

Liontown drilling highlights potential to expand Thalanga

Highlights:

- Assay results continue to be received from the ongoing Liontown drilling program, with continued outstanding results received from drilling in the New Queen Lens and the Main Lens
- Results from these lenses indicate potential for a near term mining opportunity, which could be material to Thalanga operations
- New Queen Lens (Copper Lead Zinc + Gold/Silver Sulphide Mineralisation):
 - 71.20m @ 6.9% Zn Eq. from 32.00m down-hole inc. 16.00m @ 11.3% Zn Eq. from 39.00m down-hole and 12.50m @ 10.7% Zn Eq. from 68.15m down-hole (LTDD19011)
 - 8.40m @ 8.0% Zn Eq. from 35.8m down-hole (LTDD19012)
 - 35.75m @ 14.9% Zn Eq. from 53.75m down-hole (LTDD19013)
- LTDD19013 intersection included exceptionally high-grade precious metal rich mineralisation: 5.35m @ 1.3% Cu, 12.6% Pb, 25.0% Zn, 10.1 g/t Au & 461 g/t Ag (57.1% Zn Eq.) from 78.90m down-hole.
- Liontown Main Lens (Copper Lead Zinc + Gold/Silver Sulphide Mineralisation):
 - 37.78m @ 6.8% Zn Eq. from 163.32m down-hole inc. two zones of high grade massive sulphides: 4.50m @ 20.6% Zn Eq. from 167.50m down-hole and 6.10m @ 12.1% Zn Eq. from 195.00m down-hole (LTDD19005)
 - 5.67m @ 33.1% Zn Eq. from 105.88m down-hole (LTDD19008)
 - 23.65m @ 19.4% Zn Eq. from 181.50m down-hole inc. 15.60m @ 25.9% Zn Eq. from 189.55m down-hole (LTDD19010)
- Carrington Lode (Copper Gold Mineralisation):
 - 5.00m @ 5.3% Cu and 0.1 g/t Au from 253.00m down-hole (LTDD19008)
- These results provide confidence in historic drill data and confirm the high grade, gold-rich polymetallic nature of the Liontown Deposit

Red River Managing Director Mel Palancian said:

"We are impressed with the results from Liontown, which are demonstrating the potential of this deposit to add to the mine life of our Thalanga Operations. The New Queens Lens has potential to become a starter pit, targeting the shallow high-grade polymetallic mineralisation while results from the Main Lens support a possible underground mining operation. In addition, we are remodelling the Carrington Lode using historic and new results to design a drill program to better target the gold in that system and define a Mineral Resource."

Red River Resources Limited (ASX: RVR) is pleased to report further high-grade assay results from drilling at the Liontown Project, part of its Thalanga Operations in Northern Queensland.

The Liontown Project comprises polymetallic volcanic hosted massive sulphide (VHMS) deposits (New Queen Lens, Main Lens and Liontown East) and the Carrington Lode, a later gold-rich copper mineralised vein system (intrusion-related gold-copper vein system – IRGS). Liontown has a total Mineral Resource of 3.6Mt at 10.0% Zinc Equivalent.

Liontown is 32km due east of Thalanga Operations, and the trucking route is 107km (21km on a Shiremaintained all-weather unsealed road then 86km via the sealed Gregory Development Road and Flinders Highway to Thalanga Operations).

Red River commenced drilling at Liontown in June 2019, with two diamond drill rigs currently active. The drill program is expected to finish in Q1 CY2020. To date, 19 holes have been completed (for 3324.36m), and assay results received for 11 holes.

1. New Queen Lens Drilling Results

The New Queens Lens is a large body (approximately 600m by 250m by 5m) of polymetallic (Cu-Pb-Zn) volcanic hosted massive sulphide (VHMS) mineralisation with significant precious metal (gold and silver) credits. Drilling to date has returned wide intercepts of high-grade polymetallic fresh sulphide mineralisation with material precious metals, particularly gold, from within 30m of the surface, supporting the potential to be mined either by underground or open pit methods

Red River is pleased to report the following material assays results from the current drilling program:

- LTDD19011 intersected 71.20m @ 0.2% Cu, 1.8% Pb, 4.0% Zn, 1.5 g/t Au & 14 g/t Ag (6.9% Zn Eq.) from 32.00m down-hole,
 - including 16.00m @ 0.3% Cu, 3.2% Pb, 7.0% Zn, 3.5 g/t Au & 12 g/t Ag (11.3% Zn Eq.) from 39.00m down-hole and
 - 12.50m @ 0.3% Cu, 3.5% Pb, 5.3% Zn, 1.0 g/t Au & 28 g/t Ag (10.7% Zn Eq.) from 68.15m down-
- LTDD19013 intersected 35.75m @ 0.3% Cu, 3.5% Pb, 7.4% Zn, 2.2 g/t Au & 91 g/t Ag (14.9% Zn Eq.) from 53.75m down-hole
 - including 5.35m @ 1.3% Cu, 12.6% Pb, 25.0% Zn, 10.1 g/t Au & 461 g/t Ag (57.1% Zn Eq.) from 78.90m down-hole.

Table 1 Material drill hole assay summary (current drilling), Liontown Project (New Queen Lens Sulphide)

 LTDD19011 intersected 71.20m @ 0.2% Cu, 1.8% Pb, 4.0% Zn, 1.5 g/t Au & 14 g/t Ag (6.9% Zn Eq.) ff 32.00m down-hole, including 16.00m @ 0.3% Cu, 3.2% Pb, 7.0% Zn, 3.5 g/t Au & 12 g/t Ag (11.3% Zn Eq.) ff 39.00m down-hole and 12.50m @ 0.3% Cu, 3.5% Pb, 5.3% Zn, 1.0 g/t Au & 28 g/t Ag (10.7% Zn Eq.) from 68.15m do hole. LTDD19013 intersected 35.75m @ 0.3% Cu, 3.5% Pb, 7.4% Zn, 2.2 g/t Au & 91 g/t Ag (14.9% Zn Eq.) ff 53.75m down-hole including 5.35m @ 1.3% Cu, 12.6% Pb, 25.0% Zn, 10.1 g/t Au & 461 g/t Ag (57.1% Zn Eq.) ff 78.90m down-hole. Table 1 Material drill hole assay summary (current drilling), Liontown Project (New Queen Lens Sulphide)												
	Hole ID	From	То	Down Hole Intersection	True Width Estimate	Cu	Pb	Zn	Au	Ag	Zn Eq.	
~		(m)	(m)	(m)	(m)	(%)	(%)	(%)	(g/t)	(g/t)	(%)	
	LTDD19008	152.10	154.65	2.55	0.9	0.2	1.2	2.2	1.0	22	4.9	
	LTDD19011	32.00	103.20	71.20	17.3	0.2	1.8	4.0	1.5	14	6.9	
	inc.	39.00	55.00	16.00	12.0	0.3	3.2	7.0	3.5	12	11.3	
П	inc.	68.15	80.65	12.50	8.0	0.3	3.5	5.3	1.0	28	10.7	
	LTDD19012	35.80	44.20	8.40	7.6	0.3	1.9	4.6	0.5	13	8.0	
	LTDD19013	53.75	89.50	35.75	11.8	0.3	3.5	7.4	2.2	91	14.9	
	inc.	78.90	84.25	5.35	2.5	1.3	12.6	25.0	10.1	461	57.1	

Figure 1 New Queen Lens Long Section

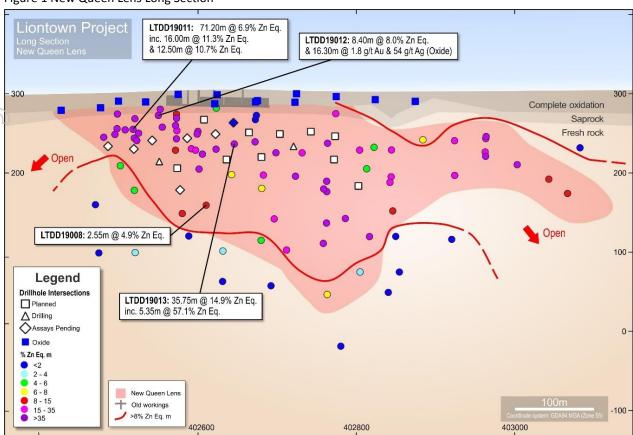


Figure 2 Liontown Project (Section 402650E)

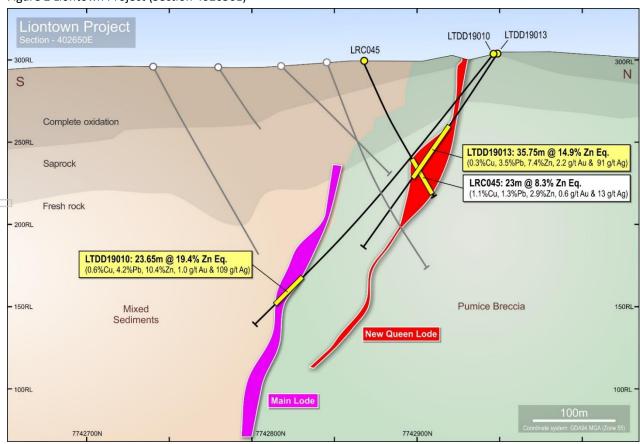


Figure 3 High-grade polymetallic massive sulphide mineralisation with precious metals (LTDD19013, New Queen Lens)

2. Main Lens Drilling Results

The Main Lens is a large body (approximately 450m by 400m by 5m) of polymetallic (Cu-Pb-Zn) volcanic hosted massive sulphide (VHMS) mineralisation with significant precious metal (gold and silver) credits. The lens comprises three, stratiform tabular lodes (Upper, Central and Lower) hosted within sericitic siltstones near the sediment pumice breccia contact. The lens is oxidised to a depth of 60-80m and mineralisation is characterised by banded low iron sphalerite.

