ASX RELEASE

18 September 2019

TITANIUM SANDS LIMITED ACN 009 131 533

Level 11, London House 216 St. Georges Terrace Perth Western Australia 6000 Tel: +61 (08) 9481 0389 Faxsimile: +61 (08) 94636103 email http://titaniumsands.com.au

Contact:

Dr James Searle Managing Director Tel: +61 419 949 636 james.searle@titaniumsands.com.au

Directors

Lee Christensen Dr James Searle Jason Ferris

> Ticket ASX: TSL

HIGH GRADE RESOURCE DEFINED ON PROPOSED TENURE ACQUISITION

- A JORC compliant Mineral Resource Estimate of 31.92Mt @ 7.45% Total Heavy Minerals (THM) has been completed for the proposed tenure acquisitions at the Mannar Island Project in Sri Lanka as part of due diligence investigations.
- The resource is exposed at surface with no overburden and extends continuously for a strike of 8km with an average width of 2km.
- Resource drilling extends only to the water table at depths of 1m to 3m and the mineralisation remains open at depth.
- The resource adjoins the 52Mt at 6.7%THM* inferred resource already defined on the adjoining Titanium Sands Ltd's (the "Company") Mannar Island tenure.
- Acquisition of this tenure will not only substantially increase the Mineral Resources for the Mannar Island Project but also substantially increase the potential for further resource extension.
- Resource depth and lateral extension drilling is underway on the adjoining Titanium Sands tenure using the Company owned specially optimised RC aircore drilling rig.
- The Company sees the potential to rapidly advance the Mannar Island Project as a high grade, technically robust and substantive long-life mineral sands operation.

Titanium Sands, Managing Director, Dr James Searle commented:

"The Mannar Island project has already delivered a 300% increase on its maiden JORC resource*, and we will continue to rapidly increase our resource base with the proposed tenure acquisition. The immediate priority is completing the due diligence investigations on the proposed tenure acquisition and we look forward to updating the market further on this and our ongoing RC air core drilling programs".

Titanium Sands Ltd ("The Company") is pleased to announce the definition of a substantive high grade heavy mineral sand resource of 32Mt at 7.45% Total Heavy Minerals on the proposed acquisition tenure at Mannar Island this will be a major step forward for the project on completion of the acquisition increasing the scale of the project immediately but also adding substantial resource extension and exploration potential. With ongoing resource drilling programs and a scoping study in progress Titanium Sands Ltd is rapidly advancing this expanding and technically robust project.

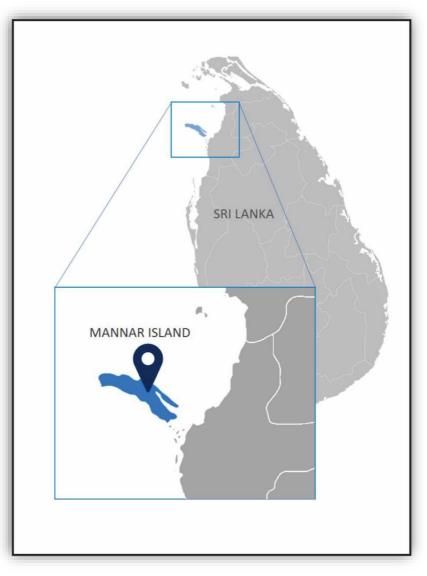


Figure 1 Mannar Island location.

Proposed Acquisition of Adjoining Mannar Island Tenure

As announced to the **ASX on 15th July 2019 **** Titanium Mineral Sands Ltd is proposing to acquire adjacent tenure ("acquisition tenure") held by Bright Angel Ltd. Titanium Sands tenure plus the proposed acquisition tenure cover 90% of Mannar Island (Figure 2).

The proposed acquisition tenure has the potential to not only immediately increase the Mannar Island Project scale, it would also greatly enhance the exploration and resource upside. Drilling on the acquisition tenure defined an extensive area of high-grade mineralisation (Figure 3).

Part of the related due diligence investigations being conducted by the Company has been to secure an independent Mineral Resource estimate on the acquisition tenure based on existing drill hole data. Other aspects of the Company due diligence investigations for this proposed acquisition are ongoing.

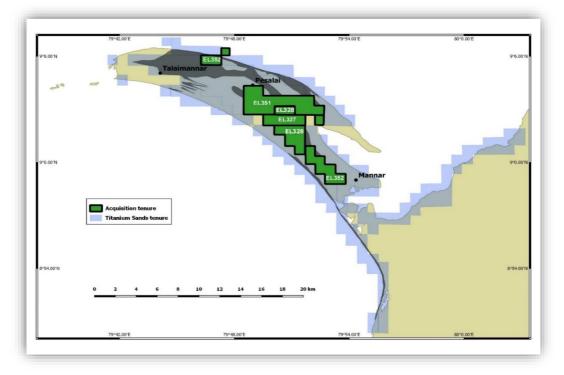


Figure 2 Existing Titanium Sands Ltd tenure over the Mannar Island Project and the Acquisition Tenure.

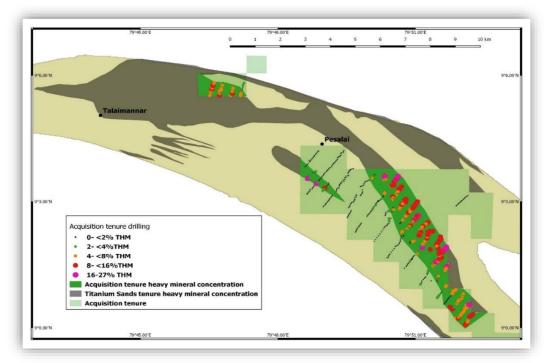


Figure 3 High grade heavy mineral sand intercepts on the Acquisition Tenure. Drill holes with >2% heavy mineral intercepts (previously reported to the ASX on 15th July 2019**)

