ASX RELEASE

14 AUGUST 2018

HIGH GRADE RUTILE RECOVERED FROM MALINGUNDE GRAPHITE TAILINGS

Sovereign Metals Limited ("the Company" or "Sovereign") is pleased to report **the discovery and successful metallurgical separation of high grade rutile (TiO₂)** from within the soft, saprolite-hosted graphite deposit at Malingunde in Malawi.

The Company is focused on future low-cost production of high quality graphite concentrates at Malingunde. Recent testwork highlighted the potential to produce **rutile as a valuable co-product** from the **graphite tailings**. Importantly, **clean rutile concentrates are produced** (with no cross-contamination with graphite) via a simple process flowsheet using traditional flotation for graphite and typical mineral sands separation methods.

HIGHLIGHTS:

- Rutile (TiO₂ 95%-97%) and leucoxene (TiO₂ 70%-92%) are high-value, premium natural titanium products normally mined from mineral sands deposits which are commonly consumed in the pigment industry (paint, paper, cosmetics, plastics)
- According to the world's largest rutile producer, Iluka Resources, supplies of natural rutile are in structural deficit¹

Rutile (TiO₂) is a highly sought after, high grade titanium feed source currently fetching ~US\$900 – \$1,050/tonne and projected to reach long term pricing of US\$1,250/tonne (FOB) by 2019². Leucoxene is priced at a discount to the prevailing rutile price, generally based on TiO₂ content.

Results for a limited number of diamond drill-holes analysed to date include;

- MGDD0003: 31m @ 1.26% TiO2 as rutile-leucoxene & 7.1% TGC from surface
- MGDD0006: 25m @ 1.45% TiO₂ as rutile-leucoxene & 11.3% TGC from surface
- MGDD0007: 29m @ 1.37% TiO₂ as rutile-leucoxene & 13.1% TGC from surface

Initial "proof of concept" metallurgical testwork conducted on tailings from bulk graphite flotation tests indicate that;

- all TiO₂ mineral species are rutile or leucoxene
- market specification rutile-leucoxene concentrates with TiO₂ content ranging from 78% to 90% can be easily produced by a simple, industry-standard flowsheet

The Company controls a very large, >4,000km² ground position in central Malawi, providing significant potential for additional graphite-rutile/leucoxene discoveries

Sovereign's Managing Director Dr Julian Stephens commented, "Sovereign is focused on developing the world-class, low-cost graphite operation at Malingunde. The discovery of rutile-leucoxene as a potential co-product, produced from the graphite tailings via a simple process flowsheet provides the potential for additional revenue streams and enhanced project value. The Company intends to undertake further studies to advance work on this discovery, without compromising the focus upon the development of graphite operations at Malingunde."

ENQUIRIES	Dr Julian Stephens – Managing Director
+618 9322 6322	Sam Cordin – Business Development Manager

INTRODUCTION

During recent chemical analyses of bulk graphite metallurgical samples for flotation test-work from Malingunde it was noted that TiO_2 levels were significantly elevated. It was hypothesised that the elevated TiO_2 may be due to the presence of rutile and/or leucoxene, as the company had previously identified rutile within its Duwi graphite deposit, some 30km to the north-east of Malingunde (Figure 1).

Rutile (TiO₂) is a highly sought after, high grade titanium feed source with concentrates currently fetching \sim US\$900 – 1,050/tonne and projected to reach long term pricing of US\$1,250/tonne (FOB) by 2019². Leucoxene is priced at a discount to the prevailing rutile price, generally based on TiO₂ content.

Figure 1(a). Coarse rutile grains in thin section of graphitic saprolite. Each rutile grain is approximately 100um across. rt – rutile, cy – clay, qz – quartz, gp – graphite. Field of view is about 800um across.

Figure 1(b). Rutile concentrate from south composite HTR non-magnetic fraction grading 89.93% TiO₂. Field of view is approximately 2,000um (2mm) across.

TESTWORK

The Company undertook a program to test the hypothesis that elevated TiO_2 levels at Malingunde were due to the presence of rutile and /or leucoxene, and if so, whether it may be recoverable as a saleable co-product to the graphite operation.

The following work program was undertaken;

- Selection of 80 samples from 5 diamond drill holes and multi-element chemical analysis, specifically targeting TiO_2
- Heavy liquid separation (HLS) work was undertaken at Allied Mineral Laboratories (AML) in Perth on 10 of the 80 samples above
- XRD (semi-quantitative) for bulk mineralogy on the 10 HLS concentrates
- Primary and secondary wet table separation on a composite tailings sample (South Composite)
- XRD mineralogy on 3 splits (concentrate, middlings and tailings) for the South Composite. TGC (total graphitic carbon) by Eltra on the 6 splits. Na-peroxide fusion ICP OES/MS on the 6 splits.
- Electrostatic (HTR) separation of the combined concentrate and middlings fraction for the South Composite
- Magnetic separation on the HTR middlings and conductor for the South Composite to produce final products.

