate in the area.		LIVE	Matsa Gold Pty Limited	6/02/201 4	11	BL.	
		E 39/1889**	LIVE	RAVEN RESOURCES PTY LTD	8/03/201 6	16	BL.	

Criteria	JORC Code explanation	Commentary
		E WILLIE VILLIE 39/1864*** LIVE LTD 17 10 BL
		*Transfer of two tenements to Matsa Gold Pty Ltd as announced to ASX 7 th October 2016. **JV tenement held by Raven Resources and explored under farm in and JV agreement E39/1889. *** Tenement purchased by Matsa Gold and subject to Caveat 502074
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	Past work which included anomalous gold values in aircore drilling at Fortitude North has been acknowledged as being carried out by Midas Gold Ltd in 2008.
Geology	• Deposit type, geological setting and style of mineralisation.	The deposit types being sought are orogenic syntectonic gold mineralisation similar to Fortitude which is located 5km south on the same major fault system
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Appendix 2 contains results for all 1m samples selected from gold anomalous composite samples. No significant information was excluded deliberately.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such 	Quoted intercepts refer either to individual composite samples or subsequent 1m splits. Aggregates are reported as simple averages of individual assay results, with higher grade intervals reported as "including"

Criteria	JORC Code explanation	Commentary		
	aggregations should be shown in detail.The assumptions used for any reporting of metal equivalent values should be clearly stated.			
Relationship between	• These relationships are particularly important in the reporting of <i>Exploration Results</i> .	All intercepts quoted relate to downhole depth and true width is unknown.		
mineralisation widths and	• If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Not known.		
intercept lengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Intercepts in aircore drill holes are expressed in downhole metres.		
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagram summarising salient aspects of drilling was included in the announcement of first pass assay results		
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All drilling information has been used to determine exploration targets.		
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The review made use of publically available aeromagnetics and gravity, past drilling by Midas Gold Ltd which was acquired with purchase of the Lake Carey Fortitude project.		
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The planned drilling is intended to test hypotheses regarding stratigraphic and structural targets Lake Carey.		

DataSet	Hole_ID	M_From	M_To	Sample_ID	Sample_Type	Au_ppm	Comments
Lake Carey	18BNAC014	114	115	156506	1M	<0.01	
Lake Carey	18BNAC014	115	116	156507	1M	<0.01	
Lake Carey	18BNAC014	116	117	156508	1M	<0.01	
Lake Carey	18BNAC015	72	73	156509	1M	<0.01	
Lake Carey	18BNAC015	73	74	156510	1M	<0.01	
Lake Carey	18BNAC015	74	75	156511	1M	<0.01	
Lake Carey	18BNAC018	120	121	156512	1M	<0.01	
Lake Carey	18BNAC018	121	122	156513	1M	<0.01	
Lake Carey	18BNAC027	69	70	156514	1M	<0.01	
Lake Carey	18BNAC027	70	71	156515	1M	0.01	
Lake Carey	18BNAC027	71	72	156516	1M	<0.01	
Lake Carey	18BNAC027	81	82	156517	1M	<0.01	
Lake Carey	18BNAC027	82	83	156518	1M	0.01	
Lake Carey	18BNAC027	83	84	156519	1M	0.06	
Lake Carey	18BNAC027	84	85	156520	1M	0.03	
Lake Carey	18BNAC027	85	86	156521	1M	0.05	
Lake Carey	18BNAC027	86	87	156522	1M	0.02	
Lake Carey	18BNAC028	63	64	156523	1M	<0.01	
Lake Carey	18BNAC028	64	65	156524	1M	0.04	
Lake Carey	18BNAC028	65	66	156525	1M	0.01	
Lake Carey	18BNAC029	66	67	156526	1M	0.03	
Lake Carey	18BNAC029	67	68	156527	1M	<0.01	
Lake Carey	18BNAC029	68	69	156528	1M	0.02	
Lake Carey	18BNAC032	57	58	156529	1M	0.01	
Lake Carey	18BNAC032	58	59	156530	1M	<0.01	
Lake Carey	18BNAC032	59	60	156531	1M	0.04	
Lake Carey	18BNAC035	78	79	156532	1M	1.22	
Lake Carey	18BNAC035	79	80	156533	1M	0.04	
Lake Carey	18BNAC035	80	81	156534	1M	0.03	
Lake Carey	18BNAC035	81	82	156535	1M	0.02	
Lake Carey	18BNAC035	82	83	156536	1M	0.04	
Lake Carey	18BNAC035	83	84	156537	1M	0.04	
Lake Carey	18BNAC035	84	85	156538	1M	0.01	
Lake Carey	18BNAC035	85	86	156539	1M	<0.01	
Lake Carey	18BNAC035	86	87	156540	1M	0.5	
Lake Carey	18BNAC037	69	70	156541	1M	0.05	
Lake Carey	18BNAC037	70	71	156542	1M	0.06	
Lake Carey	18BNAC037	71	72	156543	1M	0.01	
Lake Carey	18BNAC040	93	94	156544	1M	<0.01	
Lake Carey	18BNAC040	94	95	156545	1M	<0.01	
Lake Carey	18BNAC040	95	96	156546	1M	0.05	
Lake Carey	18BNAC040	117	118	156547	1M	0.04	
Lake Carey	18BNAC040	118	119	156548	1M	0.16	
Lake Carey	18BNAC040	119	120	156549	1M	0.1	
Lake Carey	18BNAC041	96	97	156550	1M	0.01	
Lake Carey	18BNAC041	97	98	156551	1M	0.11	
Lake Carey	18BNAC041	98	99	156552	1M	0.53	
Lake Carey	18BNAC041	99	100	156553	1M	0.48	
Lake Carey	18BNAC041	100	101	156554	1M	0.08	
Lake Carey	18BNAC041	101	102	156555	1M	0.1	
Lake Carey	18FNAC019	51	52	156556	1M	0.23	
Lake Carey	18FNAC019	52	53	156557	1M	1.2	
Lake Carey	18FNAC019	53	54	156558	1M	0.79	