MANNAR ISLAND PROPOSED ACQUISITION TENURE MINERAL RESOURCE ESTIMATE

The Mineral Resource Estimation (MRE) on the proposed acquisition tenure was undertaken by Kobus Badenhorst of Geo Activ Pty Ltd, a geological consultant registered with the South African Council for Natural Scientific Professions ('SACNASP') and Bernhard Siebrits a geological consultant also registered with SACNASP and a Member of the Australian Institute of Mining and Metallurgy (MAusIMM)(see Competent Persons Statement). The Mineral Resource Estimate has been summarised here by Dr James Searle (MAusIMM) (see Competent Persons Statement). Tables 1 and 2 summarise the inferred Mineral Resources with no lower cut off total heavy mineral (THM) grades and with a 2% THM lower cut off respectively. A 2% lower cut off is considered appropriate for this Inferred Mineral Resource Estimation in that it maintains satisfactory continuity of the resource zone and as far as can be determined at this early project stage is not likely to be inconsistent with the economics of mining and treatment of shallow, surface exposed high grade, low silt mineral sand deposits in general. Appendix 1 contains Sections 1 and 2 in full compliance with the JORC 2012 requirements and which are also summarised in the text below.

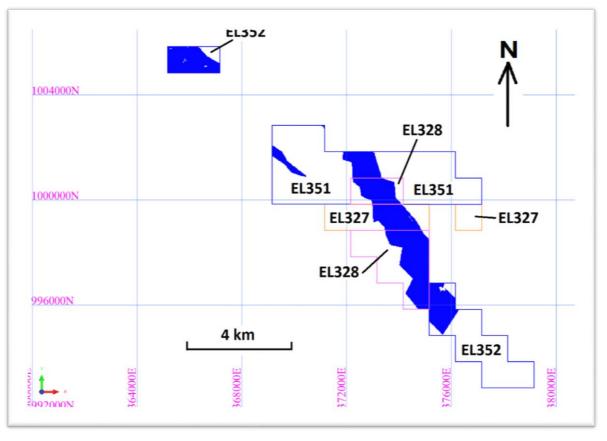


Figure 4 Inferred Mineral Resources for the acquisition tenure.

The resource envelope (Figure 4) extends continuously as a 2km wide zone over 8km through the main body of the acquisition tenure. The mineralisation is exposed at surface with no

overburden and extends down to base of the shallow resource drilling which terminated at the water table 1m to 3m below the land surface. The resource therefore remains open at depth over most of its extent.

Domain	Licence	Volume (Mm ³)	Tonnes (M)	THM %	Silt %	Oversize %	Ilm %	Leu %	Rut %	Zir %
1	EL352	2.24	3.95	3.55	0.60	2.66	1.79	0.27	0.09	0.08
	Sub Total	2.24	3.95	3.55	0.60	2.66	1.79	0.27	0.09	0.08
	EL327	3.24	5.64	8.75	0.74	20.55	4.65	0.63	0.11	0.17
2	EL328	9.26	16.10	6.70	0.77	18.53	3.08	0.51	0.08	0.11
	EL351	2.83	4.92	7.52	0.76	25.99	3.81	0.71	0.10	0.12
	EL352	3.12	5.42	6.21	0.60	15.58	1.94	0.36	0.07	0.07
	Sub Total	18.44	32.09	7.10	0.74	19.53	3.27	0.54	0.09	0.12
3	EL351	0.55	0.97	3.38	0.54	0.68	1.39	0.37	0.10	0.07
	Sub Total	0.55	0.97	3.38	0.54	0.68	1.39	0.37	0.10	0.07
Grand	d Total	21.24	37.01	6.62	0.72	17.24	3.07	0.50	0.09	0.11

Table 1 Inferred Mineral Resource estimations for Bright Angel, Mannar, without a lower THMcut-off.

Notes to table:

Mineral assemblage is reported as in situ weight percentage of the resource.

• Appropriate rounding of the numbers has been applied.

Domain	Licence	Volume (Mm ³)	Tonnes (M)	THM %	Silt %	Oversize %	Ilm %	Leu %	Rut %	Zir %
1	EL352	1.83	3.21	4.04	0.62	2.40	2.03	0.30	0.10	0.09
	Sub Total	1.83	3.21	4.04	0.62	2.40	2.03	0.30	0.10	0.09
	EL327	3.03	5.27	9.26	0.74	19.11	4.94	0.67	0.11	0.18
2	EL328	7.91	13.77	7.59	0.80	16.41	3.53	0.58	0.10	0.13
	EL351	2.22	3.87	9.17	0.78	25.06	4.75	0.87	0.13	0.15
	EL352	3.01	5.24	6.37	0.61	14.87	1.99	0.37	0.07	0.07
	Sub Total	16.18	28.15	7.89	0.75	17.82	3.67	0.60	0.10	0.13
	EL351	0.31	0.55	5.03	0.43	0.64	2.09	0.56	0.16	0.12
3	Sub Total	0.31	0.55	5.03	0.43	0.64	2.09	0.56	0.16	0.12
Grand	d Total	18.32	31.92	7.45	0.73	15.97	3.48	0.57	0.10	0.13

Table 2 The Inferred mineral resource estimations for Bright Angel, Mannar, with a 2% lowerTHM cut-off.

Notes to table:

Mineral assemblage is reported as in situ weight percentage of the resource.

Appropriate rounding of the numbers has been applied.

The resources estimated and modelled on the acquisition tenure are contiguous with the highgrade resources previously defined on the Company tenure (ASX announcement 11th February 2019*). Figure 5 shows the combined resource blocks for the acquisition tenure and the Company's existing tenure.

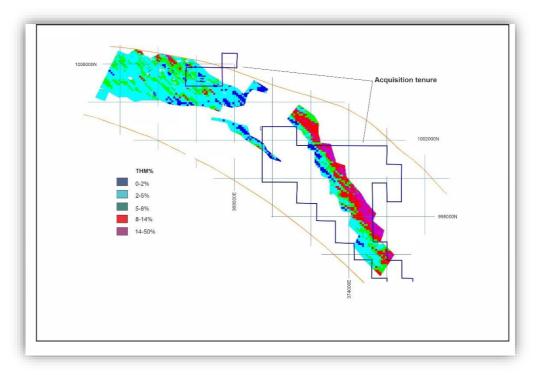


Figure 5 Combined model of resource blocks for the acquisition tenure and the Company tenure.