ASSAY OF DRILL SAMPLES

A total of 5 sections of drill core (MGDD0003-MGDD0007) were selected for multi-element analysis and totalled 80 samples. These samples were also selected to represent a range of graphite grades from 0 to 30% and to cover all of the different weathering zones identified at Malingunde.

Significant results from within soft, free-dig saprolite analysed to date include;

- MGDD0003: 31m @ 1.26% TiO2 as rutile-leucoxene & 7.1% TGC from surface
- MGDD0006: 25m @ 1.45% TiO₂ as rutile-leucoxene & 11.3% TGC from surface
- MGDD0007: 29m @ 1.37% TiO₂ as rutile-leucoxene & 13.1% TGC from surface

Holes MGDD0004 and MGDD0005 also showed similarly high TiO₂ values, however, these sections are mainly hosted in more competent saprolite and saprock and hence are not considered economically important. All assay results are listed in Appendix 1 with holes MGDD0006 and 0007 depicted in Figure 2.

Figure 2. Cross-section showing high-grade TiO₂ (rutile-leucoxene) from selected drill intercepts within the broad, high grade saprolite-hosted graphite resource at Malingunde.

Overall, results show a minimum of 0.75%, a maximum of 2.52% and an average of 1.33% TiO₂ content. There appears to be a slightly negative correlation of TiO₂ to graphite (TGC) with a clearer negative correlation below about 10% TGC. TiO₂ appears highly enriched in soil (SOIL), and possibly enriched in the near surface ferruginous pedolith (FERP), both in areas where there is little to no graphite.

ASX RELEASE

Figure 3. Graph of TiO₂ content v TGC content across various weathering zones. SOIL = soil normally 0-1m vertical, FERP = ferruginous pedolith 1-4m, MOTT = mottled saprolite 4-7m, SAPL = saprolite 7-25m, SAPR = saprock 25-35m, FRESH = fresh rock >35m.

HEAVY LIQUID SEPARATION

Heavy liquid separation (HLS) work was carried out at AML in Perth on 10 selected samples, making up the key MOTT and SAPL zones, of the 80-sample suite assayed and reported in the preceding section. The samples were subject to a standard deslime prior to the HLS work. Results are presented below in Appendix 2. Significant results include;

- Slimes range between 17% and 34% with higher slimes recorded in the near surface mottled zone (MOTT)
- Total heavy minerals (HM) recovered to concentrate ranged from 2.4% to 15.3%
- The TiO₂ content in the HM concentrates ranged from 5.4% to 28.1%
- TiO₂ recovery to the HM concentrate ranged from 52% to 79%
- Semi-quantitative XRD by Intertek Perth showed rutile content was between 5% and 22% of the total mass of the HM concentrates.
- Leucoxene was not discernible or quantifiable but was suspected to be present
- Overall TiO₂ recoveries to HLS concentrate ranged between 33% and 70%

WET TABLE, ELECTROSTATIC AND MAGNETIC SEPARATION

The encouraging results from the HLS work, where recovered rutile-leucoxene grades ranged between 0.5% and 0.9% (as a % of original ore), led the Company to initiate a program on bulk samples at AML in Perth.

This program involved taking two bulk composite samples split from graphite flotation test-work tailings. These were then subject to a primary wet table separator, with the primary middlings also subject to a secondary wet table separation for both samples.

XRD mineralogy was then undertaken on 3 splits (concentrate, middlings and tailings) for each of the South and North Composites (6 in total). TGC by Eltra and Na-peroxide fusion ICP OES/MS was conducted on the 6 splits.

Electrostatic (HTR) separation of the combined concentrate and middlings fraction for the North and South composites was completed.

ASX RELEASE 14 August 2018

Finally, magnetic separation on the HTR middlings and conductor for the South composite, and on the conductor for the North composite was completed (not enough mass to process the HTR middlings for the North composite).

Overall, results were highly encouraging and indicated that;

- South composite (1.49% TiO₂) produced a 0.86% recovered grade (from ore) to final concentrate of TiO₂, with 83.2% TiO₂ grade (combined HTR middlings and conductor fractions). These components separately represent 0.45% (from ore) @ 77.90% TiO₂ and 0.41% @ 89.93% TiO₂ for the middlings and conductor fractions respectively
- North composite (1.41% TiO₂) produced a 0.55% recovered grade (from ore) to concentrate of TiO₂, with a 76.7% TiO₂ grade from conductor non-mag fraction only. The middlings fractions did not have enough mass to conduct magnetic separation, so the result for this composite is only a partial result.

CONCLUSION AND NEXT STEPS

Rutile is a relatively common accessory mineral in reduced paragneisses and schists such as these in central Malawi. However, the occurrence of potentially economically recoverable grades of rutile-leucoxene at Malingunde and throughout the Lilongwe Plains area (mainly controlled by Sovereign) hosted within saprolite appears relatively unique.

The test-work program has shown that overall recovered grades of TiO₂ from raw ore into rutile-leucoxene concentrates, was 0.86% (South Composite).