Red River is pleased to report the following material assays results from the current drilling program:

- LTDD19005: 37.78m @ 0.3% Cu, 1.1% Pb, 4.0% Zn, 0.3 g/t Au & 29 g/t Ag (6.8% Zn Eq.) from 163.32m down-hole, including:
 - 4.50m @ 0.8% Cu, 3.2% Pb, 14.1% Zn, 0.2 g/t Au & 36 g/t Ag (20.6% Zn Eq.) from 167.50m downhole and
 - 6.10m @ 0.3% Cu, 2.0% Pb, 7.4% Zn, 0.8 g/t Au & 68 g/t Ag (12.1% Zn Eq.) from 195.00m down-
- LTDD19008: 5.67m @ 0.8% Cu, 6.3% Pb, 21.5% Zn, 0.8 g/t Au & 115 g/t Ag (33.1% Zn Eq.) from 105.88m down-hole
- LTDD19010: 23.65m @ 0.6% Cu, 4.2% Pb, 10.4% Zn, 1.0 g/t Au & 109 g/t Ag (19.4% Zn Eq.) from 181.50m down-hole, including:
 - 15.60m @ 0.7% Cu, 5.9% Pb, 13.8% Zn, 1.5 g/t Au & 153 g/t Ag (25.9% Zn Eq.) from 189.55m down-hole.

To date, the Main Lens drilling has confirmed the presence of high-grade polymetallic VHMS mineralisation over mineable widths, supporting the case for the proposed underground mining approach.

Table 2 Material drill hole assay summary (current drilling), Liontown Project (Main Lens)

Hole ID	From	То	Down Hole Intersection	True Width Estimate	Cu	Pb	Zn	Au	Ag	Zn Eq.
	(m)	(m)	(m)	(m)	(%)	(%)	(%)	(g/t)	(g/t)	(%)
LTDD19005	163.32	201.10	37.78	13.5	0.3	1.1	4.0	0.3	29	6.8
inc.	167.50	172.00	4.50	2.9	0.8	3.2	14.1	0.2	36	20.6
inc.	195.00	201.10	6.10	3.0	0.3	2.0	7.4	0.8	68	12.1
LTDD19008	105.88	111.55	5.67	4.7	0.8	6.3	21.5	0.8	115	33.1
LTDD19010	181.50	205.15	23.65	10.2	0.6	4.2	10.4	1.0	109	19.4
inc.	189.55	205.15	15.60	5.0	0.7	5.9	13.8	1.5	153	25.9

Figure 4 Main Lens Long Section



Figure 5 Liontown Project (Section 402650E)

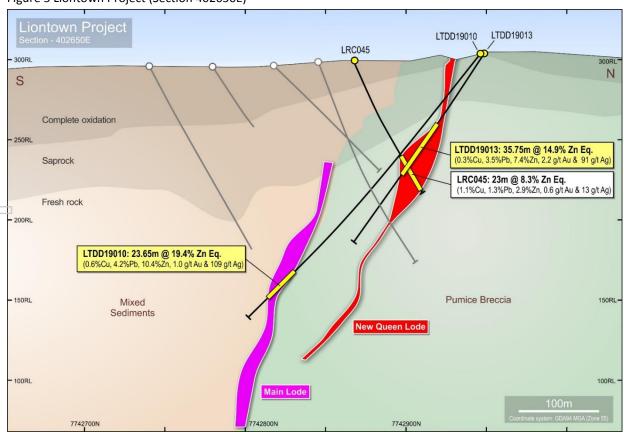
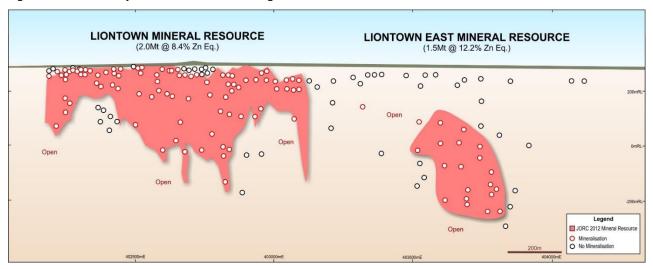


Figure 6 Main Lens Mineralisation


Table 3 Liontown JORC Mineral Resource

Deposit	Resource Class	Tonnage (kt)	Cu (%)	Pb (%)	Zn (%)	Au (g/t)	Ag (g/t)	Zn Eq. (%)
Liontown	Measured	-	-	-	-	-	-	-
	Indicated	367	0.5	1.8	4.6	1.3	21	8.3
	Inferred	1,671	0.5	1.5	4.6	0.8	26	8.4
	Subtotal	2,038	0.5	1.6	4.6	0.8	25	8.4
Liontown East	Measured	-	-	-	-	-	-	-
D	Indicated	-	-	-	-	-	-	-
	Inferred	1,515	0.5	2.5	7.3	0.7	29	12.2
	Subtotal	1,515	0.5	2.5	7.3	0.7	29	12.2
Combined	Measured	-	-	-	-	-	-	-
	Indicated	367	0.5	1.8	4.6	1.3	21	8.3
	Inferred	3,185	0.5	2.0	5.9	0.7	28	10.2
	Total	3,553	0.5	2.0	5.7	0.8	27	10.0

Tonnages and grades are rounded. Discrepancies in totals may exist due to rounding.

Source: Liontown Deposit JORC 2012 Resource Estimate (ASX Release, 24 June 2015), Maiden Liontown East Mineral Resource (ASX Release, 18 July 2018) Zinc equivalent (Zn Eq.) has been calculated using the metal selling prices, recoveries and other assumptions contained in Appendices of this announcement. It is Red River's opinion that all elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold.

Figure 7 Liontown Project Mineral Resource Long Section

About Red River Resources (ASX: RVR)

RVR is seeking to build a multi-asset operating business focused on base and precious metals with the objective of delivering prosperity through lean and clever resource development.

RVR's foundation asset is the Thalanga Base Metal Operation in Northern Queensland, which was acquired in 2014 and where RVR commenced copper, lead and zinc concentrate production in September 2017.

RVR has recently acquired the high-grade Hillgrove Gold-Antimony Project in New South Wales, which will enable RVR to build a multi-asset operating business focused on base and precious metals.

On behalf of the Board,

Mel Palancian

Managing Director

Red River Resources Limited

For further information please visit Red River's website or contact:

Mel Palancian

Managing Director

mpalancian@redriverresources.com.au

D: +61 3 9017 5380

Nathan Ryan

NWR Communications

nathan.ryan@nwrcommunications.com.au

M: +61 420 582 887

COMPETENT PERSON STATEMENT

Exploration Results

The information in this report that relates to Exploration Results is based on information compiled by Mr Steven Harper who is a member of The Australasian Institute of Mining and Metallurgy, and a full time employee of Red River Resources Ltd., and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code).

Mr Harper consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Liontown East Mineral Resource

The information in this report that relates to the estimation and reporting of the Liontown East Mineral Resource is based on and fairly represents, information and supporting documentation compiled by Mr Peter Carolan who is a Member of The Australasian Institute of Mining and Metallurgy and a full time employee of Red River Resources Ltd.

Mr Carolan has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Carolan consents to the inclusion in the report of the matters based on the information in the form and context in which it appears. The information in this report that relates to database compilation, geological interpretation and mineralisation wireframing, project parameters and costs and overall supervision and direction of the Liontown East Mineral Resource estimation is based on and fairly represents, information and supporting documentation compiled under the overall supervision and direction of Mr Carolan.

Liontown Mineral Resource

The information in this report that relates to the estimation and reporting of the Liontown Mineral Resource is based on and fairly represents, information and supporting documentation compiled by Mr Stuart Hutchin who is a Member of The Australasian Institute of Mining and Metallurgy, Member of the Australian Institute of Geoscientists and a full time employee of Mining One Consultants Pty Ltd.

Mr Hutchin has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Hutchin consents to the inclusion in the report of the matters based on the information in the form and context in which it appears. The information in this report that relates to database compilation, geological interpretation and mineralisation wireframing, project parameters and costs and overall supervision and direction of the Liontown Mineral Resource estimation is based on and fairly represents, information and supporting documentation compiled under the overall supervision and direction of Mr Hutchin.

Zinc Equivalent Calculation

The net smelter return zinc equivalent (Zn Eq.) calculation adjusts individual grades for all metals included in the metal equivalent calculation applying the following modifying factors: metallurgical recoveries, payability factors (concentrate treatment charges, refining charges, metal payment terms, net smelter return royalties and logistic costs) and metal prices in generating a zinc equivalent value for copper (Cu), lead (Pb), zinc (Zn), gold (Au) and silver (Ag).

Red River has selected to report on a zinc equivalent basis, as zinc is the metal that contributes the most to the net smelter return zinc equivalent (Zn Eq.) calculation. It is the view of Red River Resources that all the metals used in the Zn Eq. formula are expected to be recovered and sold.

Where:

Metallurgical Recoveries are derived from historical metallurgical recoveries from test work carried out the Liontown deposit. The Liontown East deposit is related to and of a similar style of mineralisation to the Liontown Deposit and it is appropriate to apply similar recoveries. The Metallurgical Recovery for each metal is shown below in Table 1.

