

23 January 2020

Australian Securities Exchange Limited 20 Bridge Street Sydney NSW 2000

HAMERSLEY MINERAL RESOURCE UPGRADE TO JORC 2012 COMPLIANCE

Key Points:

- Indicated Resource: 42.6 Mt at 55.2% Fe (57.3% CaFe)
- Total Mineral Resource: 343.2 Mt at 54.5% Fe (57.9% CaFe)
- Independent review completed of previous Mineral Resource JORC Code (2004) estimate reported by Runge Pinnock Minarco Limited
- Independent review of QAQC procedures for the historic drilling, sampling and assaying work completed to ensure compliance with JORC Code (2012)
- Independent re-modelling of the historical drilling, sampling and assay data to validate previous Mineral Resource estimate and to allow a Mineral Resource estimate to be reported in accordance with the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code 2012)

Winmar Resources Ltd (**Winmar** or the **Company**) (**ASX Code: WFE**) is pleased to advise that it has completed a review and upgrade from JORC 2004 to JORC 2012 of Mineral Resource estimates for its 70% owned Hamersley Iron Project.

The Hamersley Iron Project comprises Mining Lease M47/1450, and is located approximately 50 km northeast of Tom Price in the Pilbara region of Western Australia, immediately south of the Solomon project held by Fortescue Metals Group Ltd (ASX: FMG) and north of Rio Tinto's Rail network.

Winmar's interest in the Hamersley Iron Project is held through an unincorporated joint venture, the Winmar Exploration Joint Venture (**WEJV**) between Winmar (70%) and Lockett Fe Pty Ltd (30%) (a wholly owned subsidiary of Cazaly Resources ASX:CAZ (**Cazaly**))

The Hamersley Iron Project has been the subject of several reverse circulation and diamond drilling exploration programs since 1998, and in total 168 holes have been drilled for 22,621m of drilling.

The Hamersley Iron Project includes both Channel Iron Deposit (**CID**) and Detrital Iron Deposit (**DID**) styles of iron mineralisation. The CID is a coherent body at least 2.0 km by 2.5 km in area and, in the southwest, is overlain by DID mineralisation comprising unconsolidated detrital material.

The mineralisation remains open in several directions, particularly to the north.

Winmar Resources 20 Kings Park Road West Perth WA 6010

PO Box 1024 West Leederville WA 6007

> P: (08) 6462 1421 F: +61 (8) 6323 0418

Previous exploration results from the various drilling programs undertaken on the Hamersley Iron Project have been announced in various ASX Announcements to shareholders and specifically include: Independent Technical Report – Prospectus dated 10 January 2011, Immediate Drill Success at Winmar Deposit Extensions dated 20 April 2011, Continued Success at Winmar Deposit dated 16 May 2011, Further Encouraging Results At Hamersley Project dated 30 May 2011, Further Encouraging Results From RC Drilling Hamersley Iron Ore Project dated 30 June 2011, Winmar – Excellent Results Keep Coming dated 25 August 2011, New Discovery – Hamersley Project dated 6 September 2011, Hamersley Project Exploration Update date 4 April 2012, Drilling At Hamersley Iron Ore Project Intersects Significant Extensions Of Mineralisation dated 14 June 2012, Significant Drilling Intercepts From Hamersley Project dated 16 July 2012, Outstanding High Grade Drilling Intercepts From Hamersley Project dated 23 July 2012, Winmar Expands Hamersley Iron Ore Resource By 52% dated 21 August 2012, Outstanding High Grade Drilling Intercepts At Hamersley Iron Project dated 16 April 2013 and Maiden Indicated Mineral Resource At The Hamersley Iron Project dated 23 May 2013.