Geological Model

The Mineral Resource estimate is underpinned by a clear geological model. Mannar Island is a 30km long by 5km wide Holocene (less than 12,000 years BP) sand island. The Mannar Island Holocene stratigraphy is at least 10m thick and consists of repeated sequences of nearshore, beach and dune facies sands with minor lenses of lagoonal and embayment silts and muds. Development of the island over the Holocene period has been driven by the seasonally opposing transport trends from north and the south localising sedimentary accumulation on a southeast to northwest axis extending out into the waters of Palk Strait that separate Sri Lanka from India. The source of the Mannar Island sediments and the entrained heavy minerals has been the reworking and redeposition of older Pleistocene (2.6 million to 12,000 years BP) river and coastal sand bodies on the adjacent mainland coast. In addition to the heavy minerals the accumulating Holocene sands of Mannar Island are dominated by quartz and garnet sand grains. Carbonate materials are a minor component. The Holocene sequences drilled to date at Mannar Island are essentially unconsolidated with only minor very local patches of light carbonate cementation. Further out into Palk Strait the modern to Holocene sediments have increasing amounts of carbonate and cemented limestone and coral reef shoals.

Concentration of the heavy mineral component in the Mannar Island stratigraphy has been by selective shallow water current transport, beach and near beach facies wave and current action and wind winnowing in the overlying dune and beach ridges (Figure 6). The combination of all three concentration mechanisms has resulted in very broad (2km to 3km wide) and continuous (over more than 20km long by up to 4km wide) area of heavy mineral accumulation.

The shallow drilling down to the water table at 1m to 3m below land surface has intersected heavy mineral concentrations in the near beach, beach and overlying beach ridge and dune sands. While other beach and dune sequences deposited at lower past sea levels will occur below the present water table, deeper parts of the Holocene sequence will be more dominated by finer sands and heavy minerals concentrated and deposited in shallow water.

Figure 6 Wind sorting and concentration of heavy minerals (dark grey) in beach ridges on the modern coast of Mannar island.

Resource Drilling and Sampling

Drilling on the acquisition tenure consisted of 692 drill holes of which 454 showed visual indications of significant heavy mineral concentration and were sampled and analysed (as reported in full to ASX on the 15th of July 2019^{**})(Figure 7). Drilling was carried out using 75mm diameter handheld shell augers. Drill holes were terminated at the water table to ensure only accurate sample intervals and full recovery of samples. All drill holes were logged and sampled at 0.5m intervals down hole.

Drilling was carried out in two phases. Firstly on lines 800m apart with drill hole separations of 50m, and secondly on the intervening 400m lines also at 50m hole spacings. Drill line were oriented perpendicular to the general strike of the mineralised zone and consequently across the interpreted paleo-shoreline orientations.

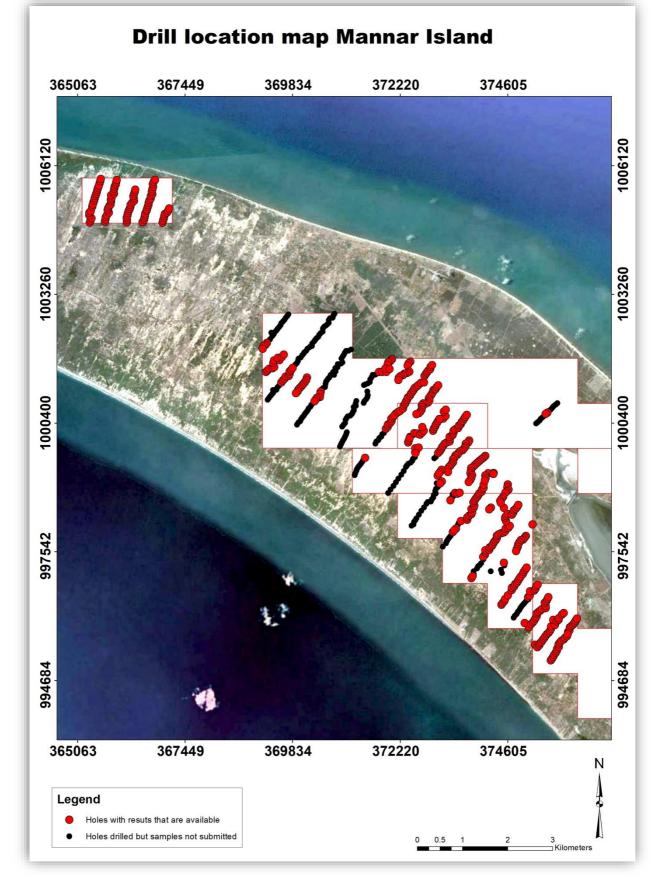
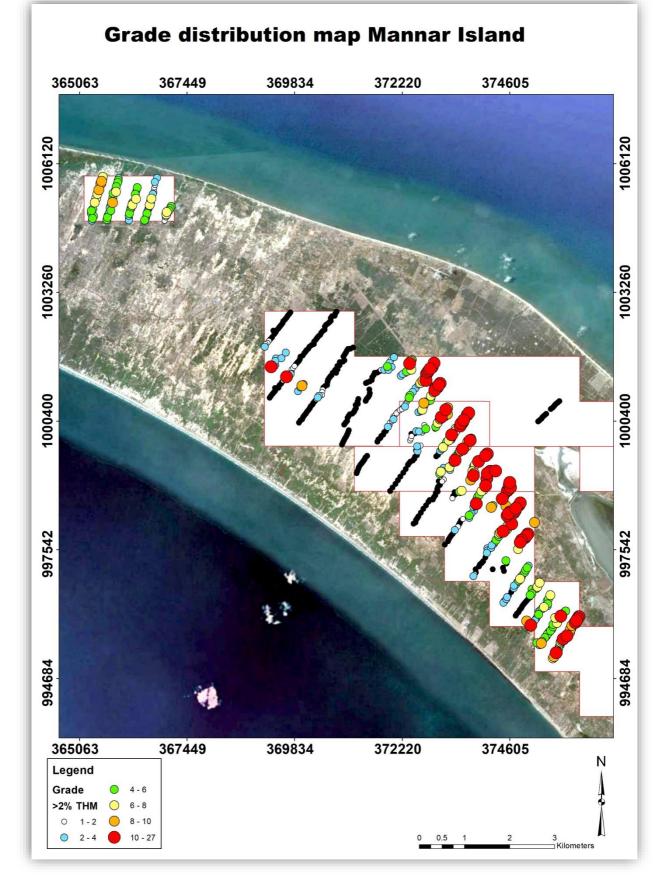
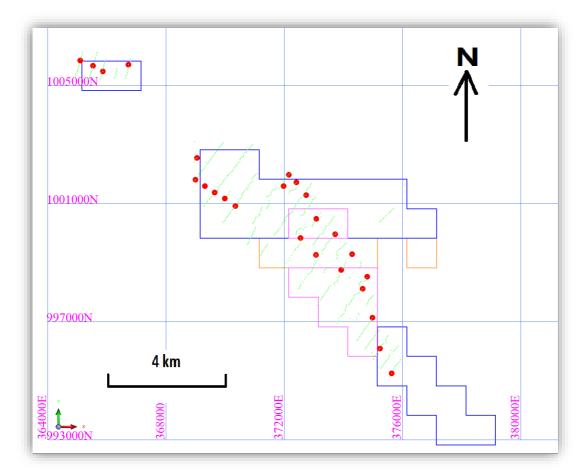