Concentrates produced to date from these initial sighter tests (78% to 90% TiO₂) highlight the potential for the commercial production of leucoxene concentrate as a co-product produced from the graphite tailings. Further work needs to be undertaken to determine if high grade +95% TiO₂ rutile concentrates can be produced from the Malingunde tailings material.

Recovery of rutile-leucoxene from Malingunde tails should be further investigated as a possible, future extension to the proposed graphite operation at Malingunde.

Additionally, the regional rutile-leucoxene potential would seem substantial and is economically interesting for a number of reasons;

- The average in ground grade from samples analysed from Malingunde is about 1.3% TiO₂
- There appears to be no association to a weakly negative association of elevated TGC to TiO_2 indicating the high TiO_2 levels are likely to be widespread across these weathered rock-types in the area
- The relatively well-developed weathering profile appears to have concentrated rutile-leucoxene within the upper 5-10m parts of the weathering profile in the SOIL, FERP and possibly MOTT units
- The paragneiss rock package with mostly preserved weathering profile has substantial areal extent, in the order of 3,000km², the vast majority of which is controlled by Sovereign

The Company intends to undertake further studies to determine whether;

- a +95% TiO₂ concentrate can be produced from the Malingunde graphite tails
- sufficient additional project value could be added by incorporating a small plant to recover rutileleucoxene from the graphite tails
- there could be large volumes at economic grades of rutile-leucoxene in rivers draining the Lilongwe Plain within the Sovereign's large >4,000km² ground package

Competent Persons' Statements

The information in this report that relates to Exploration Results is based on information compiled by Dr Julian Stephens, a Competent Person who is a member of the Australian Institute of Geoscientists (AIG). Dr Stephens is the Managing Director of Sovereign Metals Limited and a holder of shares, options and performance rights in Sovereign Metals Limited. Dr Stephens has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Stephens consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Metallurgical Results is based on information compiled by Mr Gavin Diener, a Competent Person who is a member of the AusIMM. Mr Diener is the Chief Operating Officer of TZMI, an independent mineral sands consulting company and is not a holder of any equity type in Sovereign Metals Limited. Mr Diener has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Diener consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Looking Statement

This release may include forward-looking statements, which may be identified by words such as "expects", "anticipates", "believes", "projects", "plans", and similar expressions. These forward-looking statements are based on Sovereign's expectations and beliefs concerning future events. Forward looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Sovereign, which could cause actual results to differ materially from such statements. There can be no assurance that forward-looking statements will prove to be correct. Sovereign makes no undertaking to subsequently update or revise the forward-looking statements made in this release, to reflect the circumstances or events after the date of that release.

References

https://www.fnarena.com/index.php/2018/01/30/2018-looks-bright-for-iluka-resources/

²Credit Suisse 2017. Mineral Sands Forecast – Research Analyst Matthew Hope.

Appendix 1

Table A. Diamond Drill Hole Collar Details

Hole ID	Easting UTM (Zone 36S)	Northing UTM (Zone 36S)	RL AMSL (m)	Final Depth (m)	Dip	Azi (UTM)	Hole Type
MGDD0003	571,934	8,436,002	1,140	47.6	-90	360	PQ3
MGDD0004	570,753	8,437,001	1,151	53.8	-45	270	PQ3
MGDD0005	570,637	8,437,001	1,152	47.5	-45	270	PQ3
MGDD0006	570,635	8,437,000	1,152	29.4	-45	270	PQ3
MGDD0007	570,758	8,437,000	1,150	29.4	-45	270	PQ3

Table B. TGC and TiO₂ assays for 80 selected samples from 5 diamond drill-holes

HoleID	From (m)	To (m)	Width (m)	Weathering	TGC %	TiO₂ %
MGDD0003	0.00	2.45	2.45	SOIL	0.6	2.20
MGDD0003	2.70	6.15	3.45	FERP	1.8	1.23
MGDD0003	6.40	7.26	0.86	SAPL	7.0	1.55
MGDD0003	8.61	9.75	1.14	SAPL	7.1	1.30
MGDD0003	10.00	10.91	0.91	SAPL	6.5	1.15
MGDD0003	11.61	13.00	1.39	SAPL	7.1	1.23
MGDD0003	13.00	15.00	2.00	SAPL	6.4	1.17
MGDD0003	15.00	16.00	1.00	SAPL	4.9	0.75
MGDD0003	16.25	17.61	1.36	SAPL	3.1	1.72
MGDD0003	18.16	20.00	1.84	SAPL	9.0	1.20
MGDD0003	20.00	22.00	2.00	SAPL	5.5	1.22
MGDD0003	22.00	24.00	2.00	SAPL	11.8	1.07
MGDD0003	24.00	26.00	2.00	SAPL	12.9	1.07
MGDD0003	26.00	27.60	1.60	SAPL	9.7	0.82
MGDD0003	27.85	30.00	2.15	SAPL	9.9	1.07
MGDD0003	30.00	31.00	1.00	SAPL	20.7	0.98
MGDD0003	31.00	32.00	1.00	SAPR	19.4	1.20
MGDD0003	32.25	34.00	1.75	SAPR	8.8	1.37
MGDD0003	34.00	36.00	2.00	FRESH	4.8	1.42
MGDD0003	36.25	38.00	1.75	FRESH	8.1	0.92
MGDD0003	38.00	40.97	2.97	FRESH	19.2	0.85
MGDD0003	41.20	42.00	0.80	FRESH	4.8	1.58
MGDD0003	42.00	44.00	2.00	FRESH	16.5	1.00
MGDD0003	44.00	46.00	2.00	FRESH	17.4	1.12
MGDD0003	46.25	47.61	1.36	FRESH	5.6	1.10
MGDD0004	28.00	29.00	1.00	SAPL	7.3	1.12
MGDD0004	29.00	30.00	1.00	SAPL	3.7	1.99
MGDD0004	30.00	31.75	1.75	SAPL	4.1	1.95
MGDD0004	32.00	34.00	2.00	SAPL	3.1	1.58
MGDD0004	34.00	36.00	2.00	SAPL	0.1	2.42