Metal Prices and Foreign Exchange assumptions are set as per internal Red River price forecasts and are shown below in Table 1.

Table 1 Metallurgical Recoveries and Metal Prices

Metal	Metallurgical Recoveries	Price
Copper	80%	US\$3.00/lb
Lead	70%	US\$0.90/lb
Zinc	88%	US\$1.00/lb
Gold	15%	US\$1,200/oz
Silver	65%	US\$17.00/oz
FX Rate: A\$0.85	:US\$1	

Payable Metal Factors are calculated for each metal and make allowance for concentrate treatment charges, transport losses, refining charges, metal payment terms and logistic costs. It is the view of Red River that three separate saleable base metal concentrates will be produced from Liontown East. Payable metal factors are detailed below in Table 2.

Table 2 Payable Metal Factors

Metal	Payable Metal Factor
Copper	Copper concentrate treatment charges, copper metal refining charges copper metal payment terms (in copper concentrate), logistic costs and net smelter return royalties
Lead	Lead concentrate treatment charges, lead metal payment terms (in lead concentrate), logistic costs and net smelter return royalties
Zinc	Zinc concentrate treatment charges, zinc metal payment terms (in zinc concentrate), logistic costs and net smelter return royalties
Gold	Gold metal payment terms (in copper and lead concentrates), gold refining charges and net smelter return royalties
Silver	Silver metal payment terms (in copper, lead and zinc concentrates), silver refining charges and net smelter return royalties

The zinc equivalent grade is calculated as per the following formula:

Zn Eq. =
$$(Zn\%*1.0) + (Cu\%*3.3) + (Pb\%*0.9) + (Au ppm*0.5) + (Ag ppm*0.025)$$

The following metal equivalent factors used in the zinc equivalent grade calculation has been derived from metal price x Metallurgical Recovery x Payable Metal Factor and have then been adjusted relative to zinc (where zinc metal equivalent factor = 1).

Table 3 Metal Equivalent Factors

Metal	Copper	Lead	Zinc	Gold	Silver
Metal Equivalent Factor	3.3	0.9	1.0	0.5	0.025

APPENDIX 1

Table 4 Drill hole information summary, Liontown Project

	Table 4 Drift fold information summary, Dontown Project												
Hole ID	Depth (m)	Dip	Azi (MGA)	East (MGA)	North (MGA)	RL (MGA)	Lease ID	Hole Status					
LTDD19001	347.78	-49	1	402485	7742710	291	EPM14161	Completed					
LTDD19002	257.7	-51	185	402500	7742947	300	ML10277	Completed					
LTDD19003	176.5	-61	353	402484	7742763	293	ML10277	Completed					
LTDD19004	214.2	-50	8	402459	7742788	295	ML10277	Completed					
LTDD19005	224	-47	153	402500	7742947	300	ML10277	Completed					
LTDD19007	173.4	-54	356	402586	7742785	294	ML10277	Completed					
LTDD19008	279	-61	352	402623	7742789	294	ML10277	Completed					
LTDD19010	222.48	-51	172	402640	7742948	305	ML10277	Completed					
LTDD19011	158.8	-48	158.8	402500	7742947	300	ML10277	Completed					
LTDD19012	83.9	-51	317	402562	7742907	295	ML10277	Completed					
LTDD19013	144.5	-58	172	402640	7742948	305	ML10277	Completed					
LTDD19014	116.4	-47	355	402594	7742852	298	ML10277	Assays pending					
LTDD19015	204.8	-48	163	402703	7742955	305	EPM14161	Assays pending					
LTDD19016	112.9	-55	353	402494	7742845	298	ML10277	Assays pending					
LTDD19017	95.2	-58	348	402629	7742881	299	ML10277	Assays pending					
LTDD19018	127.3	-55	33	402494	7742845	298	ML10277	Assays pending					
LTDD19019	108.5	-53	353	402549	7742856	298	ML10277	Assays pending					
LTDD19020	159.5	-66	357	402549	7742856	298	ML10277	Assays pending					
LTDD19021	117.5	-52	345	402669	7742857	300	ML10277	Assays pending					
LTDD19022		-48	189	402786	7742977	305	EPM14161	Drilling					
LTDD19023		-63	356	402669	7742857	300	EPM14161	Drilling					

Table 5 Drill hole geological information summary, New Queen Lens (Liontown Project)

Hole ID	From (m)	To (m)	Intersection (m) ⁽¹⁾	Mineralised Intercept Description	Status
LTDD19014	68.8	69.1	0.3	Massive sphalerite within a clay altered shear zone.	Assays pending
LTDD19014	71.3	75.5	4.2	Banded semi massive sphalerite-galena- pyrite.	Assays pending
LTDD19014	80.4	84.7	4.3	Sub to semi massive sphalerite and pyrite	Assays pending
LTDD19014	98.4	104.6	6.2	Increased disseminations of pyrite and sphalerite with sphalerite and galena stringers. Narrow (10-20cm) bands of massive sulphides	Assays pending
LTDD19015	65.4	76	10.6	Sub massive sulphides with bands of massive pyrite and sphalerite and galena	Assays pending
LTDD19015	78.6	80.55	1.95	Sheared semi massive grey sphalerite and galena	Assays pending
LTDD19015	84.4	97.8	13.4	Pyrite- sphalerite-galena rich shear zone	Assays pending
LTDD19016	68	69.8	1.8	Sheared hosted semi massive sphalerite and galena.	Assays pending
LTDD19017	39.5	44.6	5.1	Narrow bands of massive sphalerite separated by blebs and stringers of sphalerite and galena	Assays pending
LTDD19018	77.8	89.5	11.7	Sheared sub to semi massive sphalerite with minor galena separated by silicified pumice breccia containing blebs and disseminations of sphalerite and galena	Assays pending
LTDD19020	67.5	76.2	8.7	Shear hosted sub to semi massive sulphide. Medium grade	Assays pending
LTDD19020	76.2	86	10.6	Low-medium grade stringer and blebby mineralisation.	Assays pending
LTDD19020	93.1	93.7	0.6	Semi massive sphalerite-galena-chalcopyrite	Assays pending
LTDD19021	78.8	79.8	1	1m of massive sphalerite-galena-pyrite	Assays pending
LTDD19021	79.8	82	2.2	Shearing and faulting with low levels of disseminated sphalerite and galena	Assays pending
LTDD19021	104.05	106	1.95	Semi massive sulphides with 0.8m of sub massive sulphide disseminations	Assays pending

Table 6 Drill hole geological information summary, Liontown Project (Main Lens)

Hole ID	From (m)	To (m)	Intersection (m) ⁽¹⁾	Mineralised Intercept Description	Status
LTDD19020	20	30	10	Weathered stringer mineralisation	Assays pending

APPENDIX 2

Liontown Queen Lens Assay Details

	- Lens 7 1994 P									
Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19008	151.50	152.10	0.60	0.0	0.0	0.1	0.0	1	0.1	Fresh Sulphide
LTDD19008	152.10	153.07	0.97	0.0	0.3	0.8	0.9	9	1.8	Fresh Sulphide
LTDD19008	153.07	153.43	0.36	0.3	5.3	8.9	4.5	81	19.0	Fresh Sulphide
LTDD19008	153.43	153.75	0.32	0.3	0.1	0.1	0.0	21	1.8	Fresh Sulphide
LTDD19008	153.75	154.65	0.90	0.2	0.9	1.8	0.1	12	3.7	Fresh Sulphide
LTDD19008	154.65	155.40	0.75	0.0	0.1	0.5	0.1	2	0.7	Fresh Sulphide
LTDD19008	155.40	155.90	0.50	0.0	0.0	2.4	0.1	2	2.7	Fresh Sulphide
LTDD19008	155.90	156.75	0.85	0.0	0.0	0.3	0.1	4	0.4	Fresh Sulphide
LTDD19008	156.75	157.18	0.43	0.0	0.0	1.3	0.0	2	1.5	Fresh Sulphide
LTDD19008	157.18	157.70	0.52	0.0	0.0	0.4	0.0	1	0.5	Fresh Sulphide
LTDD19008	157.70	158.35	0.65	0.0	0.0	1.4	0.0	2	1.5	Fresh Sulphide
LTDD19008	158.35	159.00	0.65	0.0	0.0	0.1	0.0	3	0.2	Fresh Sulphide
LTDD19008	159.00	159.65	0.65	0.0	0.0	0.9	0.0	1	0.9	Fresh Sulphide
LTDD19008	159.65	160.30	0.65	0.3	0.0	6.9	0.1	2	8.0	Fresh Sulphide
LTDD19008	160.30	161.15	0.85	0.1	0.0	1.5	0.1	0	1.7	Fresh Sulphide
LTDD19008	161.15	161.60	0.45	0.4	0.0	7.9	0.1	3	9.2	Fresh Sulphide
LTDD19008	161.60	162.00	0.40	0.0	0.0	0.1	0.0	0	0.1	Fresh Sulphide
LTDD19008	162.00	163.00	1.00	0.0	0.0	0.1	0.0	0	0.1	Fresh Sulphide
LTDD19008	165.55	166.35	0.80	0.0	0.0	0.4	0.0	1	0.6	Fresh Sulphide
LTDD19008	166.35	166.80	0.45	0.2	0.0	1.3	0.0	2	2.1	Fresh Sulphide
LTDD19008	166.80	167.10	0.30	0.8	0.0	5.7	0.1	4	8.4	Fresh Sulphide
LTDD19008	167.10	168.00	0.90	0.1	0.0	1.1	0.0	2	1.7	Fresh Sulphide

	Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
	LTDD19011	32.00	32.40	0.40	0.0	0.7	2.6	0.1	3	3.5	Fresh Sulphide
	LTDD19011	32.40	32.80	0.40	0.1	1.2	4.6	4.7	0	6.3	Fresh Sulphide
	LTDD19011	32.80	33.50	0.70	0.2	1.5	5.8	0.2	6	7.9	Fresh Sulphide
_	LTDD19011	33.50	34.20	0.70	0.1	0.0	2.4	0.1	2	3.0	Fresh Sulphide
	LTDD19011	34.20	35.00	0.80	0.1	0.0	1.5	1.6	0	1.9	Fresh Sulphide
	LTDD19011	35.00	35.45	0.45	0.0	0.0	0.1	0.0	1	0.1	Fresh Sulphide
	LTDD19011	35.45	36.50	1.05	0.0	0.0	0.0	0.1	8	0.4	Fresh Sulphide
	LTDD19011	36.50	37.00	0.50	0.0	0.0	0.4	0.1	24	1.1	Fresh Sulphide
	LTDD19011	37.00	37.62	0.62	0.0	0.0	0.7	0.2	23	1.5	Fresh Sulphide
	LTDD19011	37.62	38.10	0.48	0.0	0.4	1.5	10.9	0	2.3	Fresh Sulphide
	LTDD19011	38.10	39.00	0.90	0.0	0.6	2.1	0.1	3	2.9	Fresh Sulphide
	LTDD19011	39.00	39.74	0.74	0.3	2.4	4.3	0.1	5	7.6	Fresh Sulphide
	LTDD19011	39.74	40.50	0.76	0.2	2.7	5.5	10.5	0	9.0	Fresh Sulphide
(a) b	LTDD19011	40.50	41.50	1.00	0.1	3.0	6.3	0.2	14	9.9	Fresh Sulphide
(())	LTDD19011	42.35	43.00	0.65	0.3	3.6	7.8	10.5	5	12.6	Fresh Sulphide
	LTDD19011	43.00	43.90	0.90	0.5	4.7	7.2	21.1	0	13.7	Fresh Sulphide
2	LTDD19011	43.90	44.45	0.55	0.6	6.7	16.7	0.4	24	25.4	Fresh Sulphide
	LTDD19011	44.45	44.80	0.35	0.6	6.2	16.5	23.7	0	24.9	Fresh Sulphide
	LTDD19011	44.80	45.50	0.70	0.6	5.9	16.4	0.4	24	24.6	Fresh Sulphide
	LTDD19011	45.50	46.00	0.50	0.3	4.8	8.7	0.4	13	14.6	Fresh Sulphide
	LTDD19011	46.00	47.00	1.00	0.4	3.9	11.6	0.6	28	17.3	Fresh Sulphide
	LTDD19011	47.00	48.00	1.00	0.3	2.4	4.3	0.1	10	7.7	Fresh Sulphide
	LTDD19011	48.00	48.70	0.70	0.1	2.5	5.1	0.1	10	7.9	Fresh Sulphide
OR	LTDD19011	48.70	49.30	0.60	0.0	1.8	3.0	0.1	8	4.9	Fresh Sulphide
$(\mathcal{G}(\mathcal{O}))$	LTDD19011	49.30	50.10	0.80	0.1	1.1	3.4	0.1	7	5.0	Fresh Sulphide
	LTDD19011	50.10	50.80	0.70	0.3	2.5	5.4	13.5	1	9.2	Fresh Sulphide
	LTDD19011	50.80	51.90	1.10	0.4	3.4	6.8	1.0	18	12.2	Fresh Sulphide
	LTDD19011	51.90	52.95	1.05	0.2	3.4	6.2	0.4	17	10.6	Fresh Sulphide
	LTDD19011	52.95	54.00	1.05	0.2	3.0	5.0	0.2	15	8.9	Fresh Sulphide
	LTDD19011	54.00	55.00	1.00	0.1	1.5	4.5	0.1	10	6.5	Fresh Sulphide
20	LTDD19011	55.00	55.85	0.85	0.0	0.0	1.2	0.0	6	1.4	Fresh Sulphide
(U/J)	LTDD19011	55.85	56.50	0.65	0.0	0.0	4.3	0.1	3	4.4	Fresh Sulphide
	LTDD19011	56.50	56.80	0.30	0.0	0.0	2.5	3.2	0	2.7	Fresh Sulphide
	LTDD19011	56.80	57.80	1.00	0.0	0.0	1.4	0.1	4	1.6	Fresh Sulphide
75	LTDD19011	57.80	58.80	1.00	0.0	0.0	0.5	0.1	2	0.6	Fresh Sulphide
	LTDD19011	58.80	59.80	1.00	0.0	0.0	0.6	0.0	2	0.7	Fresh Sulphide
	LTDD19011	59.80	60.53	0.73	0.0	0.0	2.4	0.0	2	2.5	Fresh Sulphide
	LTDD19011	60.53	60.70	0.17	0.0	0.0	3.0	3.3	0	3.2	Fresh Sulphide
	LTDD19011	60.70	61.40	0.70	0.0	0.1	3.7	0.1	5	4.0	Fresh Sulphide
	LTDD19011	61.40	62.00	0.60	0.0	0.0	5.6	0.1	2	5.7	Fresh Sulphide
	LTDD19011	62.00	63.00	1.00	0.0	0.2	2.1	0.0	3	2.4	Fresh Sulphide
	LTDD19011	63.00	64.00	1.00	0.0	0.1	3.2	0.1	3	3.5	Fresh Sulphide
	LTDD19011	64.00	65.00	1.00	0.0	0.0	1.4	0.1	2	1.6	Fresh Sulphide
	LTDD19011	65.00	66.00	1.00	0.0	0.0	4.9	0.1	2	5.1	Fresh Sulphide
Пп	LTDD19011	66.00	67.00	1.00	0.0	0.0	5.0	0.1	3	5.2	Fresh Sulphide
	LTDD19011	67.00	67.50	0.50	0.1	0.4	2.9	0.4	3	3.8	Fresh Sulphide
	LTDD19011	67.50	68.15	0.65	0.1	0.9	1.4	0.1	3	2.6	Fresh Sulphide
	LTDD19011	68.15	69.00	0.85	0.4	6.4	8.1	1.0	14	16.1	Fresh Sulphide
	LTDD19011	69.00	70.00	1.00	0.8	5.0	6.5	0.7	31	14.7	Fresh Sulphide
	Downhole widt	h only									