Figure 7 Drill holes on the acquisition tenure with analysed drill holes used in MRE




Figure 8 Grade distribution in drill holes using a 2%THM lower cut off.

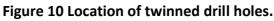

A significant portion of the analysed drill holes (184 out of the 454) ended in mineralisation in excess of 2% THM. This indicates that there is significant potential for resource extensions below the water table. The sand sequences containing the heavy mineral concentrations had very low silt contents (generally<1%).

Figure 9 twin hole drilling under supervision by GeoActiv (Pty) Ltd.

Independent consultant GeoActiv (Pty)Ltd conducted a QA/QC due diligence twin hole drilling program of 24 holes (Figures 9 and 10). The holes were drilled in the same location as the original drilling using the same drilling techniques and sampling protocols.

Laboratory and Mineralogical Analyses

Desliming (-45micron) and oversize(>1mm) removal was done with %silt and % oversize recorded in a project laboratory on Mannar Island. GeoActiv examined the facilities and procedures and reported them as satisfactory. The samples were then sent for THM analysis by heavy media separation (TBE) to a laboratory in Cape Town South Africa, Scientific Services Ltd a DEKRA certified geological laboratory (Deutscher Kraftfahrzeug-Überwachungs-Verein e.V.).

Scientific Services also prepared composite samples from 5% of the sample population for CARPCO (magnetic mineral separation) and XRF (x-ray fluorescence) analysis .

The CARPCO mineralogical separations were then analysed by a mineralogist using XRD (X-ray diffraction), SEM (scanning electron microscopy) and EDX (X-ray dispersive) analysis and optical microscopy.

The mineralogical analysis found the dominant heavy mineral was ilmenite, with lesser amounts of leucoxene, rutile and zircon. Almandine garnet was also noted in significant quantities but was not included at this stage in the MRE modelling.

Resource Estimation Methodology

SURPAC software was used to develop a block model with block sizes of 100m (X) x 100m (Y)x 2m (Z) and minimum sub blocking of 25m x 25m x 0.5m. The block model was constrained by the DTM (Digital Terran Model) of the land surface and the domain areas defined by THM content. Grade interpolation for all the variables (THM, silt, oversize) and the XRF data of composite data of the CARPCO magnetic separations (Cl_yield, MO_yield, NM_yield, Cl_TiO₂, MO_TiO₂, NM_TiO₂ and NM_ZrO₂) was by inverse distance to the power of 3. The minerals (ilmenite, leucoxene, rutile and zircon) were converted from the chemistry to mineralogy with calculated attributes with the ratios determined by the mineralogical analysis. Relative densities determined by field measurements were applied to the mineralised zones.

Block model validations included visual validations on section of input drill hole data and the block model (Figure 11), average grade conformance of global averages between composite input data (drill holes) with the block model output. Composite and estimated grade distributions were also compared (Figure 12).

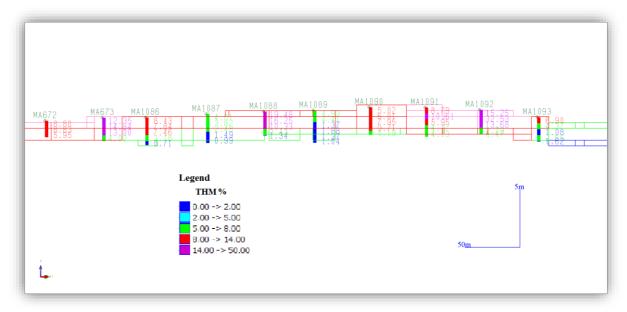


Figure 11 Section showing the input drill hole values of the THM % correlate well with the block model estimates. Vertical exaggerations 10X.

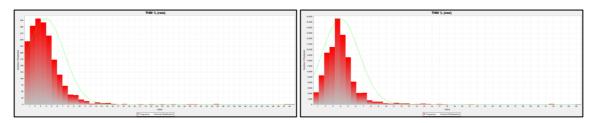


Figure 12: Distributions of the 0.5 m composites (left) and the block model THM% estimates (right).

Resource Classification

The resource classification was primarily based on drill hole density (400m by 50m). Also there were statistical variances particularly in the oversize component percentages with consequent potential influence on THM grade. This has led to a classification of the Mineral Resource at this time of Inferred. Further infill drilling is required before resource modelling could be assigned to indicated and measured categories.