ASX RELEASE 14 August 2018

(D)	
)
)
(\bigcirc))

HoleID	From (m)	To (m)	Width (m)	Weathering	TGC %	TiO ₂ %
MGDD0004	36.00	37.55	1.55	SAPL	3.9	1.92
MGDD0004	37.80	39.75	1.95	SAPR	0.3	1.67
MGDD0004	39.75	42.00	2.25	SAPR	0.4	1.70
MGDD0004	42.00	44.00	2.00	SAPR	2.0	1.03
MGDD0004	44.00	46.15	2.15	SAPR	10.8	1.00
MGDD0004	46.37	48.00	1.63	SAPR	9.5	0.90
MGDD0004	48.00	49.67	1.67	SAPR	7.5	1.12
MGDD0004	49.92	52.00	2.08	SAPR	7.1	1.02
MGDD0004	52.00	53.79	1.79	SAPR	15.5	1.08
MGDD0005	28.30	30.00	1.70	SAPR	7.5	1.27
MGDD0005	30.25	31.70	1.45	SAPR	8.3	1.37
MGDD0005	31.70	33.00	1.30	SAPR	2.4	1.20
MGDD0005	33.00	36.00	3.00	SAPR	6.7	1.53
MGDD0005	36.00	38.52	2.52	SAPR	5.1	1.55
MGDD0005	38.52	40.00	1.48	SAPR	20.3	1.05
MGDD0005	40.00	41.75	1.75	SAPR	23.4	0.85
MGDD0005	42.00	44.52	2.52	SAPR	24.1	0.80
MGDD0005	44.52	46.41	1.89	SAPR	3.9	0.80
MGDD0005	46.41	47.52	1.11	SAPR	9.6	1.33
MGDD0006	0.86	2.00	1.14	SOIL	0.3	2.52
MGDD0006	2.00	4.25	2.25	FERP	1.2	1.57
MGDD0006	4.50	6.84	2.34	MOTT	9.6	1.07
MGDD0006	6.84	8.40	1.56	MOTT	7.2	1.65
MGDD0006	8.40	10.38	1.98	MOTT	8.1	1.23
MGDD0006	10.61	12.05	1.44	MOTT	16.6	1.43
MGDD0006	12.05	14.00	1.95	SAPL	8.0	1.20
MGDD0006	14.25	16.38	2.13	SAPL	14.6	1.38
MGDD0006	16.38	18.00	1.62	SAPL	15.2	1.68
MGDD0006	18.00	20.00	2.00	SAPL	27.2	1.50
MGDD0006	20.00	21.98	1.98	SAPL	22.2	0.93
MGDD0006	22.23	24.00	1.77	SAPL	7.7	1.70
MGDD0006	24.00	25.18	1.18	SAPL	3.6	1.75
MGDD0006	25.18	26.81	1.63	SAPR	4.4	1.70
MGDD0006	27.03	29.40	2.37	SAPR	6.8	1.25
MGDD0007	0.00	2.62	2.62	SOIL	0.8	2.37
MGDD0007	2.95	4.25	1.30	FERP	1.1	1.52
MGDD0007	4.25	5.75	1.50	MOTT	12.1	1.52
MGDD0007	6.00	8.42	2.42	MOTT	16.7	1.30
MGDD0007	8.42	10.62	2.20	MOTT	4.4	1.40
MGDD0007	10.62	12.00	1.38	SAPL	3.7	2.12
MGDD0007	12.00	13.32	1.32	SAPL	4.5	1.20
MGDD0007	13.54	14.55	1.01	SAPL	3.7	1.20
MGDD0007	14.55	16.00	1.45	SAPL	24.2	0.98