	Liontown Queen	•		•	Cu%	Pb%	7m9/	Au a/4	A = = /+	70 For 9/	Minoralization
	Hole ID	From (m)	To (m)	Int (m)			Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
	LTDD19011	70.00	70.70	0.70	0.7	5.3	6.6	0.8	42	15.1	Fresh Sulphide
	LTDD19011	70.70	71.35	0.65	0.4	4.0	5.7	4.4	38	13.9	Fresh Sulphide
	LTDD19011	71.35	72.00	0.65	0.5	7.2	9.3	1.3	60	19.5	Fresh Sulphide
	LTDD19011	72.00	73.00	1.00	0.3	2.4	2.6	0.4	19	6.3	Fresh Sulphide
	LTDD19011	73.00	74.00	1.00	0.3	3.2	5.1	0.5	23	9.9	Fresh Sulphide
1	LTDD19011	74.00	75.00	1.00	0.1	1.9	3.1	0.3	10	5.6	Fresh Sulphide
	LTDD19011	75.00	76.00	1.00	0.1	1.4	2.6	0.1	18	4.7	Fresh Sulphide
	LTDD19011	76.00	77.00	1.00	0.1	1.3	2.5	0.2	27	4.7	Fresh Sulphide
	LTDD19011	77.00	77.45	0.45	0.1	1.5	3.1	1.4	22	5.9	Fresh Sulphide
	LTDD19011	77.45	78.15	0.70	0.4	3.6	6.9	3.0	62	14.3	Fresh Sulphide
$((\))$	LTDD19011	78.15	78.80	0.65	0.3	2.3	4.7	2.2	31	9.5	Fresh Sulphide
	LTDD19011	78.80	79.40	0.60	0.1	0.9	1.7	0.4	12	3.2	Fresh Sulphide
	LTDD19011	79.40	79.70	0.30	0.2	8.2	18.2	0.8	51	28.1	Fresh Sulphide
a	LTDD19011	79.70	79.90	0.20	0.2	5.4	10.0	0.5	31	16.7	Fresh Sulphide
	LTDD19011	79.90	80.65	0.75	0.2	4.3	6.7	0.4	23	12.1	Fresh Sulphide
10	LTDD19011	80.65	81.20	0.55	0.1	0.1	2.5	0.1	3	3.1	Fresh Sulphide
((//))	LTDD19011	81.20	82.10	0.90	0.4	0.9	4.4	0.2	10	6.7	Fresh Sulphide
	LTDD19011	82.10	83.00	0.90	0.1	1.2	1.5	0.3	10	3.2	Fresh Sulphide
7	LTDD19011	83.00	83.70	0.70	0.1	1.0	1.9	0.1	7	3.4	Fresh Sulphide
	LTDD19011	83.70	84.50	0.80	0.2	1.5	2.7	0.2	7	5.0	Fresh Sulphide
	LTDD19011	84.50	85.00	0.50	0.2	0.7	4.9	0.1	4	6.4	Fresh Sulphide
	LTDD19011	85.00	86.00	1.00	0.0	0.3	1.2	0.1	3	1.7	Fresh Sulphide
	LTDD19011	86.00	87.00	1.00	0.1	1.0	1.6	0.1	6	3.0	Fresh Sulphide
	LTDD19011	87.00	88.00	1.00	0.1	1.8	2.6	0.1	12	4.9	Fresh Sulphide
60	LTDD19011	88.00	88.90	0.90	0.1	1.5	2.6	0.1	9	4.8	Fresh Sulphide
	LTDD19011	88.90	89.10	0.20	0.2	2.9	4.5	0.7	16	8.7	Fresh Sulphide
	LTDD19011	89.10	89.65	0.55	0.4	5.5	10.0	1.3	30	17.6	Fresh Sulphide
	LTDD19011	89.65	90.00	0.35	0.3	2.6	5.4	21.2	43	20.3	Fresh Sulphide
	LTDD19011	90.00	91.00	1.00	0.0	0.6	1.2	1.5	19	3.1	Fresh Sulphide
	LTDD19011	91.00	92.00	1.00	0.0	0.3	0.8	0.7	14	1.8	Fresh Sulphide
20	LTDD19011	92.00	93.00	1.00	0.0	0.1	0.4	0.3	19	1.1	Fresh Sulphide
	LTDD19011	93.00	93.50	0.50	0.0	0.2	0.6	5.3	30	4.2	Fresh Sulphide
	LTDD19011	93.50	94.35	0.85	0.0	0.0	0.1	0.1	5	0.3	Fresh Sulphide
	LTDD19011	94.35	95.10	0.75	0.0	0.0	0.0	0.3	4	0.3	Fresh Sulphide
(a b)	LTDD19011	95.10	96.00	0.90	0.1	1.2	2.4	0.5	9	4.2	Fresh Sulphide
	LTDD19011	96.00	97.00	1.00	0.2	2.0	3.5	0.2	15	6.3	Fresh Sulphide
	LTDD19011	97.00	97.40	0.40	0.3	4.0	6.7	0.3	27	12.3	Fresh Sulphide
	LTDD19011	97.40	98.20	0.80	0.3	3.9	7.5	0.4	26	12.8	Fresh Sulphide
	LTDD19011	98.20	99.00	0.80	0.1	1.5	3.5	3.3	23	7.4	Fresh Sulphide
~	LTDD19011	99.00	100.00	1.00	0.0	0.9	1.9	5.6	34	6.5	Fresh Sulphide
	LTDD19011	100.00	101.00	1.00	0.0	0.7	2.6	1.0	25	4.4	Fresh Sulphide
	LTDD19011	101.00	102.00	1.00	0.1	0.8	2.0	1.0	33	4.2	Fresh Sulphide
	LTDD19011	102.00	102.55	0.55	0.0	0.9	1.8	0.8	33	4.0	Fresh Sulphide
	LTDD19011	102.55	103.20	0.65	0.1	2.7	6.5	1.1	78	11.9	Fresh Sulphide
Пп	Downhole widt	h only									

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19012	6.00	6.56	0.56	0.0	0.1	0.5	0.1	4	-	Oxide
LTDD19012	6.56	7.80	1.24	Core	Loss				-	Oxide
LTDD19012	7.80	8.40	0.60	0.2	2.3	1.1	0.2	25	-	Oxide
LTDD19012	8.40	9.00	0.60	0.1	1.3	1.1	0.0	58	-	Oxide
LTDD19012	9.00	11.40	2.40	Core	Loss				-	Oxide
LTDD19012	11.40	12.38	0.98	0.0	0.3	0.4	0.0	5	-	Oxide
LTDD19012	12.38	13.70	1.32	Core	Loss				-	Oxide
LTDD19012	13.70	14.50	0.80	0.1	0.2	0.5	0.0	4	-	Oxide
LTDD19012	14.50	15.17	0.67	0.1	0.5	0.6	0.1	9	-	Oxide
LTDD19012	15.17	17.40	2.23	Core	Loss				-	Oxide
LTDD19012	17.40	18.00	0.60	0.1	0.1	0.4	0.0	11	-	Oxide
LTDD19012	18.00	18.95	0.95	0.1	0.2	0.3	0.1	10	-	Oxide
LTDD19012	18.95	19.50	0.55	Core	Loss				-	Oxide
LTDD19012	19.50	20.36	0.86	0.0	0.4	0.2	0.8	35	-	Oxide
LTDD19012	20.36	20.90	0.54	Core	Loss				-	Oxide
LTDD19012	20.90	21.33	0.43	0.1	0.3	0.1	1.0	46	-	Oxide
LTDD19012	21.33	21.80	0.47	Core	Loss	1		u.	-	Oxide
LTDD19012	21.80	22.77	0.97	0.3	1.5	0.9	16.7	465	-	Oxide
LTDD19012	22.77	23.40	0.63	Core		I.			-	Oxide
LTDD19012	23.40	24.00	0.60	0.1	0.4	0.1	1.2	15	-	Oxide
LTDD19012	24.00	25.00	1.00	0.0	0.4	0.1	0.4	5	-	Oxide
LTDD19012	25.00	25.95	0.95	0.1	1.0	0.4	1.2	7	-	Oxide
LTDD19012	25.95	26.40	0.45	Core					_	Oxide
LTDD19012	26.40	26.85	0.45	0.1	1.1	0.4	0.3	53	-	Oxide
LTDD19012	26.85	27.35	0.50	Core					_	Oxide
LTDD19012	27.35	28.05	0.70	0.0	1.8	0.3	0.1	36	_	Oxide
LTDD19012	28.05	29.00	0.95	0.0	0.7	0.1	0.2	31	_	Oxide
LTDD19012	29.00	30.00	1.00	0.0	0.4	0.1	1.3	21	_	Oxide
LTDD19012	30.00	30.90	0.90	0.0	4.6	0.2	4.0	144	_	Oxide
LTDD19012	30.90	31.89	0.99	0.4	2.8	0.1	0.5	61	_	Oxide
LTDD19012	31.89	32.40	0.51	0.3	3.1	0.1	0.4	47	-	Oxide
LTDD19012	32.40	33.00	0.60	0.0	3.5	0.1	0.3	25	_	Oxide
LTDD19012	33.00	34.00	1.00	0.0	1.5	0.0	0.0	5	_	Oxide
LTDD19012	34.00	35.00	1.00	0.0	2.3	0.0	0.3	9	-	Oxide
LTDD19012	35.00	35.80	0.80	0.1	3.9	0.1	3.4	19	-	Oxide
LTDD19012	35.80	36.80	1.00	0.7	0.5	7.7	0.9	10	11.3	Fresh Sulphide
LTDD19012	36.80	37.85	1.05	0.3	2.1	5.0	0.3	16	8.2	Fresh Sulphide
LTDD19012	37.85	38.90	1.05	0.3	1.4	6.0	0.2	10	8.6	Fresh Sulphide
LTDD19012	38.90	39.90	1.00	0.2	1.0	4.5	0.2	7	6.2	Fresh Sulphide
LTDD19012	39.90	40.43	0.53	0.1	0.1	3.4	0.2	2	4.0	Fresh Sulphide
LTDD19012	40.43	40.60	0.17	0.2	1.6	4.3	0.4	8	6.7	Fresh Sulphide
LTDD19012	40.60	41.20	0.60	0.2	3.0	5.1	0.5	14	9.2	Fresh Sulphide
LTDD19012	41.20	41.50	0.30	0.4	4.1	2.8	0.2	20	8.6	Fresh Sulphide
LTDD19012	41.50	41.80	0.30	0.9	8.8	4.3	0.1	30	16.2	Fresh Sulphide
LTDD19012	41.80	42.60	0.80	0.1	3.6	2.9	0.1	18	7.1	Fresh Sulphide
LTDD19012	42.60	43.26	0.66	0.3	1.6	1.2	2.5	18	5.5	Fresh Sulphide
LTDD19012	43.26	43.60	0.34	0.3	1.5	3.1	1.4	14	6.4	Fresh Sulphide
		44.20	0.60	0.3	1.3	5.1	0.2	9	7.4	Fresh Sulphide
LTDD19012	43.60	1 44 70	יוחוו	1 () /	≺		111/	1 4		Frach Silinnina

	Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
	LTDD19013	53.10	53.75	0.65	0.1	1.5	2.3	0.5	5.3	4.3	Fresh Sulphide
	LTDD19013	53.75	54.10	0.35	0.1	3.0	8.5	1.9	10.4	12.7	Fresh Sulphide
	LTDD19013	54.10	54.45	0.35	0.1	0.9	2.7	0.2	4.6	3.9	Fresh Sulphide
_	LTDD19013	54.45	54.75	0.30	0.0	4.4	8.6	0.3	16.1	13.2	Fresh Sulphide
	LTDD19013	54.75	55.20	0.45	0.2	0.7	1.0	0.0	4.6	2.4	Fresh Sulphide
	LTDD19013	55.20	56.00	0.80	0.3	5.9	10.4	0.2	14.6	17.1	Fresh Sulphide
	LTDD19013	56.00	56.95	0.95	0.1	3.9	7.1	0.1	10.7	11.4	Fresh Sulphide
	LTDD19013	56.95	57.45	0.50	0.3	0.8	8.0	0.6	15.9	10.3	Fresh Sulphide
2	LTDD19013	57.45	57.90	0.45	0.9	2.8	16.9	0.6	21.2	23.2	Fresh Sulphide
	LTDD19013	57.90	58.50	0.60	0.1	0.1	2.8	0.2	10.0	3.7	Fresh Sulphide
	LTDD19013	58.50	59.00	0.50	0.1	0.1	0.8	0.1	3.9	1.2	Fresh Sulphide
	LTDD19013	59.00	60.00	1.00	0.2	0.9	3.8	0.2	8.7	5.5	Fresh Sulphide
	LTDD19013	60.00	61.00	1.00	0.2	0.0	3.0	0.1	3.5	3.7	Fresh Sulphide
a 5	LTDD19013	61.00	61.50	0.50	0.1	0.1	3.2	0.2	5.6	4.0	Fresh Sulphide
	LTDD19013	61.50	62.05	0.55	0.4	0.3	6.4	0.2	7.5	8.1	Fresh Sulphide
	LTDD19013	62.05	62.60	0.55	0.2	0.0	2.3	0.1	4.3	3.1	Fresh Sulphide
$\mathcal{C}(\Omega)$	LTDD19013	62.60	63.15	0.55	0.0	0.0	0.6	0.1	2.1	0.9	Fresh Sulphide
	LTDD19013	63.15	64.00	0.85	0.1	0.0	1.5	0.2	5.2	2.1	Fresh Sulphide
7	LTDD19013	64.00	65.00	1.00	0.1	0.1	1.1	0.1	4.3	1.8	Fresh Sulphide
	LTDD19013	65.00	65.80	0.80	0.1	0.0	2.1	0.1	2.5	2.6	Fresh Sulphide
	LTDD19013	65.80	66.45	0.65	0.0	0.2	1.7	0.4	7.8	2.3	Fresh Sulphide
	LTDD19013	66.45	67.05	0.60	0.1	2.3	7.6	0.6	34.0	11.1	Fresh Sulphide
	LTDD19013	67.05	67.60	0.55	0.0	0.6	1.4	0.1	7.9	2.3	Fresh Sulphide
	LTDD19013	67.60	68.15	0.55	0.0	0.6	1.2	0.0	5.0	2.0	Fresh Sulphide
60	LTDD19013	68.15	68.70	0.55	0.3	2.4	4.4	0.2	11.2	7.8	Fresh Sulphide
	LTDD19013	68.70	69.00	0.30	0.0	0.4	0.8	0.0	1.9	1.3	Fresh Sulphide
	LTDD19013	69.00	70.00	1.00	0.0	0.4	0.8	0.2	2.9	1.4	Fresh Sulphide
	LTDD19013	70.00	70.40	0.40	0.1	1.4	2.2	0.4	9.7	4.2	Fresh Sulphide
	LTDD19013	70.40	71.00	0.60	0.0	0.2	0.3	0.1	2.9	0.6	Fresh Sulphide
	LTDD19013	71.00	72.00	1.00	0.0	0.5	0.4	0.1	3.0	1.1	Fresh Sulphide
20	LTDD19013	72.00	72.60	0.60	0.1	0.4	0.7	0.2	3.3	1.4	Fresh Sulphide
(U/J)	LTDD19013	72.60	73.40	0.80	0.5	1.3	3.1	1.1	33.8	7.2	Fresh Sulphide
	LTDD19013	73.40	73.75	0.35	0.0	0.0	0.0	0.0	3.4	0.2	Fresh Sulphide
	LTDD19013	73.75	74.50	0.75	0.0	0.1	0.2	0.1	7.6	0.5	Fresh Sulphide
a	LTDD19013	74.50	75.00	0.50	0.0	0.5	1.1	0.4	17.1	2.4	Fresh Sulphide
	LTDD19013	75.00	76.00	1.00	0.1	0.8	1.7	1.2	28.8	4.0	Fresh Sulphide
	LTDD19013	76.00	77.00	1.00	0.1	0.4	1.0	1.3	21.1	2.8	Fresh Sulphide
(())	LTDD19013	77.00	77.40	0.40	0.1	2.0	4.4	0.7	75.5	8.7	Fresh Sulphide
	LTDD19013	77.40	78.00	0.60	0.1	0.6	1.3	1.5	25.3	3.4	Fresh Sulphide
~	LTDD19013	78.00	78.30	0.30	0.4	6.3	9.8	7.5	166.0	24.9	Fresh Sulphide
	LTDD19013	78.30	78.90	0.60	0.2	1.7	3.6	3.4	68.7	9.2	Fresh Sulphide
	LTDD19013	78.90	79.40	0.50	1.3	6.7	14.4	16.1	802.0	52.9	Fresh Sulphide
	LTDD19013	79.40	80.00	0.60	1.5	10.3	21.0	7.5	658.0	55.5	Fresh Sulphide
	LTDD19013	80.00	81.00	1.00	1.3	14.8	29.3	7.5	633.0	66.6	Fresh Sulphide
Пп	LTDD19013	81.00	82.00	1.00	1.5	11.4	24.4	17.5	513.0	61.2	Fresh Sulphide
	LTDD19013	82.00	83.00	1.00	0.7	18.1	32.1	8.3	215.6	60.3	Fresh Sulphide
	LTDD19013	83.00	83.40	0.40	0.8	16.5	30.1	5.9	242.2	56.7	Fresh Sulphide
	LTDD19013	83.40	83.90	0.50	1.5	5.2	11.8	9.3	118.7	29.2	Fresh Sulphide
	LTDD19013	83.90	84.25	0.35	1.3	13.1	28.7	4.1	433.9	57.7	Fresh Sulphide
	LTDD19013	84.25	85.00	0.75	0.6	5.2	8.1	5.8	72.7	19.4	Fresh Sulphide
	Downhole widt	h only									

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19013	85.00	86.00	1.00	0.3	6.1	11.8	1.1	76.5	20.7	Fresh Sulphide
LTDD19013	86.00	87.00	1.00	0.4	5.3	6.7	0.7	64.2	14.6	Fresh Sulphide
LTDD19013	87.00	88.00	1.00	0.2	6.2	11.3	1.7	95.5	20.6	Fresh Sulphide
LTDD19013	88.00	88.95	0.95	0.2	6.6	11.9	0.3	104.2	21.4	Fresh Sulphide
LTDD19013	88.95	89.50	0.55	0.1	2.7	5.7	6.2	18.8	11.9	Fresh Sulphide
LTDD19013	89.50	90.00	0.50	0.1	1.7	3.7	0.6	7.1	5.9	Fresh Sulphide
LTDD19013	90.00	91.00	1.00	0.0	0.7	1.6	0.8	4.3	3.0	Fresh Sulphide
LTDD19013	91.00	92.00	1.00	0.1	8.0	1.8	0.7	8.5	3.2	Fresh Sulphide
LTDD19013	92.00	92.50	0.50	0.0	0.3	0.7	2.1	15.3	2.4	Fresh Sulphide
LTDD19013	92.50	93.10	0.60	0.0	0.0	0.1	0.1	2.2	0.2	Fresh Sulphide
Downhole width only										

