

Level 2, 159 Adelaide Terrace East Perth WA 6004, Australia

PO Box 3233 East Perth WA 6892, Australia

T: +61 8 9215 7888 F: +61 8 9215 7889

E: info@focusminerals.com.au
W: www.focusminerals.com.au

ASX Announcement 30 October 2019

High-Grade Gold Intersections from infill drilling at Karridale

West Australian gold explorer Focus Minerals Ltd (**ASX: FML**) (**Focus** or **the Company**) is pleased to announce a large number of high-grade intersections from a resource infill drilling programme at Karridale, part of the Company's 100%-owned Laverton Gold Project in the north-eastern Goldfields.

The programme was primarily designed to convert the Inferred Resource at Karridale¹ into Indicated Resource under the JORC 2012 standard. A Mineral Resource update for Karridale is expected before the end of this year.

Karridale is one of several significant deposits and prospects across Focus' Laverton Gold Project, which covers a 507 square kilometre parcel of highly prospective tenements on the outskirts of the Laverton township.

Between July and September 2019, reverse circulation (**RC**) and diamond drilling activities were conducted at Karridale. In total, 85 RC holes were completed for 15,556m. A further seven RC pre-collars were completed for 989m and followed by seven diamond tails, which were completed for 526.2m.

Focus can report that the drilling at Karridale returned a large number of significant high-grade intersections² including:

- 19KARC061 12.00m @ 7.63g/t Au from 140m
- 19KARC044 4.00m @ 18.17g/t Au from 78m
- 19KARC101 4.00m @ 16.84g/t Au from 150m
- 19KARC091 8.00m @ 7.94g/t Au from 114m
- 19KARC028 3.00m @ 18.76g/t Au from 187m
- 19KARC050 4.00m @ 13.67g/t Au from 7m

Focus is expecting the final assay results to be returned from the laboratory early next month. Once the assays are received, Focus will immediately begin to update the Karridale resource model.

Commenting on the highly successful drilling programme at Karridale, Focus Minerals CEO, Mr Zhaoya Wang, said:

"It is pleasing to see more high-grade intersections at Karridale to support the upcoming mineral resource estimation.

"The drilling results will be used to upgrade the majority of the Inferred Resource at Karridale to Indicated status. This will enable us to include Karridale in our economic assessment of the Stage 1 and 2 production phases for the Laverton Gold Project."

-

¹ Inferred Resource:12.6 Mt @ 1.3 g/t Au for 518,000 contained ounces (ASX announcement on 27 May 2019)

² Calculated by using 0.5g/t Au cut off an up to 3m internal dilution; 4m composite samples included

Karridale Exploration Update

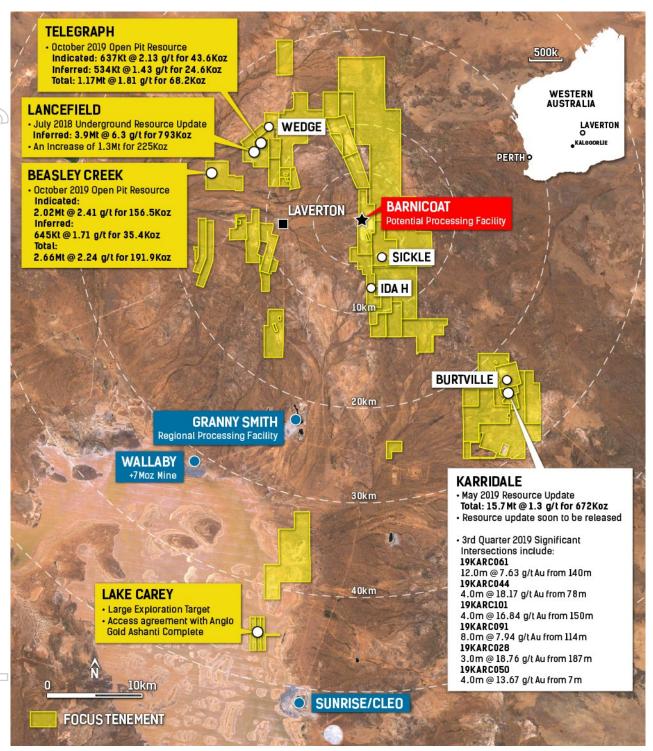


Figure 1: Focus Minerals' Laverton Gold Project location and significant results.

During the September quarter, Focus completed 92 holes for a total of 17,071m into the core of the May 2019 Karridale resource (Figure 2). The last hole was completed on 19 September and final results of 1m split sampling of anomalous 4m composites are expected to be received early next month.

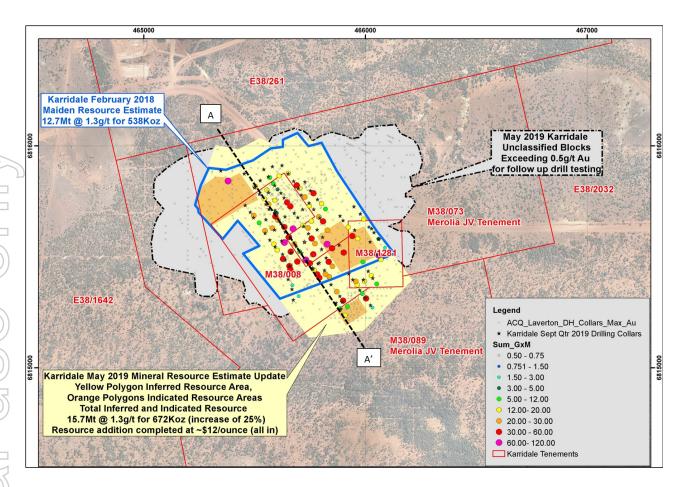


Figure 2: May 2019 Karridale mineral resource categories with collar location shown for all holes drilled to date (grey crosses). Collars for infill resource holes completed in the September Quarter are marked with black stars. The position of Section A -A' (Figure 3) is also shown.