INDICATED MINERAL RESOURCE (JORC 2012)									
Mineralisation Type	Tonnes	Fe	SiO2	Al2O3	Р	LOI	CaFe ¹		
	Mt	%	%	%	%	%	%		
Channel (CID) ²	42.6	55.2	10.9	5.5	0.0	3.6	57.3		
Total	42.6	55.2	10.9	5.5	0.0	3.6	57.3		

INFERRED MINERAL RESOURCE (JORC 2012)										
Mineralisation Type	rpe Tonnes Fe SiO2 Al2O3 P LOI CaF									
	Mt	%	%	%	%	%	%			
Detrital (DID) ³	24.3	46.4	24.8	5.2	0.0	2.5	47.6			
Channel (CID) ²	276.3	55.2	9.7	4.4	0.0	6.3	58.9			
Total	300.6	54.5	10.9	4.4	0.0	6.0	58.0			

TOTAL MINERAL RESOURCE (JORC 2012)									
Mineralisation Type	Type Tonnes Fe SiO2 Al2O3 P LOI								
	Mt	%	%	%	%	%	%		
Detrital (DID)	24.3	46.4	24.8	5.2	0.0	2.5	47.6		
Channel (CID)	318.9	55.2	9.8	4.5	0.0	5.9	58.7		
Total	343.2	54.5	10.9	4.6	0.0	5.7	57.9		

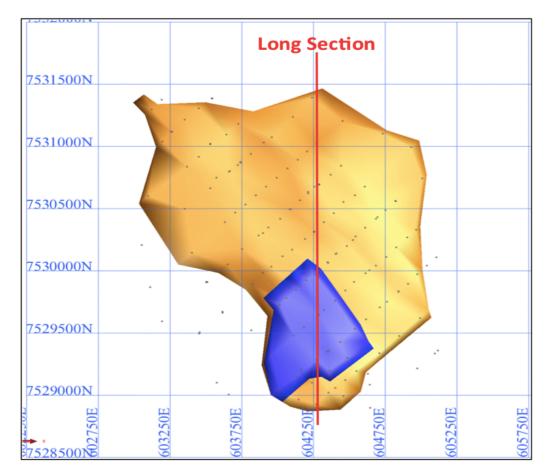
Notes: 1: Calcined Fe (CaFe) calculated by the formula CaFe % = [(Fe%)/100-LOI 1000)]*100

2: Channel Iron Deposit mineralisation reported at a 52% Fe cut=off grade.

3: Detrital Iron Deposit Mineralisation reported at a 40% Fe cut-off grade.

Table 1: JORC Code 2012 Mineral Resource Estimate for the Hamersley Iron Project

In June 2019, Winmar engaged Perth-based geological consulting group Al Maynard & Associates (**AMA**) to complete a review of the Hamersley Iron Project and to complete a new Mineral Resource prepared in accordance with the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".



AMA have completed a review of the Mineral Resource estimate prepared by Runge Pinnock Minarco Ltd (**Runge**) in 2013 and reported by the Company in May 2013 (refer ASX Announcement dated 23 May 2013).

There has been no further drilling or any other factors that would affect the reported resource since this report. The resource modelling and reporting was found by AMA to be compliant with the current JORC Code (2012) except that the reporting of the QAQC for the drilling, sampling and assaying did not fully meet the JORC Code (2012) requirements.

AMA proceeded to obtain all the relevant QAQC data and reports then carried out a thorough statistical study of this data and found that the drilling and sampling procedures met the standards required by the JORC Code (2012). AMA then modelled the resource independently using the same drilling data but using different software and modelling method as a check of the Runge estimate and came up with tonnes and grades consistent with those reported by Runge, and well within reasonable limits.

AMA have accepted the Runge May 2013 Mineral Resource estimate, and along with the AMA reporting of the QAQC for the drilling, sampling and assaying, are now reporting the Mineral Resource estimate in accordance with the JORC Code (2012).

The resource limits and drilling at the Hamersley Iron Project is shown in the figures below.

