

ASX ANNOUNCEMENT

ASX : LTR 16th December 2019

Kathleen Valley: continuity of high-grade lithium mineralisation confirmed at recently discovered northern extension

Multiple thick, high-grade intersections confirm continuity between southern and northern parts of the mineralised system

HIGHLIGHTS

• New intersections from ongoing Reverse Circulation (RC) / diamond drilling program at the Kathleen Valley Lithium-Tantalum Project in WA include:

31n	n @ 1.8% Li ₂ O from 215m (KVRC0086A), including: o 10m @ 2.0% Li ₂ O from 216m and
	o 6m @ 2.3% Li₂O from 230m
30n	n @ 1.8% Li₂O from 190m (KVRC0085A), including:
	o 12m @ 2.0% Li₂O from 191m
19n	n @ 1.4% Li ₂ O from 204m (KVRC0055A), including
	o 5m @ 2.2% Li₂O from 204m
13n	n @ 1.8% Li ₂ O from 264m (KVRC0148A), including
	o 6m @ 2.9% Li₂O from 266m
25n	n @ 1.3% Li ₂ O from 313m (KVRC0148A), including
	 6m @ 1.9% Li₂O from 316m
32n	n @ 1.1% Li ₂ O from 186m (KVRC0056A), including
	o 4m @ 1.9% Li₂O from 198m
17n	n @ 1.4% Li ₂ O from 226m (KVRC0271), including
	o 6m @ 1.8% Li₂O from 227m
T	000% of down hole widths listed shows and American to for further details)

(True widths 80-100% of down-hole widths listed above – see Appendix 1 for further details)

- The results confirm that the northern zone of mineralisation discovered by the current drilling program is continuous with the southern part of the Kathleen Valley system, highlighting the potential to substantially increase the current Mineral Resource of 74.9Mt @ 1.3% Li₂O and 140ppm Ta₂O₅, already Australia's 5th largest lithium deposit.
- Mineralised pegmatite has now been intersected over a strike length of 1.7km, an increase of 300m, with the system still open to the north and at depth.
- Latest results follow the release of a highly positive Pre-Feasibility Study (see ASX release dated 2nd December 2019) which, based on a maiden Ore Reserve of 50.4Mt @ 1.2% Li₂O and a mining rate of 2Mtpa, indicates an NPV of A\$507M, a 26-year mine life and free cash flow of A\$1.9B (excluding tantalum credits) over the life of the mine.
- Planning is well advanced on expanding the current drill program with the number of rigs increasing to four early in the New Year.
- Results from the current phase of drilling will be used to prepare an updated MRE, which will then form the basis for a Definitive Feasibility Study.

Liontown Resources Limited (ASX: LTR, "Liontown" or "Company") is pleased to report further outstanding results from the ongoing resource expansion drilling program at its 100%-owned **Kathleen Valley Lithium-Tantalum Project** in WA.

The latest assay results, which include high-grade intercepts with grades up to 2.9% Li₂O over 6m, have confirmed the continuity of the northern part of the Kathleen Valley mineralised system with the southern part of the deposit, where the majority of the current Mineral Resource has been defined.

The current drilling program is designed to test for a resource extension Exploration Target of 25 - 50Mt @ 1.2 - 1.5% Li₂O, which was defined based on testing for extensions of the current Mineral Resource Estimate from the limits of previous drill data to a vertical depth of ~500m below surface. This Exploration Target is in addition the current 74.9Mt MRE.

(The potential grade and tonnage of the Exploration Target is conceptual in nature and there has been insufficient exploration to estimate an expanded Mineral Resource. It is uncertain if further exploration will result in the estimation of an expanded Mineral Resource. See Table 1 for full explanation of assumptions used to estimate ranges.)

The results listed in the highlights indicate that the high-grade mineralisation discovered recently (see ASX releases dated 8th October 2019 and 5th November 2019) in the northern part of the Kathleen Valley system is continuous with the current MRE, located 400m to the south (**Figures 1 and 2**).

In addition, geological logging indicates that mineralised pegmatites extend for a further 300m north, increasing the total length of the system to at least 1.7km with mineralisation remaining open along strike and at depth.

Further drilling, in addition to the originally planned 15,000m program, will be required to delineate the potential economic extents of the system prior to preparing an updated MRE. It is estimated drilling will take another 2-4 months to complete with the number of rigs increasing from 3 to 4 early in the New Year.

Results from the current drill program, once completed, will be used to prepare an updated MRE which will form the basis for a Definitive Feasibility Study (DFS). The updated MRE will include both open pit and underground resources which are anticipated to provide the best outcome for the DFS.

Since drilling re-commenced in late August 2019, 15 new RC holes have been drilled, 11 previous RC holes have been extended and 18 new diamond core holes have been drilled for a total of 13,694.7m. Nine of the diamond core holes have been drilled for geotechnical purposes. This report includes new assays for 10 RC holes (see **Appendices 1 and 2** for full listing of drill statistics).

The total amount of drilling completed by Liontown at Kathleen Valley comprises 378 holes for 61,330m, including 318 RC holes for 50,294m and 60 diamond core holes for 11,036m. This total includes 39 RC holes which have been extended following receipt of results along strike that indicated the potential for deeper mineralisation.

Liontown's Managing Director, David Richards, said: "This amounts to another significant exploration breakthrough at Kathleen Valley, as it further expands the overall scale of the system to 1.7km and reinforces the potential for substantial resource growth next year – coming on the back of the outstanding results reported over the past few months.

"We will be back on the ground early next year with an expanded drilling program designed to crystallise this potential and deliver an updated MRE to underpin our Definitive Feasibility Study.

"This caps off what has been a transformative year for Liontown, which has seen us rapidly transform from a junior explorer into an advanced lithium developer with a Tier-1 asset at Kathleen Valley. The continued rapid growth and evolution of the Kathleen Valley deposit, combined with a high-quality Pre-Feasibility Study, has well and truly set the stage for another exciting year ahead in 2020."

This announcement has been authorised for release by the Board.

prof Actual

DAVID RICHARDS Managing Director

For More Information:

David Richards Managing Director T: +61 8 9322 7431 info@Itresources.com.au Investor Relations:

Nicholas Read Read Corporate T: +61 8 9388 1474 nichloas@readcorporate.com.au

The Information in this report that relates to Exploration Results and Targets is based on and fairly represents information and supporting documentation prepared by Mr David Richards, who is a Competent Person and a member of the Australasian Institute of Geoscientists (AIG). Mr Richards is a full-time employee of the company. Mr Richards has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Richards consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Information in this report that relates to Mineral Resources for the Kathleen Valley Project is extracted from the ASX announcement "Kathleen Valley Lithium Resource jumps 353% to 74.9Mt @ 1.3% Li₂O" released on the 9th July 2019 which is available on <u>www.ltresources.com.au</u>.

The Information in this report that relates to Ore Reserves for the Kathleen Valley Project is extracted from the ASX announcements "Kathleen Valley Pre-Feasibility Study confirms potential for robust new long-life open pit lithium mine in WA" released on 2nd December 2019 which is available on www.ltresources.com.au.

The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Parameter	KV Feeder Zone	KV North West	Rationale
Combined strike length of pegmatites	1100m	400	Based on previous drilling and extrapolation of block
Average cumulative true width	>18m	>20m	model used in preparation of Mineral Resource
Down Dip extent	230 - 500m	600 - 1,100m	Estimate (released 4 th September 2018)
Specific gravity	2.75	2.75	Measured from diamond core drilling
Total tonnage	12.5 - 27Mt	13 - 24Mt	Strike x width x dip x S.G
Average grade	1.2 – 1.5%	1.2 – 1.5%	Based on latest Mineral Resource Estimate

Table 1: Kathleen Valley Project – Exploration Target Parameters and Assumptions

ASX ANNOUNCEMENT

ASX: LTR

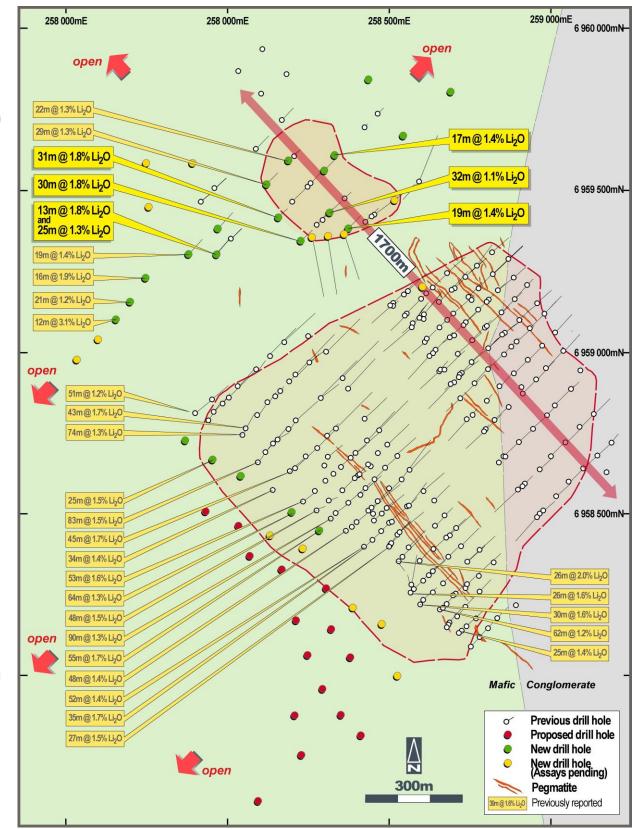


Figure 1: Kathleen Valley – Drill hole plan showing better lithium intersections from current and previous 2019 drilling program.

ASX ANNOUNCEMENT

ASX: LTR

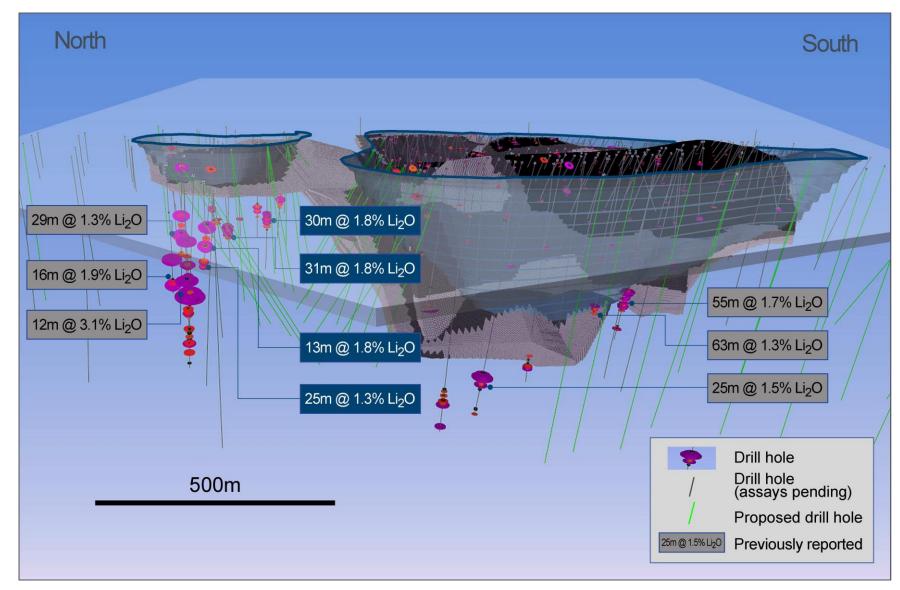


Figure 2: Kathleen Valley – 3D perspective (looking east) showing better drill results intersected along strike and down dip of current MRE.

Арре	enaix 1	– Kathi	een	valle	y – Reve	erse Circ								
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)			<u> </u>	· · ·	ppm) results			
							From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)			
							3	6	3	1	122			
KVRC0001	258306	6958744	509	-60	45	65	10	11	1	1.1	85			
							16	17	1	1.1	94			
							0	13	13	1.6	114			
							incl.	9m @ 1.9%	6 Li2O and 10	7ppm Ta20	05 from 2m			
K) (DC0002	258379		F11	60	225	100	26	29	3	1.3	101			
KVRC0002	258379	6958675	511	-60	225	109	35	36	1	1.6	127			
							83	96	13	1.6	111			
							incl.	6m @ 2%	Li2O and 113	ppm Ta2O	from 88m			
10 10 00000							91	105	14	1.7	163			
KVRC0003	258395	6958690	511	-59	225	155	incl.	8m @ 2%	Li2O and 130	ppm Ta2O	5 from 92m			
							36	38	2	1	99			
KVRC0004						89	45	56	11	1.2	100			
							-		Li2O and 10	6ppm Ta2C				
	1						125	133	8	1.1	223			
									Li2O and 275		-			
							161	166	5	1.3	273			
	258348	6958645	512	-50	45				ے i2O and 167	-				
KVRC0004A*						256		-	- -	·				
KVKC0004A						250	215	234	19 Li2O and 240	1.6	138			
									5 Li2O and 140ppm Ta2O5 from 218m 6 Li2O and 82ppm Ta2O5 from 226m					
									Li2O and 82ppm Ta2O5 from 226m Li2O and 156ppm Ta2O5 from 232m					
KVRC0005						89	32	34	2	1.3	112			
	258276	6958707	3707 510	510	-53	40		39	40	1	1.5	132		
KVRC0005A*					40	178	150	154	4	1.4	265			
					0 227.5	80	incl. 1	lm @ 1.9%	Li2O and 229	ppm Ta2O	5 from 152m			
KVRC0006	258433	6958654	512	-50	227.5	80	37	43	6	1.1	153			
			512				29	35	6	1.4	170			
KVRC0007	258452	6959426	508	-47	45	132	incl.	3m @ 1.9%	Li2O and 16	6ppm Ta2C	95 from 30m			
KVIIC0007	230432	0555420	500	/	45	152	39	40	1	1.1	198			
							124	125	1	2.4	302			
K) (D C 0 0 0 0	250542	050400	F00	50		120	81	82	1	1.2	310			
KVRC0008	258512	6959469	508	-50	55	130	95	96	1	1	124			
							57	59	2	0.7	248			
KVRC0009	258590	6959528	509	-50	45	113	70	71	1	0.6	266			
							83	85	2	1.1	211			
KVRC0010	258593	6959527	509	-50	225	130	91	92	1	1.1	239			
							100	106	6	1.4	284			
KVRC0011	258208	6958788	508	-50	45	89	24	25	1	1.2	112			
KVRC0011 KVRC0012	258154		508	-50	45	65	24				112			
KVRC0012 KVRC0013	258154	6958729	509	-55 -50	45 45	108		1	No significan	t assays				
							17	17		0	340			
KVRC0014	258157	6958881	506	-50	45	113	12	17	5	0	240			
							135	193	58	1.2	156			
											rom 141m and			
			_					1	O and 138pp					
KVRC0015	258443	6958652	512	-50	180	241	206	230	24	1.3	139			
											rom 208m and			
									and 271ppm					
							4m @	0 1.6% Li2O	and 145ppm	n Ta2O5 fro	m 226m and			
				-50	45	40		1	No significan	t assays				
KVRC0016	258331	6958764	509	-50	43	40				,				
KVRC0016 KVRC0017	258331 257899	6958764 6958809	509 507	-50	45	119	63	65	2	1.3	212			
							63 1	1	_	-	212 93			

		(00111.)	- Na		li vaney	- Never			rill hole s		ppm) results														
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	From(m)				· · · ·														
											Ta2O5 (ppm)														
KVRC0020	258702	6958251	532	-60	45	80	26	48 m@17%	22 Li2O and 12	1.2	170 E from 26m														
KVNC0020	230702	0550251	552	-00	45	00		-			05 from 34m														
							65	75	10	0.9	179														
								-	Li2O and 20		-														
							85	88	3	0.8	305														
KVRC0021	258675	6958223	535	-55	45	140			Li2O and 27																
							103	106	3	1.5	237														
									-		5 from 103m														
							20	30	10	1.3	199														
KVRC0022	258735	6958215	528	-55	45	80	-		Li2O and 20	-															
							52	58	6	1.5	260														
KVRC0023	258708	6958186	529	-55	45	100	-		Li2O and 24	_															
							18	33	15	1.4	139														
									-		05 from 20m														
KVRC0024	258665	6958285	543	-55	45	112	49	51	2	0.7	141														
							93	98	5	0.7	173														
							61	75	14	1.6	175														
							-				D5 from 61m														
							84	85	1	1.7	106														
KVRC0025	258636	6958260	544	-55	45	160	103	107	4	1.7	187														
KVIIC0025	250050	0550200	344	55				-	•	-	5 from 104m														
							119	127	8	1.0	197														
									-		5 from 123m														
							32	44	12	1.4	136														
							-	••	Li2O and 14																
								c050000	6050206	6059206	6050206	6058306	6058306	6058306	6958396	6958396					58	61	3	1.2	93
KVRC0026	258564	6958396	535	-55	45	120	80	82	2	1.2	375														
								-	Li2O and 39	-															
							98	100	2	1	291														
							65	78	13	1.6	120														
								-	Li2O and 112	-	-														
KVRC0027	258535	6958367	534	-55	45	160	93	97	4	1.5	161														
	200000	0550507	551	55	13	100	101	105	4	0.7	204														
							101	105	6	0.7	107														
							30	39	9	1.5	133														
									Li2O and 13																
KVRC0028	258504	6958477	525	-55	45	120	51	56	5	1.7	80														
							95	97	2	1.7	350														
							75	85	10	1.4	170														
							-		Li2O and 15		-														
							97	106	9	1.2	110														
							-		6 Li2O and 89		-														
							125	133	8	1.4	251														
KVRC0029	258/172	6958448	525	-55	45	196			∘ i2O and 300p		-														
NVINCUUZ9	230472	0500440	525	-55	40	190		-		•	5 from 129m														
							176	177		1.1	74														
							176	177	1 6	1.1	128														
									÷	-	¹²⁸ 5 from 183m														
								-	r	· · ·															
							193	196	3	1	118														

Liontown

ASX: LTR

Appe		(cont.)	- na	linee	ii valley	- Kever			rill nole s		ppm) results
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	From(m)		Interval(m)		Ta2O5 (ppm)
							16	25	9 Li2O and 124	1.6	118
KV/DC0020	250464	6059540	F 20		45	140	37	44	7 Li2O and 12	1.1	80
KVRC0030	236404	6958540	520	-55	45	140				· · · · · · · · · · · · · · · · · · ·	
							99	103	4	0.9	331
							113	117 1m@2%/	4 i2O and 404	1.3	492
									-	r	
							52 incl	61	9 Li2O and 121	1.7	126 from E4m
							85	93	8	1.4	99
KVRC0031	258435	6958512	521	-55	45	160			Li2O and 11		
								110	4	2	312
							106				268
							116	118 44	2	1.5 1.6	124
KVRC0032	250426	6959404	511	-55	45	100	39 incl 3		5 Li2O and 15	-	
	230420	0505404	211	-35	43	100					
							67 6	68 9	1 3	1.3	197
							-	9 57	<u> </u>	0.9	223 157
KVRC0033	258802	6959298	513	-55	45	140	52	-	5 Li2O and 16		-
									r	· ·	
							114	118	4	1.2	152
						-	18	19	1	0.6	112
							21	24	3 Li2O and 18	1.5	156
	258653										
				3 -55	45		53	55	2	0.9	177
							60	64	4	1.4	160
1/1/0.00024		000100	F10			120			Li2O and 236		
KVRC0034	258653	6959155	518	-55		120	68	70	2	1.2	123
							78	95	17	1.4	161
									Li2O and 268	••	
									Li2O and 16		
							106	108	2	0.8	453
							112	114	2	1.4	203
									Li2O and 195	· ·	
							37	40	3	1.1	252
							47	49	2	1.9	225
							52	54	2	1.2	201
KVRC0035	258694	6959195	516	-55	45	120		-	Li2O and 28		
							71	92	21	1.9	201
									6 Li2O and 22		
							101	103	2	0.9	273
							108	110	2	1.3	94
							14	17	3	1.1	247
							23	24	1	2.2	375
							54	56	2	1.6	164
									Li2O and 10		
KVRC0036	258733	6959232	514	-55	45	140	69	73	4	1.7	255
									Li2O and 32		
							76	77	1	0.8	107
							101	103	2	0.7	186
	1						115	119	4	1	223

Арре		(5511.)	i ta		, vaney				rill hole st		ppm) results
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)					
_							From(m)	To(m)	Interval(m)		Ta2O5 (ppm)
							15	19	4	1.1	303
							63	77	14	1.7	168
KVRC0037	258730	6959085	516	-55	45	120			Li2O and 103		
	230730	0555005	510		15	120	incl. 7	′m @ 2.1%	Li2O and 214	lppm Ta2O	5 from 69m
							83	87	4	1.3	107
							incl.	2m @ 2%	Li2O and 184	opm Ta2O5	from 85m
							37	42	5	1	178
							incl. 2	2m @ 1.8%	0 1.8% Li2O and 198ppm Ta2O5 from	5 from 38m	
							58	64	6	0.7	129
KVRC0038	258774	6959131	514	-55	45	120	76	85	9	1.7	255
									Li2O and 292		
							100	102	2	0.6	233
							8	16	8	1.1	131
									Li2O and 173		
KVRC0039	258803	6959163	513	-55	45	120	45	49	4	1.3	204
					_	-	incl. 2	2m @ 1.7%	Li2O and 243	Sppm Ta2O	5 from 46m
							85	90	5	1.9	143
							incl. 3	8m @ 2.3%	Li2O and 138	3ppm Ta2O	5 from 86m
							37	39	2	0.7	191
KVRC0040	258836	6959192	512	-55	45	140	115	123	8	1.1	176
KVKC0040	230030	0929192	512	-55	45	140	incl. 2	m @ 2.1%	Li2O and 157	ppm Ta2O	5 from 115m
							126	127	1	1.6	206
							107	118	11	1.6	120
				-60	52	220	incl. 6	m @ 1.9%	Li2O and 123	ppm Ta2O	5 from 111m
							149	159	10	0.8	139
KVRC0041	258398		524				incl. 2	m @ 1.8%	Li2O and 136	ppm Ta2O	5 from 156m
		6958475					183	197	14	1.6	83
							incl. 6	m @ 2.1%	Li2O and 100	ppm Ta2O	5 from 185m
									Li2O and 113	••	
KVRC0041A*						280	222	229	7	0.9	95
						200	95	103	8	1.4	121
									Li2O and 12		
							120	130	10	1.1	119
KVRC0042						200			Li2O and 161		_
							172	180	8	1.5	137
	258373	6958534	519	-60	49				Li2O and 138		
							231	246	15	1.4	122
									Li2O and 114		
KVRC0042A*						270		-	Li2O and 114		
									Li2O and 131 Li2O and 114		
							34	m@1.9% 37		1.5	215
KVRC0043	258815	6959306	512	-55	53	120	34 83		3		
								84 47	1 4	1.1	906 129
							43		•	1.5	
									Li2O and 15		
							65	80	15	1.1	204
									Li2O and 287		
									Li2O and 250		
KVRC0044	258605	6959116	519	-54	40	150	102	109	7	1.6	225
									Li2O and 238		
							114	116	2	0.9	118
							122	124	2	1.2	273
							127	131	4	1	172
							incl.	1m @ 2% L	i2O and 181p	pm Ta2O5	from 128m
							138	140	2	1.5	266

Арре	enaix 1	(cont.)	– Ka	thiee	en valley	– Revers	se Circu	lation D	rill nole s	tatistics					
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	Signifi From(m)				ppm) results Ta2O5 (ppm)				
							65	69	Interval(m) 4	1.6	149				
							incl. 3	8m @ 1.9%	Li2O and 17	3ppm Ta2O	5 from 65m				
10 10 000 15		co=0000			20	150	84	94	10	1.6	287				
KVRC0045	258571	6959089	521	-59	38	150	114	m @ 2.3% 133	Li2O and 31 19	7ppm Ta2O 1.1	131				
									-		5 from 116m				
									Li2O and 98						
KVRC0046	258887	6959230	512	-54	48	93	28	31	3	1.7	191				
							incl. 1 34	.m @ 2.5% 36	Li2O and 19	0ppm Ta2O 0.9	5 from 29m 307				
							76	85	9	1.5	206				
							incl.	3m @ 2%	Li2O and 128						
KVRC0047	258688	6959048	520	-56	46	200			Li2O and 23						
					_		88 100	90 102	2	1.3 2.5	260 173				
							132	136	4	1.2	175				
									i2O and 314						
							45	48	3	1.5	214				
KVRC0048	258645	6959011	522	-55	47	120	85	99 0m @ 2%	14 Li2O and 230	1.6	236				
							109	9m @ 2% 113	4	1.4	200				
KVRC0049	258957	6959148	513	-57	47	120					5 from 109m				
								n @ 1.7%	Li2O and 183		5 from 111m				
							5	7 34	2	1.1	84 135				
KVRC0050	258904	6959102	514	-56	49	120	31 100	108	8	1	123				
									_	=	5 from 100m				
							13	17	4	0.9	114				
									Li2O and 15						
							21 incl	23 1m@ ? %	2 Li2O and 179	1.6	130				
KVRC0051	258855	6959056	516	-57	51	121	28	30	2	1.7	161				
							48	52	4	1.6	131				
									Li2O and 14						
							108	114	6	0.8	153 5 from 111m				
							80	86	6	1.5	162				
KVRC0052	258807	6959015	515	-55	48	120			Li2O and 16	-	-				
							68	73	5	1.6	183				
10 00050	250757	COF00CC	519	-56	49	120			Li2O and 233						
KVRC0053	10101	230131	230/5/	258757	230/3/	6958966	519	-30	49	120	78 106	80 115	2	1 1.7	226 126
									-		5 from 108m				
							27	30	3	0.9	263				
							71	87	16	1.6	185				
KVRC0054	258717	6958930	522	-57	52	160			Li2O and 24 Li2O and 260						
							139	144	5	1	139				
							incl. 1	lm @ 2% L	i2O and 167	pm Ta2O5	from 142m				
KVRC0055						100	52	60	8	0.9	110				
							108	110 m@16%	2 Li2O and 166	1.3	175 5 from 108m				
							157	162	5	1.6	174				
							incl. 1	m @ 1.9%	Li2O and 201	ppm Ta2O	5 from 159m				
KVRC0055A	258374	6959379	510	-55	47	348			i2O and 160p						
							187 204	189 223	2 19	0.9	214 188				
											5 from 204m				
									Li2O and 181						
							234	235	1	1.3	138				
KVRC0056						88	52	58 2m@1.9%	6 6 Li2O and 93	1.3	93 5 from 53m				
	1						112	114	2	0.5	64				
							120	125	5	0.7	96				
									Li2O and 137						
KVRC0056A	258318	6959435	510	-55	49	300	154	158 m@15%	4	0.9	117 5 from 155m				
NVINCOUSOA						300	186	218	32	1.1	129				
									Li2O and 161						
									Li2O and 186						
	250200	6959477	E11	_==C	40	50	230 28	231 32	1 4	1.1 0.6	144 126				
KVPCOOL3	258360		511	-56	49		28 70	32 77	4	1.4	126				
KVRC0057		6959395	509	-56	48	120			Li2O and 18						
KVRC0057 KVRC0058	258274	0555555					43	50	7	1.4	156				
KVRC0058			511	-57	47	80	-								
KVRC0058 KVRC0059	258274 258254	6959520	511	-57	47	80	-		Li2O and 30	5ppm Ta2O					
KVRC0058			511	-57	47	80 80	incl. 1	1	No significan	5ppm Ta2O t assays	5 from 47m				
KVRC0058 KVRC0059	258254	6959520					incl. 1 252	1 260	No significan 8	5ppm Ta2O t assays 1.7	5 from 47m 125				
KVRC0058 KVRC0059		6959520	511 510	-57 -56	47 50		incl. 1 252 incl. 4	ا 260 m @ 2.1%	No significan 8	5ppm Ta2O t assays 1.7 0ppm Ta2O	5 from 47m 125 5 from 253m				
KVRC0058 KVRC0059 KVRC0060	258254	6959520				80	incl. 1 252 incl. 4 and 1 317	260 m @ 2.1% n @ 2.1% 334	No significan 8 Li2O and 110 Li2O and 154 17	5ppm Ta2O t assays 1.7 9ppm Ta2O ppm Ta2O 1.2	5 from 47m 125 5 from 253m 5 from 258m 114				
KVRC0058 KVRC0059 KVRC0060	258254	6959520				80	incl. 1 252 incl. 4 and 1 317	260 m @ 2.1% n @ 2.1% 334	No significan 8 Li2O and 110 Li2O and 154 17	5ppm Ta2O t assays 1.7 9ppm Ta2O ppm Ta2O 1.2	5 from 47m 125 5 from 253m 5 from 258m				