Liontown Main Lens Assay Details

Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
LTDD19005	163.32	163.78	0.46	0.3	0.2	1.0	0.1	8	2.3	Stringers
LTDD19005	163.78	164.50	0.72	0.2	0.1	0.3	0.1	7	1.1	Stringers
LTDD19005	164.50	165.30	0.80	2.0	0.1	1.0	0.1	11	7.8	Massive Pyrite
LTDD19005	165.30	166.10	0.80	0.2	1.1	2.3	0.1	6	4.0	Massive Pyrite
LTDD19005	166.60	167.50	0.90	0.2	0.7	4.2	0.1	7	5.5	Massive Pyrite
LTDD19005	167.50	168.00	0.50	0.4	2.1	15.1	0.2	53	19.6	Massive Sulphide
LTDD19005	168.00	169.00	1.00	0.8	2.5	14.8	0.2	32	20.4	Massive Sulphide
LTDD19005	169.00	170.00	1.00	1.0	5.0	16.0	0.2	40	24.8	Massive Sulphide
LTDD19005	170.00	171.04	1.04	8.0	1.6	11.4	0.3	39	16.7	Massive Sulphide
LTDD19005	171.04	171.55	0.51	0.7	6.7	18.7	0.3	29	27.9	Massive Sulphide
LTDD19005	171.55	172.00	0.45	0.7	1.9	8.3	0.3	21	13.2	Massive Sulphide
LTDD19005	172.00	173.00	1.00	0.2	1.2	2.9	0.3	11	4.9	Stringers
LTDD19005	173.00	174.00	1.00	0.1	0.7	1.4	1.0	92	5.3	Stringers
LTDD19005	174.00	175.05	1.05	0.2	1.1	2.2	1.2	130	7.5	Stringers
LTDD19005	175.05	176.00	0.95	0.2	0.5	2.8	0.2	8	4.3	Stringers
LTDD19005	176.00	177.00	1.00	0.1	0.9	2.6	0.2	15	4.3	Stringers
LTDD19005	177.00	178.00	1.00	0.2	1.3	2.2	0.2	16	4.4	Stringers
LTDD19005	178.00	179.00	1.00	0.3	0.9	1.8	0.1	30	4.2	Stringers
LTDD19005	179.00	180.00	1.00	0.2	0.6	1.9	0.1	13	3.3	Stringers
LTDD19005	180.00	180.33	0.33	0.0	0.0	0.2	0.0	2	0.3	Stringers
LTDD19005	180.33	181.00	0.67	0.0	0.5	1.6	0.1	7	2.4	Stringers
LTDD19005	181.00	182.00	1.00	0.0	0.5	1.5	0.1	9	2.3	Stringers
LTDD19005	182.00	183.00	1.00	0.0	0.2	1.0	0.0	4	1.4	Stringers
LTDD19005	183.00	184.00	1.00	0.0	0.1	1.2	0.1	3	1.6	Stringers
LTDD19005	184.00	185.00	1.00	0.1	0.3	1.5	0.1	20	2.6	Stringers
LTDD19005	185.00	186.00	1.00	0.1	0.2	0.5	0.1	4	1.0	Stringers
LTDD19005	186.00	187.00	1.00	0.1	0.2	0.5	0.1	7	1.2	Stringers
LTDD19005	187.00	188.00	1.00	0.1	0.2	0.7	0.1	6	1.3	Stringers
LTDD19005	188.00	188.60	0.60	0.1	0.2	0.5	0.1	11	1.3	Stringers
LTDD19005	188.60	189.50	0.90	0.1	0.2	0.8	0.1	7	1.4	Stringers
LTDD19005	189.50	190.40	0.90	0.2	0.8	1.6	0.2	11	3.2	Stringers
LTDD19005	190.40	191.30	0.90	0.3	1.0	2.4	0.3	16	4.8	Stringers
LTDD19005	191.30	192.00	0.70	0.1	0.8	2.4	0.2	27	4.3	Stringers
LTDD19005	192.00	192.95	0.95	0.0	0.0	0.2	0.1	3	0.4	Stringers
LTDD19005	192.95	194.00	1.05	0.1	0.6	2.3	0.4	21	3.9	Stringers
LTDD19005	194.00	195.00	1.00	0.1	0.7	2.9	0.2	22	4.5	Stringers
LTDD19005	195.00	196.00	1.00	0.3	1.5	7.0	0.4	56	10.8	Massive Sulphide
LTDD19005	196.00	196.70	0.70	0.6	6.2	16.0	2.7	151	28.8	Massive Sulphide
LTDD19005	196.70	197.40	0.70	0.7	5.7	12.2	2.5	214	26.4	Massive Sulphide
LTDD19005	197.40	198.00	0.60	0.1	0.9	2.9	0.2	17	4.5	Massive Sulphide
LTDD19005	198.00	199.00	1.00	0.2	1.0	5.6	0.4	55	8.7	Massive Sulphide
LTDD19005	199.00	199.95	0.95	0.0	0.1	2.9	0.2	9	3.4	Massive Sulphide
LTDD19005	199.95	200.66	0.71	0.0	0.3	2.6	0.1	13	3.4	Massive Sulphide
LTDD19005	200.66	201.10	0.44	0.2	0.3	14.0	0.4	50	16.4	Massive Sulphide
Downhole w	idth only									

	Hole ID	From (m)	To (m)	Int (m)	Cu%	Pb%	Zn%	Au g/t	Ag g/t	Zn Eq. %	Mineralisation
	LTDD19008	105.88	106.80	0.92	0.9	8.5	16.5	1.4	201	32.9	Massive Sulphide
Ī	LTDD19008	106.80	107.20	0.40	1.0	6.4	23.4	0.9	140	36.4	Massive Sulphide
	LTDD19008	107.20	107.50	0.30	1.0	10.0	24.9	0.6	149	41.1	Massive Sulphide
Ī	LTDD19008	107.50	108.50	1.00	0.9	11.4	25.4	0.6	153	42.9	Massive Sulphide
	LTDD19008	108.50	109.13	0.63	0.8	4.8	18.4	1.7	82	28.4	Massive Sulphide
	LTDD19008	109.13	109.50	0.37	1.3	4.3	34.3	0.6	111	45.5	Massive Sulphide
	LTDD19008	109.50	110.20	0.70	0.7	4.0	25.9	0.5	81	34.2	Massive Sulphide
	LTDD19008	110.20	111.05	0.85	0.5	3.8	22.3	0.4	67	29.3	Massive Sulphide
	LTDD19008	111.05	111.55	0.50	0.3	8.0	5.8	0.2	19	8.1	Massive Sulphide
ŀ	LTDD19010	181.50	181.85	0.35	1.1	0.6	11.3	0.2	13	15.8	Massive Sulphide
-	LTDD19010	181.85	183.00	1.15	0.9	0.7	4.1	0.1	8	8.0	Massive Sulphide
ŀ	LTDD19010	183.00	184.00	1.00	0.4	0.9	3.8	0.1	7	6.1	Massive Sulphide
ŀ	LTDD19010	184.00	184.30	0.30	0.1	0.3	2.5	0.1	9	3.5	Massive Sulphide
-	LTDD19010	184.30	184.60	0.30	0.0	0.2	0.8	0.0	3	1.1	Massive Sulphide
ŀ	LTDD19010	184.60	184.90	0.30	0.0	0.0	0.1	0.0	0	0.1	Massive Sulphide
ŀ	LTDD19010	184.90	185.50	0.60	0.1	0.2	1.0	0.3	6	1.7	Massive Sulphide
ŀ	LTDD19010	185.50	186.00	0.50	0.1	1.4	4.7	0.2	26	7.2	Massive Sulphide
ŀ	LTDD19010	186.00	186.95	0.95	0.4	3.6	7.8	0.2	68	14.1	Massive Sulphide
ŀ	LTDD19010	186.95	187.65	0.70	0.1	1.3	3.5	0.1	19	5.6	Massive Sulphide
ľ	LTDD19010	187.65	188.25	0.60	0.3	0.5	4.7	0.5	78	8.5	Massive Sulphide
Ī	LTDD19010	188.25	188.60	0.35	0.2	0.2	3.9	0.2	19	5.2	Massive Sulphide
Ī	LTDD19010	188.60	189.55	0.95	0.4	0.4	1.5	0.3	12	3.7	Massive Sulphide
	LTDD19010	189.55	189.95	0.40	0.7	4.3	8.6	0.8	155	19.1	Massive Sulphide
Ī	LTDD19010	189.95	190.45	0.50	0.5	7.7	15.1	0.4	129	27.0	Massive Sulphide
Ī	LTDD19010	190.45	191.25	0.80	0.5	6.7	12.6	0.8	140	24.2	Massive Sulphide
	LTDD19010	191.25	191.90	0.65	0.6	5.4	9.4	2.0	97	19.6	Massive Sulphide
Ī	LTDD19010	191.90	192.45	0.55	1.0	11.6	20.7	1.0	135	38.1	Massive Sulphide
	LTDD19010	192.45	193.35	0.90	0.6	7.0	13.1	1.7	105	24.9	Massive Sulphide
	LTDD19010	193.35	194.00	0.65	0.6	3.7	7.6	2.1	178	18.4	Massive Sulphide
	LTDD19010	194.00	195.00	1.00	0.4	5.7	10.1	0.5	140	20.4	Massive Sulphide
	LTDD19010	195.00	195.30	0.30	0.4	4.5	7.9	1.6	93	16.4	Massive Sulphide
	LTDD19010	195.30	195.70	0.40	0.8	1.3	2.7	0.7	40	7.7	Massive Sulphide
	LTDD19010	195.70	196.40	0.70	0.8	7.1	13.7	1.9	184	28.3	Massive Sulphide
	LTDD19010	196.40	197.00	0.60	0.7	7.3	15.2	1.3	108	27.4	Massive Sulphide
	LTDD19010	197.00	198.00	1.00	1.0	5.4	19.9	1.1	102	31.1	Massive Sulphide
ļ	LTDD19010	198.00	199.00	1.00	0.8	5.7	20.4	0.5	114	31.4	Massive Sulphide
	LTDD19010	199.00	200.00	1.00	0.5	5.0	19.5	1.3	99	28.7	Massive Sulphide
1	LTDD19010	200.00	201.00	1.00	0.6	3.8	19.5	0.3	62	26.6	Massive Sulphide
	LTDD19010	201.00	202.00	1.00	0.8	6.9	14.1	1.3	181	28.1	Massive Sulphide
	LTDD19010	202.00	203.00	1.00	0.7	7.6	14.1	1.9	220	29.8	Massive Sulphide
	LTDD19010	203.00	204.00	1.00	0.7	4.8	8.5	3.5	361	26.0	Massive Sulphide
	LTDD19010	204.00	204.65	0.65	0.7	5.4	10.3	2.7	234	24.6	Massive Sulphide
	LTDD19010	204.65	205.15	0.50	0.8	4.9	9.6	3.8	269	25.2	Massive Sulphide
	Downhole wid	th only									