Figure 1: Hamersley Iron Project Drilling and Resources Wireframes (Plan View) CID: Brown | DID: Blue

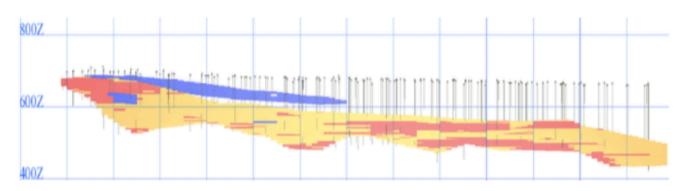


Figure 2: Hamersley Iron Project Long Section of North South through Resource Model Blue: 40-50% Fe | Amber 50-55% Fe | Red 55-60% Fe

HAMERSLEY IRON PROJECT MINERAL RESOURCE ESTIMATE JORC CODE 2012

1. Geology and Mineralisation

The Hamersley Iron Project is situated in the central portion of the Hamersley Province. The Hamersley Province contains late Archaean – Lower Proterozoic age sediments of the Mount Bruce Supergroup, which lies between the Archaean granitoid basement complexes of the Yilgarn and Pilbara cratons. The Mount Bruce Supergroup has three constituent groups - the Fortescue, Hamersley and Turee Creek Groups.

The Hamersley Group banded iron formations are the most iron rich, extensive and thickest known in the Precambrian stratigraphic record. The Group is approximately 2.5km thick and consists of a conformable sequence of banded iron formation, chert, dolomite, pyroclastic/hemipelagic shale and acid volcanic rocks. The Group has been intruded by both syn-sedimentary and post-sedimentary dolerites.

A stratigraphic column showing the Hamersley Group stratigraphy is displayed in Figure 3 below.

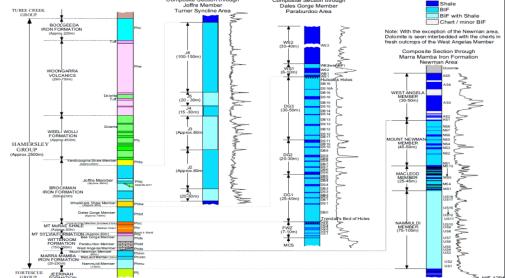


Figure 3: Stratigraphy of the Hamersley Group

(DID). DID occur as shallow blankets of outwash scree in structural depressions adjacent to iron ore escarpments. The material is derived from the erosion of a surface enriched carapace that encrusted the escarpments. Cyclic fluids result in ferruginisation of the matrix and lowering of the phosphorous content. Cementation can occur towards the base of the detrital pile and form a very hard hematite conglomerate known as canga.

2. Historical Drill Data

Several drilling programs have been carried out since 1998 by Robe River, Cazaly and by Winmar. Three historical RC drill holes (1998) from the Robe drill campaign are recorded in the drill hole database, with all other holes resulting from recent drill campaigns by Cazaly and Winmar.

The Marra Mamba and Brockman Iron Formations of the Hamersley Group are the units of interest in exploring for bedded iron mineralisation. The second genetic ore group in the Province in terms of commercial importance are the channel iron deposits (CIDs).

At the Hamersley Iron Project, a broad alluvial plain occupies the majority of the tenement, with outcropping Brockman Iron Formation prominent at the southern and eastern boundaries. Underlying the transported material within the alluvial plain are the Brockman Iron Formation, the Mount McRae Shale and the Mount Silvia Formation.

The Mount Silvia Formation is approximately 30m thick and is distinguished by three prominent BIF/chert units separated by shale. The uppermost planar bedded BIF unit (~8m) is known as "Bruno's Band" and provides a useful marker horizon. Further beneath Bruno's Band lie two, thinner BIF/chert units known as the "Tram Tracks".

The Mount McRae Shale is approximately 50m thick and is composed of mostly carbonaceous shale (when fresh) with chert. Pyrite can occur within the shale units and can pose an acid rock drainage risk in the mining process. The uppermost 12m of the Formation consists of interbedded BIF and shale, and can be enriched to low grade ore and is known as the Colonial Chert Member or Footwall Zone.

The Brockman Iron Formation varies in thickness from approximately 500-620m and is composed of two dominant BIF units (Dales Gorge and Joffre Members) and shale with minor chert/BIF (Whaleback Shale). Both major BIF units have shale interbeds that have distinct geophysical signatures, which can be mapped on a regional scale. These shale macrobands typically give a "ribbed" appearance in the outcropping Dales Gorge Member.