Арре	enaix 1	(cont.)	- Ka	imee	in valley	- Revers							
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)			<u> </u>	•	ppm) results		
				-			From(m)		Interval(m)		Ta2O5 (ppn		
							48	51	3	1	492		
									Li2O and 33				
							94	99	5	1.1	143		
									Li2O and 288				
KVRC0062	258563	6958526	520	-60	49	180	105	108	3	1.2	142		
							incl. 1	m @ 1.7%	Li2O and 171	ppm Ta2O	5 from 106m		
							118	119	1	1.1	333		
							125	128	3	0.6	83		
							137	146	9	1	135		
KVRC0062A						250		1	No significan	t assays			
KVRC0062X	258555	6958525	520	-60	49	64			Hole abanc	loned			
KVRC0063		6958178	523	-61	46	105							
KVRC0064		6958151	521	-60	44	100			_				
KVRC0065		6958123	524	-60	43	100		1	No significan	t assays			
			524	-65	43								
KVRC0066	258754	6958091	524	-05	40	101	117	101	4	0.0	150		
							117	121	4	0.8	152		
							123	129	6	1.2	184		
									Li2O and 133				
							144	157	13	1.3	125		
									i2O and 137p				
KVRC0067						238	and	1m @ 2% L	i2O and 100p	pm Ta2O5	from 153m		
	258449	6958419	524	-61	47		184	195	11	1.4	72		
							incl. 4	1m @ 2.2%	Li2O and 84	opm Ta2O5	from 188m		
							199	201	2	0.8	93		
							203	212	9	1.2	77		
									Li2O and 138				
								277	3	1.2			
KVRC0067A*						288	274	57					
									Li2O and 77				
KVRC0068	258779	6958265	525	-59	46	100	72	78	6	NSR	129		
						69	78	9	1.5	178			
					incl. 4	4m @ 1.8%	Li2O and 17:	Lppm Ta2O	5 from 71m				
KVRC0069	258689	6958169	529	-66	-66	-66	43	130	83	94	11	1.2	184
							incl. 2	2m @ 2.2%	Li2O and 24	ppm Ta2O	5 from 83m		
							96	100	4	0.6	110		
							0	4	4	1.6	124		
							39	42	3	1.5	118		
KVRC0070	258387	6958609	518	-59	55	80	55	61	6	1.3	119		
								-	-	-	_		
									Li2O and 10				
							31	46	15	1.6	129		
KVRC0071	258665	6958290	538	-61	47	100			Li2O and 116				
							and 3	8m @ 1.7%	Li2O and 140		5 from 42m		
							46	56	10	1.5	81		
							incl	. 5m @ 2%	Li2O and 86p	pm Ta2O5	from 48m		
							64	66	2	1.5	92		
							97	98	1	1.5	259		
KVRC0072	258407	6958564	519	-60	49	180	106	107	1	1.3	994		
		332330 T	515		.5	_00	100	128	3	1.3	146		
								-	ہ Li2O and 164	-			
							161	169	8	1.8	130		
									Li2O and 143	••			
							72	90	18	1.4	145		
							incl. 4	1m @ 1.9%	Li2O and 15	3ppm Ta2O	5 from 75m		
KVRC0073	258635	6958263	5/1	- EE	45	140	and 5	5m <u>@</u> 1.9%	Li2O and 155	5ppm Ta2O	5 from 83m		
	230035	0938283	541	-65	45	140	104	118	14	1.3	176		
							incl.	5m @ 2% L	i2O and 189p	pm Ta2O5	from 104m		
									i2O and 226p	•			
								-	-	1.4			
		1					88	99	11		97		
								1 m (a) 1 00/	6 Li2O and 96	nnm Ta2O	strom 88m		
										• •			
KVRC0074	258354	6958569	518	-65	45	140			Li2O and 107	• •			
KVRC0074	258354	6958569	518	-65	45	140				• •			

Li2O (%) 1 ppm Ta2O ppm Ta2O 1.8 1.6 ppm Ta2O 0.4 0.4 0.6 1.2 pm Ta2O5 1.4	ppm) results Ta2O5 (ppm 228 5 from 81m 5 from 86m 147 281
opm Ta2O opm Ta2O 1.8 1.6 0pm Ta2O 0.4 0.6 1.2 pm Ta2O5 1.4	5 from 81m 5 from 86m 147 281
1.8 1.6 0.4 0.6 1.2 pm Ta2O5 1.4	5 from 86m 147 281
1.6 pm Ta2O 0.4 0.6 1.2 pm Ta2O5 1.4	281
0.4 0.6 1.2 pm Ta2O5 1.4	
0.4 0.6 1.2 pm Ta2O5 1.4	E fragma 00ma
0.6 1.2 pm Ta2O5 1.4	
1.2 pm Ta2O5 1.4	42 123
pm Ta2O5 1.4	123
	from 220m
	108
-	5 from 109m
1.1	103 5 from 150m
1	169
1.5	207
pm Ta2O	5 from 80m
pm Ta2O	5 from 89m
2.1	171
-	5 from 114m
	147
-	134
	5 from 178m
1.9	132
	5 from 29m
	96
	47 132
	213
1.5	204
	5 from 76m
	from 86m
	116
	250
	250 from 144m
1.7	140
pm Ta2O	5 from 154m
1.9	162
	05 from 92m
	161
-	150
1.4	110
pm Ta2O	5 from 58m
1	325
0.9	298
	202
1.9	
opm Ta2O	
opm Ta2O 0.6	132
0.6 2	132 91
opm Ta2O 0.6 2 pm Ta2O5	132
opm Ta2O 0.6 2 pm Ta2O5	132 91 from 121m
opm Ta2O 0.6 2 pm Ta2O5 om Ta2O5 1.1	132 91 from 121m from 124m
0.6 2 pm Ta2O5 pm Ta2O5 1.1 ppm Ta2O5 1.2	132 91 from 121m from 124m 104 5 from 160m 98
0.6 2 pm Ta2O5 pm Ta2O5 1.1 ppm Ta2O5 1.2 1.2	132 91 from 121m from 124m 104 5 from 160m 98 115
opm Ta2O 0.6 2 pm Ta2O5 0m Ta2O5 1.1 pm Ta2O5 1.2 1.2 1.1 0pm Ta2O	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m
opm Ta2O 0.6 2 pm Ta2O5 0m Ta2O5 1.1 pm Ta2O5 1.2 1.1 0pm Ta2O 1.1	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156
opm Ta2O 0.6 2 pm Ta2O5 0m Ta2O5 1.1 pm Ta2O5 1.2 1.1 0pm Ta2O 1.1 1.1 1.3	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m
opm Ta2O 0.6 2 pm Ta2O5 0m Ta2O5 1.1 pm Ta2O5 1.2 1.1 0pm Ta2O 1.1 1.1 1.3	132 91 from 121m 104 5 from 160m 98 115 5 from 75m 156 194
opm Ta2O 0.6 2 pm Ta2O5 1.1 pm Ta2O5 1.2 1.1 opm Ta2O 1.1 1.3 opm Ta2O 1.1 1.3 pm Ta2O 1.1 1.3	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 111m
opm Ta2O 0.6 2 pm Ta2O5 0m Ta2O5 1.1 1.1 1.1 0pm Ta2O5 1.1 1.1 1.3 0pm Ta2O5 1.4 0pm Ta2O5	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 111m 127
opm Ta2O 0.6 2 pm Ta2O5 0.7 0.6 2 m Ta2O5 1.1 0pm Ta2O5 1.1 1.2 1.1 1.3 0pm Ta2O5 1.4 1.4 0pm Ta2O5 1.4 1.4 1.3 0pm Ta2O5 1.4 1.4 1.4 1.3 0pm Ta2O5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	132 91 from 121m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 111m 127 5 from 95m 5 from 97m
opm Ta2O 0.6 2 pm Ta2O5 0.7 2 pm Ta2O5 1.1 0 pm Ta2O5 1.2 1.1 1.3 0 pm Ta2O5 1.4 0 pm Ta2O5 1.4 0 pm Ta2O5 1.4 0 pm Ta2O5 1.8 1.3 0 1.4 0 0 1.4 0 0 1.4 0 1.3 0 0 1.4 0 0 1.4 0 0 1.4 0 0 0 0 1.4 0 0 0 0 0 1.4 0 0 0 0 1.4 0 0 0 0 0 0 0 1.4 0 0 0 0 0 0 0 0 0 0 0 0 0	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 111m 127 5 from 95m 5 from 97m 157 6 from 191m
opm Ta2O 0.6 2 pm Ta2O5 0.7 2 pm Ta2O5 1.1 0 pm Ta2O5 1.2 1.2 1.1 0 pm Ta2O5 1.4 0 pm Ta2O5 1.4 0 pm Ta2O5 1.8 pm Ta2O5 1.8 0 pm Ta2O5 1.8 1.1 0 1.2 1.1 0 1.2 1.1 0 1.2 1.1 0 1.2 1.1 0 1.2 1.1 0 1.2 1.1 0 1.2 1.1 0 1.2 1.1 0 1.2 1.1 0 1.2 1.1 0 1.2 1.1 0 0 1.2 1.1 0 0 1.2 1.1 0 0 1.2 1.1 0 0 1.2 1.2 1.1 0 0 1.2 1.2 1.3 0 0 0 0 0 0 0 0 0 0 0 0 0	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 111m 127 5 from 95m 5 from 97m 157 6 from 191m
opm Ta2O 0.6 2 pm Ta2O5 1.1 pm Ta2O5 1.2 1.1 pm Ta2O5 1.1 1.3 pm Ta2O5 1.4 opm Ta2O5 1.4 opm Ta2O5 1.8 pm Ta2O5 pm Ta2O5 pm Ta2O5 pm Ta2O5 1.8	132 91 from 121m from 124m 5 from 160m 98 115 5 from 75m 156 194 5 from 9111m 127 5 from 95m 5 from 97m 157 5 from 191m 5 from 191m
opm Ta2O 0.6 2 pm Ta2O5 1.1 pm Ta2O5 1.2 1.1 opm Ta2O5 1.1 opm Ta2O5 1.4 opm Ta2O5 1.4 opm Ta2O5 1.8 pm Ta2O5 pm Ta2O5 1.1 opm Ta2O5 1.1 opm Ta2O5 1.1 opm Ta2O5 1.1 opm Ta2O5 1.1 opm Ta2O5 1.1 opm Ta2O5 1.1 opm Ta2O5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 111m 127 5 from 95m 5 from 97m 157 5 from 97m 157 5 from 217m 157 5 from 229m
opm Ta2O 0.6 2 pm Ta2O5 1.1 opm Ta2O5 1.2 1.2 1.1 0pm Ta2O5 1.1 1.3 opm Ta2O5 1.4 0pm Ta2O5 1.8 pm Ta2O5 pm Ta2O5 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.2 1.2 1.2 1.2 1.2 1.1 1.3 1.3 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 9111m 127 5 from 95m 5 from 97m 157 5 from 191m 5 from 191m
opm Ta2O 0.6 2 pm Ta2O5 1.1 opm Ta2O5 1.2 1.2 1.1 0pm Ta2O5 1.1 1.3 opm Ta2O5 1.4 0pm Ta2O5 1.8 pm Ta2O5 pm Ta2O5 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.8 pm Ta2O5 1.1 1.2 1.2 1.2 1.2 1.2 1.1 1.3 1.3 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 111m 127 5 from 95m 5 from 97m 157 5 from 217m 157 5 from 229m 128
opm Ta2O 0.6 2 pm Ta2O5 0.7 1.1 0pm Ta2O5 1.2 1.1 0pm Ta2O5 1.4 0pm Ta2O5 1.4 0pm Ta2O5 1.4 0pm Ta2O5 1.8 pm Ta2O5 1.1 0pm Ta2O5 1.2 0pm Ta2O5 1.2 0pm Ta2O5 1.2 0pm Ta2O5 1.2 0pm Ta2O5 1.2 0pm Ta2O5 1.2 0pm Ta2O5 0pm Ta2O5 0p	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 97m 157 5 from 97m 157 5 from 97m 157 5 from 217m 5 from 219m 5 from 229m 128 5 from 93m
opm Ta2O 0.6 2 pm Ta2O5 1.1 pm Ta2O5 1.2 1.2 1.1 opm Ta2O5 1.4 opm Ta2O5 1.4 opm Ta2O5 1.4 opm Ta2O5 pm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 0 1.2 opm Ta2O5 0 0 1.2 0 0 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 111m 127 5 from 95m 5 from 95m 5 from 97m 157 5 from 219m 157 5 from 229m 128 5 from 93m 182 5 from 93m
opm Ta2O 0.6 2 pm Ta2O5 1.1 pm Ta2O5 1.2 1.2 1.1 opm Ta2O5 1.4 opm Ta2O5 1.4 opm Ta2O5 1.4 opm Ta2O5 pm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 1.2 opm Ta2O5 0 1.2 opm Ta2O5 0 0 1.2 0 0 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0	132 91 from 121m from 124m 104 5 from 160m 98 115 5 from 75m 156 194 5 from 111m 127 5 from 97m 157 5 from 97m 157 5 from 217m 157 5 from 217m 157 5 from 93m 182 5 from 93m
	1.5 pm Ta2O5 2.1 pm Ta2O5 1.5 pm Ta2O5 1.8 pm Ta2O5 1.9 pm Ta2O5 1.5 1.5 2.8 0.9 1.5 1.5 1.5 pm Ta2O5 1.4 pm Ta2O5 1.4 pm Ta2O5 1.4 pm Ta2O5 1.7 pm Ta2O5 1.7 pm Ta2O5 1.7 pm Ta2O5 1.7 pm Ta2O5 1.4 pm Ta2O5 1.7 pm Ta2O5 1.4 pm Ta2O5 pm Ta2O5 pm Ta2O5 pm Ta2O5 pm Ta2O5 pm Ta2O5 pm Ta2O5 pm Ta2O5 pm Ta2O5

Appe		(cont.)	- Na	linee	ii vaney	– Revers						
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)		1			ppm) results	
_						/	From(m)	. ,	Interval(m)	. ,	Ta2O5 (ppm)	
							29	34	5	1.4	99	
							incl.	2m @ 2%	Li2O and 114	ppm Ta2O5	from 30m	
							68	71	3	1.3	84	
KVRC0087						112	incl.	1m @ 2.2%	6 Li2O and 96	ppm Ta2O	5 from 69m	
KVNC0007						112	78	84	6	1.2	65	
	258320	6958621	513	-49	50		incl.	3m @ 1.9%	6 Li2O and 98	ppm Ta2O	5 from 81m	
							88	92	4	1.7	121	
							incl. 2	2m @ 2.1%	Li2O and 11	8 Bppm Ta2O	5 from 89m	
							135	139	4	0.6	193	
KVRC0087A*						220	172	176	4	2	103	
						110		-	Li2O and 94			
							91	94	3	1.6	83	
								2m @ 1.9%	Li2O and 85	-		
							100	106	6	1.4	82	
KVRC0088						148			Li2O and 75p			
							136	142	6	-		
									o i2O and 151	1.6	139	
	250202	6050600	F 4.4	60	40			r	-	-		
	258302	6958603	514	-60	49		162	169	7	1.6	161	
KVRC0088A*						208				-	5 from 164m	
							201	202	1	0.9	166	
							210	236	26	1.3	115	
KVRC0088B*						264	incl. 1	.m @ 1.7%	Li2O and 217	ppm Ta2O	5 from 211m	
KVIIC0000D						204	and 10)m @ 1.9%	Li2O and 12	7ppm Ta2O	5 from 220m	
							and 2	m @ 1.8%	Li2O and 144	ppm Ta2O5	from 233m	
							29	40	11	1.6	127	
KVRC0089	258593	6958356	542	-60	46	118	incl. 5	5m @ 1.9%	Li2O and 12	2ppm Ta2O	5 from 32m	
							97	98	1	1.1	150	
KVRC0090	258766	6958178	525	-59	46	70	18	21	3	0.1	228	
KVRC0091		6958153	525	-59	46	90	34	37	3	1.3	126	
							14	16	2	1.2	110	
	258978	6959117		542	513 -55					Li2O and 15		
KVRC0092	258978	6959117	513	513 -55		-55 47	130	117	122	5	1.6	161
											5 from 118m	
							23	26	3	1.5	173	
									ہ Li2O and 128			
KVRC0093	258935	6959074	514	-55	46	132				-		
							93	94	1	1.1	118	
							117	119	2	1	96	
							1	5	4	1.6	149	
									6 Li2O and 12			
							42	49	7	1	66	
KVRC0094	258893	6959032	515	-55	49	126	incl.	1m @ 2.8%	Li2O and 89	ppm Ta2O	5 from 47m	
							102	103	1	1	120	
							112	117	5	1.4	161	
							incl. 2	m @ 2.1%	Li2O and 169	ppm Ta2O	5 from 114m	
							39	43	4	1.5	130	
							incl.	3m @ 1.8%	Li2O and 13	0ppm Ta2O	5 from 40m	
KVRCOOF	250052	6958991	F16	Γ4	42	120	61	65	4	1.6	135	
KVRC0095	258852	6928991	516	-54	43	120	incl. 3	3m @ 1.8%	Li2O and 13	2ppm Ta2O	5 from 62m	
	258852						73	75	2	1	78	
				1			103	110	7	0	229	
										-		
								20	6	0	230	
							14	20	6 10	0	230 191	
KVRC0096	258806	6958010	517	- 55	47	120	14 56	66	10	0	191	
KVRC0096	258806	6958949	517	-55	47	120	14 56 82	66 86	10 4	0	191 136	
KVRC0096	258806	6958949	517	-55	47	120	14 56 82 incl. 1	66 86 1m @ 1.7%	10 4 Li2O and 17	0 1.1 Bppm Ta2O	191 136 5 from 83m	
KVRC0096	258806	6958949	517	-55	47	120	14 56 82 incl. 1 90	66 86 I m @ 1.7% 98	10 4 Li2O and 17 8	0 1.1 Bppm Ta2O 0	<u>191</u> 136 5 from 83m 122	
KVRC0096	258806	6958949	517	-55	47	120	14 56 82 incl. 1 90 78	66 86 Im @ 1.7% 98 85	10 4 Li2O and 17 8 7	0 1.1 Bppm Ta2O 0 1.2	191 136 5 from 83m 122 247	
KVRC0096	258806	6958949	517	-55	47	120	14 56 82 incl. 1 90 78 incl. 1	66 86 1 m @ 1.7% 98 85 1 m @ 1.9%	10 4 Li2O and 17 8 7 Li2O and 18	0 1.1 Bppm Ta2O 0 1.2 2ppm Ta2O	191 136 5 from 83m 122 247 5 from 80m	
KVRC0096		6958949	517	-55	47	120	14 56 82 incl. 2 90 78 incl. 2 and 1	66 86 1m @ 1.7% 98 85 1m @ 1.9% Im @ 2.4%	10 4 Li2O and 17 8 7 Li2O and 18 Li2O and 12	0 1.1 Bppm Ta2O 0 1.2 2ppm Ta2O Pppm Ta2O	191 136 5 from 83m 122 247 5 from 80m 5 from 84m	
							14 56 82 incl. 1 90 78 incl. 1 and 1 92	66 86 Im @ 1.7% 98 85 Im @ 1.9% Im @ 2.4% 94	10 4 Li2O and 17 8 7 Li2O and 18 Li2O and 12 2	0 1.1 Bppm Ta2O 0 1.2 2ppm Ta2O pppm Ta2O 1	191 136 5 from 83m 122 247 5 from 80m 5 from 84m 149	
							14 56 82 incl. 2 90 78 incl. 2 and 1	66 86 1m @ 1.7% 98 85 1m @ 1.9% Im @ 2.4%	10 4 Li2O and 17 8 7 Li2O and 18 Li2O and 12	0 1.1 Bppm Ta2O 0 1.2 2ppm Ta2O Pppm Ta2O	191 136 5 from 83m 122 247 5 from 80m 5 from 84m	

Appe	endix 1	(conc.)	- 1.4		in vancy								
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	_				ppm) results		
							From(m)	. ,	Interval(m)	. ,	Ta2O5 (ppm)		
							13	16	3	1.4	171		
								1	Li2O and 104				
							89	96	7	1.3	219		
									Li2O and 21				
KVRC0098	258721	6958858	519	-55	48	168		lm @ 1.9%	Li2O and 12	5ppm Ta2O			
							110	111	1	1.2	73		
							113	116	3	1	76		
							161	165	4	1.4	103		
							incl. 2	2m @ 1.7%	Li2O and 92	ppm Ta2O5	from 163m		
							21	27	6	1.1	282		
							incl. 2	2m @ 2.2%	Li2O and 31	9ppm Ta2O	5 from 24m		
							89	95	6	2.1	252		
							incl. S	5m @ 2.2%	Li2O and 23	3ppm Ta2O	5 from 89m		
KVRC0099						150	112	114	2	1.5	266		
KVKC0099	258720	6958856	519	-66	227	150	incl. 1	.m @ 1.9%	Li2O and 256	ppm Ta2O	5 from 112m		
							131	139	8	1.9	119		
							incl. 3	m @ 2.5%	Li2O and 121	ppm Ta2O	5 from 131m		
							and 2	m @ 2.3%	Li2O and 133	ppm Ta2O	5 from 135m		
									Li2O and 139				
KVRC0099A						230	192	193	1	0.5	116		
							25	27	2	1.4	247		
							35	37	2	1	175		
							78	98	21	1.1	146		
KVRC0100	258677	6959246	509	-56	50	144			Li2O and 14		-		
									Li2O and 317				
									Li2O and 272				
							6			1.6			
							-	11 2m @ 2.1%	5		105		
										6 Li2O and 10			
									56	61	5	0.9	141
										1	Li2O and 26		
							66	68	2	1.5	174		
KVRC0101	258636	6959202	510	-57	47	126			Li2O and 14				
							81	89	8	1.5	263		
									Li2O and 25				
							and 2	2m@1.8%	Li2O and 24	Sppm Ta2O	5 from 86m		
							94	108	14	1	97		
							incl.	1m @ 2.1%	6 Li2O and 54	ppm Ta2O	5 from 97m		
							and 2	2m @ 2% L	i2O and 167p	pm Ta2O5	from 106m		
							26	33	7	1.2	116		
							incl. 2	2m @ 2.4%	Li2O and 12	0ppm Ta2O	5 from 29m		
							70	78	8	1.8	197		
101000000	250500	C050467	540		10	100	incl. 6	5m @ 2.1%	Li2O and 19	7ppm Ta2O	5 from 71m		
KVRC0102	258599	6959167	513	-59	46	120	86	98	12	1.1	141		
							incl. 3	3m @ 2.3%	Li2O and 312	2ppm Ta2O			
							104	105	1	1.2	263		
							112	117	5	1.3	211		
	1						64	70	6	1.3	126		
									6 Li2O and 65				
									Li2O and 190				
							91	100	9	1.9			
									9 Li2O and 19		262		
KV/PC0102						144		_		• •			
KVRC0103	258548	6959116	520	-55	47	144		_	Li2O and 313	· ·			
							117	125	8	1.3	168		
	1							1			5 from 118m		
					•			1 1 2 0	2	1	197		
							128	130	2	1	197		
							128 135	130 138	3	1.8	137		

Арре	muix 1	(cont.)	- nai	mee	ii valley	- Revers			rill hole st		
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)					ppm) results
_				-			From(m)		Interval(m)		Ta2O5 (ppm)
							81	83	2	1.5	187
									Li2O and 120		
							92	105	13	1.6	251
									Li2O and 213		
									Li2O and 282		
							121	125	4	1.5	163
KVRC0104	258544	6959111	520	-68	225	178					5 from 122m
Rencoror	200011	0555111	520	00	225	1,0	and 2	1m @ 2% Li	20 and 149p	pm Ta2O5	from 124m
							136	139	3	1.5	191
							incl. 1	m @ 1.7%	Li2O and 164	ppm Ta2O	5 from 138m
							148	161	13	1.9	165
							incl. 3	m @ 2.2%	Li2O and 182	ppm Ta2O	5 from 148m
							and 8	8m @ 2% Li	20 and 164p	pm Ta2O5	from 152m
							170	172	2	1.3	125
KVRC0105	258868	6959291	517	-59	50	112	28	29	1	0.5	18
							4	5	1	0.5	107
							8	9	1	0.5	115
KVRC0106	258821	6959242	518	-60	49	160	35	38	3	1.5	247
							incl. 2	2m @ 1.9%	Li2O and 261	Lppm Ta2O	5 from 36m
							109	111	2	1.1	172
							7	9	2	1	253
							21	24	3	1.1	203
							incl.	1m @ 2% I	i2O and 286	ppm Ta2O	from 22m
							48	49	1	0.8	189
KVRC0107	258774	6959200	519	-60	46	124	52	54	2	1.2	256
								Lm @ 1.8%	Li2O and 303	3ppm Ta2O	
							59	60	1	1.1	181
							73	75	2	0.5	103
							90	95	5	0.9	156
							26	27	1	1	248
							40	46	6	1.4	233
							-	-	Li2O and 301		
							63	70	7	1.1	138
KVRC0108	258739	6959165	519	-59	42	124		-	.i2O and 233		
							80	88	8	1	120
									Li2O and 160		
							110	112	2	1.2	230
							110	112	1	1.4	254
							20	22	2	1.4	77
									Li2O and 115		
							62	77	15	1.5	191
KVRC0109	258696	6959120	520	-54	48	124			Li2O and 258		
							85	90	5	1.4	161
									ہ i2O and 216.		
							97	-			
							-	98	1	1	126
							44	46	2 .i2O and 125	1.4	159
KVDC0440	250055	6050076	F 2 2	50	47	104	75	87	12	1.6	205
KVRC0110	258655	6959076	523	-56	47	124		-	.i2O and 206		
							91	92	1	1.1	162
							100	108	8	1.5	129
			<u> </u>					-		-	5 from 105m
							61	64	3	1.1	260
							93	84	1	1.6	247
		1	1			130	86	99	13	1.2	205
KVRC0111											
KVRC0111	258609	6959034	523	-55	46			5m @ 1.9%			
KVRC0111	258609	6959034	523	-55	46		114	117	3	0.4	22
KVRC0111 KVRC0111A	258609	6959034	523	-55	46	190	114 133	117 146	3 13	0.4 1.7	