SOVEREIGN METALS LIMITED ASX:SVM

HoleID	From (m)	To (m)	Width (m)	Weathering	TGC %	TiO₂ %
MGDD0007	16.00	18.00	2.00	SAPL	27.5	0.97
MGDD0007	18.00	19.06	1.06	SAPL	30.1	0.80
MGDD0007	19.31	20.00	0.69	SAPL	25.4	1.07
MGDD0007	20.00	22.00	2.00	SAPL	25.7	1.08
MGDD0007	22.00	24.00	2.00	SAPL	18.9	1.18
MGDD0007	24.00	26.80	2.80	SAPL	15.6	0.98
MGDD0007	26.80	29.42	2.62	SAPL	5.2	1.65

Table C. HLS sample details with TGC (by Eltra) and TiO₂ (by Na-peroxide fusion ICP OES/MS)

Hole	From (m)	To (m)	Sample ID	weight (g)	TGC (%)	TiO ₂ %
MGDD0003	13	15	1650	1959	6.40	1.17
MGDD0003	20	22	1655	2217	5.50	1.22
MGDD0003	24	26	1657	2178	12.90	1.07
MGDD0007	6	8.42	1687	2076	16.70	1.30
MGDD0007	16	18	1694	1760	27.50	0.97
MGDD0007	24	26.8	1700	2727	15.60	0.98
MGDD0006	8.4	10.38	1731	1557	8.10	1.23
MGDD0006	12.05	14	1734	1858	8.00	1.20
MGDD0006	18	20	1738	2105	27.20	1.50
MGDD0006	22.23	24	1741	2109	7.70	1.70

Table D. Sample type, slimes (-53um) & sand (+53um) fractions and mass of HM in sand fraction

Weathering	Sample ID	Start weight (g)	+53µm weight (g)	-53µm weight (g)	+53µm % (sand)	-53µm % (slimes)	Mass % HM in +53 µm fraction
SAPL	1650	1938.7	1601.6	337.1	82.61	17.39	5.23
SAPL	1655	2196	1596.5	599.5	72.7	27.3	7.66
SAPL	1657	2156.8	1682.8	474	78.02	21.98	3.02
MOTT	1687	2055.5	1358	697.5	66.07	33.93	9.76
SAPL	1694	1740.3	1437.8	302.5	82.62	17.38	5.58
SAPL	1700	2689.2	2176.4	512.8	80.93	19.07	11.51
MOTT	1731	1536.6	1151.4	385.2	74.93	25.07	19.26
PSAP	1734	1837.1	1438.4	398.7	78.3	21.7	19.55
SAPL	1738	2083.1	1609.8	473.3	77.28	22.72	3.44
SAPL	1741	2084.1	1619.2	464.9	77.69	22.31	5.64

Table E. Total calculated HM as % of original ore samples, TiO₂ in HM concentrate (ICP), TiO₂ recovered to HM concentrate as % of original ore samples, semi-quantitative rutile % as measured by XRD, TiO₂ in original ore samples recovered as rutile

Sample ID	Tot calc. HM %	Calc. HM weight	ICP TiO₂ in HM %	% TiO ₂ recovered to HLS	TiO₂ recovery % to HLS	XRD Rutile % in HLS	% Rutile recovered to HLS	% TiO ₂ recovered conc.
1650	4.3	83.8	16.75	0.72	61.98	13.00	0.56	48.10%
1655	5.6	122.3	14.46	0.81	66.15	11.00	0.61	50.30%
1657	2.4	50.8	26.43	0.62	58.32	21.00	0.49	46.35%
1687	6.4	132.5	10.49	0.68	52.01	9.00	0.58	44.60%
1694	4.6	80.2	15.47	0.71	73.69	14.00	0.65	66.71%
1700	9.3	250.5	7.46	0.69	70.58	7.00	0.65	66.25%
1731	14.4	221.8	6.72	0.97	78.60	6.00	0.87	70.15%
1734	15.3	281.2	5.37	0.82	68.47	5.00	0.77	63.73%
1738	2.7	55.4	28.08	0.75	49.72	22.00	0.58	38.96%
1741	4.4	91.3	17.05	0.75	43.91	13.00	0.57	33.48%

Table F. South and North Composite wet table, electrostatic and magnetic separation results.

	Sample ID	Descripti on	Rutile XRD	TiO₂ XRF	% head (tails) feed	% head (raw ore) feed	TiO ₂ Recovere d grade from tails	Recovery of TiO ₂ to conc from tails	TiO₂ Recovere d grade from ore	Recovery of TiO ₂ to conc from ore
))					North Co	omposite				
	#0534	HTR Cond	49	71.53	1.51	1.07	-	-	-	-
_	#0535	HTR Mid	47	63.47	0.40	0.28	-	-	-	-
7	#0536	HTR Non Cond	6	8.56	0.77	0.55	-	-	-	-
リ	#0537	(Cond) IRM Mag	30	46.16	0.51	0.36	-	-	-	-
))	#0538	(Cond) IRM Non Mag	62	76.72	1.00	0.71	0.77%	51.50%	0.55%	36.61%
					South Co	omposite				
1	#0539	HTR Cond	57	73.41	0.83	0.67	-	-	-	-
))	#0540	HTR Mid	55	69.49	1.03	0.82	-	-	-	-
)	#0541	HTR Non Cond	5	7.31	1.76	1.41	-	-	-	-
2	#0542	(HTR Mid) IRM Mag	32	42.92	0.31	0.25	-	-	-	-
	#0543	(HTR Mid) IRM Non Mag	57	77.90	0.72	0.57	0.56%	37.46%	0.45%	30.01%
))	0544	(HTR Cond) IRM Mag	40	53.43	0.31	0.25	-	-	-	-
	#0545	(HTR Cond) IRM Non Mag	69	89.93	0.57	0.46	0.52%	34.61%	0.41%	27.72%
		HTR Mid+Cond combined (calc.)	-	<u>83.25</u>	-	-	1.07%	72.07%	0.86%	57.73%