The Hamersley Iron Project contains two types of iron mineralisation: channel iron (CID) and detrital iron

CID occurs both in synclinoria and on mild dip slopes on the margin of paleochannels, in addition to mesas formed by relief inversion in the central zones of paleochannels. CID's are subdivided into "mesa" and "gorge" deposits. Such deposits are dominated by pisolitic goethite-hematite iron mineralisation and incorporate the Marillana Formation CID (gorge) and Robe Formation CID (mesa). The Hamersley Iron Project CID is interpreted as a gorge CID and is completely masked by recent creek sediments. All CID's formed in the Tertiary period.

No. of

holes

3

18

9

2

91

2

40

3

168

Metres

160

1,795

1,332

230

13,315

237

5,314

238

22,621

Prefix

SB

PLRC

PLRC

PLRC

PLRC

PLRD

PLRC

PLRD

	Company	
	Robe	
\bigcirc	Cazaly	
	Cazaly	
615	Cazaly	
	Cazaly	
$\left(\begin{array}{c} \\ \\ \end{array} \right)$	Cazaly	
	Winmar	
	Winmar	
	Total	
	3. Drilling Data An Access database condition database condition database comdities and drilling. The being mapped to Surport A summary of the Hares General	p h ba
(\bigcirc)	Type RC	
	DD	
	Total	ľ
ΠΠ	The database was load	de

The Robe drill hole information has been sourced from relevant Robe technical reports and annual exploration reports held by the DoIR for Western Australia.

Drilling Method

RC

RC

RC

RC

RC

DD

RC

DD

Period

1998

2008

2009

2010

2011

2011

2012

2012

Table 2: Drill Hole Metres by Year

An Access database containing updated drilling information was provided to Runge by Terra Search. The drilling database comprises data from initial exploration drilling, then subsequent programs of infill and extensional drilling. The data was validated by drill hole loading routines and visually interrogated after being mapped to Surpac software.

A summary of the Hamersley Iron Project drilling data as supplied is shown in the table below.

General	In Pre	oject		In Resource	9
General	Drill I	Holes	Drill Holes		Intersection
Туре	Number	Metres	Number	Metres	Metres
RC	163	22,146	112	17,604	5,245
DD	5	475			
Total	168	22,621	112	17,604	5,245

Table 3: Drilling Summary

The database was loaded by Runge into Surpac Mining software Version 6.1.4.

Drilling Campaigns

Cazaly has completed 3 phases of RC drilling at the Hamersley Iron Project. For the first phase in October 2008, Cazaly contracted Kennedy Drilling of Kalgoorlie to undertake first pass drilling of the newly defined gravity anomaly. Eighteen holes were drilled for 1,795m (PLRC0001 – PLRC0018).

For the second phase in November 2009, Cazaly contracted McKay Drilling of Wangara. A total of 9 drill holes for 1,332m were completed (PLRC0022 – PLRC0030).

A third phase of drilling was completed in May 2011 (PLRC0044 – PLRC0136). The drill program was started in October 2010 with two holes drilled, however the rig was found to be unsuited to the ground conditions and the program temporarily aborted. The completed program utilized two drill rigs from McKay Drilling and comprised 83 drill holes for 13,035m in a major resource drill-out campaign, testing the full 2.8km strike of the gravity anomaly.

In addition, a program of 3 Sonic drill holes was completed in 2009 for bulk density testwork (PLSD0019, PLSD0020 and PLSD0021).

Winmar assumed control of the Hamersley Iron Project in 2012 and contracted Terra Search to complete a 40 RC drill hole program (PLRC0137 – PLRC0176) using McKay Drilling and Frontline Drilling of Midvale for a total of 5,314m.