Appe		(cont.)	<u>– na</u>		in vancy	- Nevel			ini noie s	anstics			
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	-			· · · · · ·	ppm) results		
							From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)		
							75	89	14	1.5	202		
								_	Li2O and 31				
							and 3	8m @ 2.2%	Li2O and 157	7ppm Ta2O	5 from 84m		
KVRC0112						154	126	136	10	1.9	93		
KVRC0112						134	incl. 7	7m @ 2.2%	Li2O and 97	opm Ta2O5	from 128m		
	258608	6959031	523	-69	227		141	142	1	1.7	250		
							146	150	4	1.5	148		
							incl. 1	m @ 2.8%	Li2O and 123	ppm Ta2O	5 from 123m		
	1						155	156	1	1.1	2		
KVRC0112A						190	161	164	3	1.1	131		
							incl. 1	m @ 2.3%	Li2O and 179	ppm Ta2O	5 from 162m		
							22	24	2	2.7	182		
KVRC0113	258928	6959208	508	-54	45	124			Li2O and 15				
							33	36	3	0.1	329		
KVRC0114	258885	6959166	514	-55	45	130	114	119	5	0.1	146		
							0	6	6	0.1	140		
							24	25	1	1.1	204		
KVRC0115	258845	6959125	501	-54	46	130	37	41	4	1.4	163		
									Li2O and 20				
							114	117	3	2	188		
							incl. 2	-			5 from 114m		
							41	48	7	1.2	223		
								-	Li2O and 24	5ppm Ta2O	5 from 43m		
							53	59	6	1	131		
KVRC0116	258800	6959080	504	-55	50	140	incl. 1	lm @ 1.9%	Li2O and 21	Oppm Ta2O	5 from 53m		
							80	85	5	1.3	214		
							incl. 2	2m @ 2.2%	Li2O and 21	9ppm Ta2O	5 from 81m		
							128	130	2	0.6	111		
									0	5	5	0.9	179
								73	91	18	1.6	212	
							incl. 2	2m @ 2.1%	Li2O and 18) Dppm Ta2O	5 from 74m		
KVRC0117	258755	6959038	519	-54	47	140			Li2O and 231				
							and	8m @ 2% l	.i2O and 213	opm Ta2O5	from 82m		
							104	107	3	0.9	134		
							22	24	2	0.9	297		
							83	97	14	1.2	217		
								-	Li2O and 20				
KVRC0118	258710	6958997	520	-55	49	172		-	Li2O and 253				
AT ACCESSION	200710	0550557	520	55	15	1/2		_	Li2O and 163				
								-	_				
							128	134	6	1.4	178 5 from 128m		
KV/DC0110	259671	6958948	522	F 2	40	140	85 incl_1	100	15 Li2O and 40	1.1	197		
KVRC0119	258671	0958948	522	-53	48	142		-		••			
									Li2O and 13	<u> </u>			
							56	58	2	1.6	323		
							98	119	21	1.5	197		
KVRC0120	258668	6958944	523	-53	228	140			Li2O and 243				
								_	Li2O and 238				
	1							-	Li2O and 377	••			
							and 1	m @ 1.9%	Li2O and 361	ppm Ta2O	from 117m		
	1						28	35	7	0.6	109		
	1						incl. 1	lm @ 1.7%	Li2O and 30)ppm Ta2O	5 from 33m		
	1						96	103	7	0.8	172		
	1						incl. 1	lm @ 1.7%	Li2O and 22	5ppm Ta2O	5 from 99m		
			1	50	47	142	114	123	9	0.9	111		
KVRC0121	258556	6959190	513	-56	47	172	114						
KVRC0121	258556	6959190	513	-56	47	172			Li2O and 140				
KVRC0121	258556	6959190	513	-56	47	172	incl. 2	m @ 1.8%		ppm Ta2O	5 from 115m		
KVRC0121	258556	6959190	513	-56	47	172	incl. 2 128	m @ 1.8% 131	3	ppm Ta2O 1.1			

		(conc.)	- Ita	ince	in valicy				rill nole s		
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	•	•		· · · · ·	ppm) results
							From(m)	To(m)	Interval(m)		Ta2O5 (ppm)
							51	53	2	1.2	176
							67	71	4	1.1	157
							99	121	22	1.5	218
KVRC0122	258514	6959152	521	-56	45	148		-	Li2O and 254		
							and 5	m @ 1.7%	Li2O and 292	ppm Ta2O	from 126m
							126	138	12	1.3	122
							incl. 5	m @ 1.9%	Li2O and 128	ppm Ta2O	5 from 127m
							52	54	2	1	182
							66	68	2	1.4	291
							incl.	1m @ 2%	Li2O and 296	ppm Ta2O	from 66m
							82	94	12	1.7	223
							incl. S	5m @ 2.5%	Li2O and 27	9ppm Ta2O	5 from 87m
KVRC0123	258510	6959142	521	-84	53	160	102	106	4	1	169
							113	125	12	1.8	161
							incl. 2	m @ 1.8%	Li2O and 212	ppm Ta2O	5 from 113m
							and 6	m @ 2.5%	Li2O and 189	ppm Ta2O5	from 118m
							141	153	12	0.9	131
							incl. 4	m @ 1.8%	Li2O and 210	ppm Ta2O	5 from 148m
							79	80	1	1.4	183
							93	109	16	1.4	196
							incl. 4	um @ 1.9%	Li2O and 18	3ppm Ta2O	5 from 93m
							and 6	m @ 2.1%	Li2O and 204	ppm Ta2O	from 100m
							134	140	6	1.3	120
									i2O and 174		
KVRC0124	258502	6959142	521	-59	228	172	147	150	3	1.1	279
KVNC0124	230302	0555142	521	-55	220	1/2			Li2O and 358		
									9	1.4	
							154	163	-		135
								_	Li2O and 157		
									i2O and 133p	ř.	
							166	169	3	1.3	139
									Li2O and 173		
							74	84	10	1.4	239
KVRC0125						120	incl.	6m @ 2%	Li2O and 200	ppm Ta2O	from 74m
	258636	6959000	523	-84	44		97	99	2	0.6	144
KVRC0125A						180	122	129	7	1.4	151
KVNC0125A						100	incl. 3	m @ 1.9%	Li2O and 128	ppm Ta2O	5 from 123m
							80	83	3	1.2	134
10/12/00/26	250740	60 5 00 0 4	530	07		100	incl. 1	lm @ 2.1%	Li2O and 14	7ppm Ta2O	5 from 81m
KVRC0126	258/13	6958924	520	-87	46	160	126	127	1	1	114
				1			120	12/			
							149	150	1	2	252
							149	150			
							149 10	150 12	2	0.6	313
KV/PC0127	259922	6058701	510	- 55	46	120	149 10 68	150 12 70	2 2	0.6 1.6	313 212
KVRC0127	258823	6958791	519	-55	46	120	149 10 68 incl. 1	150 12 70 Im @ 2.6%	2 2 Li2O and 28	0.6 1.6 2ppm Ta2O	313 212 5 from 69m
KVRC0127	258823	6958791	519	-55	46	120	149 10 68 incl. 1 81	150 12 70 Im @ 2.6%	2 2 Li2O and 28 3	0.6 1.6 2ppm Ta2O 0.8	313 212 5 from 69m 127
KVRC0127	258823	6958791	519	-55	46	120	149 10 68 incl. 1 81 87	150 12 70 Im @ 2.6% 84 89	2 2 Li2O and 28 3 2	0.6 1.6 2ppm Ta2O 0.8 1.3	313 212 5 from 69m 127 65
KVRC0127	258823	6958791	519	-55	46	120	149 10 68 incl. 3 81 87 11	150 12 70 Im @ 2.6% 84 89 14	2 2 Li2O and 28 3 2 3	0.6 1.6 2ppm Ta2O 0.8 1.3 1.4	313 212 5 from 69m 127 65 230
							149 10 68 incl. 1 81 87 11 incl.	150 12 70 Im @ 2.6% 84 89 14 1m @ 2%	2 2 Li2O and 282 3 2 3 Li2O and 334	0.6 1.6 2ppm Ta2O 0.8 1.3 1.4 ppm Ta2OS	313 212 5 from 69m 127 65 230 5 from 13m
KVRC0127 KVRC0128		6958791	519	-55	46	120	149 10 68 incl. 2 81 87 11 incl. 45	150 12 70 Im @ 2.6% 84 89 14 1m @ 2% 48	2 2 Li2O and 28 3 2 3 Li2O and 334 3	0.6 1.6 2ppm Ta2O 0.8 1.3 1.4 ppm Ta2O 0.7	313 212 5 from 69m 127 65 230 5 from 13m 203
							149 10 68 incl. 1 81 87 11 incl.	150 12 70 Im @ 2.6% 84 89 14 1m @ 2%	2 2 Li2O and 282 3 2 3 Li2O and 334	0.6 1.6 2ppm Ta2O 0.8 1.3 1.4 ppm Ta2OS	313 212 5 from 69m 127 65 230 5 from 13m
							149 10 68 incl. 2 81 87 11 incl. 45	150 12 70 Im @ 2.6% 84 89 14 1m @ 2% 48	2 2 Li2O and 28 3 2 3 Li2O and 334 3	0.6 1.6 2ppm Ta2O 0.8 1.3 1.4 ppm Ta2O 0.7	313 212 5 from 69m 127 65 230 5 from 13m 203
							149 10 68 incl. 2 81 87 11 incl. 45 57	150 12 70 Im @ 2.6% 84 89 14 1m @ 2% 48 58	2 2 Li2O and 28 3 2 3 Li2O and 334 3 1	0.6 1.6 2ppm Ta2O 0.8 1.3 1.4 ppm Ta2O 0.7 1.2	313 212 5 from 69m 127 65 230 5 from 13m 203 105
							149 10 68 incl. 2 81 87 11 incl. 45 57 91 7	150 12 70 84 89 14 1m @ 2% 48 58 99 10	2 2 Li2O and 28 3 2 3 Li2O and 334 3 1 8	0.6 1.6 2ppm Ta2O 0.8 1.3 1.4 ppm Ta2O5 0.7 1.2 0 1.2	313 212 5 from 69m 127 65 230 5 from 13m 203 105 134 319
KVRC0128	258796	6958757	522	-53	44	120	149 10 68 incl. 2 81 87 11 incl. 45 57 91 7	150 12 70 84 89 14 1m @ 2% 48 58 99 10	2 2 Li2O and 28 3 2 3 Li2O and 334 3 1 8 3 3	0.6 1.6 2ppm Ta2O 0.8 1.3 1.4 ppm Ta2O5 0.7 1.2 0 1.2	313 212 5 from 69m 127 65 230 5 from 13m 203 105 134 319
	258796						149 10 68 incl. 2 81 87 11 incl. 45 57 91 7 7 incl. 16	150 12 70 84 89 14 1m @ 2% 48 58 99 10 1m @ 2.2% 19	2 2 Li2O and 28 3 2 3 Li2O and 334 3 1 8 3 5 Li2O and 38 3 3 5 Li2O and 38	0.6 1.6 2ppm Ta2O 0.8 1.3 1.4 ppm Ta2O 0.7 1.2 0 1.2 31ppm Ta2C 1.1	313 212 5 from 69m 127 65 230 6 from 13m 203 105 134 319 05 from 8m 207
KVRC0128	258796	6958757	522	-53	44	120	149 10 68 incl. 2 81 87 11 incl. 57 91 7 incl.	150 12 70 84 89 14 1m @ 2% 48 58 99 10 10 1m @ 2.2%	2 2 Li2O and 28 3 2 3 Li2O and 334 3 1 8 3 5 Li2O and 38	0.6 1.6 2ppm Ta2O 0.8 1.3 1.4 ppm Ta2O 0.7 1.2 0 1.2 31ppm Ta2O	313 212 5 from 69m 127 65 230 5 from 13m 203 105 134 319 05 from 8m

Арре		(cont.)	- na	iniee	n valley	- Rever			rill note s			
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	-	-			ppm) results	
							From(m)		Interval(m)		Ta2O5 (ppm	
							8	10	2	0.6	130	
							12	14	2	1.9	353	
							34	36	2	0.7	256	
KVRC0130	250705				50	120	55	57	2	0.9	77	
	258795	6958755	523	-88	53		84	93	9	1.3	187	
							incl. 4	lm @ 1.9%	Li2O and 200)ppm Ta2O	5 from 87m	
							108	109	1	0.6	135	
KVRC0130A						160	100		⊥ No significan		133	
RUNCOISOA						100	81	82	1	0.9	285	
							90	93	3	0.5	107	
							114	116	2	1.2	320	
							142	143	1	0.8	421	
							148	156	8	1.8	83	
KVRC0131	258371	6958888	513	-55	41	214	incl. 3	8m @ 2.4%	Li2O and 65	opm Ta2O5	from 148m	
RUNCOISI	2303/1	0550000	515	55	-11	214	162	163	1	0.6	166	
							175	187	12	1.2	160	
							incl. 4	m @ 2.1%	Li2O and 164	ppm Ta2O	5 from 175m	
							198	208	10	1.5	151	
									Li2O and 132			
								-	Li2O and 162			
							100	104	4	2	252	
								_			_	
						150			Li2O and 283			
KVRC0132						160	141	145	4	1.8	164	
									Li2O and 189			
				_			152	153	1	0.9	150	
	258421	6958793	512	-54	48		176	181	5	0.9	92	
							incl. 1	lm @ 1.6%	Li2O and 24	opm Ta2O5	from 178m	
KVRC0132A*						228	184	189	5	1.5	108	
KVNC0152A	RC0132A*					220	incl. 3	8m @ 1.9%	Li2O and 92	opm Ta2O5	from 185m	
							204	210	6	1.4	136	
							incl.	2m @ 2% L	i2O and 137p	pm Ta2O5	from 206m	
								70	72	2	1.4	185
								96	98	2	1.1	266
KVRC0133						170	108	113	5	1.6	226	
		6958713	6958713				_			i2O and 252p		
	258494			6958713	514	-55	45		131	133	2	1.7
							188	199	11	1.3	103	
KVRC0133A*						240			Li2O and 132			
KVRC0155A						240		-				
							217	220	3	0.7	59	
							41	44	3	1	332	
							incl. 1	lm @ 1.7%	Li2O and 270	Dppm Ta2O		
							86	95	9	1.7	296	
							incl. 5	5m @ 2.3%	Li2O and 40	5ppm Ta2O	5 from 88m	
KVRC0134	258606	6958572	520	-55	49	160	103	105	2	1.1	120	
							incl. 1	m @ 1.8%	Li2O and 215	ppm Ta2O	5 from 103m	
							106	110	4	1.3	150	
									Li2O and 153			
							131	133	2	0.9	159	
	1	-					56	64	8	1.2	122	
						80			○ Li2O and 183			
								_	2 2		99	
KVRC0135A	258189	6959595	510	-54	46		128	130		0.8		
						356	319	341	22	1.3	132	
								-	Li2O and 112			
							and 5	m @ 2.1%	Li2O and 109	ppm Ta2O5	from 325m	
KVRC0136						110	95	103	8	1.3	120	
						110	incl. 1	lm @ 3.7%	Li2O and 13	5ppm Ta2O	5 from 98m	
	1						219	222	3	1.3	211	
	258120	6959522	510	-64	46		incl. 1	m @ 2.1%	Li2O and 213	ppm Ta2O	5 from 220m	
KVRC0136A	[_			300	256	285	29	1.3	171	
											5 from 261m	
								-	Li2O and 158			
KV/BC0127	250002	6050620	E10	60	10	120	anu 1	د. 2.3 %	Lizo and 158	ppin razUS	202111 202111	
KVRC0137	258083	6959629	510	-60	46	120						
KVRC0138	258164		510	-55	45	100						
	258184		510	-55	44	100		1	No significan	t assays		
KVRC0139		6959801	510	-55	44	130						
KVRC0140	258105					124						
	258105 258037	6959868	512	-62	44	124						
KVRC0140		6959868 6959937	512 512	-62 -55	44	124	91	94	3	0	507	
KVRC0140 KVRC0141	258037						91 85	94 86	3 1	0	507 237	

		(cont.)									
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	Signif From(m)		(>0.4%) and Interval(m)		ppm) results Ta2O5 (ppm
							23	28	5	0	166
KVRC0145						130	44	48	4	1.5	166
							incl.	2m @ 2.5%	Li2O and 13	3ppm Ta2O	5 from 45m
							188	192	4	2.2	142
							incl. 3	8m @ 2.7%	Li2O and 133	ppm Ta2O	5 from 188m
							218	220	2	1	212
	257970	6959380	508	-57	42		241	244	3	1.7	76
KVRC0145A						378		1	Li2O and 82		
							258	268	10	1.2	103
									Li2O and 90		
								1	Li2O and 59	-	
							302	316	14	0.9	201 5 from 320m
KVRC0146						118	inci. 1		lo significan		5 110111 52011
KVRC0140						110	211	222	11	1.8	51
									Li2O and 29		
							249	255	6	1	105
KVRC0146A	257880	6959300	508	-56	45	348	273	284	11	1.9	116
											5 from 274m
							303	322	19	1.4	197
							incl. 3	sm @ 1.9%	Li2O and 195	ppm Ta2O	5 from 274m
KVRC0147	258005	6959346	508	-54	47	120	29	33	4	0	192
KVRC0148						120	42	45	3	1.2	214
	4					120		1	i2O and 183		from 43m
	1						199	211	12	1.3	83
	1								Li2O and 65		
	1						240	247	i2O and 140	ppm 1a2O5	113
	257963	6959302	508	-56	42				/ Li2O and 121		113 5 from 241m
KVRC0148A	257505	0555502	500	50	72	348	264	277	13	1.8	114
						5.0					5 from 266m
							313	338	25	1.3	179
									Li2O and 154		5 from 316m
									.i2O and 200		
									i2O and 257		
KVRC0149	257957		508	-55	45	120	97	101	4	0	251
KVRC0150	257914	6959462	508	-54	46	120	90	93	3	0	251
							149	160	11	1.8	129
									20 and 135		
KVRC0151	258335	6958500	516	-57	48	222	167	173	6	1.5	117 5 from 168m
RUNCOISI	250555	0550500	510	57	40	222	183	192	9	1.5	165
											5 from 183m
									i2O and 164		
							79	83	4	0.5	218
							101	102	1	1.1	531
							104	112	8	1.1	284
KVRC0153	258484	6958642	511	-59	43	150					5 from 106m
							114 128	120 132	6	0.5	1 109
											5 from 131m
							80	81	1	1.2	129
						450	88	91	3	0.5	123
KVRC0154	250524	6050677	510	-59	46	150	106	114	8	1.1	249
	258521	6958677	510	-59	46		incl. 2	2m @ 1.9%	Li2O and 197	ppm Ta2O	5 from 107m
KVRC0154A*						240	204	209	5	8	106
	L		I	I		2.0			Li2O and 109		5 from 205m
	1						152	161	9	1.6	108
	1							1			5 from 155m
	1						180	186 Im @ 2.1%	6	1.7	181 5 from 180 m
KVRC0155	1					228	189	195	6	0.9	58
	1										5 from 192m
	258264	6958571	514	-59	45		198	204	6	0.6	78
	1						220	223	3	1.3	76
	1								Li2O and 92		
	1						226	246	20	1.4	112
KVRC0155A*	1					282		1		<u> </u>	5 from 234m
	1						252	258	6	1.8	127
							30			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 from 253m 396
	1						30	32 38	2	0.8	237
KVRC0156	258745	6958797	524	-54	222	168	98	113	15	1.3	244
	1										5 from 103m
	1		1	1			14	17	3	1	180
	1						63	64	1	1.9	138
	1					150	77	87	10	1.5	247
KVRC0157		6958807	523	-79	40	130			Li2O and 24		
KVRC0157	258756		525	· ·	.0				Li2O and 13	(⁻ -	
KVRC0157	258756						115	116	1	1.1	140
KVRC0157	258756						172	176	4		
	258756					190				1.7	136
	258756					190	incl. 2		Li2O and 148	ppm Ta2O	5 from 173m
	258756					190	incl. 2 19	21	2 2	ppm Ta2O 1.2	5 from 173m 204
	258756					190	incl. 2 19 79	21 82	Li2O and 148 2 3	ppm Ta2O 1.2 1.2	5 from 173m 204 50
<vrc0157a*< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>incl. 2 19 79 incl.</td><td>21 82 1m @ 1.9%</td><td>Li2O and 148 2 3 Li2O and 71</td><td>ppm Ta2O 1.2 1.2 ppm Ta2O</td><td>5 from 173m 204 50 5 from 80m</td></vrc0157a*<>							incl. 2 19 79 incl.	21 82 1m @ 1.9%	Li2O and 148 2 3 Li2O and 71	ppm Ta2O 1.2 1.2 ppm Ta2O	5 from 173m 204 50 5 from 80m
		6958807	523	-71	220	190 150	incl. 2 19 79 incl. 85	21 82 1m @ 1.9% 93	Li2O and 148 2 3 Li2O and 71 8	ppm Ta2O 1.2 1.2 ppm Ta2O 1.1	5 from 173m 204 50 5 from 80m 189
<vrc0157a*< td=""><td></td><td>6958807</td><td>523</td><td>-71</td><td>220</td><td></td><td>incl. 2 19 79 incl. 85</td><td>21 82 1m @ 1.9% 93</td><td>Li2O and 148 2 3 Li2O and 71</td><td>ppm Ta2O 1.2 1.2 ppm Ta2O 1.1</td><td>5 from 173m 204 50 5 from 80m 189</td></vrc0157a*<>		6958807	523	-71	220		incl. 2 19 79 incl. 85	21 82 1m @ 1.9% 93	Li2O and 148 2 3 Li2O and 71	ppm Ta2O 1.2 1.2 ppm Ta2O 1.1	5 from 173m 204 50 5 from 80m 189
KVRC0157A*		6958807	523	-71	220		incl. 2 19 79 incl. 85 incl.	21 82 1m @ 1.9% 93 1m @ 2% I	Li2O and 148 2 3 Li2O and 71 8 Li2O and 285	ppm Ta2O 1.2 .ppm Ta2O 1.1 ppm Ta2O	5 from 173m 204 50 5 from 80m 189 5 from 89m

Арре		(cont.)	- na	linee	ii vaney	- Revers			rill hole s		
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	-		1		ppm) results
							From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)
							59	60	1	2.1	116
KVRC0159						120	68	74	6	1.6	215
Refrection of the second secon	258798	6958849	519	-74	39	120	incl.	4m @ 2.1%	6 Li2O and 87	ppm Ta2O	5 from 69m
	250750	0550045	515	, -	33		87	89	2	1.2	133
KVRC0159A*						160	127	131	4	1.3	96
KVRC0139A						100	incl. 1	m @ 2.5%	Li2O and 114	ppm Ta2O	5 from 128m
KVRC0160	258841	6958892	516	-67	41	120	75	77	2	1	144
							110	111	1	0.8	455
K) / D C 01 C 1	250420	6050726	F 11	50	42	226	137	144	7	0	206
KVRC0161	258429	6958726	511	-56	43	226	188	192	4	0	294
							198	210	12	0	166
1/1/2 004 00					45	100	40	42	2	0.7	191
KVRC0162	258883	6958933	514	-61	45	120	70	77	7	0	257
							105	108	3	1.2	112
									Li2O and 109		
							110	112	2	0.6	55
							125	133	8	1.1	93
							-		i2O and 124		
							136	143	7	1.2	76
								-	Li2O and 94		-
										•	
									Li2O and 81		
							169	171	2	1.1	82
							177	180	3	1.2	102
KVRC0163	258206 6	6958638	515	-59	45	274			Li2O and 110		
							189	194	5	1.2	199
									Li2O and 287		
							and 1	m @ 1.5%	Li2O and 158	ppm Ta2O5	from 192m
							207	210	3	1.4	127
							214	226	12	1.6	95
							incl. 4	lm @ 2.6%	Li2O and 79	opm Ta2O5	from 214m
							and 3	m @ 1.9%	Li2O and 104	ppm Ta2O5	from 220m
							239	246	7	1.1	101
							incl. 2	2m @ 2.2%	Li2O and 74	opm Ta2O5	from 240m
							249	257	8	0.9	122
									Li2O and 120	ppm Ta2O	
							74	76	2	0.8	250
KVRC0164	258927	6958975	513	-50	42	120	98	99	1	0.8	111
							78	81	3	1.4	148
KVRC0165	258867	6958830	515	-48	41	132			Li2O and 112		
RVRC0105	230007	0550050	515	0	41	152					
							86 6	91 8	5	0.9	174 49
								-		0.8	-
KVRC0166	258969	6959017	513	-51	42	120	48	49	1	1.7	177
							102	105	3	1.7	167
									Li2O and 157		
							49	52	3	1.5	157
KVRC0167	258909	6958872	514	-48	46	140			Li2O and 211		
				-	-	-	59	61	2	1	134
							93	95	2	1	190
KVRC0168	259012	6959060	513	-51	41	120	10	11	1	1.9	165
K # NC0100	239012	0006660	212	-51	41	120	106	109	3	0.7	166
							14	15	1	0.8	104
	250027	6050000	E13	40	40	120	37	38	1	0.9	416
KVRC0169	259037	6959000	513	-49	46	120	82	83	1	1.3	93
	1		212	-49			116	117	1	0.8	130