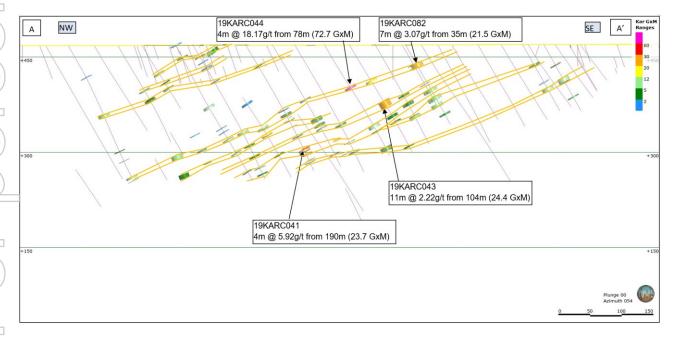


Figure 3: NE view of September Quarter Karridale Infill resource drilling with interpreted mineralisation and labelled preliminary significant intersections calculated using 0.5g/t Au cut-off and up to 3m internal dilution.

The holes were positioned at maximum infill spacing of 40m x 40m and will enable calculation of an updated Mineral Resource estimate before the end of this year. The tighter spacing will assist with an upgrade of the majority of current Inferred Resource category areas to Indicated status (Figure 2).

Mineralisation at Karridale consists of up to 25 stacked lodes dipping towards the NE. As such drilling was designed to intersect multiple mineralised positions. In this case the cumulative intersections of each hole are assessed rather than just the larger individual intersections listed below³:

- 19KARC061 12.00m @ 7.63g/t from 140m (91.6 GxM)
- 19KARC044 4.00m @ 18.17g/t from 78m (72.7 GxM)
- 19KARC101 4.00m @ 16.84g/t from 150m (67.4 GxM)
- 19KARC091 8.00m @ 7.94g/t from 114m (63.5 GxM)
- 19KARC028 3.00m @ 18.76g/t from 187m (56.3 GxM)
- 19KARC050 4.00m @ 13.67g/t from 7m (54.7 GxM)
- 19KARC034 15.00m @ 3.36g/t from 26m (50.4 GxM)
- 19KARC042 2.00m @ 23.57g/t from 185m (47.1 GxM)
- 19KARC035 6.00m @ 5.9g/t from 155m (35.4 GxM)
- 19KARC062 2.51m @ 13.63g/t from 89.49m (34.2 GxM)
- 19KARC042 4.00m @ 6.86g/t from 194m (27.4 GxM)
- 19KARC030 10.00m @ 2.73g/t from 47m (27.3 GxM)
- 19KARC054 19.00m @ 1.34g/t from 30m (25.5 GxM)
- 19KARC059 4.00m @ 6.27g/t from 168m (25.1 GxM)
- 19KARC095 8.00m @ 3.08g/t from 118m (24.6 GxM)
- 19KARC043 11.00m @ 2.22g/t from 104m (24.4 GxM)
- 19KARC041 4.00m @ 5.92g/t from 190m (23.7 GxM)
- 19KARC082 7.00m @ 3.07g/t from 35m (21.5 GxM)
- 19KARC018 2.00m @ 10.72g/t from 146m (21.4 GxM)
- 19KARC016 2.00111 @ 10.729/1 10111 140111 (21.4 GXW)
- 19KARC060 9.00m @ 2.35g/t from 130m (21.2 GxM)
- 19KARC016 13.00m @ 1.54g/t from 48m (20.0 GxM)
- 19KARC023 9.00m @ 2.2g/t from 161m (19.8 GxM)
- 19KARC037 9.00m @ 2.12g/t from 139m (19.1 GxM)
- 19KARC067 7.00m @ 2.67g/t from 37m (18.7 GxM)
- 19KARC051 2.00m @ 9.28g/t from 163m (18.6 GxM)
- 19KARC028 6.00m @ 3.09g/t from 226m (18.5 GxM)
- 19KARC064 6.00m @ 3.04g/t from 156m (18.2 GxM)
- 19KARC083 5.00m @ 3.45g/t from 39m (17.2 GxM)
- 19KARC087 8.00m @ 2.13g/t from 20m (17.0 GxM)
- 19KARC043 3.00m @ 5.45g/t from 66m (16.4 GxM)
- 19KARC063 4.83m @ 3.15g/t from 110.17m (15.2 GxM)

3

³ Significant individual plus 15 GxM (grade x width) intersections received up to the end of September 2019 and calculated using 0.5 g/t cut off and up to 3m internal dilution

					1		
					Grade x	Cumulative	
					Interval	Intersection Au	Cumulative
HOLEID	From	То	Interval	Au g/t	(GXM)	g/t	GxM
19KARC028	6	7	1	0.52	0.52		
19KARC028	31	32	1	2.69	2.69		
19KARC028	49	50	1	1.54	1.54		
19KARC028	53	54	1	0.52	0.52		
19KARC028	82	86	4	1.18	4.72		
19KARC028	142	143	1	2.53	2.53	4.42	88.5
19KARC028	149	150	1	0.53	0.53		
19KARC028	187	190	3	18.76	56.28		
19KARC028	208	209	1	0.61	0.61		
19KARC028	226	232	6	3.09	18.54		
19KARC034	26	41	15	3.36	50.4		
19KARC034	66	67	1	0.8	0.8	3.28	59.0
19KARC034	115	117	2	3.92	7.84	0.20	33.0
19KARC035	79	85	6	1.23	7.38		
19KARC035	92	93	1	2.44	2.44		
19KARC035	136	140	4	1.54	6.16		
19KARC035	155	161	6	5.9	35.4	2.70	56.8
19KARC035	209	210	1	0.98	0.98		
19KARC035	216	219	3	1.48	4.44		
19KARC042	96	98	2	1.09	2.18		
19KARC042	102	104	2	0.73	1.46		
19KARC042	131	132	1	1.08	1.08		
19KARC042	135	136	1	0.51	0.51		
19KARC042	146	147	1	1.31	1.31	5.89	82.5
19KARC042	185	187	2	23.57	47.14		
19KARC042	194	198	4	6.86	27.44		
19KARC042	205	206	i	1.38	1.38		
19KARC043	42	43	1	0.74	0.74		
19KARC043	66	69	3	5.45	16.35		
19KARC043	104	115	11	2.22	24.42		
19KARC043	130	134	4	0.79	3.16	2.31	53.2
19KARC043	141	143	2	2.11	4.22		
19KARC043	185	187	2	2.15	4.3		
19KARC044	78	82	4	18.17	72.68		
19KARC044	140	141	1	0.59	0.59		
19KARC044	149	154	5	1.77	8.85	4.66	88.6
19KARC044	159	161	2	1.4	2.8	4.00	00.0
19KARC044	188	195	7	0.52	3.64		
19KARC050	7	11	4	13.67	54.68	13.67	54.7
19KARC061	96	107	11	0.79	8.69	20.07	J 117
19KARC061	140	152	12	7.63	91.56		
19KARC061	181	182	1	1.9	1.9	3.82	106.9
19KARC061	197	198	1	0.58	0.58	3.02	100.5
19KARC061	207	210	3	1.38	4.14		
19KARC091	114	122	8	7.94	63.52	7.94	63.5
19KARC101	49	50	1	0.53	0.53	7.54	- 00.0
19KARC101	124	126	2	1.6	3.2	1	
19KARC101	150	154	4	16.84	67.36	7.72	77.2
19KARC101	184	186	2	1.37	2.74	12	
19KARC101	211	212	1	3.36	3.36		