ASX RELEASE

14 August 2018

Appendix 2: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Γ	Criteria	JORC Code explanation	Commentary
	Sampling	Nature and quality of sampling (e.g. cut	PQ triple tube (PQ3) Diamond Drilling (DD) was employed to obtain drill core from surface, which was
	Techniques	channels, random chips, or specific	subsequently geologically and geotechnically logged. Whole diamond core has been quarter split and
/	<u> </u>	specialised industry standard measurement	sampled at nominal 2m downhole intervals and submitted for Total Graphitic Carbon (TGC) analysis by
		tools appropriate to the minerals under	Eltra (reported on 26th October 2016 and 15th March 2017). A selection of 80 pulps were taken from this
]	investigation, such as down hole gamma	work and re-analysed by Na-peroxide fusion ICP OES/MS to specifically target TiO ₂ values. Remaining core
	1	sondes, or handheld XRF instruments, etc.).	was sealed in layflat tubing and stored in-doors for future metallurgical testwork.
		These examples should not be taken as	
	1	limiting the broad meaning of sampling.	Heavy liquid separation (HLS) work was undertaken at AML in Perth on 10 samples which were selected from
	4		coarse rejects of the 80 pulps analysed above. XRD (semi-quantitative) for bulk mineralogy on the 10 HLS
		Include reference to measures taken to	concentrates was undertaken at Intertek Perth. Primary and secondary wet table separation work was
(())	ensure sample representivity and the	undertaken on two \sim 20kg composite tailings samples produced from earlier graphite flotation test-work
	/	appropriate calibration of any measurement	(South Composite and North Composite). XRD mineralogy on 3 splits from each composite after tabling
		tools or systems used.	(concentrate, middlings and tailings) for the South Composite. TGC (total graphitic carbon) by Eltra was
			conducted on the 6 splits. Na-peroxide fusion ICP OES/MS was also conducted on the 6 splits. Electrostatic
A5	\	Aspects of the determination of	(HTR) separation of the combined concentrate and middlings inactions for each composite was undertaken,
(())	Report In cases where 'industry standard'	followed by magnetic separation on the FTR midulings and conductors to produce final products.
	/	work has been done this would be relatively	
10		simple (e.a. 'reverse circulation drilling was	
(//)		used to obtain 1 m samples from which 3 ka	
(\cup))	was pulverised to produce a 30 g charge for	
		fire assay'). In other cases more explanation	
		may be required, such as where there is	
)	coarse gold that has inherent sampling	
		problems. Unusual commodities or	
		mineralisation types (e.g. submarine nodules)	
		may warrant disclosure of detailed	
	Drilling	Drill type (a g core reverse sinculation open	Conventional wireling PO triple tube (PO) Diamond Drilling (DD) was employed to obtain all drill care from
an	Techniques	hole hammer rotary air blast auger Banaka	surface. Drilling was undertaken with an Atlas Conco Christensen CT14 truck mounted drilling rig. The
$\left(\left(1\right) \right)$		sonic etc.) and details (e.a. core diameter	nominal core diameter is 83mm with a nominal hole diameter is 122mm. Coring was completed with
90	/	triple or standard tube, depth of diamond	standard diamond impregnated tungsten carbide drilling bits. Drill runs were completed employing either a
	1	tails, face-sampling bit or other type, whether	3.0 or 1.5m length PQ core barrel.
		core is oriented and if so, by what method,	
	1	etc.).	
	Drill Sample	Method of recording and assessing core and	At the completion of each drill run the steel splits containing the drill core were pumped out of the retrieved
()	Recovery	chip sample recoveries and results assessed.	core tube. Core was then carefully transferred from the drill split into plastic sleeves (layflat) which were
)	Magguros takon to maximico camplo rocovoru	secured in rigid PVC splits. The layriat was securely bound and sealed with tape prior to transferring PVC
		and ensure representative nature of the	spirts into plastic core trays. Core recovery was then recorded separately for each drining run.
AG		samples.	Core recovery was closely monitored during drilling particularly through the mineralised zones. Standard
$\left(\bigcup \right)$)	Whether a relationship exists between	industry drilling mud mixtures were employed to improve core recovery especially through the softer upper
SP		sample recovery and grade and whether	clay rich material and underlying saprolitic horizon. Other measures such as adjusting the quantity of water
$(\Box $		sample bias may have occurred due to	used during drilling, the amount of rotation used and use of different drill bit types appropriate for soft
	1	preferential loss/gain of fine/coarse material.	formation drilling were employed during drilling to improve core recovery.
as			
(())		Drill hole MGDD0004 and MGDD0005 were re-drilled due to core loss sustained through a number of
Y P	/		mineralised zones. An overall core recovery of 89% was achieved for all drill holes and the core recovery
			through mineralised zones (>=5% vV) averages 90%. Excluding MiGDD0004 and MiGDD0005, core recovery
(\cap)			
	/		
ſ	Logging	Whether core and chip samples have been	All DD core was geologically logged, recording relevant data to a standard template on a geological interval
5		geologically and geotechnically logged to a	basis. Hole MGDD0001-7 were geotechnically logged by trained company geologists. Hole MGDD0008-13
	1	level of detail to support appropriate Mineral	was geotechnically logged by a qualified geotechnical engineer and selected samples were collected for
		Resource estimation mining studies and	laboratory strength tests. In addition, samples have been selected for bulk density determinations. All logged
$\left(\begin{array}{c} \end{array} \right)$)	metallurgical studies. Whether logging is qualitative or quantitative	aata was coorriged to a set company codes system. This information is of a sufficient level of detail to support
	/	in nature Core (or costean channel etc.)	appropriate minieral resource estimation mining studies and metallurgical studies.
		photography.	Logging is both qualitative and quantitative. Geological logging included lithological features, and volumetric
		The total length and percentage of the	visual estimates of mineralisation percentages and flake characteristics. All drill core is digitally
		relevant intersection logged.	photographed prior to sampling for future reference.
	1		
			100% of drill-hole samples have been geologically logged.