Drill Hole Collar Location

All drill hole collar locations were surveyed in MGA94, Zone 50 grid system by contract surveyors using DGPS equipment. The last 13 holes drilled in 2012 had not been surveyed when Runge modelled the resource so the design collar coordinates were snapped to the topography surface.

Down Hole Surveys

All drill holes were drilled vertical and recorded at -90° dip and 0° azimuth within the database. No down hole surveys have been completed.

The deposit geometry is generally flat-lying and continuous with the impact of no down hole surveys likely to have only minimal influence on the shape of the mineralisation envelope.

Geological Logging

All drill holes were logged for a combination of geological and mineralogical attributes. These attributes were transferred to the drill hole database and were used to assist in defining the mineralisation envelopes. Chip trays were kept for each logged interval.

Water Table

Terra Search reported that the standing water table lies approximately 70m below the surface; however the majority of holes had dry samples for the 2012 drilling. It is likely that the compressed air from the RC rig pushed most of the water away from the drill bit, resulting in dry samples.

Cazaly reported that the water table was not intersected in any of the holes drilled at the Hamersley Iron Project prior to the 2011 drill program. The 2011 drill program was hampered by higher water flows which appear to be a seasonal effect of sub-surface drainage. The drill program was supervised by geologists on the rig to ensure sampling procedures were followed, however very few wet samples were noted during the drill campaigns.

No subsequent adjustment has been made to the assay database or the JORC Code 2012 Mineral Resource estimate to account for the position of the water table. This approach matches the approach used in previous estimates.

Sampling

For Cazaly drilling in 2008, cuttings from RC drilling were initially dry riffle split over one metre intervals and then composited into two metre samples using a bench riffle. The procedure was modified slightly during subsequent programs to carry out a dry riffle split of drill cuttings over two metre intervals in a single pass. Samples were collected in marked calico bags at an average weight of 3 to 5kg.

For Cazaly and Winmar drilling from 2010, cuttings from RC drilling were split using a rig-mounted cone splitter. Cazaly samples were taken over two metre intervals and collected in marked calico bags at an average weight of 3 to 5kg. Winmar samples were also taken over two metre intervals and collected in marked calico bags at an average weight of 1 to 2kg. Field staff supervised the collection and transport of drill samples to the assay laboratory.

Cazaly drill samples were sent to Kalassay Laboratory in Perth and Winmar samples were sent to Nagrom Laboratory in Perth for XRF analysis. Samples were processed in the following manner:

- Received samples recorded by the assay laboratory,
- Ring-mill pulverisation to 90% passing 75um,
 - Samples greater than 4kg were split for pulverising and then re-combined.
- A sub-sample of 500g pulp was retained in a pulp envelope,
 - Pulps are stored at the laboratory for future reference. 0
- The remaining sample reject was discarded.

Data Excluded

Drill holes without assay data were excluded from the resource estimate. This included all Sonic and diamond drill holes.

PLRD0119	PLRD0120	PLSD0019	
PLSD0020	PLSD0021		

Table 4: List of Excluded Holes

3. Assay Data

Methodology

Assaying of Fe, Al₂O₃, SiO₂, Mn, P, S and TiO₂ was conducted at Kalassay Laboratory (prior to 2012) and Nagrom Laboratory in Perth (in 2012), using the XRF spectrometry on fused bead, while analysis of LOI was determined by Thermo-Gravimetric Analysers at 371°C, 650°C and 1000°C.

Quality Control

The quality control information had been sourced by Runge for their JORC Code (2004) mineral resource estimate and report from numerous internal Terra Search reports. These reports indicated that the sample and assay data are representative, homogenous and repeatable, and suitable for use in their JORC Code (2004) resource estimate.

Standard analyses, field duplicates, laboratory repeats and an umpire laboratory (SGS in Perth) were used in the QAQC program. Standard and field duplicate samples were both inserted at a rate of 1 in 20, which Runge considered adequate.

The current JORC Code (2012) for reporting Mineral Resources requires that the sampling procedures and QAQC data are more thoroughly reviewed and reported than was previously required.