Table 1: Summary of Karridale September Quarter preliminary assays with drilling intersections calculated using 0.5g/t cut-off and up to 3m internal dilution. In addition, cumulative GxM and cumulative grade are calculated for comparing holes intersecting stacked mineralisation. Only holes intersecting greater than 50 cumulative GxM are listed.

Cumulative GxM Range	Number of Holes	Average Grade Au g/t
0 to 2	4	0.8
2 to 5	6	0.7
5 to 12	10	1.2
12 to 20	21	1.2
20 to 30	18	1.6
30 to 60	24	2.2
60 Plus	6	5.1
Overall Total	89	1.9

Table 2: Summary of Karridale September Quarter preliminary assays by cumulative GxM range with calculated cumulative grade. Significantly, the average length-weighted grade of the results to date approximates 1.9g/t Au, which significantly exceeds the grade of the Mineral Resource estimate announced in May 2019.

Table A: Significant Intersections – Karridale NE Extension JORC Code, 2012 Edition – Table 1 Report

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
		(MG	A 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
						KAR	RIDALE					
								20	24	4	0.64	
	19KARC009	465591.4	6815821.3	469.5	148.3	-60.0	119.0	66	67	1	0.55	
j	1							48	49	1	1.82	
	40//400040	405500 5	0045000.0	400.0	440.5	04.4	440.0	58	59	1	1.11	
	19KARC010	465562.5	6815860.8	469.3	148.5	-61.1	119.0	87	90	3	0.6	
)							106	110	4	1.55	
								72	73	1	0.51	
15	19KARC011	465542.1	6815894.0	469.2	147.9	-61.4	131.0	90	91	1	1.73	
IJ)							107	113	6	1.26	
\bigcirc	19KARC012	465580.6	6815907.0	469.3	145.7	-62.3	137.0	98	100	2	0.66	
/ 2	19KARCU12	400000.0	0010907.0	409.3	143.7	-02.3	137.0	105	111	6	2.05	
7	10KADC012	466050.0	6045500.0	474.0	150 F	FO 7	161.0	48	49	1	0.84	
=	19KARC013	466059.8	6815580.8	471.3	152.5	-59.7	161.0	146	149	3	0.55	
	19KARC014	466030.0	6915600 4	471.2	157.5	-60.4	131.0	65	66	1	1.11	
	19KARCU14	466039.0	6815609.4	471.2	157.5	-00.4	131.0	79	80	1	0.71	
								8	9	1	8.33	
	1							60	68	8	0.61	
	19KARC015	465815.5	6815439.2	469.9	150.4	-59.0	189.3	72	73	1	0.5	
	19KAICO13	403013.3	0013439.2	409.9	130.4	-39.0	109.5	74	75	1	0.57	
								85	88	3	1.22	
								129	131	2	1.31	
)							48	61	13	1.54	
	1							138	139	1	0.5	
10	19KARC016	465495.6	6815676.7	469.0	143.8	-58.5	216.0	151	152	1	0.61	
)							193	194	1	2.05	
								205	206	1	0.74	
\mathcal{L})							76	77	1	0.77	
								82	84	2	1.41	
	19KARC017	465480.6	6815701.0	468.9	146.3	-60.5	222.0	98	101	3	1.19	
								123	124	1	2.06	
)							201	202	1	1.84	
								216	217	1	0.61	
	1							91	99	8	0.52	
	19KARC018	465458.2	6815732.1	468.7	145.5	-60.7	180.0	103	105	2	1.54	
								146	148	2	10.72	
								158	159	1	0.99	
								16	17	1	0.72	
	19KARC019	465522.8	6815782.1	469.1	145.4	-60.1	240.0	52	55	3	2.03	
								70	71	1	2.51	

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
		(MG	A 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
								80	82	2	3.45	
								158	159	1	0.71	
								165	166	1	1.77	
								191	193	2	0.95	
\gg	5							213	214	1	2.66	
								59	60	1	0.54	
								81	83	2	0.69	
	19KARC020	465500.4	6815811.8	467.4	145.7	-60.5	240.0	98	101	3	0.85	
	1910-110020	400000.4	0013011.0	407.4	145.7	-00.5	240.0	167	168	1	0.55	
=								195	203	8	1.02	
								227	234	7	0.6	
15								57	58	1	1.21	
닐								121.87	125.8	3.91	1.82	DD tail
								127.04	127.3	0.3	0.68	DD tail
-								175.5	175.9	0.4	2.34	DD tail
	19KARC021	465453.7	6815874.8	467.6	145.7	-60.3	240.2	184.95	185.8	0.83	3.11	DD tail
								186	186.3	0.3	1.54	DD tail
								201.57	201.8	0.27	5.56	DD tail
								210.62	210.9	0.28	2.67	DD tail
Ų)								229.14	232	2.85	2.56	DD tail
4								235.86	236.3	0.41	3.23	DD tail
								22	23	1	0.84	
7								28 41	32 42	1	1.39 0.52	
4								49	50	1	0.82	
	19KARC022	465676.5	6815841.0	469.4	145.9	-60.2	234.0	57	63	6	0.68	
T/								136	137	1	0.85	
1/								156	162	6	0.86	
								181	182	1	0.62	
								48	49	1	2.32	
								79	82	3	1.98	
								146	149	3	0.67	
	19KARC023	465651.9	6815874.3	469.2	147.5	-60.3	210.0	161	170	9	2.2	
								174	175	1	0.55	
								195	196	1	1.31	
								57	58	1	0.62	
								63	64	1	0.65	
	19KARC024	465624.2	6815912.0	469.0	143.3	-59.8	210.0	69	79	10	0.62	
	IBNAROU24	403024.2	0010812.0	409.U	143.3	-38.0	∠10.0	89	90	1	0.63	
								100	105	5	1.59	
								141	142	1	0.58	
	19KARC025	465976.7	6815693.1	471.2	144.6	-60.4	210.0	110	111	1	0.51	
			2230			,		194	195	1	0.77	

Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
	(MC	GA 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
							36	37	1	4.68	
							41	43	2	6.96	
							47	48	1	0.78	
19KARC026	465762.3	6815449.1	469.6	145.0	-60.0	114.0	72	73	1	1.2	
							82	88	6	1.13	
							96	103	7	1.58	
							108	114	6	0.96	
							34	35	1	1.31	
							41	42	1	2.07	
10KABC007	465505 F	6045044.0	460.0	450.4	E0.4	240.0	52	53	1	0.53	
19KARC027	465525.5	6815844.0	468.8	152.4	-59.4	240.0	93	94	1	3.15	
)							188	189	1	0.61	
4							211	228	17	0.57	
							6	7	1	0.52	
4							31	32	1	2.69	
7							49	50	1	1.54	
7			467.9	149.4			53	54	1	0.52	
40//470000	405047.0	6815888.2			50.4	040.0	82	86	4	1.18	
19KARC028	465347.9				-59.4	242.0	142	143	1	2.53	
							149	150	1	0.53	
1							187	190	3	18.76	
							208	209	1	0.61	
1							226	232	6	3.09	
							32	34	2	1.19	
40//400000	405005.0	0045007.0	470.0	404.0	00.0	400.0	47	48	1	0.63	
19KARC029	465895.6	6815297.0	470.6	134.0	-60.0	163.0	78	80	2	0.91	
1							93	94	1	0.59	
							37	39	2	1.09	
19KARC030	465885.2	6815322.4	470.6	149.5	-67.1	151.0	47	57	10	2.73	
							97	99	2	1.71	
							36	38	2	0.64	
							49	54	5	1.59	
_							105	106	1	0.6	
19KARC031	465948.4	6815726.6	471.7	142.8	-57.3	240.0	121	122	1	0.85	
							191	192	1	1.11	
							214	217	3	1.07	
							224	225	1	1.08	
							49	50	1	0.76	
							57	61	4	2.65	
AOUADOSS	405000 5	00450000	474.0	440.0		000.0	120	121	1	1.63	
19KARC032	465899.5	6815663.9 47	471.2	146.2	-54.7	-54.7 222.0	145	146	1	0.99	
							154	156	2	7.44	
							161	168	7	1.59	

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
		(MG	GA 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
								172	173	1	0.8	
								175	176	1	0.67	
								186	188	2	0.61	
								211	213	2	1.84	
\geq								28	30	2	1.05	
_								71	76	5	0.64	
	1							150	156	6	0.89	
	19KARC033	465885.4	6815684.1	471.6	144.2	-60.4	222.0	162	166	4	0.88	
1								186	189	3	1.28	
	/							194	195	1	0.79	
								212	213	1	0.68	
)								26	41	15	3.36	
// _	19KARC034	465881.7	6815552.7	470.5	147.3	-57.5	180.0	66	67	1	0.8	
)								115	117	2	3.92	
								79	85	6	1.23	
)								92	93	1	2.44	
	19KARC035	465807.3	6815588.2	470.5	145.4	-60.3	222.0	136	140	4	1.54	
]							155	161	6	5.9	
7	1							209	210	1	0.98	
								216	219	3	1.48	
								40	43	3	3.51	
	1							100	102	2	0.95	
1	19KARC036	465743.8	6815604.7	470.3	148.1	-60.5	216.0	112	115	3	1.6	
	/							120	123	3	0.6	
)								130 153	132 157	4	1.12 0.85	
)								0	2	2	0.52	
								72	73	1	3.75	
)								112	113	1	1.47	
								129	134	5	0.95	
)	19KARC037	465721.6	6815637.4	470.9	146.9	-58.6	216.0	139	148	9	2.12	
								154	155	1	0.74	
								162	165	3	1.4	
								196	198	2	0.53	
))							33	34	1	0.61	
								88	93	5	1.02	
								113	114	1	1.55	
	19KARC038	465695.5	6815677.1	471.3	143.5	-61.8	234.0	148	153	5	1.71	
								210	211	1	1.81	
								218	225	7	0.76	
								35	36	1	0.96	
	19KARC039	465678.8	6815696.6	471.6	142.5	-65.0	222.3	106	108	2	0.94	
								112	113	1	0.65	

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
		(MG	iA 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
								133	134	1	0.6	
								158	159	1	0.86	
								172	174	2	3.14	
								197.4	198.5	1.1	2.21	DD tail
\geqslant								198.67	199.1	0.42	3.23	DD tail
	<i>Р</i>							208.33	208.5	0.14	3.76	DD tail
	ļ							212	212.3	0.34	1.92	DD tail
								213.31	213.5	0.19	4.08	DD tail
5								28	34	6	1.79	
\angle	Y							51	52	1	1.59	
								87	88	1	3.59	
15	19KARC040	465745.7	6815742.4	471.6	143.7	-58.2	258.0	136	137	1	0.79	
닏	1010.00040	1001 40.1	3010172.7	1, 1.0		55.2	200.0	146	147	1	1.2	
								171	172	1	0.8	
12	ľ							221	222	1	1.17	
								249	251	2	0.56	
								40	41	1	2.16	
								120	121	1	1.51	
	Į							127	130	3	0.67	
\bigcup	19KARC041	465619.2	6815650.4	470.2	149.0	-59.8	227.0	138	140	2	3.43	
]							167	168	1	1.91	
] J							190	194	4	5.92	
								212	213	1	5.96	
닏	1							96	98	2	1.09	
								102	104	2	0.73	
// <u>?</u>	Y							131	132	1	1.08	
	19KARC042	465590.2	6815621.0	469.8	144.3	-60.0	239.0	135	136	1	0.51	
15								146	147	1	1.31	
	ľ							185	187	2	23.57	
								194	198	4	6.86	
								205	206	1	1.38	
								42	43	1	0.74	
	þ							66	69	3	5.45	
	19KARC043	465712.9	6815516.0	469.8	141.2	-60.1	197.0	104	115	11	2.22	
	ľ							130 141	134 143	2	2.11	
								185	187	2	2.11	
	ļ							78	82	4	18.17	
								140	141	1	0.59	
	19KARC044	465688.7	6815547.1	469.9	146.3	-60.0	203.0	149	154	5	1.77	
	13NANOU44	400000.7	0010047.1	409.9	140.3	-00.0	203.0	159	161	2	1.77	
								188	195	7	0.52	
	19KARC045	465661.3	6815585.1	469.8	146.5	-59.0	227.6	86	87	1	0.95	
	13100043	TUJUU 1.3	00 10000. I	703.0	140.0	-55.0	221.0	00	01	'	0.50	