Sub-sampling techniques and sample preparation Quality of assay data and laboratory tests	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicate, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Whole PQ3 drill core was manually split and/or cut using a motorised diamond blade core saw and quarter sample is crushed to nominal 100% - 3mm in a Boyd crusher then pulverised to 85% - 75µm in a LMS. Approximately 100g pulp is collected and sent to Intertek-Genalysis Perth for chemical analysis. 10 heavy liquid separation (HLS) work samples were selected from coarse rejects of the 80 pulps analysed above. Primary and secondary wet table separation work was undertaken on two ~20kg composite tailings samples produced from earlier graphite flotation test-work (South Composite and North Composite).
Verification of sampling & assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Significant mineralisation intersections were verified by alternative company personnel. Twinned holes were not used for this initial work on rutile-leucoxene. All data is initially collected on paper logging sheets and codified to the Company's templates. This data was hand entered to spreadsheets and validated by Company geologists. This data was then imported to a Microsoft Access Database then validated automatically and manually. No adjustments have been made to assay data.
) Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Collars were tape measured from 20m separated DGPS surveyed auger holes (accuracy 0.02m x/y). All collars will be picked-up by the Company's consulting surveyor used a Leica GPS System 1200 in RTK mode to define the drill-hole collar coordinates to centimetre accuracy. All down-hole surveying was carried out using a Reflex Ez-Trak multi-shot survey tool at 30m intervals down hole. WGS84 (GRS80) UTM Zone 36 South is the grid system used. The Company's consulting surveyor used a Leica DGPS System 1200 in RTK mode to accurately locate the x, y, z of drill collars. Previous checking of Hand Auger holes with the Shuttle Radar Topographic Mission (SRTM) 1-arc second digital elevation data has shown that the Leica GPS System produces consistently accurate results. Given the low topographic relief of the area it is believed that this represents high quality control.
Data spacing & distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Diamond core drill holes occur along east-west sections spaced at between 100-400m north-south between 35,400mN to 37,200mN. No Mineral Resource Estimate (MRE) has been completed for rutile-leucoxene mineralisation at Malingunde and the data distribution is not yet sufficient to establish grade continuity appropriate for a MRE. No sample compositing has occurred.

Orientation	Whether the orientation of sampling achieves	No bias attributable to orientation of sampling has been identified, however, it is also not yet possible to
of data in unbiased sampling of possible structures and		ascertain the geological orientation of the rutile-leucoxene mineralisation.
relation to the extent to which this is known considering		
geological the deposit type		
structure If the relationship between the drilling		
	orientation and the orientation of key	
	mineralised structures is considered to have	
\geq	introduced a sampling bias, this should be	
	assessed and reported if material.	
Sample	The measures taken to ensure sample	Samples are securely stored at the Company's compound in Lilongwe. Samples are labelled in accordance
security	security	with HCS 2012 and kept for 5 years.
Audits or	The results of any audits or reviews of	It is considered by the Company that industry best practice methods have been employed at all stages of
reviews	sampling techniques and data	work. Reviews of metallurgical and downstream test-work are undertaken by appropriately qualified
		independent consultants on a regular basis