Арре	enaix 1	(cont.)	- na	unee	ii valley	- Rever			-		
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	-				ppm) results
				9.6			From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)
							101	102	1	1	499
							110	113	3	1.7	429
							incl. 1	m @ 2.1%	Li2O and 367	ppm Ta2O	5 from 110m
							168	173	5	1.5	294
							incl. 3	m @ 1.7%	Li2O and 327	ppm Ta2O	5 from 169m
							185	196	11	1.3	98
KVRC0170	258332	6958764	509	-49	45	250			i2O and 120p		
							207	215	8	1.7	151
								-	Li2O and 121		
								-	Li2O and 243	••	
								226	6	-	85
							220		-	1.9	
									Li2O and 95		
KVRC0171	259037	6959000	513	-50	44	120	79	83	4	1.5	105
							incl. 2		Li2O and 11		
							30	34	4	1.6	237
							incl.	2m @ 2%	Li2O and 257	ppm Ta2O5	from 30m
KVRC0172	258839	6958662	520	-55	227	170	86	87	1	0.8	246
							94	97	3	1.4	152
							incl. 1	lm @ 2.7%	Li2O and 23	5ppm Ta2O	5 from 95m
KVRC0173	258977	6958945	513	-49	44	120	61	62	1	1.7	125
							19	23	4	1.5	118
							incl. 1	lm @ 2.3%	Li2O and 10	7ppm Ta2O	5 from 21m
							192	223	31	1.7	223
							incl. 10)m @ 1.9%	Li2O and 28	Lppm Ta2O	5 from 193m
							and 1	.m @ 2.6%	Li2O and 95	pm Ta2O5	from 205m
KVRC0174	258209	6958787	508	-48	47	278	and	9m @ 2% L	i2O and 138p	pm Ta2O5	from 208m
									Li2O and 367	-	
							245	250	5	1.1	14
									Li2O and 48p		
									Li2O and 141		
							25	28	3	1.3	220
								-	Li2O and 16		
KVRC0175	258854	6958677	518	-69	43	148	82	85	3	1.6	193
									-		
									Li2O and 20		
							87	88	1	0.9	577
							116	118	2	0.7	222
							147	155	8	2	81
							169	177	8	1.1	149
							incl. 4	m @ 1.7%	Li2O and 191	ppm Ta2O	5 from 173m
KVRC0176	258351	6958919	511	-53	44	258	186	197	11	1	174
							incl. 1	m @ 1.6%	Li2O and 150	ppm Ta2O	5 from 193m
							204	208	4	1.5	149
							incl.	2m @ 2% L	i2O and 187p	pm Ta2O5	from 205m
							217	220	3	1.3	126
							incl. 2	m @ 1.8%	Li2O and 117	ppm Ta2O	5 from 217m
							42	44	2	1.2	110
							incl. 1	lm @ 1.9%	Li2O and 11	5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 from 43m
			.	_			50	56	6	0.9	219
KVRC0177	258939	6958762	513	-61	46	118			Li2O and 18		
							83	85	2	1.7	165
									∠ Li2O and 169		
							65	70	5	1.5	164
KVRC0178	250000	6050000	E12	-49	44	120		-	5 Li2O and 19		-
KVKCU1/8	259009	6958839	513	-49	44	130		-			
							92	93	1	1.4	152
							20	23	3	1	234
KVRC0179	258897	6958576	518	-55	226	172	25	26	1	1	243
KVRC0179	258897	6958576	518	-55	226	172	112	116	4	1.7	243 144 5 from 114m

Арре	endix 1	(cont.)	– na	thiee	en valley	- Revers			rill hole s		
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	Signifi				ppm) results
hole_ib	Last	North		Dip	Azimuti	Deptil (III)	From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)
							168	180	12	1	127
							incl. 1	m @ 1.9%	Li2O and 158	ppm Ta2O	5 from 175m
							185	197	12	1.3	191
											5 from 188m
							210	215	5	1.9	140
									-	-	5 from 210m
KVRC0180	258204	6958928	507	-49	43	280	218	224	6	8	81
RUNCOIDO	230204	0550520	507	75	-15	200			-	-	5 from 221m
							227	232	5	1.4	169
											5 from 229m
							240	250	10	1.4	165 5 from 242m
							259	261	2	1.1	182
KVRC0181	258998	6958677	514	-60	42	118	47	52	5	1.5	220
RUNCOIOI	200000	05500//	511	00		110	incl.	3m @ 2%	i2O and 200	ppm Ta2O5	5 from 48m
							24	32	8	1.5	236
							incl. 1	lm @ 4.2%	Li2O and 32	5ppm Ta2O	5 from 26m
KVRC0182	258913	6958592	517	-69	43	118			Li2O and 291		
							63	66	3	1.2	95
									5 Li2O and 78		
								152			229
							150		2	1	
							158	169	11	1.7	211
								_		••	5 from 158m
									i2O and 97p		
									i2O and 350	ppm Ta2O5	
KVRC0183	258305	6959000	508	-50	46	234	173	174	1	2.1	137
							180	187	7	1.6	143
							incl. 3	m @ 2.3%	Li2O and 141	ppm Ta2O	5 from 181m
							195	212	17	1.3	147
							incl.	5m @ 2% L	i2O and 205p	opm Ta2O5	from 199m
							and 5	m @ 1.7%	i2O and 170	ppm Ta2O	5 from 207m
							71	73	2	0.9	115
101000101	250000	0000000		-0	46	440	75	80	5	0.8	122
KVRC0184	259083	6958762	514	-50	46	118	84	86	2	1.7	93
							incl. 1	m @ 2.2%	Li2O and 10	5ppm Ta2O	5 from 85m
							68	72	4	1.1	128
									Li2O and 13		
							114	117	3	1	96
									2		
KVRC0185	258002	6958860	511	-58	46	274	235	237		0.6	113
							240	260	20	1	203
											5 from 256m
							264	270	6	1.6	214
							incl. 5	m @ 1.8%	Li2O and 220		5 from 265m
							49	56	7	1.5	189
							incl.	1m @ 2%	i2O and 190	ppm Ta2O5	5 from 50m
KVRC0186	258954	6958493	518	-55	221	170	and 1	.m @ 2.6%	Li2O and 396	5ppm Ta2O	5 from 52m
							and 2	m @ 1.6%	Li2O and 136	5ppm Ta2O	5 from 54m
							138	140	2	2.3	158
							49	53	4	1.3	229
KVRC0187	258968	6958507	517	-70	51	150			Li2O and 19		-
				-			69	71	2	1.2	77
		ļ					63	67	4	1.2	239
KVRC0188	259053	6958592	514	-59	47	120		-	4 Li2O and 14	_	
							7				
	250120	6059677	E14	52	47	120		8	1	1.3	327
KVRC0189	259138	6958677	514	-53	47	120	63	65	2	0.5	143
				1			84	86	2	0.9	75

	7,666		(00111.)	- Na		in valicy	- Nevel			rill hole s	_	
	Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	-			-	ppm) results
								From(m)		Interval(m)		Ta2O5 (ppm)
								144	147	3	0.4	158
								190	193	3	0.9	429
								205	213	8	1.6	166
								incl.	6m @ 2% L	i2O and 198p	opm Ta2O5	from 206m
	KVRC0190	258172	6959029	513	-59	45	264	217	224	7	1.6	202
								incl. 5	m @ 1.8%	Li2O and 177	ppm Ta2O	5 from 217m
								227	231	4	1	270
								240	242	2	0.8	163
								246	248	2	0.6	184
F	KVRC0191	258676	6958155	529	-69	230	150	210	210	_	0.0	101
_	KVRC0191	258661	6958209	535	-88	309	130		١	lo significan	t assays	
┝	KVRC0192	238001	0938209	555	-00	509	140	64	67	3	1.7	167
	KVRC0193	258775	6958314	525	-56	42	166	-	-	-		-
_										6 Li2O and 76		
								163	181	18	1.7	160
											••	5 from 163m
									m @1.9% l	i2O and 200	ppm Ta2O5	from 174m
	KVRC0194	258500	6958335	530	-86	141	324	184	199	15	1.1	76
	KVNC0154	230300	0550555	550	00	141	524	incl. 1	m @ 2.6%	Li2O and 175	ppm Ta2O	5 from 185m
								and 2	m @2.5% l	i2O and 176	ppm Ta2O5	from 195m
								242	254	12	1.5	67
								incl.	6m @ 2%	Li2O and 64p	pm Ta2O5	from 243m
								76	79	3	1.4	112
	KVRC0195	258740	6958352	531	-60	47	172		-	Li2O and 15		
F								56	58	2	0.7	264
	KVRC0196	250720	6958401	533	-61	45	172	70	74	4	2	242
	KVRC0190	236720	0936401	555	-01	43	1/2				-	
_										6 Li2O and 94		
					115 136 21 1.2 incl. 5m @ 1.7% Li2O and 115ppm Ta						1.2	214
	KVRC0197	258568	6958279	546	-57	8	174	incl. 5		Li2O and 115		
					_	_		141	143	2	0.9	61
								159	167	8	0.8	181
								59	62	3	0.8	220
								69	74	5	1.1	235
	KVRC0198	258672	6958425	537	-60	47	262	118	121	3	1	173
								141	142	1	0.8	165
								144	146	2	1.2	152
								139	169	30	1.6	185
												5 from 143m
										Li2O and 270		
								172	182	10	1.1	113
	KVRC0199	258595	6958225	544	-84	41	300			Li2O and 187		
										Li2O and 176		
1								285	289	4	0.9	327
										Li2O and 165		
								19	21	2	0.6	177
								32	34	2	1.2	89
								incl. 1	lm @ 1.7%	Li2O and 122	2ppm Ta2O	5 from 32m
								168	179	11	1.9	85
								incl. 7	7m @ 2.6%	Li2O and 63	opm Ta2O5	from 169m
	KVRC0200	258087	6958945	512	-61	42	280	208	234	26	1.4	183
										Li2O and 179		
1												5 from 218m
1								246	257	11	1.3	146
l										Li2O and 129		
		1		1	1	1		and 1	m @ 2.8%	Li2O and 337	ppm Ta2O5	strom 256m

Арре	endix 1	(cont.)	– Ka	thied	en Valley	– Revers					
Hole ID	East	North	RL	Dip	Azimuth	Depth (m)		cant Li2O	<u> </u>	· · · · ·	ppm) results
noie_iD	Last	North	IL.	Dip	Azimuti	Deptil (III)	From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)
							154	160	6	1.2	136
							incl. 3	m @ 1.9%	Li2O and 169	ppm Ta2O	5 from 155m
							167	188	21	1.6	157
KVRC0201	258568	6958279	547	-79	343	228	incl. 8	m @ 2.1%	Li2O and 142	2 2ppm Ta2O	5 from 170m
							and 5	m @ 2.1%	Li2O and 144	ppm Ta2O	from 182m
							201	211	10	1.1	108
							incl. 1	m @ 2.7%	Li2O and 164	ppm Ta2O	5 from 209m
							174	176	2	2.3	41
							182	186	4	1.2	118
									Li2O and 101		5 from 182m
							204	224	20	1.5	150
KVRC0202	258123	6958843	507	-80	42	262			-		5 from 205m
								_	Li2O and 156		
							-		i2O and 181p		
							236	240	4	1.3	151
								_	i2O and 243	_	-
							141	167	26	1.6	176
											5 from 142m
KVRC0203	258563	6958257	546	-79	46	228		_	Li2O and 172		
KVIIC0203	236303	0338237	540	-75	40	220	187	197	I	0.9	64
								-	10 Li2O and 89		-
							180	184	4	0.8	113
							198	250	52 Li2O and 129	1.4	113
										••	
								_	Li2O and 155		
									Li2O and 141		
KVRC0204	258420	6958398	525	-69	48	294			i2O and 103p	•	
							-		Li2O and 129		
							and 1		Li2O and 118	ppm Ta2O	5 from 243m
							260	276	16	1.4	114
							incl. 4	m @ 1.9%	Li2O and 138	Sppm Ta2O	5 from 261m
							and 5	m @ 1.8%	Li2O and 107	ppm Ta2O5	from 268m
							189	195	6	1.3	191
							incl. 1	m @ 1.9%	Li2O and 244	ppm Ta2O	5 from 191m
KVRC0205	258158	6958878	506	-62	46	270	197	199	2	0.5	218
							202	208	6	1.5	125
							incl. 4	m @ 1.9%	Li2O and 122	2ppm Ta2O	5 from 203m
							168	174	6	1.4	198
							incl.	1m @ 2% L	i2O and 126	opm Ta2O5	from 170m
							176	182	6	1.7	210
							incl. 2	m @ 2.8%	Li2O and 108	Sppm Ta2O	5 from 180m
							206	233	27	1.5	103
									Li2O and 131		
KVRC0206	258495	6958398	510	-89	199	324			i2O and 180p	••	
	200 100	0000000	0.0	0.5	100	021			Li2O and 116	•	
								-	Li2O and 92		
							238	241	3	1.8	87
							262	269	7	1.2	143 5 from 266m
								-		<u> </u>	
	ł						272	276	4	0.7	51
							239	242	3	0.9	37
KVRC0207						280	246	266	20	1.2	82
								_	Li2O and 79p	•	
	258228	6958536	519	-73	44			-	i2O and 88p		
							289	342	53	1.6	115
KVRC0207A*						354	incl.	3m @ 2.4%	Li2O and 85	ppm Ta2O5	from 291m
K MC020/A							and	15m @ 2%	Li2O and 97p	pm Ta2O5	from 300m
							and 18	3m @ 1.8%	Li2O and 12	1ppm Ta2O	5 from 321m
			-	-							

Арре	endix 1	(cont.)	– na	Inlee	en valley	– Revers	rse Circulation Drill hole statistics
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	Significant Li2O (>0.4%) and Ta2O5 (>50ppm) results
noie_ib	Last	North		Dip	A21110011	Depth (iii)	^{''} From(m) To(m) Interval(m) Li2O (%) Ta2O5 (ppm)
							154 168 14 1.7 110
							incl. 9m @ 2.1% Li2O and 116ppm Ta2O5 from 157m
							189 207 18 1.6 104
							incl. 12m @ 2.2% Li2O and 135ppm Ta2O5 from 190m
							209 213 4 1.3 138
KVRC0208	258382	6958460	518	-69	43	282	incl. 2m @ 1.9% Li2O and 221ppm Ta2O5 from 210m
							218 228 10 1.2 72
							incl. 5m @ 1.6% Li2O and 101ppm Ta2O5 from 218m
							251 263 12 1.2 132
							incl. 2m @ 2.3% Li2O and 162ppm Ta2O5 from 252m
							and 3m @ 1.7% Li2O and 117ppm Ta2O5 from 256m
							66 69 3 0.7 155
							108 113 5 1.2 171
							incl. 2m @ 2.1% Li2O and 209ppm Ta2O5 from 108m
							138 141 3 0.8 167
KVRC0209	258465	6958760	513	-51	44	244	176 186 10 1.3 149
							incl. 3m @ 2% Li2O and 138ppm Ta2O5 from 180m
							195 200 5 0.8 51
							incl. 1m @ 2.1% Li2O and 79ppm Ta2O5 from 196m
							85 90 5 1.2 401
							incl. 2m @ 2.1% Li2O and 466ppm Ta2O5 from 86m
							<u>96 99 3 0.4 4</u>
KVRC0210	250525	6958607	513	-53	25	250	<u>101</u> 104 <u>3</u> 0.9 <u>244</u>
KVRC0210	236333	0928007	212	-55	35	250	110 125 15 1.5 198 incl. 5m @ 2.2% Li2O and 253ppm Ta2O5 from 114m
							and 3m @ 2% Li2O and 251ppm Ta2O5 from 120m
							229 230 1 1 64
							234 235 1 0.7 93
							242 290 48 1.4 115
							incl. 1m @ 2% Li2O and 117ppm Ta2O5 from 244m
KVRC0211	258367	6958445	518	-79	45	306	and 1m @ 2.3% Li2O and 107ppm Ta2O5 from 246m
							and 8m @ 2.3% Li2O and 95ppm Ta2O5 from 251m
							and 2m @ 1.9% Li2O and 107ppm Ta2O5 from 268m
							and 4m @ 2.2% Li2O and 138ppm Ta2O5 from 272m
							91 93 2 0.8 235
							103 108 5 1.2 185
KVRC0212	258461	6958687	512	-71	47	240	incl. 2m @ 1.8% Li2O and 323ppm Ta2O5 from 104m
							126 131 5 1.3 185
							incl. 2m @ 2% Li2O and 241ppm Ta2O5 from 127m
							82 88 6 0.5 126
							95 100 5 1.7 290
							incl. 3m @ 2.5% Li2O and 371ppm Ta2O5 from 95m
KVRC0213	258498	6958573	514	-67	43	252	131 142 11 1.3 114
							incl. 8m @ 1.6% Li2O and 144ppm Ta2O5 from 134m
							213 218 5 1.8 123
							incl. 3m @ 2.1% Li2O and 108ppm Ta2O5 from 214m
							55 67 12 1.7 115
							incl. 1m @ 2.1% Li2O and 150ppm Ta2O5 from 55m
							and 7m @ 2% Li2O and 111ppm Ta2O5 from 58m
							86 95 9 1.5 132
							incl. 5m @ 1.9% Li2O and 117ppm Ta2O5 from 89m
							111 113 2 0.8 191
KVRC0214	258387	6958606	513	-75	44	244	111 113 2 0.8 191 142 149 7 1.9 224
							incl. 4m @ 2.8% Li2O and 288ppm Ta2O5 from 144m
							190 211 21 1.5 93
							incl. 3m @ 2% Li2O and 103ppm Ta2O5 from 197m
							and 3m @ 2.3% Li2O and 63ppm Ta2O5 from 202m
							and 1m @ 2.2% Li2O and 123ppm Ta2O5 from 208m

Арре	enaix i	(cont.)	– na	linee	il valley				IIII IIOle 3	atistics	
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)		T		-	ppm) results
							From(m)		Interval(m)	Li2O (%)	Ta2O5 (ppm)
							163	169	6	1.4	109
							incl. 4	m @ 1.7%	Li2O and 104	ppm Ta2O	5 from 164m
							173	192	19	1.5	134
							incl. 4	m @ 1.7%	Li2O and 121	.ppm Ta2O	5 from 177m
KVRC0215	258309	6958545	520	-63	49	268	and 2	m @ 1.8%	Li2O and 145	ppm Ta2O	5 from 183m
							and	3m @ 2% L	i2O and 154p	pm Ta2O5	from 188m
							224	249	25	1.5	92
							incl.	6m @ 2%	Li2O and 89p	pm Ta2O5	from 232m
							and 6	6m @ 1.9%	Li2O and 96	opm Ta2O5	from 243m
							86	90	4	1.5	497
							incl. 2	2m @ 1.8%	Li2O and 55	3ppm Ta2C	5 from 87m
KVRC0216	258562	6958636	513	-51	44	150	101	104	3	1.5	199
	200002	0000000	010			100	incl.	2m @ 2% L	i2O and 269p	pm Ta2O5	from 101m
							111	118	7	0.6	77
							125	127	2	0.9	227
							250	285	35	1.7	132
							incl. 8	8m @ 2.1%	Li2O and 152	2ppm Ta2O	5 from 250m
							and 3	m @ 2.3%	Li2O and 118	ppm Ta2O	5 from 260m
KVRC0217	250/10	6958396	EDE	00	212	324	and 7	7m @ 1.8%	Li2O and 94	opm Ta2O5	from 265m
KVRCU217	258418	0928390	525	-88	212	324	and 5	m @ 2.1%	Li2O and 145	ppm Ta2O	5 from 277m
							289	305	16	1.5	129
							incl. 6	im @ 2.2%	Li2O and 103	ppm Ta2O	5 from 290m
							and 1	m @ 2.5%	Li2O and 122	ppm Ta2O	5 from 301m
							236	259	23	1	73
									-		5 from 237m
									Li2O and 253		
							262	273	11	0.8	21
KVRC0218	258274	6958509	521	-73	49	334					
									Li2O and 98	-	
							277	325	48	1.5	110
											05 from 289m
									Li2O and 132		
							18	21	3	0.7	118
							98	100	2	1.3	160
							178	184	6	0.5	77
							188	190	2	0.7	148
							198	205	7	1.8	27
							incl.	3m @ 2.7%	Li2O and 13	opm Ta2O5	from 198m
KVRC0219	257954	6958812	511	-71	40	310	243	249	6	1.4	69
KVNC0215	257554	0550012	511	/1	-10	510	incl.	3m @ 2%	Li2O and 45p	pm Ta2O5	from 244m
							254	278	24	1.4	153
							incl. 3	m @ 1.8%	Li2O and 154	ppm Ta2O	5 from 256m
							and 5	m @ 1.7%	Li2O and 158	ppm Ta2O	5 from 261m
							and 2	2m @ 1.9%	Li2O and 82	opm Ta2O5	from 268m
							285	287	2	0.9	180
							293	294	1	1.4	163
							209	299	90	1.3	78
									Li2O and 94p		
								-	Li2O and 95		
KVRC0220	258319	6958486	523	-73	45	318					-
KVRC0220	230319	0956460	525	-75	45	510			Li2O and 129		
								-	Li2O and 93	•	-
									Li2O and 82		
							303	305	2	0.8	156
							157	162	5	1.3	125
	1	1					incl.	3m @ 1.8%	Li2O and 98	-	from 157m
									10	1 1 5	1 454
KVRC0221	258127	6958987	510	-58	47	268	230	240	10	1.5	151
KVRC0221	258127	6958987	510	-58	42	268					151 5 from 234m
KVRC0221	258127	6958987	510	-58	42	268					