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
		(MG	SA 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
								145	148	3	1.28	
								176	177	1	1.02	
								193	195	2	2.13	
								38	39	1	2.24	
>>								61	69	8	1.24	
	19KARC046	465888.3	6815264.9	470.5	148.8	-60.5	121.0	84	85	1	0.5	
]]							95	97	2	2.13	
								37	40	3	0.95	
								69	70	1	1.03	
	19KARC047	465868.2	6815291.6	470.5	145.2	-60.4	121.0	73	74	1	0.74	
								79	84	5	1.01	
715								40	41	1	0.6	
	Y							48	51	3	0.52	
								61	67	6	1.61	
リヒ	19KARC048	465844.7	6815375.1	470.3	142.0	-59.0	151.0	77	78	1	0.55	
	6							122	124	2	0.71	
	ĺ							128	129	1	7.53	
	19KARC049	466023.3	6815281.7	470.9	144.6	-60.4	91.0	26	28	2	0.97	
	19KARC050	465999.8	6815315.7	470.7	145.6	-59.8	121.0	7	11	4	13.67	
OI								1	2	1	0.53	
$\stackrel{\smile}{=}$	ĺ							26	29	3	2.14	
	1							45	46	1	0.73	
	Ţ							49	52	3	0.55	
								118	119	1	11.92	
								125	130	5	0.75	
/2 	19KARC051	465766.8	6815713.2	471.7	142.2	-58.2	245.3	135	136	1	0.54	
	ļi J							163	165	2	9.28	
715								169.41	170.2	0.76	0.5	DD tail
	Į.							173.84	174.2	0.36	0.66	DD tail
								196.42	196.7	0.25	0.67	DD tail
<u> </u>								209.57	209.8	0.27	3.5	DD tail
								231	232	1	0.78	DD tail
	ļi J							22	23	1	2.17	
								32	33	1	1.01	
	Į.							42	45	3	0.52	
								68	69	1	1.64	
	19KARC052	465566.0	6815714.5	469.5	143.7	-59.1	240.0	158	163	5	1.78	
								182	184	2	1.89	
								201	203	2	1.74	
								221	222	1	1.52	
								231	233	2	1.27	
	19KARC053	465551.1	6815736.5	469.3	147.1	-63.0	246.0	0	2	2	0.66	
							= : 0:0	22	24	2	1.19	

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
			GA 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
								34	35	1	0.54	
								110	114	4	2.29	
								150	151	1	1.33	
								157	158	1	1.02	
								170	173	3	2.59	
	ו							195	197	2	5.13	
	1							230	231	1	1.52	
								243	244	1	0.5	
								245	246	1	0.95	
)							0	1	1	0.51	
								14	15	1	1.07	
75								30	49	19	1.34	
	401/400054	405040.4	0045700.0	400.7	440.0	00.7	004.0	80	81	1	1.61	
(2/0	19KARC054	465619.1	6815786.8	468.7	148.2	-60.7	234.0	150	151	1	0.53	
02	ľ							155	162	7	1.64	
								167	168	1	2.44	
	/							194	195	1	0.6	
								38	41	3	4.09	
]]							47	52	5	1.12	
(OD)	19KARC055	465697.5	6815808.6	470.4	144.3	-60.5	234.0	57	58	1	2.7	
								158	160	2	1.16	
	0.							209	211	2	0.98	
								58	59	1	0.71	
)							101	103	2	0.87	
26	19KARC056	465638.3	6815612.1	469.8	148.6	-60.0	221.0	135	141	6	0.52	
W2	1910410000	403030.3	0013012.1	403.0	140.0	-00.0	221.0	146	149	3	0.75	
]							153	155	2	5.66	
615								199	200	1	1.89	
)							46	50	4	1.79	
								57	59	2	2.7	
	19KARC057	465664.6	6815517.7	469.7	144.3	-56.3	178.0	69	74	5	2.81	
	10.0.0.00		00.00			00.0		87	89	2	0.74	
								131	137	6	0.5	
								140	142	2	0.57	
	/							91	94	3	0.74	
Пп	19KARC058	465736.6	6815482.8	469.9	145.4	-60.2	178.0	105	110	5	0.81	
]							115	116	1	0.65	
								128	133	5	1.84	
								80	81	1	3.51	
								94	100	6	2.22	
	19KARC059	465622.3	6815571.5	469.5	145.8	-60.4	208.0	123	124	1	0.86	
								133	134	1	1.6	
								168	172	4	6.27	

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
		(MG	A 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
								196	197	1	1.25	
								49	50	1	1.46	
								55	56	1	0.57	
								130	139	9	2.35	
	19KARC060	465593.1	6815545.1	469.4	146.5	-60.2	208.0	169	172	3	0.99	
	1							188	191	3	3.64	
	1							202	203	1	0.51	
]							96	107	11	0.79	
	\							140	152	12	7.63	
	19KARC061	465782.6	6815622.3	470.9	147.1	-61.8	210.0	181	182	1	1.9	
								197	198	1	0.58	
(15)								207	210	3	1.38	
)							42	43	1	2.44	
20								89.49	92	2.51	13.63	DD tail
02								109.8	111	1.2	0.52	DD tail
	19KARC062	465726.6	6815565.2	470.2	144.1	-60.3	198.1	151	158	7	1.11	DD tail
	/							163	164	1	1.31	DD tail
								177	178	1	0.77	DD tail
	1							189	190	1	1.22	DD tail
(OD)								33	34	1	2.56	
	ĺ							110.17	115	4.83	3.15	DD tail
	1							138.77	139.7	0.91	0.84	DD tail
	401/470000	405000 4	0045544.0	400.0	440.0	00.0	400.4	164.55	165	0.49	2.85	DD tail
	19KARC063	465626.4	6815511.3	468.9	149.3	-63.9	192.4	165.16	165.7	0.58	5.63	DD tail
26	\							165.9	167	1.05	6.3	DD tail
\mathbb{Q}^{2})							177.5	178	0.47	1.1	DD tail
	1							182.85	187.9	5.05	0.58	DD tail
<i>a</i> 5	\							21	22	1	0.61	
)							65	70	5	0.8	
	19KARC064	465925.9	6815423.1	470.3	143.8	-60.8	168.0	75	76	1	1.31	
)							148	149	1	0.6	
								156	162	6	3.04	
								15	16	1	0.52	
								29	30	1	0.71	
	19KARC065	465051.4	6915620 F	171 1	160.6	-62.3	102.0	99	100	1	4.64	
Пп	ISKARCUDD	465951.4	6815620.5	471.4	160.6	-0∠.3	192.0	121	123	2	1.8	
	1							133	135	2	2.1	
	y							144	148	4	0.72	
	19KARC066	465974.6	6815349.8	470.6	148.4	-60.5	169.0	31	43	12	0.71	
	19KARC067	465990.8	6815396.6	470.6	146.4	-77.2	91.0	37	44	7	2.67	
	401/450005	100000 =	0045400 7	470.0	440.0	00.0	05.0	49	52	3	1.49	
	19KARC068	466032.7	6815403.7	470.9	148.2	-60.2	85.0	76	77	1	0.55	