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number,	The Company owns 100% of 4 Exclusive Prospecting Licences (EPLs) in Malawi. EPL0355 renewed in 2017 for 2
tenement &	location and ownership including	years, EPL0372 renewed in 2018 for 2 years and EPL0413 renewed in 2017 for 2 years. EPL0492 was granted in
Iand tenure	agreements or material issues with	2018 for an initial period of three years (renewable).
status	third parties such as joint ventures,	
	partnerships, overriding royalties,	The tenements are in good standing and no known impediments to exploration or mining exist.
	native title interests, historical sites,	
	wilderness or national park and	
	environment settings.	
	The security of the tenure held at the	
	time of reporting along with any	
	known impediments to obtaining a	
	licence to operate in the area.	
Exploration	Acknowledgement and appraisal of	No other parties were involved in exploration.
done by other	exploration by other parties.	
parties		
Geology	Deposit type, geological setting and	The rutile-leucoxene mineralisation occurs within graphitic gneisses, hosted within a broader Proterozoic
	style of mineralisation	paragneiss package. In the Malingunde area specifically, a deep tropical weathering profile is preserved, resulting in
		significant vertical thicknesses from near surface of saprolite-hosted rutile-leucoxene and graphite mineralisation.
Drill hole	A summary of all information	All material information is presented in Tables A though F in Appendix 1.
information	material to the understanding of the	No material information has been excluded.
	exploration results including a	
	tabulation of the following	
	information for all Material drill	
	holes: easting and northings of the	
	drill hole collar; elevation or RL	
	(Reduced Level-elevation above sea	
] [] [level in metres of the drill hole collar);	
50	dip and azimuth of the hole; down	
	nole length and interception depth;	
	and note length	
70	If the exclusion of this information is	
	justified on the basis that the	
JV	information is not Material and this	
	understanding of the report the	
	Competent Person should clearly	
))	explain why this is the case	
Data	In reporting Exploration Results	A 0% TiO lower cut off grade was applied
Dutu	million averaging techniques	A 0% frog lower cut-on grade was appredu.
methods	maximum and/or minimum arade	No metal equivalent values are used in this report
methous	truncations (e.g. cutting of high-	
	arades) and cut-off arades are	
	usually Material and should be	
	stated.	
	Where aggregate intercepts	
	incorporate short lengths of high-	
1	grade results and longer lengths of	
	low grade results, the procedure used	
	for such aggregation should be	
	stated and some typical examples of	
	such aggregations should be shown	
	in detail.	
	The assumptions used for any	
	reporting of metal equivalent values	
	should be clearly stated.	

	Relationship	These relationships are particularly	All reported widths are down-hole widths. The orientation and geometry of the rutile-leucoxene mineralisation is
	between	important in the reporting of	not currently well understood.
	mineralisation	Exploration Results.	
	widths &	If the geometry of the mineralisation	
	intercent	with respect to the drill hole anale is	
	lengths	known its nature should be reported	
	lengths	If it is not known and only the down	
		hole lengths are reported there	
\rightarrow	\sim	should be a clear statement to this	
		should be a clear statement to this	
	1	effect (e.g. down noie length, true	
		wiath not known .	
	Diagrams	Appropriate maps and sections (with	See Figures within the main text of this report.
		scales) and tabulations of intercepts	
	1	should be included for any significant	
		discovery being reported. These	
()		should include, but not be limited to a	
)	plan view of the drill collar locations	
	/	and appropriate sectional views.	
	Balanced	Where comprehensive reporting of all	Representative reporting of low and high-grades has been effected within this report.
an	reporting	Exploration Results is not practicable,	
(()		representative reporting of both low	
)	and high-grades and/or widths	
		should be practiced to avoid	
an		misleading reporting of exploration	
		results	
	Other	Other exploration data if meaninaful	No additional meaningful and material exploration data has been excluded from this report that has not previously
	substantive	and material should be reported	heen renorted to the ASX
	exploration	including (but not limited to):	
	data	aeological observations: geophysical	
	uutu	survey results: geochemical survey	
		survey results, geochemical survey	
		method of treatment, metallurgical	
		tost roculte: bulk density	
	1	test results, buik density,	
an		groundwater, geotecnnical and rock	
(())		characteristics, potential deletenous	
90	South an use of	or contaminating substances.	
	Further work	The nature and scale of planned	The company is currently completing a pre-reasibility study on a potential flake graphite mining operation at
$(\square$		jurther work (e.g. test for lateral	Maingunge, Further work on the possibility or recovering rulie-leucoxene from the deposit Will include additional
		extensions or aeptn extensions or	chemical analyses or concentrates and additional metallurgical test-work in order to try to upgrade the
		large-scale step-out drilling).	concentrates to >95% IIU2. Additionally, a desk-top study is planned to examine capital and operating costs of
			adding a rutile-leucoxene recovery circuit to the proposed plant at Malingunde.
$\left(\begin{array}{c} \end{array} \right)$		Diagrams clearly highlighting the	
\mathbb{C}	/	areas of possible extensions,	See Figures within the main text of this report for possible extensions to rutile-leucoxene mineralisation.
		including the main geological	
AR		interpretations and future drilling	
((/ /))	areas, provided this information is	
U L	/	not commercially sensitive.	