KVRC0222 258153 6958728 509 -54 43 300			<u>`</u>			,						
KVRC0222 258153 6958728 509 -54 43 300 66 68 2 1.5 126 KVRC0222 258153 6958728 509 -54 43 300 1151 2 1 3 179 Incl. 3m @ 1.6% U20 and 125ppm Ta205 from 124m 1.92 216 24 1.2 133 192 and 4m @ 1.9% U20 and 125ppm Ta205 from 23m and 4m @ 1.9% U20 and 125ppm Ta205 from 23m and 4m @ 1.9% U20 and 205ppm Ta205 from 23m and 2m @ 2.1% U20 and 125ppm Ta205 from 23m and 2m @ 2.1% U20 and 135ppm Ta205 from 24m 232 2 0.6 61 277 252 15 1.3 86 Incl. 3m @ 1.7% U20 and 35ppm Ta205 from 129m 1 14 169 184 15 1.1 123 202 221 10 1.3 230 1 169 184 15 1.1 123 134 169 184 15 1.1 123 130 160 184 <	Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)			i i	· · ·	
KVRC0222 258153 6958728 509 -54 43 300 $ \frac{93}{126} $ 13 113 123 123 123 123 126 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 13 123 13 123 <th13 123 13 123 13 123<</th13 												Ta2O5 (ppm)
KVRC0222 258153 6958728 509 -54 43 300 126 12 1 82 KVRC0222 258153 6958728 509 -54 43 300 101 213 120 214 12 137 Incl. 2m @ 1.9% Li2O and 125ppm Ta205 from 129m and 2m @ 1.8% Li2O and 125ppm Ta205 from 229m and 2m @ 2.1% Li2O and 125ppm Ta205 from 229m and 2m @ 2.1% Li2O and 125ppm Ta205 from 229m and 2m @ 2.1% Li2O and 125ppm Ta205 from 229m and 2m @ 2.1% Li2O and 135ppm Ta205 from 229m and 2m @ 2.1% Li2O and 135ppm Ta205 from 229m and 2m @ 2.1% Li2O and 135ppm Ta205 from 229m and 2m @ 2.1% Li2O and 135ppm Ta205 from 229m and 2m @ 1.6% Li2O and 135ppm Ta205 from 229m and 2m @ 1.6% Li2O and 135ppm Ta205 from 127m and 2m @ 1.6% Li2O and 135ppm Ta205 from 127m and 2m @ 1.6% Li2O and 135ppm Ta205 from 127m and 2m @ 1.6% Li2O and 135ppm Ta205 from 127m and 2m @ 1.6% Li2O and 135ppm Ta205 from 137m and 2m @ 1.6% Li2O and 135ppm Ta205 from 137m and 2m @ 1.6% Li2O and 135ppm Ta205 from 137m and 2m @ 1.2% Li2O and 135ppm Ta205 from 137m and 2m @ 1.2% Li2O and 135ppm Ta205 from 137m and 2m @ 1.2% Li2O and 135ppm Ta205 from 137m and 2m @ 1.2% Li2O and 135ppm Ta205 from 137m and 2m @ 1.2% Li2O and 135ppm Ta205 from 137m and 2m @ 1.1% Li2O and 135ppm Ta205 from 137m and 2m @ 1.1% Li2O and 135ppm Ta205 from 137m and 2m @ 1.1% Li2O and 135ppm Ta205 from 137m and 2m @ 1.1% Li2O and 135ppm Ta205 from 137m and 3m @ 1.7% Li2O and 135ppm Ta205 from 137m and 3m @ 1.7% Li2O and 135ppm Ta205 from 137m and 3m @ 1.7% Li2O and 135ppm Ta205 from 137m and 3m @ 1.7% Li2O and 135ppm Ta205 from 137m and 3m @ 1.9% Li2O and 135ppm Ta205 from 137m and 3m @ 1.9% Li2O and 135ppm Ta205												
KVRC0222 258153 6958728 509 -54 43 300 Incl. 2m @ 1.6% U2O and 101ppm Ta2O5 from 124m and 4m @ 1.9% U2O and 102ppm Ta2O5 from 122m and 2m @ 2% U2O and 102ppm Ta2O5 from 122m and 2m @ 2% U2O and 128ppm Ta2O5 from 123m and 2m @ 2% U2O and 128ppm Ta2O5 from 23m and 2m @ 2% U2O and 128ppm Ta2O5 from 23m 220 22 0.6 61 226 234 8 1.2 1.3 86 220 22 1.5 1.3 86 226 234 8 1.2 1.3 200 222 1.5 1.3 86 217 22.15 1.3 86 1.1 1.3 201 0.2 1.3 86 1.1 1.23 217 280 3 1 1.4 1.4 217 280 3 1 1.2 218 4 1.6% 1.20 and 125pm Ta205 from 120m and 1m @ 1.5% U20 and 125pm Ta205 from 120m and 1m @ 1.2% U20 and 125pm Ta205 from 120m and 1m @ 1.2% U20 and 125pm Ta205 from 120m and 1m @ 2.1% U20 and 125pm Ta205 from 120m and 1m @ 2.1% U20 and 125pm Ta205 from 120m and 1m @ 2.1% U20 and 125pm Ta205 from 220m incl. 3m @ 2.1% U20 and 135ppm Ta205 from 220m incl. 3m @ 2.1% U20 and 135ppm Ta205												
KVRC0222 258153 6958728 509 -54 43 300 149 151 2 1 82 KVRC0222 258153 6958728 509 -54 43 300 1mcl. 3m @ 1.7% Li20 and 128ppm Ta205 from 198m and 4m @ 1.9% Li20 and 128ppm Ta205 from 228m and 2m @ 2.1% Li20 and 328ppm Ta205 from 223m 220 22 2 0.6 61 220 222 2 0.6 61 226 234 8 1.2 138 237 252 1.5 1.3 86 1.0 1.3 1.34 241 277 280 3 1 1.34 160 11.7 9.7% 120 and 428ppm Ta205 from 213m 277 280 3 1 1.34 160 11.4 1.6 1.1 1.3 172 20 1.0 1.3 230 169 184 15 1.1 1.3 192 20 1.0 1.3 230 16 1.3										-		-
KVRC0222 258153 6958728 509 -54 43 300									-	Li2O and 101	.ppm Ta2O	
KVRC0222 258153 6958728 509 -54 43 300 incl. 3m @ 1.7%, Li20 and 202ppm Ta205 from 208m and 2m @ 1.8%, Li20 and 125ppm Ta205 from 208m and 2m @ 2.8%, Li20 and 205ppm Ta205 from 208m and 2m @ 2.8%, Li20 and 205ppm Ta205 from 208m and 2m @ 2.8%, Li20 and 315ppm Ta205 from 218m [20 222 2.0 6 61 20 222 2.0 0.6 61 138 1.0 138 20 222 2.0 0.6 61 1.3 1.3 1.6 20 222 2.0 0.1 1.3 1.3 1.6 1.3 1.3 1.6 1.3 1.3 1.6 1.3 2.0 2.3 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.34 1.0 1.32 1.0 1.32 1.0 1.34 1.0 1.20 1.1 1.20 1.1 1.20 <td></td>												
KVRC0222 258153 6958728 509 -54 43 300 and 4m @ 1.9% U20 and 175ppm Ta205 from 128m and 2m @ 1.8% U20 and 128ppm Ta205 from 231m 220 222 2 0.6 61 126 220 222 2 0.6 61 126 1.3 86 1.01. 2m @ 2.1% U20 and 128ppm Ta205 from 231m 237 1.3 86 1.01. 2m @ 2.1% U20 and 94ppm Ta205 from 247m 237 1.3 86 1.01. 2m @ 2.1% U20 and 94ppm Ta205 from 247m 237 1.3 1.3 86 1.01. 2m @ 2.1% U20 and 94ppm Ta205 from 247m 237 1.3 1.3 1.3 277 280 3 1 1.3 1.3 1.3 1.3 169 184 15 1.1 1.2 1.3 1.3 1.3 169 184 15 1.1 1.2 1.3 1.3 1.3 169 184 15 1.1 1.3 <												
KVRC0222 258153 6958728 509 -54 43 300 and 2m @ 1.8% LiQ2 and 128ppm Ta205 from 208m and 2m @ 2.8 LiQ2 and 205pm Ta205 from 213m [226 234 8 1.2 138 [1ncl. 2m @ 2.1% LiQ2 and 181ppm Ta205 from 231m [226 234 8 1.2 138 [1ncl. 2m @ 2.1% LiQ2 and 181ppm Ta205 from 241m [227 15 1.3 86 [1ncl. 2m @ 2.3% LiQ2 and 190ppm Ta205 from 241m [277 280 3 1 134 [1ncl. 1m @ 1.7% LiQ2 and 94ppm Ta205 from 250m [277 280 3 1 134 [193 101 [193 131 134 [193 131 134 [193 131 134 [193 131 134 [193 131 1323 [1ncl. 1m @ 1.7% LiQ2 and 95ppm Ta205 from 128m [192 202 10 1.3 230 [1ncl. 3m @ 1.8% LiQ2 and 152ppm Ta205 from 128m [192 202 10 1.3 230 [1ncl. 3m @ 1.8% LiQ2 and 152ppm Ta205 from 128m [192 133 131 123 [1ncl. 3m @ 1.1% LiQ2 and 135ppm Ta205 from 241m [206 233 7 1.6 1.61 [1ncl. 3m @ 2.1% LiQ2 and 135ppm Ta205 from 241m [206 231 7 1.6 1.61 [1ncl. 3m @ 1.1% LiQ2 and 135ppm Ta205 from 241m [206 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>incl. 3</td> <td>lm @ 1.7%</td> <td>Li2O and 202</td> <td>ppm Ta2O</td> <td>5 from 192m</td>								incl. 3	lm @ 1.7%	Li2O and 202	ppm Ta2O	5 from 192m
KVRC0222 258133 6958/28 509 -54 43 300 and 2m @ 2% U2O and 205ppm Ta2O5 from 213m 220 222 2 0.6 61 220 2234 8 1.2 138 incl. Zm @ 2.3% U2O and 181ppm Ta2O5 from 231m 237 252 15 1.3 86 237 252 15 1.3 16 1m @ 2.3% U2O and 34ppm Ta2O5 from 241m and 2m @ 2.3% U2O and 34ppm Ta2O5 from 278m 1 144 1.1 1.1 277 280 3 1 1.34 1.1 and 2m @ 1.7% U2O and 37ppm Ta2O5 from 278m 1.0 1.3 1.0 207 1.0 1.3 2.00 1.0 1.3 101.1 Im @ 1.9% U2O and 152ppm Ta2O5 from 172m and 1m @ 1.6% U2O and 152ppm Ta2O5 from 128m 1.0 1.3 208 209 219 1.0 1.2 1.35 101.1 3m @ 1.8% U2O and 152ppm Ta2O5 from 24m 2.62 2.33 7 1.6 1.6 102.1 1.28 1.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
KVRC0223 258185 6958903 507 -57 44 262 20 0.6 61 226 234 8 1.2 138 incl. 2m @ 2.1% U2O and 181ppm Ta205 from 231m 36 incl. 2m @ 2.1% U2O and 181ppm Ta205 from 241m and 2m @ 2.2% U2O and 100ppm Ta205 from 241m and 2m @ 2.2% U2O and 100ppm Ta205 from 241m and 2m @ 2.2% U2O and 100ppm Ta205 from 27m incl. 1m @ 1.7% U2O and 97ppm Ta205 from 27m 169 184 15 1.1 123 incl. 1m @ 1.9% U2O and 125ppm Ta205 from 192m and 1m @ 1.8% U2O and 125ppm Ta205 from 192m and 1m @ 1.8% U2O and 125ppm Ta205 from 192m and 1m @ 1.8% U2O and 425ppm Ta205 from 193m and 1m @ 1.8% U2O and 425ppm Ta205 from 193m and 1m @ 2.1% U2O and 425ppm Ta205 from 193m and 1m @ 2.1% U2O and 425ppm Ta205 from 210m 226 233 7 1.6 1.61 incl. 3m @ 2.1% U2O and 135ppm Ta205 from 256m 241 247 6 1.7 137 incl. 3m @ 1.7% U2O and 135ppm Ta205 from 256m 257 2 1 111 101 incl. 3m @ 1.7% U2O and 135ppm Ta205 from 256	KVRC0222	258153	6958728	509	-54	43	300	and 2	m @ 1.8%	Li2O and 128	ppm Ta2O	5 from 208m
KVRC0223 258185 6958903 507 -57 44 262 234 8 1.2 138 KVRC0224 258050 6958766 513 -78 40 300 300 1.3 101 1.1 123 120 138 1.1 134 incl. 1m @ 1.7% Li2O and 94ppm Ta2O5 from 241m and 2m @ 2.2% Li2O and 100ppm Ta2O5 from 24m 169 184 15 1.1 123 Image: State St		200200	0000/20	505	0.	.0	500	and	2m @ 2% L	i2O and 205p	pm Ta2O5	from 213m
KVRC0223 258185 6958903 507 -57 44 262 216 1.3 86 101 <i>D</i> 1.3 134 134 134 134 102 228 15 1.1 123 134 102 228 150 1.1 134 1134 101 100ppm Ta205 from 247m 137 1169 1.84 15 1.1 123 1169 1.84 15 1.1 123 1192 202 10 1.3 230 1101 128 120 158 120 125 1192 202 10 1.3 230 161 1.3 1102 120 120 120 120 120 120 120 1.3 230 1101 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.1 1.2								220	222	2	0.6	61
KVRC0223 258185 6958903 507 -57 44 262 252 15 1.3 86 incl. 2m @ 2.2% Li20 and 94ppm Ta2O5 from 247m 277 280 3 1 134 277 280 3 1 134 161. 1m@ 1.7% Li20 and 97ppm Ta2O5 from 278m 169 184 15 1.1 123 111. 123 incl. 1m @ 1.7% Li20 and 95ppm Ta2O5 from 120m and 1m@ 1.8% Li20 and 125ppm Ta2O5 from 120m and 1m@ 1.8% Li20 and 125ppm Ta2O5 from 120m 133 130 incl. 3m @ 1.8% Li20 and 425ppm Ta2O5 from 120m and 1m@ 2.1% Li20 and 125ppm Ta2O5 from 139m 132 10 1.2 135 incl. 3m @ 2.1% Li20 and 145ppm Ta2O5 from 250m 10 1.2 135 11.1 125 incl. 3m @ 2.1% Li20 and 145ppm Ta2O5 from 250m 226 233 7 1.6 161 incl. 3m @ 2.1% Li20 and 143ppm Ta2O5 from 250m 226 233 7 1.6 161 incl. 3m @ 2.1% Li20 and 143ppm Ta2O5 from 250m 127 1.1 127 126 11.1 13.								226	234	8	1.2	138
KVRC0223 258185 6958903 507 -57 44 262 134 15 1.1 123 KVRC0223 258185 6958903 507 -57 44 262 100 103 134 102 202 10 1.1 123 101 114 103 1.1 1.1 1.23 101 114 11 123 103 1.1 1.23 101 1.3 205 100 1.3 230 104 1.9 1.20 10 1.2 133 101 1.2 133 102 20 10 1.2 135 101 1.3 230 104 1.2 105 1.3 230 10 1.2 135 105 108 1.1 1.2 135 101 1.2 135 106 1.3 209 1.1 1.2 13 1.1 102 1.2 111								incl. 2	2m @ 2.1%	Li2O and 181	ppm Ta2O	5 from 231m
KVRC0223 258185 6958903 507 -57 44 262 13 11 134 226 23 1 134 15 1.1 123 KVRC0223 258185 6958903 507 -57 44 262 10 1.3 230 102 120 1.3 230 1.1 1.3 230 113 120 1.3 230 1.3 230 1102 202 10 1.3 230 1102 202 10 1.2 135 1102 202 10 1.2 135 1102 202 10 1.2 135 1103 1.0 1.2 135 1.1 101 1202 233 7 1.6 1.1 1.2 135 1101 1.2 135 1.1 1.2 135 1.1 1.2 135 1111 1.2 1.1								237	252	15	1.3	86
KVRC0223 258185 6958903 507 -57 44 262 11 123 11 123 KVRC0224 258185 6958903 507 -57 44 262 10 1.3 230 KVRC0224 258185 6958903 507 -57 44 262 10 1.3 230 102 209 219 10 1.2 135 1.6 161 1122 209 219 10 1.2 135 161 161 1122 209 219 10 1.2 135 161								incl. 2	2m @ 2.3%	Li2O and 94	ppm Ta2O5	from 241m
KVRC0223 258185 6958903 507 -57 44 262 11 123 13 230 KVRC0223 258185 6958903 507 -57 44 262 209 219 10 1.3 230 Incl. 1m @ 1.7% Li2O and 152ppm Ta2OS from 172m and 1m @ 1.8% Li2O and 152ppm Ta2OS from 193m and 1m @ 2.1% Li2O and 445ppm Ta2OS from 193m Incl. 2m @ 2.1% Li2O and 445ppm Ta2OS from 240m 209 219 10 1.2 161 Incl. 3m @ 2.2% Li2O and 152ppm Ta2OS from 250m 2209 219 10 1.2 135 Incl. 3m @ 2.1% Li2O and 152ppm Ta2OS from 240m 266 233 7 1.6 161 Incl. 3m @ 1.7% Li2O and 135ppm Ta2OS from 241m 255 2.7 2 1.2 111 Incl. 3m @ 1.7% Li2O and 143ppm Ta2OS from 256m 255 2.1% Li2O and 143ppm Ta2OS from 256m 255 2.1 1.1 125 Incl. 3m @ 1.7% Li2O and 143ppm Ta2OS from 250m 2.1% Li2O and 156ppm Ta2OS from 256m 153 153 155 2.1% Li2O and 135ppm Ta2OS from 159m Incl. 3m @ 1.7% Li2O and								and 2	m @ 2.2%	Li2O and 100	ppm Ta2O	5 from 247m
KVRC0223 258185 6958903 507 -57 44 262 169 184 15 1.1 123 incl. 1m @ 1.9% Li20 and 485ppm Ta205 from 182m and 2m @ 1.6% Li20 and 125ppm Ta205 from 182m and 1m @ 2.1% Li20 and 425pppm Ta205 from 198m and 1m @ 2.1% Li20 and 427ppm Ta205 from 198m and 1m @ 2.1% Li20 and 427ppm Ta205 from 210m 209 219 10 1.2 135 incl. 3m @ 1.8% Li20 and 427ppm Ta205 from 220m 10 1.2 KVRC0223 258185 6958903 507 -57 44 262 209 219 10 1.2 135 incl. 3m @ 2.1% Li20 and 447ppm Ta205 from 210m 209 219 10 1.2 135 incl. 3m @ 2.1% Li20 and 138ppm Ta205 from 220m 211 226 233 7 1.6 161 incl. 3m @ 2.1% Li20 and 138ppm Ta205 from 226m 241 247 6 1.7 137 incl. 3m @ 1.7% Li20 and 138ppm Ta205 from 256m 240 1.1 125 KVRC0224 258050 6958766 513 -78 40 300 106 109 3 0.9 133 153 155 2 1.1 124 incl. 3m @ 1.7% Li20 and 137ppm Ta205 from 159m 173 182 9 1.4 124 incl. 3m @ 1.7% Li20 and 137ppm Ta205 from 256m 173 138								277	280	3	1	134
KVRC0223 258185 6958903 507 -57 44 262 100 1.3 230 192 202 10 1.3 230 10.1.3 230 10.1.3 230 192 202 10 1.3 230 10.1.3 230 192 202 10 1.3 230 10.1.3 230 192 202 10 1.3 230 10.1.3 230 192 202 10 1.2 135 10.1.3 230 192 10 1.2 135 10.1.3 200 10.1.2 135 101.1 202 10 1.2 135 10.1.3 10.1.2 135 101.1 202 209 219 10 1.2 137 101.1 201 202 1.3 1.1 10.1 10.1 101.1 201 201 1.1 1.2 11.1 1.2 101.1<								incl. 1	1m @ 1.7%	Li2O and 97	opm Ta2O5	from 278m
KVRC0223 258185 6958903 507 -57 44 262 and 1m @ 1.8% Li20 and 125ppm Ta205 from 182m 192 202 10 1.3 230 incl. 3m @ 1.8% Li20 and 125ppm Ta205 from 193m and 1m @ 2.1% Li20 and 147ppm Ta205 from 193m 192 202 10 1.3 230 incl. 3m @ 1.8% Li20 and 255ppm Ta205 from 193m and 1m @ 2.1% Li20 and 147ppm Ta205 from 193m and 1m @ 2.1% Li20 and 135ppm Ta205 from 210m 209 219 10 1.2 135 incl. 3m @ 2.2% Li20 and 135ppm Ta205 from 220m 2206 233 7 1.6 1.61 incl. 3m @ 2.1% Li20 and 135ppm Ta205 from 250m 241 247 6 1.7 137 incl. 3m @ 2.1% Li20 and 136ppm Ta205 from 250m 241 247 6 1.7 137 incl. 3m @ 1.7% Li20 and 136ppm Ta205 from 250m 255 257 2 1.2 111 incl. 3m @ 1.7% Li20 and 136ppm Ta205 from 159m 1.3 1.01 1.1 1.1 incl. 3m @ 1.7% Li20 and 136ppm Ta205 from 159m 1.3 1.1 1.1 1.1								169	184	15	1.1	123
KVRC0223 258185 6958903 507 -57 44 262 and 1m @ 1.8% Li20 and 152ppm Ta205 from 182m m @ 1.8% Li20 and 255ppm Ta205 from 193m and 1m @ 2.1% Li20 and 447ppm Ta205 from 193m and 1m @ 2.1% Li20 and 447ppm Ta205 from 210m 209 219 10 1.2 135 incl. 2m @ 2.1% Li20 and 115ppm Ta205 from 210m 226 233 7 1.6 161 incl. 3m @ 2.1% Li20 and 135ppm Ta205 from 226m 241 247 6 1.7 137 incl. 3m @ 2.1% Li20 and 135ppm Ta205 from 241m 255 257 2 1.2 111 incl. 3m @ 2.1% Li20 and 135ppm Ta205 from 241m 255 257 2 1.2 111 incl. 3m @ 1.7% Li20 and 135ppm Ta205 from 256m 241 247 6 1.7 133 133 135 155 2 1.1 101 11 101 incl. 3m @ 1.7% Li20 and 135ppm Ta205 from 256m 241 13 1.1 1011 11 101 11 1.1 101 11 1.1 101 11 1.1 101 11 1.1 101 11 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.1 1.2 1.1 <								incl. 1	m @ 1.9%	Li2O and 485	ppm Ta2O	5 from 169m
KVRC0223 258185 6958903 507 -57 44 262 and 1m @ 1.8% Li20 and 152ppm Ta205 from 182m m @ 1.8% Li20 and 255ppm Ta205 from 193m and 1m @ 2.1% Li20 and 447ppm Ta205 from 193m and 1m @ 2.1% Li20 and 447ppm Ta205 from 210m 209 219 10 1.2 135 incl. 2m @ 2.1% Li20 and 115ppm Ta205 from 210m 226 233 7 1.6 161 incl. 3m @ 2.1% Li20 and 135ppm Ta205 from 226m 241 247 6 1.7 137 incl. 3m @ 2.1% Li20 and 135ppm Ta205 from 241m 255 257 2 1.2 111 incl. 3m @ 2.1% Li20 and 135ppm Ta205 from 241m 255 257 2 1.2 111 incl. 3m @ 1.7% Li20 and 135ppm Ta205 from 256m 241 247 6 1.7 133 133 135 155 2 1.1 101 11 101 incl. 3m @ 1.7% Li20 and 135ppm Ta205 from 256m 241 13 1.1 1011 11 101 11 1.1 101 11 1.1 101 11 1.1 101 11 1.1 101 11 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.1 1.2 1.1 <								and 2	m @ 1.6%	Li2O and 125	ppm Ta2O	5 from 172m
KVRC0223 258185 6958903 507 -57 44 262 192 202 10 1.3 230 KVRC0223 258185 6958903 507 -57 44 262 10 1.3 230 and 1m @ 2.1% Li2O and 447ppm Ta2O5 from 198m and 1m @ 2.1% Li2O and 143ppm Ta2O5 from 210m 202 213 7 1.6 161 incl. 3m @ 2.1% Li2O and 115ppm Ta2O5 from 226m 241 247 6 1.7 137 incl. 3m @ 2.1% Li2O and 136ppm Ta2O5 from 226m 241 247 6 1.2 111 incl. 3m @ 2.1% Li2O and 136ppm Ta2O5 from 256m 255 257 2 1.2 1111 incl. 3m @ 1.7% Li2O and 143ppm Ta2O5 from 256m 106 109 3 0.9 133 153 155 257 2 1.1 125 155 1.1 125 153 155 2 1.1 125 155 1.1 126 153 151 -78 40 300 166												
KVRC0223 258185 6958903 507 -57 44 262 209 219 10 1.2 135 incl. 3m @ 2.1% Li2O and 447ppm Ta2O5 from 193m and 1m @ 2.1% Li2O and 447ppm Ta2O5 from 193m 209 219 10 1.2 135 incl. 2m @ 2.1% Li2O and 115ppm Ta2O5 from 210m 226 233 7 1.6 161 incl. 3m @ 2.2% Li2O and 118ppm Ta2O5 from 226m 226 23 7 1.6 161 incl. 3m @ 2.1% Li2O and 138ppm Ta2O5 from 240m 226 23 7 1.6 161 incl. 3m @ 2.1% Li2O and 138ppm Ta2O5 from 240m 255 257 2 1.2 111 incl. 1m @ 1.7% Li2O and 143ppm Ta2O5 from 240m 255 257 2 1.1 125 158 171 13 1.1 125 158 171 13 1.1 125 158 171 13 1.1 126 1.4 124 incl. 3m @ 1.7% Li2O and 156ppm Ta2O5 from 159m 173 182 9 1.4 1.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></t<>									1			
KVRC0223 258185 6958903 507 -57 44 262 and 1m @ 2.1% Li20 and 447ppm Ta205 from 198m 209 219 10 1.2 135 incl. 2m @ 2.1% Li20 and 115ppm Ta205 from 210m 226 233 7 1.6 161 226 233 7 1.6 161 161 177 137 241 247 6 1.7 137 178 106 109 3 0.9 133 255 257 2 1.2 111 incl. 3m @ 2.1% Li20 and 143ppm Ta205 from 226 from 226 from 226 from 240 m 258 507 7 1.1 125 157 2 1.1 125 153 155 2 1.1 125 158 171 13 1.1 101 incl. 3m @ 1.9% Li20 and 156ppm Ta205 from 178m 138 153 155 2 1.1 125 158 171 13 1.1 101 incl. 3m @ 1.9% Li20 and 156ppm Ta205 from 178m 173 182 9 1.4 124 1.3 101 1.1												
KVRC0223 258185 6958903 507 -57 44 262 209 219 10 1.2 135 incl. 2m @ 2.1% Li20 and 115ppm Ta2O5 from 210m 226 233 7 1.6 161 incl. 3m @ 2.2% Li20 and 188ppm Ta2O5 from 226m 241 247 6 1.7 137 incl. 3m @ 2.1% Li20 and 136ppm Ta2O5 from 226m 257 2 1.2 111 incl. 1m @ 1.7% Li20 and 136ppm Ta2O5 from 256m 257 2 1.2 111 incl. 1m @ 1.7% Li20 and 143ppm Ta2O5 from 256m 255 257 2 1.1 125 158 171 13 1.1 101 116 116 117 incl. 3m @ 1.7% Li20 and 135ppm Ta2O5 from 256m 1513 -78 40 300 166 109 3 0.9 133 153 155 2 1.1 1.2 124 104 104 104 104 104 104 104 104 105 107 1.4 120 117											••	
KVRC0224 258050 6958766 513 -78 40 300 186 187 1 1.3 101 101 202 1 1.1 56 240 283 43 1.7 102 106 109 3 0.9 133 153 155 2 1.1 125 108 171 133 1.1 101 106 109 3 0.9 133 153 155 2 1.1 125 158 171 13 1.1 101 106.13m @ 1.7% Li20 and 135ppm Ta205 from 159m 173 182 9 1.4 124 113 1.1 101 11.1 156 240 283 43 1.7 108 109 120 137 182 9 1.4 124 11.1 156 101 150 107 1 1.1 156 240 283 43 1.7 108	KV/BC0223	258185	6928903	507	-57	11	262		1			
KVRC0224 258050 6958766 513 -78 40 300 126 1.1 1.3 1.1 1.6 161 1201 221 233 7 1.6 161 101 102 101 <td< td=""><td>KVIIC0225</td><td>230103</td><td>0550505</td><td>507</td><td>-57</td><td></td><td>202</td><td></td><td></td><td></td><td></td><td></td></td<>	KVIIC0225	230103	0550505	507	-57		202					
KVRC0224 258050 6958766 513 -78 40 300 106 109 3 0.9 1.1 111 incl. 3m @ 1.7% 1:20 and 136ppm Ta205 from 225 from 256 m 173 155 2 1.2 111 111 incl. 1m @ 1.7% 1:20 and 143ppm Ta205 from 256 m 111 incl. 1m @ 1.7% 1:20 and 143ppm Ta205 from 256 m 111 incl. 1m @ 1.7% 1:20 and 143ppm Ta205 from 256 m 111 incl. 3m @ 1.7% 1:20 and 143ppm Ta205 from 159 m 111 105 1.7 1.3 111 1.1 1.01 111 1.3 1.1 1.01 111 incl. 3m @ 1.7% 1:20 and 156ppm Ta205 from 159 m 113 1.1 1.01 1.1 1.56 114 1.24 incl. 3m @ 1.9% Li20 and 156ppm Ta205 from 240 m 1.86 1186 1.87 1 1.3 1.01 110 201 202 1 1.1 1.56 1240 283 43 1.7 1.08 1.7 108 110									1			
KVRC0224 258050 6958766 513 -78 40 300 106 109 3 0.9 133 173 182 9 1.4 124 106 186 187 1 1.3 101 173 182 9 1.4 124 174 160 186 187 1 1.3 101 174 182 9 1.4 124 1.6 1.7 138 1.1 101 173 182 9 1.4 124 1.1 1.56 1.2 1.1 1.56 201 202 1 1.1 1.66 202 1 1.1 1.66 2040 283 43 1.7 108 1.7 108 1.7 108 101 102 186 187 1 1.3 101 1.66 240 283 43 1.7 108 1.7 108 1.7 108 1.7 108 1.1 1.56 240 283 43 1.7 <td></td>												
KVRC0224 258050 6958766 513 -78 40 300 186 187 1 1.3 101 106 186 187 1 1.3 101 10									1			
KVRC0224 258050 6958766 513 -78 40 300 186 187 1 1.3 101 incl. 5m @ 2.1% Li20 and 127ppm Ta2O5 from 256m 288050 6958766 513 -78 40 300 186 187 1 1.3 101 201 202 1 1.1 56 240 283 43 1.7 108 incl. 5m @ 2.1% Li20 and 127ppm Ta2O5 from 256m and 5m @ 2% Li20 and 127ppm Ta2O5 from 256m and 10m @ 2% Li20 and 127ppm Ta2O5 from 256m and 5m @ 2% Li20 and 116ppm Ta2O5 from 256m and 5m @ 2% Li20 and 116ppm Ta2O5 from 256m and 5m @ 2% Li20 and 116ppm Ta2O5 from 256m and 5m @ 2% Li20 and 116ppm Ta2O5 from 256m and 5m @ 2% Li20 and 116ppm Ta2O5 from 256m and 5m @ 2% Li20 and 116ppm Ta2O5 from 256m and 5m @ 2% Li20 and 116ppm Ta2O5 from 256m and 5m @ 2% Li20 and 116ppm Ta2O5 from 256m and 5m @ 2% Li20 and 116ppm Ta2O5 from 256m and 5m @ 2% Li20 and 16ppm Ta2O5 from 256m										-		
KVRC0224 258050 6958766 513 -78 40 300 1.7% Li2O and 143ppm Ta2O5 from 256m 106 109 3 0.9 1.33 153 155 2 1.1 1.25 158 171 1.3 1.1 101 incl. 3m @ 1.7% Li2O and 177ppm Ta2O5 from 159m 1.4 124 173 182 9 1.4 124 incl. 3m @ 1.9% Li2O and 156ppm Ta2O5 from 178m 1.3 101 201 202 1 1.1 56 240 283 43 1.7 108 incl. 5m @ 2.1% Li2O and 127ppm Ta2O5 from 256m and 5m @ 2% Li2O and 107ppm Ta2O5 from 263m and 10m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 116ppm Ta2O5 from 263m and 5m @ 2% Li2O and 116ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m 105 107 2 1.4 203									1			
KVRC0224 258050 6958766 513 -78 40 300 106 109 3 0.9 133 KVRC0224 258050 6958766 513 -78 40 300 153 155 2 1.1 125 173 182 9 1.4 124 incl. 3m @ 1.9% Li2O and 156ppm Ta2O5 from 178m 186 187 1 1.3 101 201 202 1 1.1 56 240 283 43 1.7 108 incl. 5m @ 2.1% Li2O and 127ppm Ta2O5 from 240m and 5m @ 2% Li2O and 107ppm Ta2O5 from 263m and 10m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 116ppm Ta2O5 from 263m and 5m @ 2% Li2O and 116ppm Ta2O5 from 263m and 5m @ 2% Li2O and 269ppm Ta2O5 from 263m												
KVRC0224 258050 6958766 513 -78 40 300 153 155 2 1.1 125 KVRC0224 258050 6958766 513 -78 40 300 186 187 1 1.3 101 1201 202 1 1.1 133 101 201 202 1 1.1 56 240 283 43 1.7 108 incl. 5m @ 2.1% Li2O and 127pm Ta2O5 from 240m and 5m @ 2% Li2O and 107pm Ta2O5 from 256m and 5m @ 2% Li2O and 107pm Ta2O5 from 256m and 5m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 16ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m 105 107 2 1.4 203									1			
KVRC0224 258050 6958766 513 -78 40 300 158 171 13 1.1 101 KVRC0224 258050 6958766 513 -78 40 300 186 187 1 1.3 101 201 202 1 1.1 103 101 201 202 1 1.1 56 240 283 43 1.7 108 incl. 5m @ 2.1% Li2O and 127pm Ta2O5 from 240m and 5m @ 2% Li2O and 107pm Ta2O5 from 256m and 5m @ 2% Li2O and 107pm Ta2O5 from 256m and 5m @ 2% Li2O and 107pm Ta2O5 from 263m and 5m @ 2% Li2O and 107pm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m 105 107 2 1.4 203												
KVRC0224 258050 6958766 513 -78 40 300 incl. 3m @ 1.7% Li2O and 177ppm Ta2O5 from 159m 173 182 9 1.4 124 MCRC0224 258050 6958766 513 -78 40 300 186 187 1 1.3 101 201 202 1 1.1 56 240 283 43 1.7 108 incl. 5m @ 2.1% Li2O and 127ppm Ta2O5 from 240m and 5m @ 2% Li2O and 107ppm Ta2O5 from 256m and 5m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 107ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m 105 107 2 1.4 203								153			1.1	
KVRC0224 258050 6958766 513 -78 40 300 173 182 9 1.4 124 incl. 3m @ 1.9% Li2O and 156pm Ta2O5 from 178m 186 187 1 1.3 101 201 202 1 1.1 56 240 283 43 1.7 108 incl. 5m @ 2.1% Li2O and 88pm Ta2O5 from 240m and 5m @ 2% Li2O and 127pm Ta2O5 from 256m and 10m @ 2% Li2O and 107pm Ta2O5 from 263m and 5m @ 2% Li2O and 116ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m 105 107 2 1.4 203												
KVRC0224 258050 6958766 513 -78 40 300 incl. 3m @ 1.9% Li2O and 156ppm Ta2O5 from 178m 8 186 187 1 1.3 101 201 202 1 1.1 56 240 283 43 1.7 108 incl. 5m @ 2.1% Li2O and 88ppm Ta2O5 from 240m and 5m @ 2% Li2O and 127ppm Ta2O5 from 256m and 10m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 116ppm Ta2O5 from 277m and 5m @ 2.4% Li2O and 269ppm Ta2O5 from 105m 107 2 1.4 203									8m @ 1.7%	Li2O and 177	ppm Ta2O	5 from 159m
KVRC0224 258050 6958766 513 -78 40 300 186 187 1 1.3 101 201 202 1 1.1 56 240 283 43 1.7 108 incl. 5m @ 2.1% Li2O and 88ppm Ta2O5 from 240m and 5m @ 2% Li2O and 127ppm Ta2O5 from 256m and 10m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 116ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m 105 107 2 1.4 203												
201 202 1 1.1 56 240 283 43 1.7 108 incl. 5m @ 2.1% Li2O and 88ppm Ta2O5 from 240m and 5m @ 2% Li2O and 127ppm Ta2O5 from 256m and 10m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 116ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m								incl. 3	lm @ 1.9%	Li2O and 156	ppm Ta2O	5 from 178m
240 283 43 1.7 108 incl. 5m @ 2.1% Li2O and 88ppm Ta2O5 from 240m and 5m @ 2% Li2O and 127ppm Ta2O5 from 256m and 10m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 116ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m	KVRC0224	258050	6958766	513	-78	40	300	186	187		1.3	
incl. 5m @ 2.1% Li2O and 88ppm Ta2O5 from 240m and 5m @ 2% Li2O and 127ppm Ta2O5 from 256m and 10m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 107ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m								201	202	1	1.1	56
and 5m @ 2% Li2O and 127ppm Ta2O5 from 256m and 10m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 107ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m										-		
and 10m @ 2% Li2O and 107ppm Ta2O5 from 263m and 5m @ 2% Li2O and 116ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m								incl.	5m @ 2.1%	Li2O and 88	opm Ta2O5	from 240m
and 5m @ 2% Li2O and 116ppm Ta2O5 from 277m 105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m								and	5m @ 2% L	i2O and 127p	pm Ta2O5	from 256m
105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m												
105 107 2 1.4 203 incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m								and	5m @ 2% L	i2O and 116p	pm Ta2O5	from 277m
incl. 1m @ 2.4% Li2O and 269ppm Ta2O5 from 105m												
								172	181	9	1.5	185
incl. 1m @ 2.8% Li2O and 368ppm Ta2O5 from 176m										-		
									1			
incl. 1m @ 1.9% Li2O and 336ppm Ta2O5 from 186m												
KVRC0225 1258284 6958860 510 -49 46 268	KVRC0225	258284	6958860	510	-49	46	268					
189 207 18 1.1 166												
incl. 5m @ 1.9% Li2O and 214ppm Ta2O5 from 189m												
incl. 3m @ 2.5% Li2O and 144ppm Ta2O5 from 214m												
238 247 9 1.2 130										-		
incl. 3m @ 1.9% Li2O and 158ppm Ta2O5 from 240m								incl. 3	8m @ 1.9%	Li2O and 158	ppm Ta2O	5 from 240m