AMA reviewed the Terra Search QAQC reports and compiled all the QAQC data for all the different phases of drilling to independently review the data to confirm if the sampling and assays procedures met the current JORC Code (2012) requirements.

Duplicate samples collected in the field were submitted at the rate of 1 in 20, which AMA considers to be adequate.

Scatter plots of the Original Vs Duplicate Fe% (correlation coefficient = 0.988), Al2O3% (correlation coefficient = 0.978) and SiO2% (correlation coefficient = 0.991) show very good correlation indication with now obvious outliers indicating that the sampling procedures were very good with very good repeatability.

Laboratory repeat assays were also reviewed by AMA and these were found to have excellent correlation.

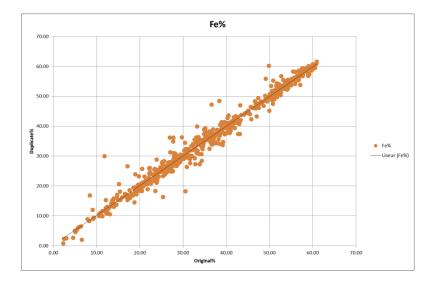
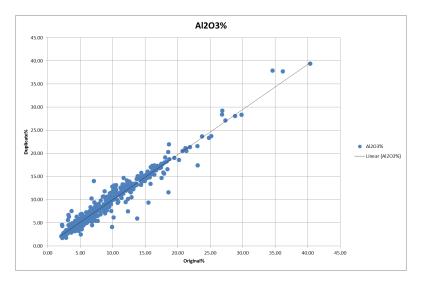



Figure 4: Field duplicate Fe% assays

Figure 5: Field duplicate Al₂O₃% assays

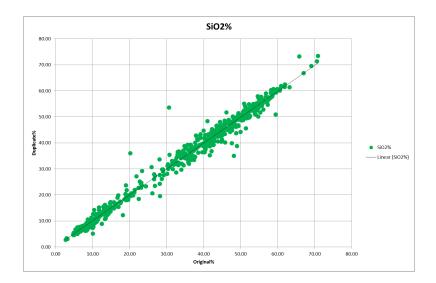


Figure 6: Field duplicate SiO₂% assays

Standards

Standards or Certified Reference Materials (CRMs) were inserted at the rate of 1 in 20, Figure 7 to Figure 9. AMA considers the insertion rate as being adequate.

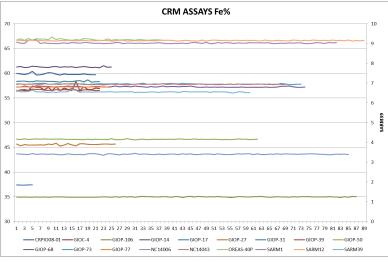


Figure 7: Standards assays Fe%

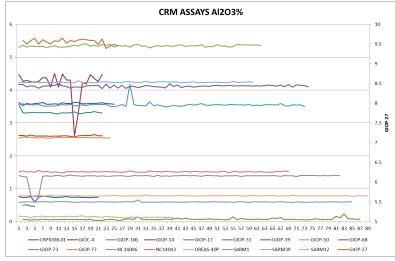


Figure 8: Standards assays Al₂O₃%

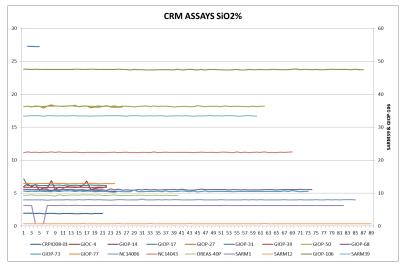


Figure 9: Standards assays SiO₂%

All the Standards assay plots, show that the assay variation for each standard is very small except for one Al_2O_3 assay in each of GIOC-04 and GIOP-73 and two Al_2O_3 assays in SARM1 along with three SiO₂ assays in SARM1. All the Fe assays were consistent for each standard.

AMA considers that the QAQC assay results and Terra Search reporting of procedures followed during the sampling of RC drilling chips and diamond core are of sufficient standard to support a JORC Code (2012) Mineral Resource estimate and report.