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
		_	A 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
		((2)		(/	33	38	5	1.05	
	19KARC069	466012.4	6815434.8	470.8	147.9	-60.4	85.0	60	62	2	4.04	
								31	32	1	0.92	
_								44	45	1	0.78	
								48	49	1	1.4	
	19KARC070	466051.3	6815508.8	470.6	140.5	-64.5	133.0	58	60	2	5.57	
	Į							70	71	1	0.57	
]]							131	133	2	0.88	
								44	48	4	0.78	
	19KARC071	465569.3	6815575.2	469.4	145.0	-59.2	190.0	144	148	4	1.41	
								152	154	2	2.58	
a 5								83	85	2	2.85	
	19KARC072	465547.6	6815606.3	469.4	145.0	-59.5	195.0	139	144	5	0.86	
(2/1)								168	170	2	1.15	
02								13	14	1	0.59	
	5							20	22	2	1.42	
	ĺ							32	33	1	0.91	
	19KARC073	465551.5	6815667.5	469.6	142.0	-60.2	238.0	41	48	7	1.14	
	19NARCU73 465:	403331.3	0013007.3	409.0	142.9	-00.2	230.0	131	138	7	1.48	
								166	167	1	0.61	
								186	188	2	0.86	
	U							224	226	2	1.91	
	19KARC074	465595.5	6815703.8	470.1	145.7	-50.7	16.0	10	16	6	0.61	
	ľ							25	26	1	0.87	
20								37	41	4	1.2	
05	Y							63	64	1	1.94	
	19KARC075	465563.5	6815789.9	468.9	142.0	-60.2	256.0	100	101	1	0.86	
a 5								103	104	1	0.61	
	Y							133	134	1	1.3	
								191	195	4	1.75	
	19KARC076	465651.7	6815398.5	469.3	142.8	-62.1	133.0	30	31	1	1.59	
~								103	104	1	0.82	
	19KARC079	465669.2	6815353.4	469.6	139.8	-54.2	133.0	38	39	1	1.58	
								103	104	1	0.94	
	19KARC080	465682.3	6815430.8	469.3	160.2	-54.5	139.0	41	42	1	0.77	
Пп								18	19	1	1.32	
	19KARC081	465659.0	6815457.9	469.1	157.3	-56.2	157.0	40	44	4	3	
								88	90	2	1.75	
								150	154	4	1.13	
								35	42	7	3.07	
	19KARC082	465764.2	6815444.3	469.8	146.2	-60.2	145.0	80	86	6	1.39	
								94	100	6	1.19	

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
		(MG	A 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
		,			, ,			125	128	3	1.05	
								133	134	1	0.6	
								27	30	3	0.95	
								39	44	5	3.45	
								50	51	1	1.67	
	19KARC083	465638.5	6815485.3	469.0	158.8	-60.1	175.0	105	113	8	1.43	
								126	127	1	0.82	
								154	155	1	1.25	
								167	170	3	1.64	
								50	51	1	0.82	
								78	79	1	2.95	
75	19KARC084	465964.2	6815522.8	471.2	157.7	-50.4	117.0	84	87	3	1.93	
)							98	99	1	0.73	
00								111	112	1	0.8	
W S	/							40	42	2	1.5	
	1							65	66	1	0.96	
	/							70	71	1	0.57	
								75	77	2	2.59	
	1							87	89	2	2.12	
(\bigcap)	19KARC085	465786.5	6815468.4	469.8	145.5	-60.2	217.0	98	99	1	1.33	
90								128	130	2	0.89	
								133	134	1	0.5	
								166	168	2	2.32	
(()								191	192	1	1.01	
46								201	202	1	0.67	
)							82	83	1	0.9	
								94	97	3	1.18	
<u></u>	19KARC086	465716.9	6815713.4	471.5	147.4	-60.4	254.0	151	158	7	1.8	
)							227	229	2	0.83	
\sim								20	28	8	2.13	
)							57	58	1	0.99	
								108	109	1	0.85	
2								112	113	1	0.88	
	40144	405704.0	00450540		440.0	50.0		140	141	1	0.56	
	19KARC087	465794.3	6815674.3	471.5	146.8	-59.8	232.0	145	146	1	1.07	
1 п								152	154	2	1.7	
								193	194	1	1.18	
	u							203	205	2	0.79	
								222	223	1	1.8	
								27	28	1	0.6	
	401/450000	40570- 5	004500= 5	4=0 -	=	60 =	000.5	32	40	8	1.67	
	19KARC088	465727.6	6815837.3	470.0	144.7	-60.5	238.0	46	48	2	0.8	
								54	58	4	3.13	