			- r\a		in vaney	- Nevel			rill hole S		ppm) results
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	From(m)		Interval(m)	· · · ·	Ta2O5 (ppm)
							122	124	2		
									∠ Li2O and 112	1.1	114 5 from 122m
							133	135	2	0.6	172
							149	151	2	1.2	146
							165	177	12	1.4	102
									Li2O and 97		
							201	203	2	0.8	103
							210	217	7	1.2	109
KVRC0226	258116	6958690	510	-68	42	285		-	Li2O and 30	•	
							and	1m @ 2% L	i2O and 57p	pm Ta2O5 f	rom 214m
							222	235	13	1.7	179
							incl.	3m @ 2% L	i2O and 174p	opm Ta2O5	from 223m
							and 4	m @ 2.2%	Li2O and 164	ppm Ta2O5	from 228m
							245	257	12	1.8	136
							incl. 5	5m @ 2.5%	Li2O and 92	opm Ta2O5	from 245m
							265	266	1	1.2	80
							270	280	10	1.1	111
							incl. 3	m @ 1.9%	Li2O and 117	ppm Ta2O	5 from 272m
							40	43	3	1.2	100
							62	65	4	1.5	140
							incl. 3	3m @ 1.7%	Li2O and 14	0ppm Ta2O	5 from 62m
							70	71	1	1.1	118
							141	144	3	1.1	309
101000007	250210	6050672	F10	50	42	244	incl. 1	m @ 1.6%	Li2O and 322	ppm Ta2O	5 from 142m
KVRC0227	258310	6958672	510	-58	43	244	156	159	3	1.8	248
							incl. 2	m @ 2.2%	Li2O and 242	ppm Ta2O	5 from 156m
							186	195	9	1.6	147
							incl. 3	m @ 2.2%	Li2O and 128	ppm Ta2O	5 from 187m
							204	221	17	1.7	136
							incl. 10)m @ 2.1%	Li2O and 12	6ppm Ta2O	5 from 208m
							185	196	11	1.4	115
							incl.	5m @ 2% L	i2O and 145p	pm Ta2O5	from 189m
							210	27	17	1.8	124
KVRC0228	258192	6958628	515	-79	43	298		m @ 2.4%	Li2O and 120		
							236	282	45	1.7	116
							incl. 23	3m @ 2.1%	Li2O and 113	3ppm Ta2O	5 from 239m
									i2O and 112p		
KVRC0229	258715	6958131	525	-76	228	180			No significan	-	
							55	60	5	1.3	211
										-	
KVRC0230	258720	6958137	525	-69	45	120	97	102	5	1.5	251
							incl. 1	Lm @ 2.3%	Li2O and 46		
									Li2O and 115		
							36	43	7	0.8	260
								_	, Li2O and 21		
							86	89	3	1.1	207
									Li2O and 23		
							106	111	5	1.2	103
									Li2O and 137		
KVRC0231	258637	6958543	520	-90	358	225	117	122	5	1.5	114
									ہ Li2O and 118		
							126	128	2	1.2	122
											¹²² 5 from 126m
							134	138	4	0.9	109
L	<u> </u>	ļ	I		ļ		Inci. 1	.m.@ 1.6%	Li2O and 177	ppm razOs	5 ITOM 136M

Арре		(cont.)	– na	thiee	en valley	– Rever			rill hole s		
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	•			· · ·	ppm) results
Hole_IB	Lust	North		9.6	7.2.111.0.011	Deptil (III)	From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)
							119	144	25	1.4	181
KVRC0232	258679	6958155	530	-79	222	170	incl. 9	m @ 1.8%	Li2O and 153	ppm Ta2O	5 from 129m
							and 2	m @ 1.9%	i2O and 225	ppm Ta2O5	5 from 141m
							54	57	3	0.8	264
							69	73	4	0.7	112
							94	97	3	1	123
							137	141	4	1.3	199
KVRC0233	258637	6958461	531	-87	167	230	-				5 from 140m
							148	152	4	0.7	179
							148	179	5	1.3	111
									-	-	5 from 175m
								-			
KVRC0234	258736	6958280	529	-54	41	172	86	93	7	0.8	224
									Li2O and 12		
							37	42	5	1.2	133
								-	Li2O and 14		
KVRC0235	258896	6958719	514	-66	42	192	46	48	2	1.2	141
									Li2O and 16		
							87	89	2	1.1	112
							incl. 1	lm @ 1.8%	Li2O and 12:	1ppm Ta2O	5 from 88m
							52	62	10	0.7	210
KVRC0236	258630	6958386	540	-58	44	192	incl. 1	lm @ 1.7%	Li2O and 14	Oppm Ta2O	5 from 61m
111110250	230030	0550500	5.10	50		152	111	123	12	0.7	140
							incl. 1	m @ 2.5%	Li2O and 118	ppm Ta2O	5 from 121m
							42	48	6	1.1	238
KVRC0237	258060	6958500	518	-80	226	120	incl. 1	lm @ 2.6%	Li2O and 16	9ppm Ta2O	5 from 44m
KVNC0257	256900	0936300	210	-00	220	120	104	107	3	1.3	105
							incl. 1	m @ 1.9%	Li2O and 111	.ppm Ta2O	5 from 105m
							155	217	62	1.2	171
							incl. 14	1m @ 1.9%	Li2O and 16	4ppm Ta2O	5 from 159m
KVRC0238	258653	6958203	535	-71	222	228	and 2	7m @ 2% L	i2O and 199p	pm Ta2O5	from 175m
							and 5	m @ 1.9%	i2O and 201	ppm Ta2O5	5 from 187m
							and 4	m @ 1.9%	i2O and 182	ppm Ta2O5	5 from 207m
							45	50	5	0.9	182
KVRC0239	258810	6958348	523	-54	47	154	incl. 1	lm @ 2.1%	Li2O and 20	4ppm Ta2O	5 from 46m
							133	134	1	2.3	153
							52	56	4	1.3	187
KVRC0240	259010	6958549	514	-66	44	78			Li2O and 68	-	
KVRC0241	259095	6958634	514	-56	42	84	61	63	2	1.2	243
		000004	514	50	76		58	64	6	1.2	243
KVRC0242	258773	6958382	526	-59	47	154			Li2O and 22		
KVRC0243	259180	6958719	514	-50	38	60	45	46	1	0.9	131
1. 1 1. 0. 243	235100	0220113	514	-50	50	00	45 24	40 25	1	2.1	332
KVRC0244	258904	6958583	518	-80	225	120	92	25 94	2	0.9	332
	+		<u> </u>								
							54	56	2 Li2O and 43	1.9	324
								-			
KVRC0245	258672	6958425	537	-88	193	168	72	77	5	1.5	219
									i2O and 150		
							153	159	6	1.3	195
	 							-	i2O and 200p	·	
							364	370	6	0.9	193
							incl. 1			ppm Ta2O	5 from 365m
KVRC0246	258147	6958575	510	-84	40	414	377	411	34	1.4	88
								_	Li2O and 69		
							and 1	m@2.3%	i2O and 162	ppm Ta2O5	from 402m
							78	87	9	1.5	314
KVRC0247	258740	6958352	531	-88	177	150	incl. 2	2m @ 2.2%	Li2O and 26	7ppm Ta2O	5 from 80m
	1						and	1m @ 3.3%	Li2O and 93	ppm Ta2O5	5 from 84m
		I	+			· · · · · · · · · · · · · · · · · · ·					

Appe		(cont.)		linee	il valley	- Nevers					
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)				· ·	
-				•					Interval(m)		
							-	-	4		
							incl.	2m @ 2%	Li2O and 291	ppm Ta2O5	5 from 58m
						Pepth (m) Significant Li2O (>0.4%) and T2OS (>SUP)m) results From(m) To(m) Interval(m) Li2O (%) Ta2OS (ppm) 97 99 2 1.2 295 101 102 (%) Ta2OS from 58m 97 99 2 1.2 295 101 104 1 1 166 116 118 2 1 257 103 104 1 1 166 116 118 2 1 257 121 124 3 1.5 142 1 166 116 118 2 1 257 121 124 3 1.5 142 121 124 3 1.5 106 107 122 122 122 122 122 122 123 300 133 14 13 96 111 133 96 111 134 134 134 122 123 123 134 124					
KVRC0248	258668	6958493	527	-56	40	168	incl. 1	lm @ 1.8%	Li2O and 378	3ppm Ta2O	5 from 97m
KV//C0240	230000	0550455	527	50	40	100	103	104	1	1	166
							116	118	2	1	257
							121	124	3	1.5	142
							incl.	1m @ 3%	Li2O and 94p	pm Ta2O5	from 122m
							223	306	85	1.5	106
							incl. 2	m @ 2.1%	Li2O and 130	ppm Ta2O	5 from 224m
KVRC0249	258088	6958659	514	-74	41	340	and 3	m @ 2.1%	Li2O and 93p	opm Ta2O5	from 240m
							and 4	m @ 2.8%	Li2O and 62p	pm Ta2O5	from 266m
										-	
KVRC0250	258039	6958747	511	-87	41	358		-		•	
								_			
								_		•	
								-		••	
K) (DC0251	257020	050707	F10		27	262				·	
KVRC0251	257938	6958787	513	-80	37	302					
									-		
								-	-		
KVRC0252	259040	6958719	514	-54	45	90	incl.	1m @ 2%	Li2O and 390	ppm Ta2O5	5 from 37m
							56	58	2	1.1	163
KVRC0253	258955	6958634	514	-64	43	100	38	44	6	1.4	136
KVRC0254	258981	6958804	514	-55	43	100		-		-	
KVNC0254	250501	000004	514	55	-15	100	incl. 2	2m @ 1.8%	Li2O and 14	Lppm Ta2O	5 from 59m
KVRC0255	258904	6958889	513	-49	45	50	26	27	1	0.8	67
KVRC0256	250125	6958804	514	-50	43	80	50	52	2	1.1	176
KVRC0250	239123	0536604	514	-30	45	80	incl. 1	lm @ 1.6%	Li2O and 192	2ppm Ta2O	5 from 50m
							3	7	4	1.1	104
							incl.	1m @ 1.6%	Li2O and 13	3ppm Ta20	05 from 4m
							63	69	6	1.1	83
10 10 00057		6050674	540		40	400	72	74	2	1.2	93
KVRC0257	258238	6958671	512	-56	48	120	81	83	2	1.2	102
KVRC0258	257977	6958836	506	-66	45	170					
AVIACUZJO	231311	050000	500	00	45	1/0					
KVRC0259	258183	6958757	510	-50	47	80		-	-		
	250007	6059902	E00	70	42	150					
KVRC0260	258087	6958802	509	-79	42	150			Li2O and 11		
							118	120	2	1.3	168

Appendix 1 (cont.) – Kathleen Valley – Reverse Circulation Drill hole statistics

Appe							Signifi	cant Li2O	(>0.4%) and	Ta2O5 (>50	ppm) results
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	From(m)		Interval(m)		Ta2O5 (ppm)
							100	102	2	1	92
							100	102	5	1.6	111
KVRC0261	258136	6958710	508	-61	44	160			Li2O and 107		
							150	153	3	1.6	75
									Li2O and 84p		
KVRC0262	258025	6958889	505	-54	43	90	42	43	1	0.4	109
				-			40	41	1	1.1	140
KVRC0263	258142	6958856	506	-71	45	96	84	86	2	0.8	170
							230	239	9	1.1	26
								lm @ 3.7%	Li2O and 14	pm Ta2O5	from 232m
KVRC0264	257745	6959231	505	-55	46	324	294	310	16	1.9	139
							incl. 8	m @ 2.2%	Li2O and 124	ppm Ta2O	5 from 294m
							and 2	2m @ 2.3%	Li2O and 84p	opm Ta2O5	from 305m
							219	229	10	1.9	72
							incl. 1	lm @ 2.8%	Li2O and 41	pm Ta2O5	from 221m
							and 4	lm @ 3.2%	Li2O and 65p	pm Ta2O5	from 223m
							284	305	21	1.2	112
KVRC0265	257699	6959157	505	-64	44	366	incl. 4	m @ 1.7%	Li2O and 111	ppm Ta2O	5 from 293m
							330	336	6	1.3	182
							incl. 2	2m @ 2% L	i2O and 120p	pm Ta2O5	from 330m
							348	349	1	1.5	188
							353	355	2	1	101
							218	230	12	3.1	38
							incl. 9) m @ 3.8%	Li2O and 25	pm Ta2O5	from 219m
							294	298	4	0.4	69
10 10 000000	057650	6050404				224	304	307	3	0.8	67
KVRC0266	257653	6959101	505	-70	37	384	327	333	6	1.4	215
							incl. 2	m @ 2.1%	Li2O and 220	ppm Ta2O	5 from 327m
							348	351	3	1.3	122
							incl. 1	m @ 1.9%	Li2O and 131	ppm Ta2O	5 from 348m
KVRC0267	257597	6959039	505	-71	46	90			Hole aband	oned	
							171	178	7	1.1	154
KVRC0268	258440	6050000	506	ог	110	220	incl. 4	m @ 1.5%	Li2O and 151	ppm Ta2O	5 from 171m
KVRCU208	258440	6959838	500	-85	110	339	320	329	9	1.2	114
							incl. 3	m @ 1.6%	Li2O and 122	ppm Ta2O	5 from 320m
KVRC0269	257535	6958975	505	-73	43	240			Hole aband	oned	
KVRC0270	258296	6959564	508	-90	359	18			Hole aband	oned	
KVRC0271	258335	6959607	508	-85	51	312	226	243	17	1.4	181
KVNC02/1	236333	1006260	508	-65	51	512	incl. 6	m @ 1.8%	Li2O and 165	ppm Ta2O	5 from 227m
K\/RC0373	258548	6050667	507	-90	47	210	260	270	10	1.5	124
KVRC0272	200048	6959667	307	-90	47	318	incl. 5	5m @ 1.9%	Li2O and 96	opm Ta2O5	from 261m
KVRC0273	258692	6959805	507	-89	287	348		1	No significan	t assays	
KVRC0274	257754	6959450	506	-89	120	444					
KVRC0275	258480	6958165	554	-85	23	354					
KVRC0276	257751	6959588	506	-88	71	366			Assays per	nding	
KVRC0277	257892	6959586	506	-88	109	343					
KVRC0278	258522	6958002	530	-68	45	300					
True widths e	stimated	d as follow	s:								
loles drilled t				tersed	ting Kathle	een's Corner	·lodes - tr	ue widths	85-100% of d	ownhole v	vidth
loles drilled t					-						
					-				65-75% of d		ridth
loies annieu											

Suffixes "A" and "B" denote re-entered holes

Ар	bendix 2	2 – Kathi	een v	alley -	- Diamo	nd Core					
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)		1		-	ppm) results
							From(m)		Interval(m)		
							39.05	41.24	2.19	2.1	291
									Li2O and 289		
							47.07	49	1.93	2.7	258
							53	54.87	1.87	1.7	230
KVDD0001	258690	6959191	512	-55	39	141.2					O5 from 54m
							70.65	85.55	14.9	1.4	190
									Li2O and 288		
									Li2O and 178		
							102.26	103.71	1.45	1.4	336
							124	125	1	1	243
							14	16	2	1	452
							59.29	76	16.71	1.6	215
								-	Li2O and 124		
KVDD0002	258738	6959090	514	-55	45	156.4	and 6	m @ 2.3%	Li2O and 241	ppm Ta2O	5 from 68m
			011			10011	80.48	83	2.52	1.7	153
							incl. 1.5	2m @ 2% l	i2O and 110	opm Ta2O5	from 80.48m
							122.19	123	0.81	1	238
							130	130.9	0.9	0.9	204
							72	87	15	1.4	233
							incl.	7m @ 2% l	.i2O and 212	opm Ta2O5	from 75m
KVDD0003	258722	6958935	520	-55	41	159.2	and 1	m @ 1.9%	Li2O and 116	ppm Ta2O	5 from 86m
KVDD0003	230722	0536533	520	-55	41	135.2	134.06	141	6.94	1.5	148
							incl. 1	m @ 2.1%	Li2O and 74p	opm Ta2O5	from 135m
						and 2r	n @ 2.1% l	.i2O and 172	opm Ta2O5	from 137m	
							42	50.12	8.12	1.4	125
							incl. 2	2m @ 2.1%	Li2O and 99	ppm Ta2O	5 from 46m
							66.2	66.85	0.65	1.1	87
							70.22	76	5.78	1.5	106
							incl. 1.	34m @ 1.9	% Li2O and 9	8ppm Ta20	D5 from 71m
						100.0	and 2	m @ 1.8%	Li2O and 134	ppm Ta2O	5 from 74m
KVDD0004	258444	6958521	521	-54	50	189.2	103.91	108	4.09	1.9	301
							115.75	117	1.25	0.6	82
							141	141.9	0.9	1.1	232
							162	170	8	1.5	82
									Li2O and 81p		
							173.8	178.5	4.7	1.3	119
							40	52.85	12.85	1.9	132
									Li2O and 137		
							79	83	4	1.1	99
							102.04	103.83	1.79	1.1	337
							130.03	136	5.97	1.4	155
KVDD0005	258528	6958434	531	-60	44	216.4	165.42	170.44	5.02	1.3	135
									Li2O and 148		
							181.98	191	9.02	1.5	160
											200 25 from 183m
									.i2O and 256		
							38.05	52	13.95	1.6	129
									Li2O and 118		
KVDD0006	258621	6958311	545	-55	44	185.6			-		
	230021	1159560	545	-55	44	0.001	65.99	66.89	0.9	1.7	188
							95.16	100	4.84	1	196
		<u> </u>		[<u> </u>		115	118	3	1.7	174

		. (cont.)	Tan	neen	valicy –	Diamon			e statistic		
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	-				ppm) results
				-17			From(m)		Interval(m)		Ta2O5 (ppm)
							88.45	98.91	10.46	1.3	205
							incl. 5	m @ 2% Li	2O and 198pp	om Ta2O5 f	rom 88.45m
							108.13	114.17	6.04	1.6	155
							incl. 4m	n @ 1.9% Li	20 and 151p	pm Ta2O5	from 108.13m
							145.08	148.26	3.18	1.4	423
							156.75	163.85	7.1	1.5	165
KVDD0007	258569	6959079	520	-60	228	231.6	incl. 4.7r	n @ 1.8% L	i2O and 193p	opm Ta2O5	from 156.75m
KVDD0007	236309	0939079	520	-00	220	251.0	165.73	169.7	3.97	1.3	159
							incl. 1.9	7m @ 2% L	i2O and 158p	pm Ta2O5	from 165.73m
							184.23	186.35	2.12	1.1	184
							incl. 1m	n @ 1.8% Li	20 and 245p	pm Ta2O5 1	from 184.23m
							188.65	191.5	2.85	2.4	140
							205.11	207.1	1.99	1.1	129
							217.76	218.76	1	1.2	154
							123.47	132.4	8.93	1.3	196
							incl. 1r	n @ 2% Li2	O and 315pp	m Ta2O5 fi	rom 123.47m
KVDD0008	258629	6958992	523	-48	223	153.2		-			rom 125.47m
											from 129.47m
							137.48	137.98	0.5	1.4	100
							39.1	43	3.9	1.4	448
							105.23	106.22	0.99	2	224
KVDD0009	258696	6958909	521	-52	221	177.5				_	5 from 105.23m
							113.5	120.1	6.6	0	338
							164.1	172.2	8.1	1.3	98
KVDD0010	258450	6958480	519	-64	46	189.1	-				5 from 164.1m
				•			181.39	185.39	4	1.8	107
							99.66	105.66	6	1	288
									•	-	from 100.66m
							154.73	163.14	8.41	1.8	95
KVDD0011	258474	6958501	519	-60	48	180			20 and 89ppi		
							166.61	173.19	6.58	1.4	106
											5 from 169.28m
								18.44			
KVDD0012	258401	6958622	513	-59	42	40.3	11 incl 1		7.44 Li2O and 123		119 5 from 17m
	20401	0550022	212	- 55	42	-+0.3				1	
				ļ			21.91	24.9	2.99	1	172
							19 incl [29	10 Li2O and 131	1.4	108 5 from 22m
KVDD0013	258423	6958581	514	-60	44	46.6		1			
							37.1	40.93	3.83	1	89 5 from 20m
								1	Li2O and 170		
							13	14	1	1.2	137
							16.78	23	6.22	1.6	154 5 from 10m
KVDD0014	258490	6958517	519	-55	44	41.6		1	Li2O and 147		
							32.76	39.15	6.39	1.3	132
									Li2O and 125		
								1	Li2O and 127		
							34.08	44.65	10.57	1.5	167
KVDD0015	258498	6958473	522	-55	44	65.3		1	Li2O and 149		
		-					57	62	5	1.5	92
							incl. 3	8m @ 1.8%	Li2O and 100)ppm Ta2O	5 from 59m