Appendix 2: Lake Carey 2018 1_metre Aircore Assays

D

Lake Carey	18FNAC020	54	55	156559	1M	0.07	
Lake Carey	18FNAC020	55	56	156560	1M	0.12	
Lake Carey	18FNAC020	56	57	156561	1M	0.68	
Lake Carey	18FNAC023	102	103	156562	1M	0.02	
Lake Carey	18FNAC023	103	104		1M		insufficient sample/not taken
Lake Carey	18FNAC023	104	105	156563	1M	0.1	
Lake Carey	18FNAC024	63	64	156564	1M	0.05	
, Lake Carev	18FNAC024	64	65	156565	1M	0.05	
Lake Carev	18FNAC024	65	66	156566	1M	0.02	
Lake Carey	18FNAC026	51	52	156567	1M	0.37	
Lake Carev	18FNAC026	52	53	156568	1M	0.04	
Lake Carev	18FNAC026	53	54	156569	1M	0.01	
Lake Carey	18FNAC027	87	88	156570	1M	0.12	
Lake Carey	18FNAC027	88	89	156571	1M	0.03	
Lake Carey	18FNAC027	89	90	156572	1M	0.05	
Lake Carey	18FNAC029	75	76	156573	1M	0.03	
Lake Carey	18FNAC029	75	70	156574	1M	0.02	
Lake Carey	18FNAC029	70	78	156575	1M	0.02	
Lake Carey	18FNAC029	11	70	150575	114	0.03	
Lake Carey	18FNAC030	40	49 F0	150570		<0.01	
Lake Carey	18FNAC030	49	50	150577		0.01	
Lake Carey	18FNAC030	50	51	156578	1M	0.02	
Lake Carey	18FNAC031	/8	79	156579	1M	0.35	
Lake Carey	18FNAC031	79	80	156580		0.03	
Lake Carey	18FNAC031	80	81		Original	0.1	
Lake Carey	18FNAC036	57	58	156581	1M	0.03	
Lake Carey	18FNAC036	58	59	156582	1M	1.97	
Lake Carey	18FNAC036	59	60	156583	1M	0.65	
Lake Carey	18FNAC036	60	61	156584	1M	0.7	
Lake Carey	18FNAC036	61	62	156585	1M	0.28	
Lake Carey	18FNAC036	62	63	156586	1M	0.15	
Lake Carey	18FNAC036	63	64	156587	1M	0.3	
Lake Carey	18FNAC036	64	65	156588	1M	1.22	
Lake Carey	18FNAC036	65	66	156589	1M	0.14	
Lake Carey	18FNAC036	66	67	156590	1M	0.09	
Lake Carey	18FNAC036	67	68	156591	1M	0.15	
Lake Carey	18FNAC036	68	69	156592	1M	0.4	
Lake Carey	18FNAC036	69	70	156593	1M	0.14	
Lake Carey	18FNAC036	70	71	156594	1M	0.09	
Lake Carey	18FNAC036	71	72	156595	1M	0.07	
Lake Carey	18FNAC036	72	73			0.07	Insufficient Material
Lake Carey	18FNAC036	73	74	156596	1M	0.49	
Lake Carey	18FNAC036	74	75	156597	1M	0.22	
Lake Carey	18FNAC036	75	76	156598	1M	0.19	
Lake Carey	18FNAC036	76	77	156599	1M	12.15	
, Lake Carey	18FNAC036	77	78	156600	1M	19	
, Lake Carev	18FNAC036	78	79	156601	1M	2.86	
Lake Carev	18FNAC036	79	80	156602	1M	3.3	
Lake Carev	18FNAC036	80	81	156603	1M	1.56	
Lake Carev	18FNAC036	81	82	156604	1M	2.11	
Lake Carey	18FNAC036	82	82	156605	1M	1 / 8	
Lake Carey	18FNIAC030	02 92	۵5 ۸	15608/	1M	0.84	From first pass assays of ROH
Lake Carey	18ENIAC027	66	67	156606	1M	0.04	
Lake Carey	18ENIAC027	67	60	156607	1M	0.03	
Lake Caroy	19ENIAC037	60	00	15000/		0.01	
Lake Carey		60	69	150008		0.03	
LAKE CALEV	TOLINAC038	60	10	120003	TIVI	0.58	