OVERVIEW OF THE MANNAR ISLAND HEAVY MINERAL SAND PROJECT

The Mannar Island Heavy Mineral Sands Project is located in the dry north west of Sri Lanka. Mannar Island is a 30 km long by 5 km wide sand island joined to the Sri Lankan mainland by a 3 km road and rail causeway (Figure 1).

Sri Lanka is a stable democratic nation of ~21m people. The country is very supportive of foreign investment and has a favourable tax regime. Power, rail and road infrastructure extends across the country and Mannar Island. The Government is actively enhancing infrastructure in many locations including the North West where Mannar Island is located (Figures 13 and 14).

Regionally Sri Lanka is ideally situated for product export to all parts of Asia including China. It is situated on one of the Chinese belt and road maritime routes and as part of this a major new port has been developed at Hambantota. Other major ports are located at Trincomalee (north east coast) and Colombo.

Titanium Sands Ltd has defined a substantial high grade heavy Mineral Resource on Mannar Island of 53Mt at 6.7% Total Heavy Minerals (THM) (Announced to the ASX 11th February 2019 *). The Company is currently drilling lateral and depth extensions to this resource using it own specially modified reverse circulation aircore drilling rig (Figure 15) as well as commencing a comprehensive scoping study for the project.

Figure 13 Rail track on Mannar Island that connects to the mainland network.

Figure 14 Road and power infrastructure leading to Mannar Island

Figure 15 RC aircore tractor mounted drilling rig owned and operated by Titanium Sands Ltd.

COMPLIANCE STATEMENTS

Previous ASX Announcements referred to

* A resource update in full compliance with JORC 2012 requirements titled "Titanium Sands Triples Heavy Mineral Sands JORC Resources" announced to the ASX on11 February 2019. **An announcement entitled "Proposed acquisition of tenure with high grade heavy mineral sands" announced to the ASX on 15 July 2019.

These announcements are available to be view on the Company's website www.titaniumsands.com.au

The Company confirms that it is not aware of any new information or data that materially affect the information included in the relevant market announcements and, in the case of estimates of the existing Mannar Island Mineral Resource that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply with respect to the resource block model and total heavy mineral content and have not materially changed with the exception noted in the text of this report that in future resource updates are likely to include block modelling of the garnet content in addition. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the relevant original market announcements.

Competent Persons Statements

Except where indicated, exploration results above have been reviewed and compiled by James Searle BSc (hons), PhD, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy, with over 37 years of experience in metallic and energy minerals exploration and development, and as such has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Searle is the Managing Director of Titanium Sands Limited and consents to the inclusion of this technical information in the format and context in which it appears.

The Mineral Resources estimation reported above has been summarised by Dr James Searle. The Mineral Resources Estimate and related QA/QC investigations have been undertaken by Mr Kobus Badenhorst and Mr Bernhard Siebrits. Mr Kobus Badenhorst is a director of GeoActiv (Pty) Ltd. and is registered with the South African

Council for Natural Scientific Professionals (SACNASP). Mr Siebrits is a consultant, registered with SACNASP and a Member of the Australasian Institute of Mining and Metallurgy. Mr Badenhorst and Mr Siebrits has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Badenhorst and Mr Siebrits consent to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Appendix 1 contains tables of detailing compliance with the JORC 2012 requirements for reporting of Mineral Resources. This information has been compiled in relation to the Mineral Resource Estimation summarised above by Mr Badenhorst and Mr Siebrits and reviewed by Dr Searle.

Forward Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning the Company's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should", "further" and similar expressions are forward-looking statements. Although the Company believes that its expectations reflected in these forward- looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in additional Mineral Resources.

Appendix 1

COMPLIANCE WITH THE JORC CODE ASSESSMENT CRITERIA

The compliance information contained below is in specific reference to the Mineral Resource Estimation (MRE) on the proposed acquisition tenure was undertaken by Kobus Badenhorst of Geo Activ Pty Ltd a geological consultant registered with the South African Council for Natural Scientific Professions ('SACNASP') and Bernhard Siebrits a geological consultant also registered with SACNASP and a Member of the Australian Institute of Mining and Metallurgy MAusIMM). Dr James Searle of Titanium Sands Ltd has also reviewed this information (see Competent Persons Statement).

The JORC Code (2012) describes a number of criteria, which must be addressed in the Public Report of Mineral Resource estimates for significant projects. These criteria provide a means of assessing whether or not parts of or the entire data inventory used in the estimate are adequate for that purpose. The resource estimate stated in this document was based on the criteria set out in Table 1 of that Code. These criteria are discussed in the table below.

JORC Code Assessment Criteria	Comments
Section 1	Sampling techniques and data
Sampling Techniques	
Nature and quality of	
sampling (e.g. cut channels,	A Dormer hand-auger was used for auger drilling. The bucket
random chips, or specific	was designed to be able to do 0.5 m samples per drill run.
specialised industry standard	Sampling was therefore done on 0.5 m intervals, unless
measurement tools	penetration problems caused incomplete samples at the end
appropriate to the minerals	of holes. Where some minor penetration problems were
under investigation, such as	experienced, smaller sample runs were done.
down hole gamma sondes, or	The full sample from the auger bucket was collected in a
handheld XRF instruments,	calico sample bag and assigned an Alpha numerical sample
etc). These examples should	number.
not be taken as limiting the	All samples were transported to the site office / Prep Lab
broad meaning of sampling.	sample prep facility in Pesalai on Mannar Island. The Prep
Include reference to	Lab received samples up to c 2.4 kg in weight / sample.
measures taken to ensure	All samples from the drilling program were prepped, even
sample representivity and	samples perceived to be low grade. Reference / residual
the appropriate calibration	samples for samples sent to the analytical laboratory are
of any measurement tools or	safely stored at the site office. Permits for the export of the
systems used.	samples were sourced in Sri Lanka. On receipt of the permits
Aspects of the determination	the samples were couriered via air freight to Johannesburg
of mineralisation that are	where clearance took place for the samples. They were then
Material to the Public	air freighted to Cape Town where a representative from the
Report. In cases where	laboratory, Scientific Services CC, collected the samples.
'industry standard' work has	
been done this would be	