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
		(MG	A 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
								115	116	1	0.86	
								127	128	1	0.93	
								141	142	1	1.03	
								163	164	1	1.17	
>								170	171	1	1.17	
]]							175	178	3	0.58	
]							185	186	1	1.07	
	ļ							190	191	1	0.74	
								219	220	1	3.95	
긛								229	230	1	0.79	
	19KARC091	466021.4	6815567.0	470.9	148.3	-53.5	150.0	114	122	8	7.94	
15								19	20	1	1.01	
닏	Y							71	72	1	2.32	
	19KARC092	465784.0	6815758.2	471.5	141.8	-60.1	222.0	134	136	2	2.85	
12	ľ							153	154	1	1.59	
	5							191	192	1	0.65	
								51	52	1	0.71	
								96	98	2	4.27	
	19KARC093	465751.7	6815798.6	470.8	140.4	-58.0	246.0	164	165	1	4.41	
(U)								178	182	4	0.64	
								239	240	1	0.87	
	1							58	59	1	0.58	
								64	69	5	2.7	
)	19KARC094	465823.1	6815494.8	469.9	144.7	-60.2	216.0	95	99	4	1.72	
								129	130	1	1.7	
2								142	143	1	1.06	
	19KARC095	465802.6	6815533.7	470.2	149.9	-60.5	186.0	79	80	1	2.17	
5								85	88	3	0.65	
\cup	Į.							118	126	8	3.08	
7								137	138	1	0.65	
<i>).</i>	19KARC095	465802.6	6815533.7	470.2	149.9	-60.5	186.0	150	151	1	1.78	
								164	165	1	1.69	
]							172	173	1	0.59	
								177	178	1	2.54	
丿	/							5	6	1	0.75	
	19KARC097	465943.5	6815396.5	470.6	144.7	-56.8	174.0	14	17	3	0.79	
]							51	65	14	0.98	
								158	162	4	0.59	
								23	24	1	0.75	
								92	93	1	0.84	
	19KARC098	465710.3	6815778.3	472.0	146.6	-60.5	234.0	108	111	3	2.06	
								120	121	1	1.34	
								158	159	1	0.69	

	Hole ID	Easting	Northing	RL	Azimuth	Dip	Depth	From	То	Interval	Grade	Comments
		(MG	A 94 Zone 51)		(MGA94)		(m)	(m)	(m)	(m)	(g/t Au)	
								162	163	1	0.84	
								177	178	1	0.89	
								188	195	7	0.72	
								73	74	1	0.69	
								90	91	1	0.83	
	19KARC099	466028.1	6815626.8	471.1	147.2	-65.9	192.0	154	155	1	0.62	
	19KARC099	400020.1	0613020.6	4/1.1	147.2	-05.9	192.0	175	176	1	0.52	
	1							180	181	1	0.54	
								183	184	1	0.69	
)							13	20	7	1.14	
								114	117	3	0.52	
(1)5								160	163	3	2.77	
(JD	19KARC100	465593.0	6815709.7	470.0	152.6	-54.3	250.0	167	168	1	0.55	
(2/10)								173	175	2	6.12	
02								209	211	2	1.75	
								224	225	1	0.86	
								49	50	1	0.53	
								124	126	2	1.6	
	19KARC101	465637.9	6815680.9	470.6	145.9	-62.3	250.0	150	154	4	16.84	
(OD)								184	186	2	1.37	
								211	212	1	3.36	
								13	18	5	1.93	
								28	30	2	1.76	
)							34	39	5	0.61	
26								43	48	5	0.61	
)							62	63	1	0.5	
	19KARC102	465633.3	6016766.0	470.4	140.7	-60.2	232.0	78	79	1	0.89	
7	19KARC102	400000.0	6815765.8	470.4	142.7	-00.2	232.0	83	84	1	0.79	
)							146	151	5	2.53	
								158	159	1	1.91	
)							169	171	2	0.99	
								184	185	1	0.71	
								190	191	1	0.97	

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Explanation						
	This report relates to results from Reverse Circulation (RC) drilling. RC Sampling RC percussion drill chips were collected through a cone splitter from the drill rig. The						
Sampling techniques	bulk sample from drilling was placed in neat rows directly on the ground (not bagged) with the nominal 2-3kg calico split sub-sample placed on top of the corresponding pile.						
	 RC chips were passed through a cone splitter to achieve a nominal sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole. Geological 						

3rd Qtr 2019 Karridale infill Intersections are length-weighted averages with minimum cut-offs of 0.5g/t Au and up to 3m internal dilution.

Criteria	Explanation
	logging defined whether a sample was to be submitted as a 1m cone split sample or a 4m spear composite sample. Split samples (1m) were transferred to sample numbered calico bags for submission to the laboratory. Composite samples were spear sampled using a scoop to obtain a small representative sample and deposited into numbered sample bags.
	Diamond core was sampled across geologically identified zones of mineralisation, the sample widths varied between a minimum of 0.2m and a maximum of 1.2m with material on either side sampled to capture the entire mineralised zone.
	 The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of lithology, alteration and where applicable core loss. The core was cut in half using a core saw and the same half of the core (RHS looking downhole) was routinely sent to the laboratory for analysis. Some soft core was sampled half by using a bolster, and some fractured quartz core were cut in half by using manual diamond core saw to ensure half core was sampled. A small number of whole core samples where routinely collected for bulk density analysis. These samples were submitted to the same lab for gold analysis after bulk
	density measurement.
	 RC drilling was conducted using a 5 3/8inch face sampling hammer for RC drilling. At hole completion, downhole surveys for RC holes were completed at a 10m interval by using True North Seeking Gyro tool.
Drilling techniques	At hole completion diamond holes were survey using a single shot tool at a range of intervals between 20m and 50m, averaging 30m Diamond drill holes were all tails from existing RC precollars.
Drilling techniques	All pre-collars where cased off and the diamond component of the drill hole completed
	 using NQ2 (producing 50mm core diameter) equipment. Wherever core conditions and hole orientation would allow, drill core was oriented by the drilling contractor using the electronic ACT III Tool.
Drill sample recovery	 RC sample recovery was recorded by a visual estimate during the logging process. DD sample recovery was measured and calculated (core loss) during the logging process. DD core had generally reasonable recovery <10% core loss in and around mineralisation. All core loss was fully diluted and assigned a grade of 0.0g/t Au
	All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure, texture and any other notable features that are present. All data is entered directly into validating digital software directly.
	All core samples were oriented where possible, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted and recorded in the drilling database.
	All diamond core was logged for structure, geology and geotechnical data using the same system as that for RC.
Logging	 Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present.
	The logging information was transferred into the company's drilling database once the log was complete.
	Diamond core was photographed one core tray at a time using a standardised photography jig. RC chip trays are routinely photographed.
	The entire length of all holes is geologically logged, except for rock roller diamond pre- collars, which produce no sample.
	 All samples were collected in a pre-numbered calico bag bearing a unique sample ID. At the assay laboratory, all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm.
Sub-sampling techniques and sample preparation	 Gold analysis was by 40g Fire Assay with an AAS Finish. Jinning Testing & Inspection completed the assay testing, with sample preparation
	completed in Kalgoorlie or Perth and analysis completed in Perth. • The assay laboratories' sample preparation procedures follow industry best practice,
	with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion.