Laka Cara	105140000		<u></u>	450040	1.1.4		l
Lake Carey	18FNAC038	61	62	156610	1M	0.34	
Lake Carey	18FNAC038	62	63	156611		0.18	
Lake Carey	18FNAC038	63	64	156612		0.09	
Lake Carey	18FNAC038	64	65	156613	110	0.08	
Lake Carey	18FNAC038	65	66	156614	1M	0.01	
Lake Carey	18FNAC038	66	67	156615	1M	0.19	
Lake Carey	18FNAC038	6/	68	156616	1M	0.07	
Lake Carey	18FNAC038	68	69	156617	1M	0.04	
Lake Carey	18FNAC038	69	/0	156618	1M	0.14	
Lake Carey	18FNAC038	70	71	156619	1M	0.6	
Lake Carey	18FNAC038	71	72	156620	1M	0.74	
Lake Carey	18FNAC038	72	73	156621	1M	0.03	
Lake Carey	18FNAC038	73	74	156622	1M	0.02	
Lake Carey	18FNAC038	74	75	156623	1M	0.01	
Lake Carey	18FNAC038	75	76	156624	1M	0.03	
Lake Carey	18FNAC038	76	77	156625	1M	0.01	
Lake Carey	18FNAC038	77	78	156626	1M	0.01	
Lake Carey	18FNAC038	78	79		1M		insufficient sample/not taken
Lake Carey	18FNAC038	79	80	156627	1M	0.16	
Lake Carey	18FNAC038	80	81	156628	1M	0.2	
Lake Carey	18FNAC038	81	82	156629	1M	0.05	
Lake Carey	18FNAC038	82	83	156630	1M	0.03	
Lake Carey	18FNAC038	83	84	156631	1M	0.05	
Lake Carey	18FNAC038	84	85	156632	1M	0.22	
Lake Carey	18FNAC038	85	86	156633	1M	0.09	
Lake Carey	18FNAC038	86	87	156634	1M	0.26	
Lake Carey	18FNAC038	87	88	156635	1M	0.12	
Lake Carey	18FNAC038	88	89	156636	1M	0.09	
Lake Carey	18FNAC044	84	85	156637	1M	0.04	
Lake Carey	18FNAC044	85	86	156638	1M	0.01	
Lake Carey	18FNAC044	86	87	156639	1M	0.01	
Lake Carey	18FNAC046	81	82	156640	1M	0.01	
Lake Carey	18FNAC046	82	83	156641	1M	0.01	
, Lake Carey	18FNAC046	83	84	156642	1M	<0.01	
, Lake Carey	18FNAC050	75	76	156643	1M	<0.01	
Lake Carey	18FNAC050	76	77	156644	1M	0.01	
Lake Carey	18FNAC050	77	78	156645	1M	0.01	
Lake Carey	18FNAC051	45	46	156646	1M	<0.01	
Lake Carey	18FNAC051	46	47	156647	1M	0.01	
Lake Carey	18FNAC051	40	47	156648	1M	0.01	
Lake Carey	18FNAC051	57	58	156649	1M	<0.01	
Lake Carey	18FNAC051	58	50	156650	1M	<0.01	
Lake Carey	19FNAC051	50	59	156651		<0.01	
Lake Carey	18FNAC051	59	61	150031	114	<0.01	
Lake Carey	18FNAC051	60	62	150052		<0.01	
Lake Carey	18FNAC051	61	62	150053		<0.01	-
Lake Carey	18FNAC051	62	63	156654	11/1	<0.01	
Lake Carey	18FNAC051	69	/0	156655		<0.01	
Lake Carey	18FNAC051	/0	/1	156656		0.04	
Lake Carey	18FNAC051	/1	/2	156657	TM	<0.01	
Lake Carey	18FNAC051	84	85	156658	1M	<0.01	
Lake Carey	18FNAC051	85	86	156659	1M	<0.01	
Lake Carey	18FNAC051	86	87	156660	1M	<0.01	
Lake Carey	18FNAC051	87	88	156661	1M	<0.01	
Lake Carey	18FNAC051	88	89	156662	1M	<0.01	
Lake Carev	18FNAC051	89	90	156663	1M	< 0.01	