JORC Code Assessment	Comments
Criteria	
relatively simple (e.g. 'reverse circulation drilling	
was used to obtain 1 m	
samples from which 3 kg wa	
pulverised to produce a 30 g	
charge for fire assay'). In	
other cases, more	
explanation may be required	4
such as where there is coarse	
gold that has inherent	
sampling problems. Unusua	1
commodities or	,
mineralisation types (e.g.	
submarine nodules) may	
warrant disclosure of	
detailed information.	
Drilling Techniques	
Drill type (e.g. core, reverse	-
circulation, open-hole	A Dormer hand-auger v
hammer, rotary air blast,	The bucket has a diame
auger, Bangka, sonic, etc.),	The auger bucket was d
and details (e.g. core	run. Larger samples
diameter, triple or standard	would have resulted in
tube, depth of diamond tails	
face-sampling bit or other	extensions on site to d
type, whether core is	drilled were MA176 and
oriented and if so, by what	
method, etc).	
Drill Sample Recovery	
Method of recording and	-
assessing core and chip	
sample recoveries and result	ts
assessed.	Detailed measurement
Measures taken to maximise	and after the removal of
sample recovery and ensure	was to ensure that the
representative nature of the	Re-drilling took place w
samples.	and sampling stopped
Whether a relationship exist	collapse became a prot
between sample recovery	recorded for each 0.5 h
and grade and whether	The sample recovery of
sample bias may have	linked to the shallow w
occurred due to preferential	
loss/gain of fine/coarse	
material	

was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	
Drilling Techniques Drill type (e.g. core, reverse	
circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.), and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	A Dormer hand-auger was used for auger drilling. The bucket has a diameter of 75 mm. The auger bucket was designed to drill 0.5 m samples per drill run. Larger samples would have become too heavy and would have resulted in sample falling out of the bucket. One-meter drill rod extensions were used, with sufficient extensions on site to drill to 9 m. The deepest auger holes drilled were MA176 and MA302, both drilled to 6.00 m.
Drill Sample Recovery	
Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Detailed measurements were done during drilling prior to and after the removal of the drill bucket during drilling. This was to ensure that there were no collapses of the sidewalls. Re-drilling took place where this was not the case, or the hole and sampling stopped where sample recovery or hole collapse became a problem. Recoveries were estimated and recorded for each 0.5 m drill interval. The sample recovery or penetration problems were purely linked to the shallow water table.

sample was geologically logged for mineral sition, grain size, sorting, visual silt %, induration, and h visual estimate of the dark heavy mineral % nent. og information was transferred every night to an Excel sheet.
sition, grain size, sorting, visual silt %, induration, and h visual estimate of the dark heavy mineral % nent. og information was transferred every night to an Excel
sition, grain size, sorting, visual silt %, induration, and h visual estimate of the dark heavy mineral % nent. og information was transferred every night to an Excel
ep Lab will receives samples up to c 2.4 kg in weight / that have to be dried, sieved on a 1 mm aperture ag sieve, the +1mm and -1mm fractions weighed, then mm fraction riffle split to a sub-sample of c 125-250 g e remaining material retained in storage. The 125-250 le is weighed then undergoes rotary light attritioning -0.5% NaOH solution. The subsample will then be wet on a 45-micron vibrating sieve with retained +45- material being dried then weighed and packaged for cate sample was riffled from every 20 th sample, i.e. 5% otal. ler was thoroughly cleaned after each sample.

JORC Code Assessment Criteria	Comments
of the material being sampled.	
Quality of Assay Data and Laboratory Tests	The initial drying (at between 80 to 105 degrees C via gas oven), de-sliming and oversize removal was conducted at the site Prep Facility on Mannar Island. The procedures are shown below.
The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Analytical work on the tetrabromoethane (TBE) based THM determination and subsequent magnetic separation work was done by Scientific Services C.C., Cape Town. XRF work was done on the fractions of the magnetic separation samples The determination of THM % sample concentrate using TBE at a specific gravity (SG) of 2.95, are as follows: TBE is placed into the glass flask up to the indicated mark. Place approximate 1 scoop of sample into the flask. Wash down the sides of the flask and impeller with TBE to ensure all material is in the TBE. Run the mixer for about 10 seconds. Wash down again to ensure no material is 'hung'. Run the impeller mixer repeatable in 10 second bursts until sure that all heavies have been liberated. Allow to stand for 5-10 minutes or until no more material cascades to bottom. Once the discharge pipe is clear of suspended material release the tube to allow the concentrate to be captured in the filter paper. Store this labelled filter paper. Process any remaining sample as above ensuring no concentrate is lost.

JORC Code Assessment Criteria	Comments
	Finally flush out the floats by opening the tube and allowing the floats to fall into filter paper – allow this to stand capturing all the TBE which will be reused at a later stage. Wash all concentrates and floats thoroughly with acetone to reclaim as much TBE as possible. After the concentrate filter is acetone rinsed and dried, transfer the concentrate very carefully into a bag by opening the filter paper ensuring nothing is lost. Place the floats into the waste drums unless specified by the client to do otherwise. Check the SG of the TBE with the density tracers provided and re-use as appropriate.
Verification of Sampling and Assaying The verification of significant	
intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Kobus Badenhorst did twin and test holes on c 5% of the drilling done during the program. QAQC of all the work done was performed by Bernhard Siebrits of GeoActiv.
Location of Data Points	Data and work were done in UTM, WGS84.
Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	A handheld Garmin GPS was used for the positioning and final position of the auger holes. The X and Y coordinates were collected and entered into the project spreadsheet. The handheld GPS Z data were found to be very inaccurate. Consequently a GeoEye satellite based Digital Terrain Model (DTM) study that covers the entire Mannar Island was done in 2015, the data interpretation and manipulation for the areas covered by the resource update was done by a highly qualified land surveyor during 20117. The X and Y coordinates of the drill holes was used to elevate the drill holes to the DTM surface prior to resource modelling taking place. This will supply significantly more accurate Z data as the DTM is based on 13 Differential GPS derived points.
Data Spacing and Distribution	