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	Criteria	JORC Code explanation	Commentary
	Sampling	Nature and quality of sampling (eg cut	Diamond drilling (DD) techniques were used to
	techniques	channels, random chips, or specific	obtain samples
		specialised industry standard measurement	No samples were collected from mud rotary drilling.
1	D T	tools appropriate to the minerals under	Diamond core was placed in core trays for logging
		investigation, such as down hole gamma	and sampling. Half core samples were nominated by
		sondes, or handheld XRF instruments, etc).	the geologist from diamond core based on visual
		These examples should not be taken as	inspection of mineralisation. Intervals ranged from
		limiting the broad meaning of sampling.	0.15 to 1.5m based on geological boundaries
		Include reference to measures taken to	Diamond samples were sawn in half using an onsite
		ensure sample retrospectivity and the	core saw. All Red River samples were sent to Intertek
		appropriate calibration of any measurement	Genalysis Laboratories Townsville.
(1)		tools or systems used.	Samples were crushed to sub 6mm, split and
$((\mid \mid))$		Aspects of the determination of	pulverised to sub 75μm in order to produce a
		mineralisation that are Material to the	representative sub-sample for analysis.
20		Public Report.	Analysis of all Red River samples consisted of a four-
\cup		In cases where 'industry standard' work has	acid digest and Inductively Coupled Plasma Optical
		been done this would be relatively simple	Emission Spectrometry (ICP-OES) for the following
		(eg 'reverse circulation drilling was used to	elements; Ag, As, Ba, Bi, Ca, Cu, Fe, K, Mg, Mn, Na,
		obtain 1 m samples from which 3 kg was	Pb, S, Sb, Ti, Zn, & Zr was undertaken. A selection of
		pulverised to produce a 30 g charge for fire	samples was also assayed for Au using a 25g Fire
		assay'). In other cases, more explanation	Assay technique
(T)		may be required, such as where there is	
(())		coarse gold that has inherent sampling	
70		problems. Unusual commodities or	
		mineralisation types (eg submarine nodules)	
		may warrant disclosure of detailed	
		information.	
(())	Drilling	Drill type (eg core, reverse circulation,	Red River diamond drilling techniques consist of;
	techniques	open-hole hammer, rotary air blast, auger,	HQ3 diamond core drilling until competent rock
(C/Ω)		Bangka, sonic, etc) and details (eg core	NQ2 diamond core and navigational drilling for the
		diameter, triple or standard tube, depth of	remainder of the drill holes.
		diamond tails, face-sampling bit or other	
		type, whether core is oriented and if so, by	
		what method, etc).	
	Drill sample	Method of recording and assessing core and	Sample recovery is measured and recorded by
	recovery	chip sample recoveries and results assessed.	company trained geology technicians
		Measures taken to maximise sample	Minimal core loss mostly at the top of the drill hole
		recovery and ensure representative nature	has been recorded at Liontown
		of the samples.	Recovery in ore zones from Liontown Resources
		Whether a relationship exists between	Limited diamond drilling is typically 100%
		sample recovery and grade and whether	
((sample bias may have occurred due to	
		preferential loss/gain of fine/coarse	
П		material.	
	Logging	Whether core and chip samples have been	Holes are logged to a level of detail that would
		geologically and geotechnically logged to a	support mineral resource estimation.
		level of detail to support appropriate	Qualitative logging includes lithology, alteration and
		Mineral Resource estimation, mining	textures
		studies and metallurgical studies.	Quantitative logging includes sulphide and gangue
		Whether logging is qualitative or	mineral percentages
		quantitative in nature. Core (or costean,	All drill core was photographed
		channel, etc) photography.	All drill holes have been logged in full

	Criteria	JORC Code explanation	Commentary
ſ		The total length and percentage of the	
		relevant intersections logged.	
	Sub-sampling	If core, whether cut or sawn and whether	Core was sawn, and half core sent for assay
	techniques	quarter, half or all core taken.	Sample preparation is industry standard, occurring at
	and sample	If non-core, whether riffled, tube sampled,	an independent commercial laboratory which has its
	preparation	rotary split, etc and whether sampled wet	own internal Quality Assurance and Quality Control
)	or dry.	procedures
		For all sample types, the nature, quality and	Samples were crushed to sub 6mm, split and
		appropriateness of the sample preparation	pulverised to sub 75μm in order to produce a
		technique.	representative sub-sample for analysis
		Quality control procedures adopted for all	Laboratory certified standards were used in each
		sub-sampling stages to maximise	sample batch
		representivity of samples.	The sample sizes are considered to be appropriate to
		Measures taken to ensure that the sampling	correctly represent the mineralisation style
		is representative of the in-situ material	
(ab)		collected, including for instance results for	
		field duplicate/second-half sampling.	
20		Whether sample sizes are appropriate to	
$(\cup/)$		the grain size of the material being sampled.	The passes weatherde assulation described
	Quality of	The nature, quality and appropriateness of	The assay methods employed are considered
	assay data	the assaying and laboratory procedures used and whether the technique is	appropriate for near total digestion Laboratory certified standards were used in each
	and	considered partial or total.	sample batch
	laboratory	For geophysical tools, spectrometers,	Certified standards returned results within an
	tests	handheld XRF instruments, etc, the	acceptable range
(T)		parameters used in determining the analysis	No field duplicates are submitted for diamond core.
$(\bigcup \bigcup $		including instrument make and model,	
		reading times, calibrations factors applied	
		and their derivation, etc.	
		Nature of quality control procedures	
		adopted (eg standards, blanks, duplicates,	
		external laboratory checks) and whether	
46		acceptable levels of accuracy (ie lack of bias)	
((//))		and precision have been established.	
	Verification	The verification of significant intersections	Laboratory results have been reviewed by Company
	of sampling	by either independent or alternative	geologists and laboratory technicians
\Box	and assaying	company personnel.	No twinned holes were drilled for this data set
		The use of twinned holes.	
		Documentation of primary data, data entry	
		procedures, data verification, data storage (physical and electronic) protocols.	
]	Discuss any adjustment to assay data.	
~	Location of	Accuracy and quality of surveys used to	A portion of Red River collars surveyed with RTKGPS
	data points	locate drill holes (collar and down-hole	and others by hand-held GPS as noted in Table 2. Re-
	adta poiits	surveys), trenches, mine workings and other	survey of 105 historic drill collars was carried out by
		locations used in Mineral Resource	Liontown Resources Limited.
		estimation.	Down hole surveys conducted with digital magnetic
ПП		Specification of the grid system used.	multi-shot camera at 20-40m intervals by Red River
		Quality and adequacy of topographic	Resources. A portion of drill holes were surveyed by
		control.	multi-shot survey
			Coordinate system used is MGA94 Zone 55
			Topographic control is based on a detailed 3D Digital
l			Elevation Model

	Criteria	JORC Code explanation	Commentary
	Data spacing	Data spacing for reporting of Exploration	The current drill spacing is approximately 40-150m
	and	Results.	No sample compositing has been applied
	distribution	Whether the data spacing and distribution	
		is sufficient to establish the degree of	
		geological and grade continuity appropriate	
		for the Mineral Resource and Ore Reserve	
		estimation procedure(s) and classifications	
'		applied.	
		Whether sample compositing has been	
		applied.	
	Orientation	Whether the orientation of sampling	Drill holes are orientated perpendicular to the
	of data in	achieves unbiased sampling of possible	perceived strike of the host lithologies where
((relation to	structures and the extent to which this is	possible
	geological	known, considering the deposit type.	The orientation of the multiple lenses varies resulting
	structure	If the relationship between the drilling	in some holes resulting in less than perpendicular
a	Structure	orientation and the orientation of key	intersections
(())		mineralised structures is considered to have	Drill holes are drilled at a dip based on logistics and
		introduced a sampling bias, this should be	dip of anomaly to be tested
$\mathcal{C}(\Omega)$		assessed and reported if material.	The orientation of the drilling is designed to not bias
			sampling
			Orientation of the HQ3 core was undertaken to
			define structural orientation
	C	The measures taken to ensure sample	Samples have been overseen by company staff
	Sample 	security.	during transport from site to Intertek Genalysis
	security	Security.	laboratories, Townsville.
(T)	A dita a u	The results of any audits or reviews of	No audits or reviews have been carried out at this
(())	Audits or	sampling techniques and data.	point
	reviews	sampling teeriniques and data.	pome
$(\mathcal{C}/\mathcal{O})$			
	_		
(())			
ПП			

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The drilling was conducted on Mining Lease 10277 and Exploration Permit EPM 14161 ML 10277 and EPM 14161 are held by Cromarty Pty Ltd. (a wholly owned subsidiary of Red River Resources) and forms part of Red River's Thalanga Zinc Project Red River engaged Native Title Claimants, the Gudjalla People to conduct cultural clearances of drill pads and access tracks The Exploration Permits are in good standing
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historic Exploration was carried out by Esso Exploration, Liontown Resources, Nickle Mines, Great Mines & Pan Continental Mining. Work programs included drilling and geophysics
Geology	Deposit type, geological setting and style of mineralisation.	The exploration model is Volcanic Hosted Massive Sulphide (VHMS) base metal mineralisation The regional geological setting is the Mt Windsor Volcanic Sub-province, consisting of Cambro-Ordovician marine volcanic and volcano-sedimentary sequences
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including, easting and northing, elevation or RL, dip and azimuth, down hole length, interception depth and hole length. If the exclusion of this information is justified the Competent Person should clearly explain why this is the case.	See Table 2 – Drill Hole Details See Appendix 1 – Assay Details
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Interval length weighted assay results are reported Significant Intercepts relate to assay results > 5% Zn Equivalent. Zn equivalent formula utilised is: Zn% + (Cu%*3.3) + (Pb%*0.9) + (Au ppm*0.5) + (Ag ppm*0.025) Where core loss occurs the average length-weighted grade of the two adjacent samples were attributed to the interval for the purpose of calculating intersection. The maximum interval of missing core incorporated in the reported intersection is 1 metre.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The mineralisation is interpreted to be dipping at approximately 65 to 90 degrees, drill holes have been designed to intercept the mineralisation as close to perpendicular as possible.

Criteria	JORC Code explanation	Commentary
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Down hole intercepts are reported. True widths are likely to be approximately 30 to 80% of the down hole widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plans and sections.	Refer to plans and sections within report
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to represent a balanced report
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported.	All meaningful and material data is reported
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further Drilling at Liontown is ongoing