Арр	pendix 2	. (cont.)	11011		-									
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	Signifi	cant Li2O			ppm) results			
_									Interval(m)					
KVDD0016*	258500	6958406	527	-80	44	132.1	125.62	132.1	6.48	1.4	133			
									1		5 from 126m			
							104	129.86	25.86	2	155			
KVDD0017	258538	6958369	533	-80	44	160.6		1			5 from 110m			
							151.05	157	5.95	1.3	120			
									Li2O and 181	1				
							45	61.49	16.49	1.4	124			
KVDD0018	258593	6958355	542	-80	44	104		1	Li2O and 123					
							79.82	81.5	1.68	1.8	221 from 79.82 m			
							113.8	128	14.2	1.5	192 5 from 115.9m			
KVDD0019	258603	6958234	544	-70	44	165.3			1	1				
KVDD0019	238003	0536234	544	-70	44	105.5	132.52	134.98 145.93	2.46 2.63	1.9	185 126			
							143.3			2	96			
							148 32.8	148.83 37.43	0.83	1.1 1.8	96 157			
									Li2O and 151		-			
KVDD0020	258696	6958248	534	-60	44	55.9	44.2	54.7	10.5	1.4	205			
NV DD0020	230030	0550240	554	00		55.5		-	Li2O and 184					
									Li2O and 18					
											196			
						80 92 12 1.6 incl. 0.74m @ 2.2% Li2O and 79ppm Ta2O5 and 2.82m @ 2% Li2O and 117ppm Ta2O5								
KVDD0021	258676	6958152	530	-75	44	108.4								
						and 3m @ 2.2% Li2O = 93.49 95.98 2	2.49	0.6	109					
							101	105	4	0.0	109			
							32	34	2	1	150			
							-		Li2O and 183	-				
KVDD0022	258204	6959605	510	-55	44	62.8	53	58.6	5.6	1.5	106			
									-			Li2O and 125	-	
							46.2	51	4.8	0.9	143			
KVDD0023	258244	6959510	508	-55	44	61.3		_	Li2O and 68		_			
							66.01	72	5.99	1.3	150			
KVDD0024	258291	6959409	508	-55	44	74.9					05 from 47m			
						40.8	33	38	5	1.1	162			
KVDD0025	258444	6959419	508	-50	44	10.0			Li2O and 187					
							51	56	5	1.4	103			
									i2O and 107					
							84.54	92.67	8.13	1.8	259			
KVDD0026	258544	6959179	511	-90	359	120.1	96.11	98.73	2.62	2.1	300			
							100.97	105.32	4.35	1.5	189			
											255 from 54m			
							108.2	114.13	5.87	2	159			
							58	60	2	1	141			
							69	72	3	1.1	304			
									Li2O and 441					
							84.88	86.54	1.66	2.1	257			
		1	I								5 from 84.88m			
		6959144	959144 512	-90	359	133.1 -								
KVDD0027	258501	6959144	512	-90	359	133.1	91.19	98.92	7.73	1.5	369			
KVDD0027	258501	6959144	512	-90	359	133.1	91.19 incl. 4.8 1	98.92 .m @ 1.9%	7.73 Li2O and 356	1.5 500000000000000000000000000000000000	369 5 from 91.19 m			
KVDD0027	258501	6959144	512	-90	359	133.1	incl. 4.81	.m @ 1.9%	Li2O and 356	ppm Ta2O	5 from 91.19m			
KVDD0027	258501	6959144	512	-90	359	133.1					369 5 from 91.19m 317 245			

Liontown

ASX: LTR

Арр	penalx 2	(cont.)	– Natr	neen	valley –	Diamon			e statistic		
Hole ID	East	North	RL	Dip	Azimuth	Depth (m)	<u> </u>	cant Li2O	(>0.4%) and 1	Ta2O5 (>50	ppm) results
noie_ib	Lust	North		0.6	7.12.11.10.01	Deptii (iii)	From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)
							16	24	8	0.9	100
							incl. 1	.m @ 1.8%	Li2O and 170)ppm Ta2O	5 from 16m
							and 1	lm @ 2.1%	Li2O and 82	ppm Ta2O5	from 21m
							62.41	70	7.59	1.6	248
10100000	250642	050101	540	00	250	100 F	incl. 5	m @ 2.1%	Li2O and 269	ppm Ta2O	5 from 63m
KVDD0028	258613	6959181	512	-90	359	109.5	80	86	6	1.5	239
							incl. 3	m @ 2.2%	Li2O and 310	ppm Ta2O	5 from 81m
							92.04	94.37	2.33	0.7	127
							99.89	105.5	5.61	0.9	95
							incl. 1.11			ppm Ta2O	5 from 103.89m
							69.23	71.74	2.51	1.5	244
											5 from 69.23m
							83.64	91.9	8.26	1.6	280
KVDD0029	258550	6959117	518	-90	359	109.5			Li2O and 312		
							104.1	107.98	3.88	1.7	247
											247 D5 from 105m
							34.86	36.3	1.44	1.2	224
							40.97	45.72	4.75	2.1	231
KVDD0030	258701	6959198	512	-90	359	74.2	61.18	66	4.82	1.7	300
											5 from 61.18m
								-	r	· ·	5 from 63.41m
							70.9	74.2	3.3	2.7	207
							51.44	56.43	4.99	1.4	110
							incl. 3		Li2O and 107	/ppm Ta2O	5 from 53m
							67.35	75	7.65	2.2	281
							incl. 6.65	m @ 2.4%	Li2O and 281	Lppm Ta2O	5 from 67.35m
							100.86	105.15	4.29	1.4	187
KVDD0031	258604	6959103	519	-90	359	124.6	incl. 3.14	m @ 1.8%	Li2O and 186	ppm Ta2O	5 from 100.86m
RVDD0031	238004	0939103	515	-90	333	124.0	106.89	110.4	3.51	1.4	131
							incl.	1m @ 2% l	Li2O and 81p	pm Ta2O5 1	from 108m
							and 0.4	lm @ 1.8%	Li2O and 196	5ppm Ta2O	5 from 110m
							114.41	114.75	0.34	1.4	248
							116.14	120.94	4.8	1.4	195
							incl. 3.86	m @ 1.7%	Li2O and 205	ppm Ta2O	5 from 116.14m
							17	20	3	0.6	103
							39	43	4	2	185
								_	Li2O and 2	14ppm Ta2	O5 from 40m
							52.32	58.32	6	1.5	262
KVDD0032	258753	6959162	513	-90	359	75.1					from 53.19m
							64.31	67.78	3.47	1.7	234
											5 from 64.31m
				1			73.43	74.23	0.8	1.2	501
	250077	6050400	F10	00	250	04.65	31	35	4	0.7	252
KVDD0033	258677	6959100	518	-90	359	94.65	61.7	71	9.3	1.5	180
									Li2O and 185	r	
							55	60	5	1	168
							incl. 2	m @ 1.6%	Li2O and 220	0ppm Ta2O	5 from 56m
							66	78.18	12.18	1.8	206
							incl. 10.	03m @ 2%	Li2O and 22	5ppm Ta2O	5 from 67.6m
							109	110.58	1.58	1.6	163
KV000034	250615	6050042	522	00	777	120.0	incl. 1	lm @ 2% Li	i2O and 170p	pm Ta2O5	from 109m
KVDD0034	258615	6959042	522	-90	273	130.6	114.69	119.05	4.36	1.7	205
									Li2O and 118		
											05 from 118m
							123	128.64	5.64	1.6	135
									Li2O and 152		
									Li2O and 106		
		L			ļ			ლ 1.0/0 l			

Liontown

ASX: LTR

		. (00111.)	1.001	neen	valley	Diamon			e statistic		
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)			<u>.</u>		ppm) results
							From(m)	To(m)	Interval(m)		
							17.44	25.04	7.6 Li2O and 241	1.2	211
KVDD0035	250000	000100	F10	80	214	72.1					
KVDD0035	258800	6959155	510	-89	314	/2.1	50	52.66	2.66	1.2	267
							58.93	64.69	5.76	1.5	208
									Li2O and 196		
	250700	050052	510	00	250	07.4	68.2	80	11.8	1.6	216
KVDD0036	258700	6959052	518	-90	359	87.1		-	Li2O and 108		
									i2O and 314p		
							54	57	3	1.4	288
							1		Li2O and 439	r -	
KVDD0037	258795	6959077	512	-88	268	75.1	58.96	71	12.04	1.5	179
								_	Li2O and 196		
							1		Li2O and 337	<u> </u>	
KVDD0038	258660	6958947	524	-90	359	79	71	74	3	1.8	201
							77	78	1	1	195
							22.7	29.51	6.81	1.1	139
KVDD0039	258855	6959059	511	-89	298	61.6	1	-	1	<u> </u>	5 from 23.7m
							43.96	46.01	2.05	1.5	137
							25	27	2	1.4	188
									Li2O and 183		
KVDD0040	258690	6958900	523	-89	144	120.1	83.15	92	8.85	1.6	254
							incl. 7	m @ 1.9%	Li2O and 262	2ppm Ta2O	5 from 84m
							106	111.4	5.4	2.3	113
							19.6	24.2	4.6	1.2	170
									Li2O and 110		
KVDD0041	258876	6959018	510	-90	321	56	and 1.2	2m @ 1.6%	6 Li2O and 18	1ppm Ta20	05 from 23m
KVDD0041	230070	0555018	510	-30	521	-	47.74	52.2	4.46	1.5	112
							incl. 1	m @ 1.7%	Li2O and 111	Lppm Ta2O	5 from 48m
							and 2.07	m @ 1.8%	Li2O and 125	5ppm Ta2O	5 from 50.13m
							14	20	6	1	195
							incl. 2	m @ 2.2%	Li2O and 403	3 Bppm Ta2O	5 from 14m
							77.96	89	11.04	1.9	265
KVDD0042	258717	6958858	522	-90	289	130.6	incl. 9.6	m @ 2.1%	Li2O and 284	lppm Ta2O	5 from 78.4m
							110.24	115.79	5.55	1.4	199
									Li2O and 246		
				-			408	433	25	1.5	86
									Li2O and 42p		
KVDD0043	257955	6958667	518	-85	49	498.8			Li2O and 70p	-	
KVDD0043	237933	0936007	510	-65	45	450.0				-	
							1		Li2O and 161		
							498.3	498.8	0.5	1.3	18
							389.21	391	1.8	1.6	49
							394	397	3	1.2	54
KVDD0044	258040	6958614	520	-84	53	457	394	397	3	1.2	54
KVDD0044	258040	6958614	520	-84	53	457	394 399	397 406	3 7	1.2 0.4	54 119
KVDD0044	258040	6958614	520	-84	53	457	394 399 410 415.55	397 406 414 426	3 7 4	1.2 0.4 0.5 1.3	54 119 86 111
KVDD0044	258040	6958614	520	-84	53	457	394 399 410 415.55 incl. 3	397 406 414 426 m@1.6%	3 7 4 10.45	1.2 0.4 0.5 1.3 opm Ta2O5	54 119 86 111 from 418m
KVDD0044	258040	6958614	520	-84	53	457	394 399 410 415.55 incl. 3	397 406 414 426 m@1.6%	3 7 4 10.45 Li2O and 97p	1.2 0.4 0.5 1.3 opm Ta2O5	54 119 86 111 from 418m
KVDD0044	258040	6958614	520	-84	53	457	394 399 410 415.55 incl. 3 and 1 320.93	397 406 414 426 m @ 1.6% m @ 2.1% 385	3 7 4 10.45 Li2O and 97 64.07	1.2 0.4 0.5 1.3 0pm Ta2O5 1.3	54 119 86 111 from 418m from 425m 93
KVDD0044	258040	6958614	520	-84	53	457	394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r	397 406 414 426 m @ 1.6% m @ 2.1% 385 m @ 1.8%	3 7 4 10.45 Li2O and 97 64.07 Li2O and 122	1.2 0.4 0.5 1.3 0pm Ta2O5 1.3 ppm Ta2O5	54 119 86 111 from 418m from 425m 93 5 from 342m
KVDD0044 KVDD0045	258040	6958614	520	-84	53	457 462.6	394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r and 10	397 406 414 426 m @ 1.6% 385 m @ 1.8% m @ 1.8%	3 7 4 10.45 Li2O and 97 64.07 Li2O and 122 Li2O and 70	1.2 0.4 0.5 1.3 opm Ta2O5 1.3 ppm Ta2O5 ppm Ta2O5	54 119 86 111 from 418m from 425m 93 5 from 342m 6 from 362m
							394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r and 10 and 4	397 406 414 426 m @ 1.6% 385 n @ 1.8% m @ 1.8% m @ 1.8%	3 7 4 10.45 Li2O and 97 64.07 Li2O and 122 Li2O and 70 Li2O and 97 Li2O and 97	1.2 0.4 0.5 1.3 opm Ta2O5 1.3 ppm Ta2O5 ppm Ta2O5 opm Ta2O5	54 119 86 111 from 418m from 425m 93 5 from 342m 6 from 362m from 379m
							394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r and 10 and 4 397	397 406 414 426 m @ 1.6% m @ 1.6% 385 m @ 1.8% m @ 1.8% 409.09	3 7 4 10.45 Li2O and 97g 64.07 Li2O and 122 Li2O and 70 Li2O and 97g 12.09	1.2 0.4 0.5 1.3 opm Ta2O5 1.3 ppm Ta2O5 ppm Ta2O5 ppm Ta2O5 1.6	54 119 86 111 from 418m from 425m 93 5 from 342m 6 from 362m from 379m 137
							394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r and 10 and 4 397 incl. 4	397 406 414 426 m @ 1.6% m @ 1.6% 385 m @ 1.8% m @ 1.8% 409.09 m @ 2.1%	3 7 4 10.45 Li2O and 97g 64.07 Li2O and 98g 64.07 Li2O and 70 Li2O and 97g 12.09 Li2O and 77g	1.2 0.4 0.5 1.3 opm Ta2O5 1.3 opm Ta2O5 ppm Ta2O5 1.6 opm Ta2O5	54 119 86 111 from 418m from 425m 93 5 from 342m 6 from 362m from 379m 137 from 403m
							394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r and 10 and 4 397 incl. 4 301	397 406 414 426 m@1.6% m@1.6% 385 m@1.8% m@1.8% 409.09 m@2.1% 356	3 7 4 10.45 Li20 and 97g 64.07 Li20 and 122 Li20 and 70g Li20 and 97g Li20 and 70g Li20 and 77g 12.09 Li20 and 77g 55	1.2 0.4 0.5 1.3 opm Ta2O5 1.3 opm Ta2O5 ppm Ta2O5 ppm Ta2O5 1.6 opm Ta2O5 1.6 opm Ta2O5	54 119 86 111 from 418m from 425m 93 5 from 342m 6 from 362m from 379m 137 from 403m 96
							394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r and 10 and 4 397 incl. 4 301 incl. 6.2	397 406 414 426 m @ 1.6% m @ 1.6% 385 m @ 1.8% m @ 1.8% 409.09 m @ 2.1% 356 m @ 2.5%	3 7 4 10.45 Li20 and 97; 64.07 Li20 and 122 Li20 and 70; Li20 and 97; 12.09 Li20 and 77; 55 Li20 and 73;	1.2 0.4 0.5 1.3 0pm Ta2O5 1.3 0pm Ta2O5 0pm Ta2O5 1.6 0pm Ta2O5 1.7 0pm Ta2O5	54 119 86 111 from 418m from 425m 93 5 from 342m 6 from 362m from 379m 137 from 403m 96 from 301.8m
							394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r and 10 and 4 397 incl. 4 301 incl. 6.2	397 406 414 426 m @ 1.6% m @ 1.6% 385 m @ 1.8% m @ 1.8% 409.09 m @ 2.1% 356 m @ 2.5%	3 7 4 10.45 Li20 and 97g 64.07 Li20 and 122 Li20 and 70g Li20 and 97g Li20 and 70g Li20 and 77g 12.09 Li20 and 77g 55	1.2 0.4 0.5 1.3 0pm Ta2O5 1.3 0pm Ta2O5 0pm Ta2O5 1.6 0pm Ta2O5 1.7 0pm Ta2O5	54 119 86 111 from 418m from 425m 93 5 from 342m 6 from 362m from 379m 137 from 403m 96 from 301.8m
							394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r and 10 and 4 397 incl. 4 301 incl. 6.2 and 13	397 406 414 426 m@1.6% m@1.8% 385 m@1.8% 409.09 m@1.8% 409.09 m@2.1% 356 m@2.5% m@2.2%	3 7 4 10.45 Li20 and 97; 64.07 Li20 and 122 Li20 and 77; Li20 and 77; 12.09 Li20 and 77; 55 Li20 and 73; Li20 and 91;	1.2 0.4 0.5 1.3 0pm Ta2O5 1.3 0pm Ta2O5 0pm Ta2O5 1.6 0pm Ta2O5 1.7 0pm Ta2O5 1.7 0pm Ta2O5	54 119 86 111 from 418m from 425m 93 5 from 342m 6 from 362m from 379m 137 from 403m 96 from 301.8m
KVDD0045	258199	6958503	522	-83	43	462.6	394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r and 10 and 4 397 incl. 4 301 incl. 6.2 and 13 and 5.6	397 406 414 426 m @ 1.6% m @ 1.8% 385 m @ 1.8% 409.09 m @ 2.1% 356 m @ 2.5% m @ 2.2% m @ 2.1%	3 7 4 10.45 Li20 and 97; 64.07 Li20 and 122 Li20 and 77; Li20 and 77; 12.09 Li20 and 77; 55 Li20 and 73; Li20 and 91;	1.2 0.4 0.5 1.3 0pm Ta2O5 1.3 0pm Ta2O5 0pm Ta2O5 1.6 0pm Ta2O5 1.7 0pm Ta2O5 1.7 0pm Ta2O5 0pm Ta2O5	54 119 86 111 from 418m from 425m 93 5 from 342m 6 from 362m from 379m 137 from 403m 96 from 301.8m 6 from 312m from 331.5m
KVDD0045	258199	6958503	522	-83	43	462.6	394 399 410 415.55 incl. 3 and 1 320.93 incl. 9r and 10 and 4 397 incl. 4 301 incl. 6.2 and 13 and 5.6	397 406 414 426 m @ 1.6% m @ 1.8% 385 m @ 1.8% 409.09 m @ 2.1% 356 m @ 2.5% m @ 2.2% m @ 2.1%	3 7 4 10.45 Li20 and 97; 64.07 Li20 and 122 Li20 and 77; Li20 and 77; 12.09 Li20 and 77; 55 Li20 and 73; Li20 and 91; Li20 and 93;	1.2 0.4 0.5 1.3 0pm Ta2O5 1.3 0pm Ta2O5 0pm Ta2O5 1.6 0pm Ta2O5 1.7 0pm Ta2O5 1.7 0pm Ta2O5 0pm Ta2O5	54 119 86 111 from 418m from 425m 93 5 from 342m 6 from 362m from 379m 137 from 403m 96 from 301.8m 6 from 312m from 331.5m

Appendix 2 (cont.) – Kathleen Valley – Diamond Core Drill hole statistics

P F		(,								-	
Hole_ID East		t North	North RL	RL Dip	Azimuth	Depth (m)	Signifi	cant Li2O (>0.4%) and Ta2O5 (>50ppm) results			
HOIE_ID	Edst	North		Dip	Azimum	Deptil (III)	From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm
							412	414.2	2.2	0.9	110
							420.2	424.1	3.9	0.9	131
KVDD0047	257869	6958726	511	-85	36	500.9	429	438	9	0.9	113
							440	444	4	1.4	112
							489	490.6	1.6	1.9	63
KVDD0048	257535	6958975	505	-58.99	42.63	462.9					
KVDD0049	257535	6958975	505	-74.46	44.16	481.1					
KVDD0050	258384	6958210	550	-78.8	51.43	424.2	Assays pending				
KVDD0051	258128	6958434	524	-79.47	43.31	348					
KVDD0052	258234	6958396	526	-80.04	40.52	348					
KVGT001	258250	6959050	507	-65.4	154.21	224.3					
KVGT002A	258100	6958800	508	-60.31	62.62	249.8	Geotech hole - no assaying completed				
KVGT003	258300	6958650	512	-60.21	44.15	240.8					
KVGT004	258450	6958500	517	-55.43	223.41	150.7					
KVGT005	259100	6958650	512	-59.84	268.01	120.7					
KVGT006	258600	6959200	511	-59.02	332.23	228.7					
KVGT007	258263.6	6959355	508	-50.26	166.9	300.7	-			a	
KVGT008	258304	6959363	508	-50.47	168.68	297.7	- Geotech hole - assays pending		ъ		
KVGT009	258355	6959373	508	-49.42	157.13	246.6					
True widths	estimated	l as follows	s:								
Holes drilled	d towards N	NE (~045) a	nd inter	rsecting	Kathleen's	s Corner lod	les - true v	vidths 85-	100% of dow	nhole widt	h

Holes drilled towards NE (~045) and intersecting Kathleen's Corner lodes - true widths 85-100% of downhole width Holes drilled towards NE (~045) and intersecting Mt Mann lodes - true widths 65-80% of downhole width Holes drilled towards SW (~225) and intersecting Kathleen's Corner lodes - true widths 65-75% of downhole width Holes drilled towards SW (~225) and intersecting Mt Mann lodes, true widths 30-50% of downhole width

Appendix 3 – Kathleen Valley – JORC Code 2012 Table 1 Criteria

The table below summaries the assessment and reporting criteria used for the Kathleen's Corner and Mt Mann deposits, Kathleen Valley Lithium Project Mineral Resource estimate and reflects the guidelines in Table 1 of *The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves* (the JORC Code, 2012).

Criteria	npling Techniques and Data	Commontary
	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Sub-surface samples have been collected by reverse circulation (RC) and diamond core drilling techniques (see below). Drillholes are oriented perpendicular to the interpreted strike of the mineralised trend except in rare occasions where limited access necessitates otherwise.
	Initiating the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules)	 otherwise. RC samples are collected by the metre from the drill rig cyclone as two 1 m cone split samples in calico bags and a bulk sample in plastic mining bags. The 1 m samples from the cyclone are retained for check analysis. Only samples of pegmatite and adjacent wall rock (~4 m) are collected for assay. Diamond core has been sampled in intervals of ~ 1 m (up to 1.18 m) where possible, otherwise intervals less than 1 m have been selected based on geological boundaries. Geological boundaries have not been crossed by sample intervals.
	may warrant disclosure of detailed information.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling techniques used at Kathleen Valley comprise: Reverse Circulation (RC/5.5") with a face sampling hammer NQ Diamond Core, standard tube to a depth of ~450 m. HQ Diamond Core, standard tube to a depth of ~200 250 m. PQ Diamond Core, standard tube to a depth of ~200m. Diamond core holes drilled directly from surface or from bottom of RC precollars. Core orientation was provided by an ACT REFLEX (ACT II RD) tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 Sample recoveries are estimated for RC by correlating sample heights in the green mining bag to estimate a recovery for each metre. For diamond core the recovery is measured and recorded for every metre.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 RC drill collars are sealed to prevent sample loss and holes are normally drilled dry to prevent poor recoveries and contamination caused by water ingress. Wet intervals are noted in case of unusual results. For diamond core loss, core blocks have been inserted in sections where core loss has occurred. This has then been written on the block and recorded during the logging process and with detailed photography of dry and wet core.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 It has been demonstrated that no relationship exists between sample recovery and grade. No grade bias was observed with sample size variation.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource	 All RC drillholes are logged on 1 m intervals and the following observations recorded: Recovery, quality (i.e. degree of contamination), wet/dry, hardness, colour, grainsize, texture,

ASX: LTR

personnel.

Criteria	JORC Code explanation	Commentary
	estimation, mining studies and metallurgical studies.	 mineralogy, lithology, structure type and intensity, pegmatite and vein type and %, lithium mineralogy and %, alteration assemblage, UV fluorescence. Diamond core is logged in its entirety as per detailed geological description listed above. Geotechnical logging has been completed for the entire hole.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 Logging is quantitative, based on visual field estimates. Diamond core is photographed post metre marking, for the entire length of the hole, two trays at a time, wet and dry.
	The total length and percentage of the relevant intersections logged.	Holes are logged in their entirety.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	 The core has been cut in half and then quartered for sample purposes. Half core will be used for metallurgical studies with the remaining quarter stored as a library sample. Density measurements have been taken on all quarter core samples using the Archimedes method.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples are collected as rotary split samples. Samples are typically dry.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Sample preparation follows industry best practice standards and is conducted by internationally recognised laboratories; i.e. Oven drying, jaw crushing and pulverising so that 80% passes -75 microns.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	 Duplicates and blanks submitted approximately every 1/20 samples. Standards are submitted every 20 samples or at least once per hole. Cross laboratory checks and blind checks have been used at a rate of 5%.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 Measures taken include: regular cleaning of cyclones and sampling equipment to prevent contamination industry standard insertion of standards, blanks and duplicate samples Analysis of duplicates (field, laboratory and umpire) was completed and no issues identified with sampling representatively. Analysis of results from blanks and standards indicates no issues with contamination (or sample mix-ups) and a high level of accuracy.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample size is considered appropriate for the preparation of a Mineral Resource Estimate
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Initial assaying (2017) completed by ALS Perth. Subsequent assaying (2018 onwards) completed by Nagrom laboratories Perth. Both laboratories use industry standard procedures for rare metals such as Li and Ta. Analytical techniques are total.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	None used.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Duplicates and blanks submitted approximately every 20 samples. Standards are submitted every 20 samples or at least once per hole. Cross laboratory checks and blind checks have been used at a rate of 5%. Analysis of reference blanks, standards and duplicate samples show the data to be of acceptable accuracy and precision for the Mineral Resource estimation and classification applied.
	The verification of significant intersections by either independent or alternative company personnel	Internal review by alternate company personnel.

(TD)

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	The use of twinned holes.	12 diamond holes have been drilled as twins or in close proximity to existing RC drill holes. Results compare well with the original RC drill holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Drilling and logging data is entered directly into Microsoft Excel spreadsheets onsite while drilling is ongoing. Data is then entered into Access Database and validated before being processed by industry standard software packages such as MapInfo and Micromine. Representative chip samples are collected for later
	Discuss any adjustment to assay data.	 reference. Li% is converted to Li₂O% by multiplying by 2.15, Ta ppm is converted to Ta₂O₅ ppm by multiplying by 1.22.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 All drill collars and geochemical samples are initially located using a handheld GPS. Drill collars are subsequently surveyed accurately by a licensed surveyor using DGPS techniques. Eastings and northings are measured to within +/- 2cm while elevations are measured to within +/- 10cm. All RC drillholes have been surveyed by a multi-shot digital downhole camera provided by the drilling contractor. All diamond drillholes have been surveyed with a REFLEX EZI-SHOT (1001) magnetic single shot camera.
	Specification of the grid system used.	GDA 94 Zone 51
	Quality and adequacy of topographic control.	 Initial collar elevations are based on regional topographic dataset and GPS. Drillhole collars are surveyed post drilling with DGPS. Further topographic data (20cm contours) has been provided for the Project by a LIDAR flown by Fugro.
Data spacing	Data spacing for reporting of Exploration	Varies due to initial drill programmes largely
and distribution	Results.	designed to test the down-dip potential of mineralised outcrops. The drill section spacing is 40 m to 100 m and on-section spacing is generally 30 m to 60 m.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	• The data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource estimation and classification applied.
	Whether sample compositing has been applied.	None undertaken.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Drilling is typically oriented perpendicular to the interpreted strike of mineralisation. KVRC0015 was oriented at 45° to strike due to access issues and the need to test the main outcrop zone.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	• Drilling orientation intersects the mineralisation at appropriate angles so as to be mostly unbiased and suitable for resource estimation of the major pegmatite bodies.
Sample security	The measures taken to ensure sample security.	 Sample security is not considered to be a significant risk given the location of the deposit and bulk-nature of mineralisation. Nevertheless, the use of recognised transport providers, sample dispatch procedures directly from the field to the laboratory, and the large number of samples are considered sufficient to ensure appropriate sample security. Company geologist supervises all sampling and subsequent storage in field. The same geologist arranges delivery of samples to Nagrom laboratories in Perth via courier.
Audits or	The results of any audits or reviews of sampling	Independent, expert competent person reviews have
reviews	techniques and data.	been completed by Michelle Wild of Wildfire Resources Pty Ltd and Christine Standing of Optiro

Criteria	JORC Code explanation	Commentary
		 Limted on the resource drilling, sampling protocols and data. This included a laboratory visit to Nagrom by Michelle Wild. Results have not indicated any significant discrepancies.