JORC Code Assessment Criteria	Comments
Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The drilling program for the updated resource was conducted at 400m inter-drill line spacing, with 50m inter-drill hole spacing on the lines.
Orientation of Data in Relation to Geological Structure Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling took place in fences perpendicular to the interpreted strike of the mineralized ore bodies, this was confirmed during modelling.
Sample Security The measures taken to ensure sample security.	All sampling, prep and packing work took place under supervision of a site geologist. A representative from the Analytical laboratory, Scientific Services CC, collected the samples from the airport in Cape
Audits and Reviews The results of any audits or reviews of sampling techniques and data.	Town, South Africa. A Prep Facility (on Mannar Island) and laboratory audit at Scientific Services in Cape Town was conducted by Kobus Badenhorst and Bernhard Siebrits of GeoActiv.
Section 2	Reporting of exploration results
Mineral Tenement and Land	Bright Angel is the legal and beneficial owner of all of the fully
Tenure Status	paid ordinary shares in the capital of these Sri Lankan
Type, reference name/ number , location and	corporate entities Rotim Investment Holdings (Pvt) Ltd; Sanur Asia Investments (Pvt) Rotim Investments in turn holds

JORC Code Assessment Criteria	Comments
ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	99% of the issued capital of Orion Minerals (Pvt) Ltd a Sri Lankan entity that holds two licenses (EL327 and EL328); Sanur Asia Investments hold 100% of the issued capital of Sanur Minerals (Pvt) Ltd another Sri Lankan entity that holds the other two exploration licenses (EL351 and EL352).
Exploration Done by Other Parties Acknowledgment and appraisal of exploration by other parties.	Work post 2015 was all conducted by Srinel staff, supervised by TSL (James Searle).
Geology	There is general consensus that the heavy minerals in Sri
Deposit type, geological setting and style of mineralisation.	Lanka were derived from Precambrian (Proterozoic) high- grade metamorphic rocks that account for more than ninety percent of the island. These crystalline basement units are subdivided into 3 major litho-tectonic subdivisions, namely the Highland, Wanni and Vijayan Complexes. The heavy minerals ilmenite, rutile, zircon, sillimanite and garnet commonly occur in the coastal sands. Mineralisation is high in the tidal, beach and berm areas, with significant inland mineralisation proven on Mannar Island.
Drill hole information	Drill hole information used in this resource update has previously been reported in full to the ASX (15 th of July 2019 including Drill hole identification, Collar locations. Dip, all holes vertical. Down hole length and intercept depth Hole length
Data Aggregation Methods	Weighted averages of intercept length and grade were used. No cut off grades were applied to drill hole data. Cut off grades were only applied to the block model of the mineralised zone.

JORC Code Assessment Criteria	Comments
Relationship between mineralisation widths and intercept lengths	Mineralisation a horizontal blanket, drill holes all vertical.
Diagrams	Drill hole diagrams, and sections included with scale and locations.
Balanced reporting	All drill hole results reported
Other substantive exploration data	None
Further work	As stated, further drilling will target depth and lateral extensions to the modelled mineralisation.
Section 3	Estimation and reporting of Mineral Resources
Database Integrity Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	The data was captured in Excel spreadsheets. GeoActiv performed validation checks on all the data and analyses before it was used in modelling.
Site Visits Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	One of the Competent Persons, Kobus Badenhorst, visited the exploration sites during the auger drilling phase in 2017.
Geological Interpretation Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation.	All the drill hole intersections with the THM above 1% were considered as the mineralisation envelope from surface to the end of holes. The domain boundaries of the mineral sand resource were extended to half the drill line spacings. The current drill spacing provides sufficient degree of confidence in the interpretation and continuity of grade for an Inferred Mineral Resource.

JORC Code Assessment Criteria	Comments
The factors affecting continuity both of grade and geology.	
Dimensions	
The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Inferred Resource was divided into 3 Domains, due to different locations. The extents of the mineralisation were within Domain 1 : 7,500 m x 2,500 m x 2 m, Domain 2 : 9,500 m x 1,000 m x 2m and Domain 3 : 4,000 m x 400 m x 2m.
Estimation and Modelling Techniques The nature and	The block sizes that were created were100 m X 100 m X 2 m and with minimum sub blocking of 25 m X 25 m X 0.5 m. Inverse distance to the power of 3 was used for <i>in situ</i> grade
appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values,	interpolation for all the variables. (THM, silt, oversize and the XRF data of composite data of the CARPCO magnetic separations (CI_yield, MO_yield, NM_yield, CI_TiO ₂ , MO_TiO ₂ , NM_TiO ₂ and NM_ZrO ₂). The general aspects of the estimation were as follows:
domaining, interpolation parameters, and maximum distance of extrapolation from data points. If a	 The variogram ranges of the THM % were used for all the variables in the respective domains 1 and 2 and for domain 3 the ranges of domain 1 was used; A minimum of 3 samples and a maximum of 15 samples
computer assisted estimation method was chosen include a description of computer software and parameters	 were used for all inverse distance runs, except for the third pass when a minimum of 2 samples and a maximum of 15 samples were used; Pass 1: search radii set to 268 m for the major and 2 m for
used. The availability of check estimates, previous estimates and/or mine	 the vertical for domain 1 and 3 and search radii set to 325 m for the major and 2 m for the vertical for domain 2; Pass 2: search radii set to 402 m for the major and 3 m for the vertical for domain 1 and 3 and search radii set to 488 m
production records and whether the Mineral Resource estimate takes appropriate account of such	 for the major and 3 m for the vertical for domain 2; Pass 3: search radii set to 1000 m for the major and 10 m for the vertical for all three domains; Block discretisation was set to 4(X) by 4(Y) by 4(Z);
data. The assumptions made regarding recovery of by- products.	• An octant search estimation method was used with the maximum of 3 adjacent empty octants in pass 1, a maximum of 5 adjacent empty octants in pass 2 and a maximum of 7 adjacent empty octants in pass 3; and
<i>Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for</i>	• No sample limits per drill hole were applied. The mineral associations for ilmenite (ilm), leucoxene (leu), rutile (rut) and zircon (zir) were calculated with an expression as a calculated attribute in the block model with the ratios