Criteria	Explanation
	QAQC checks involved inserting standards 1:20 samples (with minimum 3 standards every submission). Duplicate samples for RC were achieved by producing 2 samples for each metre one hole every 20 th hole drilled and submitting all produced samples. The remaining bulk sample was also bagged to plastic bags for retention and further checks. Diamond core field duplicates were not taken.
	Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out.
	The sample sizes were appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration.
	The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample.
	No geophysical tools, spectrometers or handheld XRF instruments were used for assay determination.
Quality of assay data and laboratory tests	The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances and where they didn't further analysis was conducted as appropriate.
	Umpire samples are collected on a routine basis will be submitted to independent ISO certified labs in 2019
	Additional bulk mineralised RC samples have also been collected and retained for follow up QAQC, metallurgical and sample characterisation purposes.
	Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process.
Verification of sampling and assaying	 Primary logging data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project.
	Drill collars are surveyed after completion using a DGPS instrument.
	 A True North Seeking Gyro for RC end of holes surveys All coordinates and bearings use the MGA94 Zone 51 grid system.
Location of data points	FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments.
	After completion the drill hole locations were picked up by DGPS with accuracy of +/- 20cm.
	Following completion of the September Qtr 2019 drilling program the drill spacing in the core of the Karridale project is a maximum of 40mx 40m and in places 40m x 20m.
Data spacing and distribution	
Oriontation of data:	 Drilling was designed based on known/developing geological models, field mapping, verified historical data, cross-sectional and long-sectional interpretation.
Orientation of data in relation	Where achievable, drill holes were oriented at right angles to strike of deposit, with dip optimised for drill capabilities and the dip of the ore body.
to geological structure	 True widths have not been calculated for reported intersections. However, drill orientation was consistently optimised to approximate true width of mineralisation.
	All samples were reconciled against the sample submission with any omissions or variations reported to FML.
Sample security	 All samples were bagged in a tied numbered calico bag. The bags were placed into plastic green bags with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel at completion of each hole.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	Criteria	Explanation					
	Mineral tenement and land tenure status	 The drilling was conducted on tenemenst M38/089 & M38/073 +99% owned by Focus Minerals (Laverton) Pty Ltd. In JV with Goldfields (GSM). Exploration expenditure by FML is continuing to increase the proportion of the JV tenement held by FML. Drilling was also conducted on tenement M38/008 and M38/1281 both 100% owned by Focus Minerals (Laverton) Pty Ltd All tenements are in good standing. There are currently no registered Native Title claims over the Laverton project areas. 					
	Exploration done by other parties	 Karridale was originally mined by small scale shafts targeting high grade veins. The shallow shafts and drives are developed throughout the area and an excellent vector within the interpreted Karridale Footprint Karridale has been explored by several parties including Sons of Gwalia and Crescent. Sons of Gwalia explored for oxide resources and mined a oxide resource at Burtville which was later followed into hard rock by a Crescent. Exploration by Focus in 2018/19 at Karridale targets the interpreted mineralised footprint which is based on: historical mining, structural interpretation, geological model, geophysics and continued success with infill of 2018 320m x 160m and 160m x 80m footprint drilling. The 3rd Qtr 2019 drilling program targeted inferred areas of the May 2019 Karridale Resource for the purposes of resource category upgrade ahead of a resource modelling in November 2019 					
	Geology	 The Karridale mineralisation is hosted in an interpreted half graben on the SE side of a large Granodiorite intrusion. The half graben is composed from NW to SE and up sequence by: Gabbro overlain by basalt, overlain by structurally thrust stacked intermediate volcanic tuff and interbedded sandstone-black shale. The thrusts have shallow NW dip and have been locally intruded by gabbro and feldspar-homblende porphyry sills. The mineralisation is hosted primarily by the shallow NW dipping shears and by some N-S subvertical veins. 					
	Drill hole information	See Table A					
	Data aggregation methods	New exploration results - mineralised intersections are reported at a 0.5g/t Au cut-off length-weighted average grades with a minimum reporting width of 1m and up to 3m internal dilution.					
	Relationship between mineralization widths and intercept lengths	 Holes were drilled orthogonal to mineralisation as much as possible, however the exact relationship between intercept width and true width cannot be estimated exactly in all cases. Furthermore, no intersections are represented as calculated true widths in this report 					
	Diagrams	 Accurate collar plans are included in this announcement. 3D perspective views and schematic cross-sections are included to illustrate the distribution of grade 					
\bigcirc	Balanced reporting	 Drilling results are reported in a balanced reporting style. The ASX announcement shows actual locations of holes drilled, and representative sections as appropriate. 					
	Other substantive exploration data	There is no other material exploration data to report at this time.					
	Further work	FML anticipates additional drilling to follow up on encouraging results in Laverton.					

For further information please contact:

Zaiqian Zhang

Director, CFO and Company Secretary Focus Minerals Ltd Phone: +61 8 9215 7888

Peter Klinger

Media and Investor Relations Cannings Purple Mobile: +61 411 251 540

About Focus Minerals Limited (ASX: FML)

Focus is a Perth-based, ASX-listed gold exploration company with Projects in Laverton and Coolgardie.

The company is focused on delivering shareholder value from its Laverton Gold Project, in Western Australia's north-eastern Goldfields. The Laverton project covers 507km² area of highly prospective ground that includes the historic

Lancefield and Chatterbox Trend mines. Focus' priority target is to confirm the extent of gold mineralisation at deposits Beasley Creek and Lancefield Thrust and advance the Sickle, Ida-H and Karridale-Burtville deposits and targets.

Focus also owns the non-core Coolgardie Gold Project, also in the Goldfields, which includes a 1.2Mtpa processing plant at Three Mile Hill. The plant is on care and maintenance. Focus is pursuing a divestment strategy for its Coolgardie Projects and continues to maintain them and add value while this process continues.

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Mr Alex Aaltonen, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Aaltonen is an employee of Focus Minerals Limited. Mr Aaltonen has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

Mr Aaltonen consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.