4. Bulk Density Data

Limited bulk density data was available for the deposit. A bulk density value of 2.59t/m³ was applied to the CID mineralised material in the resource. This was assigned based on specific gravity measurements collected from four diamond holes. At the direction of Terra Search, a bulk density value of 2.50t/m³ was applied to the DID mineralised material and all waste material in the resource.

Туре	Bulk Density t/m ³
All Waste Material	2.50
Detrital Iron Mineralisation	2.50
Channel Iron Mineralisation	2.80

Table 5: Bulk Density by Type

AMA recommends that additional bulk density test-work be conducted, particularly focussing on the mineralised zones but including waste zones from the various material types.

5. Metallurgy

Preliminary metallurgical testwork has been carried out since 2011 on the DID, BID and CID ore types and the results considered as part of the SRK Scoping Study that was completed in February 2014.

Winmar's most recent drilling focus has been on the higher grade CID ores in the southwest section of the Mineral Resource. Ore characteristics have been tested as part of a program focused on mineralogy and size versus grade relationships. There has been preliminary gravity testwork undertaken including (HLS), dense media separation (DMS) and gravity table testwork. Some magnetic separation testwork has also been undertaken. The most recent CID testwork has been based on composites made up from RC drilling samples in the southwest area. Due to the additional fines generated from the RC drilling action, some assumptions are required on the feed and product sizing, mass yield and iron recoveries. The use of diamond core samples is recognised as the industry standard to ascertain these parameters.

The thermal characteristics of the products have not been viewed. Testing is recommended prior to the Company proceeding with a feasibility study. The thermal characterisation testing assesses the products performance during smelting.

Verification of hard copy logs with the data has not been completed by either Runge or AMA. AMA recommends that original logs for other drill campaigns be located and verified to increase the

6. Database Verification

confidence in the database.

Runge previously completed systematic data validation steps in generating the database. Checks completed by Runge included:

- Down hole survey depths did not exceed the hole depth as reported in the collar table.
- Hole dips were within the range of 0° and -90°.
- Assay values did not extend beyond the hole depth quoted in the collar table.
- Assay and survey information was checked for duplicate records.

All data loaded correctly into the Runge project database.

Runge checked 37 drill collar sites with a hand-held GPS against their recorded locations in the database and confirmed their location.

AMA also loaded the database checked by Runge into MineMap software verifying that it was free of errors.

7. Interpretation and Resource Statistics

Geology and Resource Interpretation

Mineralisation interpretations for Winmar used by Runge were supplied by Terra Search. The mineralisation envelopes were based on a nominal 50% Fe cut-off grade for CID and 40% Fe cut-off grade for DID. In addition, two zones of internal waste were interpreted in the CID mineralisation.

The detrital mineralisation envelope forms a relatively near-surface unit in the southern area of the deposit. The deeper channel iron mineralisation forms a continuous, tabular unit orientated southeast-northwest.

Preparation of Wireframes

The interpreted sectional outlines were manually triangulated to form wireframes.

To form ends to the wireframes, the end section strings were copied to a position approximately midway to the next section and adjusted to match the mineralised trend of the zone. The wireframed objects were validated using Surpac software and set as solids.

A total of 4 wireframes were created and used to select the sample data to be used for grade estimation, and to constrain the block model for estimation purposes. The mineralisation wireframes were treated as hard boundaries for all estimation purposes, that is, only assays from within each wireframe were used to estimate blocks within that wireframe.

Topographic Surface

A topographic surface was created using the surveyed drill hole collars. The topographic surface is generally flat-lying and not intersected by the deeper iron mineralisation of interest.

Sample Statistics

The wireframes of the mineralised zones were used to define the resource intersections. These were coded into the 'reszone' table within the database. Sample records within the 'reszone' intersections were used to conduct a sample length analysis, which indicated that the vast majority of the 2,629 raw sample intervals inside the wireframes had a length of 2m.