JORC Code Assessment Criteria	Comments
acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	determined by the mineralogical analysis. The model was validated visually and statistically. The result of the validation shows that the interpolation has performed as expected and the model was a reasonable representation of the data used and the estimation method applied.
Moisture	
Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All tonnages were based on dry basis, volume measurements converted to tonnes using a dry bulk density of 1.76 for domain 1, 1.74 for domain 2 and 1.75 for domain 3.
Cut-off Parameters	The tabulated resources are based on a no cut-off basis, but
The basis of the adopted cut- off grade(s) or quality parameters applied.	also using lower cut-off grades of 2%THM. At a 2% lower cut off the resource zones still shows satisfactory continuity and as far as can be judged at this early project stage not likely to be inconsistent with the prevailing range of economics of mining and treatment of high grade, surface exposed low slime mineral sands deposits in general.
Mining Factors or Assumptions	No assumptions were made regarding possible mining
Assumptions made regarding possible mining methods, minimum mining dimensions	methods as this is premature at this stage of the project.

	JORC Code Assessment	l
	Criteria	
	and internal (or, if applicable,	
	external) mining dilution.	
	It is always necessary as part	
	of the process of determining	
Л	reasonable prospects for	
	eventual economic extraction	
	to consider potential mining	
	methods, but the	
(\bigcirc)	assumptions made regarding	
	mining methods and	
	parameters when estimating	l
(15)	Mineral Resources may not	
YU	always be rigorous. Where	l
20	this is the case, this should be	
00	reported with an explanation	
	of the basis of the mining	
	assumptions made.	
	Metallurgical Factors or	
	Assumptions	
ad	The basis for assumptions or	
60	predictions regarding	
	metallurgical amenability. It	l
<u> </u>	is always necessary as part	l
\bigcirc	of the process of determining	1
\bigcirc	reasonable prospects for	1
20	eventual economic extraction	
UJ	to consider potential	l
	metallurgical methods, but	1
<u> </u>	the assumptions regarding	1
(())	metallurgical treatment	1
	processes and parameters made when reporting	1
(\bigcirc)	Mineral Resources may not	l
	always be rigorous. Where	l
[7	this is the case, this should be	l
	reported with an explanation	1
\bigcirc	of the basis of the	1
	metallurgical assumptions	l
Π	made.	l
	Environmental Factors or	┢
	Assumptions	1
	/	L

Assumptions made regarding possible waste and process residue disposal options. It is

f determining pects for nic extraction ntial mining e de regarding and on estimating res may not bus. Where this should be n explanation he mining de.	
sumptions or rding	
nenability. It ary as part	
f determining pects for	
nic extraction ntial	The analytical results and mineralogical analyses could be the
ethods, but regarding eatment	basis for the metallurgical extraction methods. The metallurgical characteristics of the resources reported here have yet to be investigated.
arameters	
orting es may not	
ous. Where	
this should be explanation	

Comments

Environmental investigations are premature at this early stage of the project other than to note that GeoActiv has not investigated and was not aware of any issues that would prevent the eventual economic extraction of the project and similarly Titanium Sands Ltd.

	JORC Code Assessment
	Criteria
	always necessary as part of
	the process of determining
~	reasonable prospects for
	eventual economic extraction
	to consider the potential
	environmental impacts of the
	mining and processing
	operation. While at this
\bigcirc	stage the determination of
	potential environmental
	impacts, particularly for a
615	greenfields project, may not
	always be well advanced, the
20	status of early consideration
$\bigcirc \bigcirc \bigcirc \bigcirc$	of these potential
	environmental impacts
	should be reported. Where
	these aspects have not been
	considered this should be
GDI	reported with an explanation
$\mathcal{L}(\mathcal{O})$	of the environmental
	assumptions made.
	Bulk Density
	Whether assumed or
	determined. If assumed, the
	basis for the assumptions. If
(O/\mathcal{Z})	determined, the method
	used, whether wet or dry, the
	frequency of the
(\square)	measurements, the nature,
	size and representativeness
(\bigcirc)	of the samples.
	The bulk density for bulk
~	material must have been
	measured by methods that
	adequately account for void
	spaces (vugs, porosity, etc), moisture and differences
ΠΠ	between rock and alteration
	zones within the deposit.
	Discuss assumptions for bulk

The Relative Density (RD) or specific gravity was determined by digging pits of roughly 0.8m by 0.8m by 0.5m deep at 55 locations throughout the drilling area, then accurately weighing the sand and determining the volume of the holes by inserting and accurately measuring the volume of water inserted in the pits (after using a very thin lining in the pits). The in situ mineral sand was weighed and the moisture content determined to derive at a dry density. RD measurements of between 1.74 of 1.76 were calculated and used in different domain areas for the Mannar deposit.

Comments

density estimates used in the evaluation process of the

different materials. Classification

JORC Code Assessment Criteria	Comments
The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors, i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data. Whether the result appropriately reflects the Competent Person(s)' view of the deposit.	Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). The classification of Mineral Resources was completed by GeoActiv based on the geological confidence criteria, drill spacing, quality of drilling, sampling information, grade continuity and confidence in estimation of heavy mineral content and mineral assemblage. The high variances in the THM %, oversize % and the silt % resulted in a lower confidence on the estimates. All the Mineral Resources has been classified as Inferred.
Audits or Reviews	
The results of any audits or reviews of Mineral Resource estimates.	No independent reviews of the Mineral Resource estimate have been conducted to date. An in-company review by James Searle has taken place.
Discussion of Relative	
Accuracy/Confidence	
Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	This is a global resource with no production data.

JORC Code Assessment Criteria	Comments
The statement should specify	
whether it relates to global	
or local estimates, and, if	
local, state the relevant	
tonnages, which should be	
relevant to technical and	
economic evaluation.	
Documentation should	
include assumptions made	
and the procedures used.	
These statements of relative	
accuracy and confidence of	
the estimate should be	
compared with production	
data, where available.	