Section 2 Reporting of Exploration Results

Criteria	rting of Exploration Results JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Kathleen Valley Project is located ~680 km NE of Perth and ~45 km NNW of Leinster in Western Australia. The Project comprises four granted mining leases - MLs 36/264, 265, 459, 460 and one Exploration License - E36/879. The mining leases (MLs) were acquired from Ramelius Resources Limited via a Sales Agreement completed in 2016. The MLs have been transferred to LRL (Aust) Pty Ltd, a wholly owned subsidiary of Liontown Resources Limited (Liontown). Ramelius acquired 100% of the Kathleen Valley Project MLs in June 2014 from Xstrata Nickel Operations Pty Ltd (Xstrata). Xstrata retains rights to any nickel discovered over the land package via an Offtake and Clawback Agreement. LRL (Aust) Pty Ltd has assumed the following Agreement: Bullion and Non-Bullion Royalty Agreement of a 2% Gross Production Royalty affecting M36/264-265 and 459-460. The EL is in the name of Liontown Resources Limited with no third-party obligations apart from statutory requirements. The tenements are covered by the Tjiwarl Determined Native Title Claim (WC11/7). Liontown has signed Access Agreements with the NT group. LRL (Aust) Pty Ltd has received Section 18 consent to drill on certain areas within M36/459 and M36/460
Exploration done by other parties	obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties.	 Multiple phases of exploration have previously been completed for gold and nickel. There has been limited sporadic prospecting for Li, Ta and Sn, principally by Jubilee Mines (subsequently taken over by Xstrata). Work comprised geological mapping, broad spaced soil sample lines and rock chip sampling of the pegmatites. Details of the methods and procedures used have not been documented. There has been no previous drill testing of the Li and Ta prospective pegmatites prior to Liontown acquiring the Project.
Geology	Deposit type, geological setting and style of mineralisation.	 The Project is located on the western edge of the Norseman- Wiluna Belt within the Archaean Yilgarn Craton. The Kathleen Valley Project contains a series of quartz-feldspar-muscovite-spodumene pegmatites hosted in mafic rocks related to the Kathleen Valley Gabbro or the Mt Goode Basalts. The pegmatites are LCT type lithium bearing-pegmatites.
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole 	 When reporting Exploration Results, see figures and appendices in accompanying report When reporting Mineral Resource Estimate, diagrams in the announcement show the location of and distribution of drill holes in relation to the resource.

Criteria	JORC Code explanation	Commentary
	 down hole length and interception depth hole length. 	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Li₂O intercepts calculated using 0.4% cut off with a maximum 2m internal dilution typically applied except where drill hole logging (e.g. continuous pegmatite) and assays indicate wider dilution is warranted as overall grade is high enough to allow mining to take entire geological unit. Higher grade intervals calculated using 1.5% Li₂O cut off. No upper cuts applied. Ta₂O₅ values only quoted when lithium intersections reported. Not relevant when only reporting definition of Mineral Resource Estimation.
Relationship between mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 Estimates of true widths provided at end of Appendices attached to ASX announcements which list drill hole statistics Not relevant when only reporting definition of Mineral Resource Estimation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 When reporting Exploration Results, see figures and appendices in accompanying report Not relevant if only reporting definition of a Mineral Resource estimate.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All recent exploration results reported and tabulated. Not relevant if only reporting definition of a Mineral Resource estimate.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Where relevant, this information has been included or referred to elsewhere in this Table.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Further RC and diamond core drilling (15,000-25,000m) to expand current MRE Option studies to define parameters for DFS. DFS.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	 Drillhole data was extracted directly from the Company's drillhole database, which includes internal data validation protocols. Data was further validated by Optiro upon receipt, and prior to use in the estimation.
	Data validation procedures used.	 Validation of the data was confirmed using mining software (Datamine) validation protocols, and visually in plan and section views.
Site visits	Comment on any site visits undertaken by the Competent Persons and the outcome of those visits.	 Senior Liontown personnel Mr Richards and Mr Day have visited the site on numerous occasions to supervise the drilling programmes. Ms Wild (Principal Geologist and Director of Wildfire Resources Pty Ltd) and Mrs Standing (Optiro Limited) have visited the site on separate occasions during resource definition drilling programmes to review sampling procedures. Ms Wild (Principal Geologist and Director of Wildfire Resources Pty Ltd) visited the site during the resource definition drilling programme to review sampling procedures. Ms Wild (Principal Geologist and Director of Wildfire Resources Pty Ltd) visited the site during the resource definition drilling programme to review sampling procedures. Ms Wild reported that, in general, site practices were quite good, core quality

Criteria	JORC Code explanation	Commentary
		 was excellent and RC sample quality was moderate Mrs Standing has confirmed site practices are appropriate and satisfactory for the preparation of a Mineral Resource Estimate.
Geological interpretation	Confidence in (or conversely, the uncertainty of the geological interpretation of the mineral deposit.	• The confidence in the geological interpretation is reflected by the assigned resource classification.
	Nature of the data used and of any assumptions made.	 Both assay and geological data were used for the mineralisation interpretation. The lithium mineralisation is defined by a nominal 0.4% Li₂O cut-off grade. Continuity between drillholes and sections is good.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	 No alternative interpretations were considered. Any alternative interpretations are unlikely to significantly affect the Mineral Resource estimate.
	The use of geology in guiding and controlling Mineral Resource estimation.	 Geological logging (including spodumene crystal orientation from the diamond core) has been used for interpretation of the pegmatites.
	The factors affecting continuity both of grade and geology.	 The mineralisation is contained within pegmatite veins that are readily distinguished from the surrounding rocks. Sectional interpretation and wireframing indicates good continuity of the interpreted pegmatite veins
		 The confidence in the grade and geological continuity is reflected by the assigned resource classification.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface	 Seventeen mineralised pegmatites have been identified at the Kathleen Valley Project which extend from surface to a depth of 400 m.
	to the upper and lower limits of the Mineral Resource.	 Eleven sub-horizontal pegmatites (dip of 0° to -10° to west) have been drilled over an area of 1,100 m by 600 m at Kathleen's Corner. These pegmatites outcrop at Kathleen's Corner, extend down dip to M Mann and have an average thickness of 5 m. In addition, there are four moderately dipping (-15° to -45° to the west) pegmatites at Kathleen's Corner with an average thickness of 3 m. An additional sub-horizontal pegmatite, which is obscured by shallow cover, has been drilled within
		 the north-western area of Kathleen's Corner with a strike length of 400 m and an average thickness of m. At Mt Mann two steeply dipping (-70° west) pegmatites have been drilled over a strike length o 900 m and to a vertical depth of 260 m. The
		 pegmatites have an average thickness of 8 m and 10 m. The pegmatites merge at depth to form a single, up to 75m thick feeder zone.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data	 Lithium oxide (Li₂O) % and tantalum pentoxide (Ta₂O₅) ppm block grades were estimated using ordinary kriging (OK). Optiro considers OK to be a appropriate estimation technique for this type of mineralisation.
	points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	 The nominal spacing of the drillholes is 50 m by 50 The along section spacing ranges from 40 m to 100 and on-section spacing ranges from generally 30 n 60 m.
		 A maximum extrapolation distance of 50 m was applied along and across strike and the steeply dipping pegmatites at Mt Mann were extrapolated t a maximum of 100 m down-dip.
		 Data analysis and estimation was undertaken using Snowden Supervisor and Datamine software. Over 93% of the assay data is from samples of 1 m intervals, 0.3% is from sample of >1 m (to a maximum of 1.18 m) and 6% is from intervals of less than the same set of the same set of
		 than 1 m. The data was composited to 1 m interva for analysis and grade estimation. Variogram analysis was undertaken to determine the

Criteria	JORC Code explanation	Commentary
		 kriging estimation parameters used for OK estimation of Li₂O and Ta₂O₅. Li₂O mineralisation continuity was interpreted from variogram analyses to have an along strike range of 110 m to 140 m and a down-dip (or across strike) range of 32 m to 112 m. Ta₂O₅ mineralisation continuity was interpreted from variogram analyses to have an along strike range of 110 m to 130 m and a down-dip (or across strike) range of 35 m to 93 m. Kriging neighbourhood analysis was performed in order to determine the block size, sample numbers and discretisation levels. Three estimation passes were used for Li₂O and Ta₂O₅; the first search was based upon the variogram ranges; the second search was two times the initial search and the third search was up to seven times the second search and second and third searches had reduced sample numbers required for estimation. The majority of Li₂O block grades (almost 63%) were estimated in the first pass, 22% in the second pass and the remaining 5% in the third pass. The Li₂O and Ta₂O₅ estimated block model grades were visually validated against the input drillhole data and comparisons were carried out against the declustered drillhole data and by northing, easting
	Description of how the geological interpretation was used to control the resource estimates.	 and elevation slice. Geological interpretations were completed on sections which were wireframed to create a 3D interpretation of the mineralised pegmatites. The interpretation of mineralisation was by Liontown based on geological logging and Li₂O content. A nominal grade of 0.4% Li₂O was used to define the mineralisation within the interpreted pegmatites. The mineralised domain is considered geologically robust in the context of the resource classification applied to the estimate.
	Discussion of basis for using or not using grade cutting or capping.	 Li₂O and Ta₂O₅ have low coefficients of variation (CV). Some higher-grade outliers were noted and both the Li₂O and Ta₂O₅ grades were capped (top- cut). The top-cut levels were determined using a combination of top-cut analysis tools, including grade histograms, log probability plots and the CV.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	 Mineral Resources have not previously been reported for this deposit area and no production has occurred.
	The assumptions made regarding recovery of by- products.	 No assumptions have been applied for the recovery of by-products. Metallurgical test work is ongoing to determine the recoveries that could be expected.
	Estimation of deleterious elements or other non- grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	 Deleterious elements were not considered for the Mineral Resource estimate. Further test work is planned. Early results indicate low levels of Fe within the mineralised pegmatites. Sulphur assays have been determined for more than 27,000 host rock samples – results indicate that acid mine drainage will not be a significant environmental factor.
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	 Grade estimation was into parent blocks of 10 mE by 15 mN by 1.0 mRL. Block dimensions were selected from kriging neighbourhood analysis and reflect the variability of the deposit as defined by the current drill spacing. Sub-cells to a minimum dimension of 2 mE by 2.5 mN by 0.5 mRL were used to represent volume.
	Any assumptions behind modelling of selective mining units.	Selective mining units were not modelled.
	Any assumptions about correlation between variables.	• Li_2O and Ta_2O_5 are not correlated. Both Li_2O and Ta_2O_5 were estimated independently.

Criteria	JORC Code explanation	Commentary
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	No production has taken place and thus no reconciliation data is available.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages have been estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The Mineral Resource estimate for the Kathleen Valley Deposit has been reported above a cut-off grade of 0.5 % Li₂O to represent the portion of the resource that may be considered for eventual economic extraction. This cut-off grade has been selected by Liontown Resources in consultation with Optiro based on current experience and in-line with cut-off grades applied for reporting of Mineral Resources of lithium hosted in spodumene bearing pegmatites elsewher in Australia.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous.	 The mineralisation at Kathleen's Corner and Mt Mann extends from surface and would be suitable for open pit mining. The Kathleen Valley Lithium Project is located in a well-established mining region and in close proximi to existing close to existing transport, energy and camp infrastructure. On the basis of these assumptions, it is considered that there are no mining factors which are likely to affect the assumption that the deposit has reasonable prospects for eventual economic extraction.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous.	 A Pre-feasibility level testwork program was conducted ALS in Perth to provide sufficient test data to develop th process design criteria for the project. A total of 81 intercepts from across the three main area (Mount Mann, Kathleen Corner and North) were selected for the pre-feasibility study. A master composite was created for testing from these samples which a representative of the whole deposit and include a rang of grades and depths. No variability testing has bee undertaken at this time. Key aspects of the metallurgical test work included th following: Head assay. SMC testing on five comminution samples Size by size assay. Crushing and wet screening at three sizes Heavy liquid separation of a bulk sample Bond ball work index on DMS middlings Magnetic separation to remove ferror materials Rougher flotation to examine collector choic residence time, desliming and conditioning Cleaner flotation to examine residence tim and number of stages Thickening of flotation and slime tailings (progress) Filtration of concentrate Rheology of tailings Key results indicated: Samples were moderately competent wit comminution results similar to other pegmatitic Size by size and wet screening data indicated that there was a trade off in crush size and screen size with liberation. A finer crush size increased fines production. A crush size

Criteria	JORC Code explanation	Commentary
		 Grind optimisation of the flotation feelindicated a primary grind of 125 microns gave the best recovery and was selected for subsequent testwork Rougher flotation testwork indicated that modified oleic acid collector gave the best flotation performance Batch cleaner flotation results indicated concentrate with a grade of more than 6% Light could be produced together. Concentrate filtration testwork, currently bein finalised, has indicated that vacuum filtration will be adequate for dewatering. Rheology testwork indicated the tailings has low viscosity at the proposed tailings density. The overall metallurgical recovery estimated from the flowsheet testing and batch flotation. The metallurgicat process proposed is used in several Lithium project currently operating in Western Australia. The process has been tested at pre-feasibility level in the laboratory an further work to the proposed tailon to the process has been tested at the concentrate of the protect testing and batch flotation.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation.	 further work is planned at the next stage. Baseline flora and fauna studies have been completed and it is considered unlikely given currer knowledge that impacts on conservation significant flora, fauna and ecological communities will result from development of the project. Further baseline studies are scheduled during the
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	 PFS and DFS Bulk density was measured for 575 core samples from diamond holes using Archimedes measurements. The density data has a range of 2.08 to 3.34 t/m³. A bulk density of 2.69 t/m³ was assigned to the oxid and transitional material and 2.74 t/m³ was assigned to the fresh material.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	 Mineral Resources have been classified as Measured, Indicated or Inferred. In general, the pegmatites at Kathleen's Corner tha have been tested by the 50 m by 50 m spaced drill holes, have high confidence in the geological interpretation and have higher estimation quality have been classified as Measured. Areas tested by the 50 m by 50 m spaced drill and with poorer estimation quality were classified as Indicated, and areas where the drill spacing is up to 60 m by 100 r have been classified as Inferred.
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	 The Mineral Resource has been classified on the basis of confidence in geological and grade continuity and taking into account the quality of the sampling and assay data, data density and confidence in estimation of Li₂O and Ta₂O₅ content (from the kriging metrics).
	Whether the result appropriately reflects the Competent Person's view of the deposit	 The assigned classification of Measured, Indicated and Inferred reflects the Competent Persons' assessment of the accuracy and confidence levels the Mineral Resource estimate.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 The Mineral Resource has been reviewed internally as part of normal validation processes by Optiro. No external audit or review of the current Mineral Resource has been conducted.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person.	The assigned classification of Measured, Indicated and Inferred reflects the Competent Persons' assessment of the accuracy and confidence levels the Mineral Resource estimate.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation.	The confidence levels reflect potential production tonnages on a quarterly basis, assuming open pit mining.

Criteria	JORC Code explanation	Commentary
	Documentation should include assumptions made and the procedures used.	
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	No production has occurred from the deposit.

Criteria	JORC Code explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	 Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. 	The mineral Resource Estimate used as a basis for the conversion to the Ore Reserve was provided on the 19th July with Christine Standing, employee of Optiro, as the Competent Person. The total Mineral Resource of 74.9Mt at 1.3% Li ₂ O includes 17.6Mt of Measured at 1.3% Li ₂ O, 44.7Mt of Indicated at 1.3% Li ₂ O and 12.7Mt of Inferred at 1.2% Li ₂ O. The Mineral Resources are reported inclusive of the Ore Reserve.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The competent person, Mr Jake Fitzsimons, visited the proposed project site on 28th September 2019. The following observations were made: The site is accessed directly from the Goldfields Highway. The site is dominated by Mt Mann which rises approximately 50m above the surrounding terrain, and Jones Creek dry watercourse which passes through the northern half of the mining area flowing from east to west. Existing access between the North and South deposits is across Jones Creek via a 10m wide concrete ford with opportunity to widen to 12-15m without disturbing any trees. Pegmatite outcrop exists across the site Drilling core examined on site was hard and very competent in both the gabbro hanging wall rock an pegmatite ore zones.
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. 	 A pre-feasibility study was completed in 2019 and forms the basis of the majority of the assumptions for reporting an Ore Reserve. The 2019 PFS report was compiled by Lycopodium on behalf of Liontown with input from: Optiro (geology) Orelogy Consulting (mine planning) Lycopodium (metallurgical testwork, process desig and non-process infrastructure) AQ2 (hydrology and hydrogeology) MBS Environmental (environmental) Knight Peisold (tailings storage) Liontown (financial analysis) Modifying factors considered in the mine planning process included mining dilution and oreloss, slope design criteria and practical mining considerations. The activities and findings of all other disciplines are summarised in the 2019 PFS document, including details of other modifying factors, environmental and heritage considerations, etc.
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	The Ore Reserves are reported at a 0.5% Li ₂ O cut-off grade, in line with the reporting of the Mineral Resources. This cut-off is above the theoretical economic cut-off of 0.34% Li ₂ O and has been adopted

Criteria	JORC Code explanation	Commentary
		as the grade tonnage curve shows very little material below this grade.
Mining factors or assumptions	 The method and assumptions used as reported in the Pre-Feasibility of Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining recovery factors used. Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	 The Ore Reserve is underpinned by a mine plan that delivers pegmatites for processing on site to produce spodumene concentrate for export via the Geraldton port. The mine planning activities included open pit optimisation, final and interim stage designs, mine scheduling and cost estimation. The mine plan indicated that the Ore Reserve derived from the Mineral Resource Estimate can easily meet the processing feed requirements for the 2.0Mtpa productiot target with a mine life of approximately 26 years. A conventional open pit mining method using 200-300t excavators and 130t rigid dump trucks was selected as the preferred mining method. This method is common in the area and well suited to selectively mining the flat lying pegmatite mineralisation which is relatively close to surface requiring minimal pre-strip. All material will be blasted. Bulk waste will be blasted on 12m benches and the ore zones will be blasted on 6m benches and mined in two flitches with ore delivered to blend fingers on the ROM pad. Geotechnical guidance was provided by Peter O'Bryan and Assoc. with an allowance for ramps on the footwall and geotechnical berms on the hanging walls. Oxidation is shallow from 5-20m in depth with slope angles of ~50 on the hanging wall and ~45 ° on the footwall. As the Kathleen Valley orebody dips at substantially less than wall angle constraints, the pit shells are optimally shallower than these angles to the south-west. An allowance for Grade Control drilling was made based on a dedicated RC drilling program at 24m vertical intervals. The July 2019 Datamine Mineral Resource model (kv_or_190702.dm) was used as a basis for the conversion to an Ore Reserve. No value was applied to Tantalum. Material beneath the Jones Creek watercourse was excluded from optimisation including a 30m buffer plus the application of high mining costs to blocks below a slope angle of 45° extrapolated from the exclusion zone for th

Criteria	JORC Code explanation	Commentary
		Mining infrastructure was limited to a ROM pad, haul roads, workshop and other buildings for a Contractor mining strategy.
Metallurgical factors or assumptions	 The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well- tested technology or novel in nature. The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. Any assumptions or allowances made for deleterious elements. The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? Environmental The status of studies of potential environmental impacts 	The metallurgical process proposed is used in several existing Lithium projects. The process has been tested at pre-feasibility level in the laboratory and further work is planned. A total of 81 intercepts from across the three main areas (Mount Mann, Kathleen Corner and North) were selected for the pre-feasibility study. These samples include a spatial spread, grade range and depth. A master composite was created for testing. No variability testing has been undertaken at this time. The overall metallurgical recovery estimated from the flowsheet testing was 76% based on a combination of dense media testing and batch flotation. Preliminary work on iron, MgO and MnO has been undertaken. Further work will be done in the next phase. A bulk sample of over 4000kg has been prepared from multiple drill core intercepts and will be used as the basis for the next phase of testing. Geochemical characterisation of waste rock has been completed with representative samples (70 fresh rock, 24 oxide and transitional waste and 4 low grade ore samples) assessed for potential for saline, neutral or acid and metalliferous drainage (AMD) as well as other general geochemical properties. Several minor pockets of potentially acid forming (PAF) material was identified to be present in the dolerite gabbro and contact zone waste rock materials of the Mt Mann mine area. Provided parcels of PAF material originating from the dolerite gabbro and contact zone mine wastes are managed appropriately, there is a low risk of fresh waster rock adversely impacting groundwater and surface water quality via seepage or run-off from rainfall.
Infrastructure	The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	Preliminary characterisation of coarse and fine tailings generated by metallurgical test work has been completed. Samples were assessed for potential of saline, neutral or acid and metalliferous drainage (AMD) as well as other general geochemical and some physica properties. Full characterisation is still being completed. Preliminary results indicate both course and fine tailings are unlikely to pose risk to the environment and as such do not require specialised storage facilities The project is well served by existing infrastructure with the Goldfields Highway which runs adjacent to the project. There is a 132kV powerline (5km to the West) and the goldfields gas pipeline (11km to the East) to provide mains power or a site-based power station. The process plant and waste stockpiles can be constructed on existing mining licences. Preliminary modelling provides confidence that sufficient available bore water of good quality is available from
Costs	The derivation of, or assumptions made, regarding projected capital costs in the study.	within the Liontown tenements. A desktop study confirms that the concentrate can be trucked on sealed roads from site to the port of Geraldton where an environmental license would be required to export the Spodumene concentrate – due to the benign nature of the product, approval is unlikely to be withheld. The study assumes a camp will be constructed within the current tenements and labour supply is not considered a problem due to its location within driving distance of Kalgoorlie and the region is serviced by regular charter flights to Mt Keith and Leinster from Pert The capital cost estimate has been based on a mechanical equipment list with budget pricing for major equipment together with recent database rates for bulks

Criteria	JORC Code explanation	Commentary
	 The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The source of exchange rates used in the study. Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private 	 such as concrete and steel. Electrical and earthworks were estimated separately. Operating cost estimates were based on budget quotes for consumables and a benchmarked salary schedule. Other costs have been supplied by Liontown and from Lycopodium database. No specific allowances for deleterious elements have been made. Forecast exchange rates for USD: AUD were sourced from a limited number of banks providing long term forecasts with a range of 0.68 to 0.82 (excluding outliers). Liontown has assumed 0.72 as its life of mine exchange rate.
		 Haulage and ship loading costs were provided by an established haulage company that currently provides stevedoring services at the port of Geraldton. Port costs were obtained from the Port of Geraldton. Estimated shipping costs were used to determine CIF costs to potential off-takers. The following government royalties and private royalties have been included in the financial analysis as detailed below: WA state Royalty - 5% gross sales Private royalties - 3% gross sales and A\$0.50/t ore mined and milled
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	 Spodumene pricing was based on average forecast estimates provided by Roskill as discussed in the main body of this announcement. Spodumene revenue factors were: An average spodumene price of US\$720/t CIF China for 6% Li₂O content using an exchange rate of 0.72 USD/AUD Transport and port charges of \$76.26/wt conc. Shipping costs of \$43.17/wt conc State royalty of 5% and private royalties of 3% gross sales and a A\$0.50 per tonne mined and milled
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance 	No value or credit was applied to Tantalum and no penalties for contaminants were assumed. Demand for lithium is expected to increase significantly over the next decade driven by the use of lithium ion batteries in automotive applications. Whilst there is a current oversupply of spodumene concentrate largely because of new mine capacity in Australia, it is expected that reduction in mine output from mines in Australia in 2019 may start a phase of rebalancing. With continued strong demand and consumption growth, a supply deficit is expected to occur in the mid-2020's. A customer and competitor analysis was not undertaken
Economic	 requirements prior to a supply contract. The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs 	however market windows for the product have been considered with pricing forecasts provided by Roskill. An 8% real discount rate (using industry standard assumptions in calculating a WACC) has been utilised to determine the NPV for the Kathleen Valley Project. A range of sensitivities to significant assumptions and inputs has been provided in the body of this announcement including spodumene prices, exchange rates, metallurgical recoveries, lithium grade, capex and opex.
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	The Tjiwarl People are Traditional Owners of the area that actively overlays the Project. The project area is located on granted mining leases and Liontown has signed a Heritage Agreement with the Tijwarl People relating to exploration activities.

Criteria	JORC Code explanation	Commentary
		Liontown has signed a Negotiation Protocol with the Tijwarl People in respect to completing a mining agreement for the project.
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: 	There are no obvious or likely naturally occurring risks that have been identified or which may negatively impact the Project or Project area.
	 Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. 	Liontown is a 100% owner of the deposit and has not entered into any arrangements regarding future off take arrangements.
	 The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent. 	All statutory government agreements, permits and approvals commensurate to the status of the project are current and in good order. Timeframes for Agreements relevant to the 2019 PFS were handled appropriately and have not put the project at risk. Agreement timeframes in respect to the project will be handled with similar accord so as not to put the future studies and project development at risk also.
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured 	Proved Ore Reserves were determined from Measured Resource material and Probable Ore Reserves were determined from Indicated Resource material as per the guidelines. These results reflect the Competent Persons view of the deposit.
Audits or	 Mineral Resources (if any). The results of any audits or reviews of Ore 	Probable Ore was derived from Indicated material only. The Ore Reserve estimate has been peer reviewed
reviews	 The results of any audits of reviews of Ore Reserve estimates. 	internally by Orelogy Consulting Pty Ltd.
Discussion of relative accuracy/	Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an	The Mineral Resource, and hence the associated Ore Reserve, relate to global estimates.
confidence	approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect	The Ore Reserve estimate is an outcome of the 2019 Mining Pre-Feasibility Study with geological, mining, metallurgical, processing, engineering, marketing and financial considerations to allow for the cost of finance and tax. Engineering and cost estimations have been done to a $\pm 25\%$ level of accuracy, consistent with a study of this nature.
	 the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if 	Liontown's financial model estimated a post-tax NPV_ $_{8\%}$ of approx. A\$507M, and IRR of 25%, which demonstrates that the project is economic.
	local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	 Sensitivity analysis undertaken during the pit optimisations shows that: Overall pit size is insensitive to either costs, slope changes and only mildly sensitive to price and recovery.
	 Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. 	 Ore tonnes recoverable are moderately sensitive to dilution, ore loss and recovery and slightly sensitive to costs or slope angles. Discounted cash flow for the project is highly sensitive to parameters that directly affect revenue (i.e. commodity prices, recovery and exchange rate) and far less so to changes in other
	 It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	The low sensitivity to cost variations provide reasonable confidence in the Ore Reserve estimate. However, there is no guarantee that the price assumption, while reasonable, will be achieved.