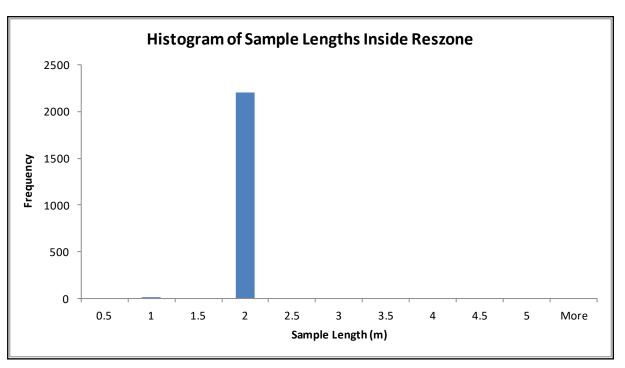


Figure 10: Raw Sample Lengths within Mineralisation Wireframes

Surpac software was then used to extract fixed length 2m down hole composites within the intervals coded as resource intersections.

The composites were checked for spatial correlation with the objects, the location of the rejected composites and zero composite values. Individual composite files were created for each of the individual domains in the wireframe models.

The 2m composite data was imported into Supervisor software for analysis. Summary statistics for Fe, Al_2O_3 , SiO_2 , P and LOI are shown in the Tables 6 and Table 7 for the CID and DID respectively, while corresponding histograms are shown in Figure 11 and Figure 12.

Parameter			CID - Object 1		
Parameter	Fe	SiO ₂	Al ₂ O ₃	Р	LOI
Samples	2,188	2,188	2,188	2,188	2,188
Minimum	28.31	1.84	1.21	0.01	1.13
Maximum	63.71	43.82	12.77	0.14	11.83
Mean	55.31	10.07	4.49	0.04	5.52
Standard deviation	3.38	3.85	1.59	0.02	2.28
CV	0.06	0.38	0.36	0.38	0.41
Variance	11.41	14.83	2.54	0.00	5.20
		Percentiles	5		
10%	51.12	5.79	2.76	0.03	2.45
20%	52.40	6.78	3.15	0.03	3.30
30%	53.58	7.71	3.46	0.03	4.05
40%	54.58	8.56	3.81	0.04	4.76
50%	55.43	9.46	4.15	0.04	5.49
60%	56.29	10.59	4.52	0.04	6.05
70%	57.25	11.78	5.08	0.05	6.76
80%	58.31	13.14	5.77	0.05	7.61
90%	59.54	15.04	6.71	0.06	8.65
95%	60.43	16.62	7.63	0.07	9.41
97.50%	61.06	18.42	8.32	0.08	10.19
99%	61.80	20.43	9.18	0.11	10.70

Parameter		I	DID - Object 2		
Farameter	Fe	SiO2	Al ₂ O ₃	Р	LOI
Samples	234	234	234	234	234
Minimum	31.95	6.93	2.78	0.02	1.14
Maximum	56.17	40.79	9.97	0.07	8.21
Mean	46.53	24.65	5.24	0.04	2.56
Standard deviation	4.46	5.63	1.16	0.01	0.56
CV	0.10	0.23	0.22	0.18	0.22
Variance	19.89	31.69	1.34	0.00	0.32
		Percentiles			
10%	40.98	17.30	4.02	0.03	2.09
20%	42.35	19.95	4.40	0.03	2.24
30%	43.78	21.79	4.62	0.03	2.35
40%	45.40	22.89	4.85	0.03	2.45
50%	46.76	24.37	5.10	0.04	2.54
60%	48.16	25.97	5.38	0.04	2.62

	Percentiles							
70%	49.08	28.24	5.64	0.04	2.71			
80%	50.41	29.48	6.02	0.04	2.84			
90%	52.45	31.73	6.77	0.04	3.03			
95%	53.65	33.81	7.13	0.05	3.20			
97.50%	54.22	34.75	8.38	0.05	3.46			
99%	55.92	38.97	8.94	0.05	3.80			

Table 7: DID Summary Statistics

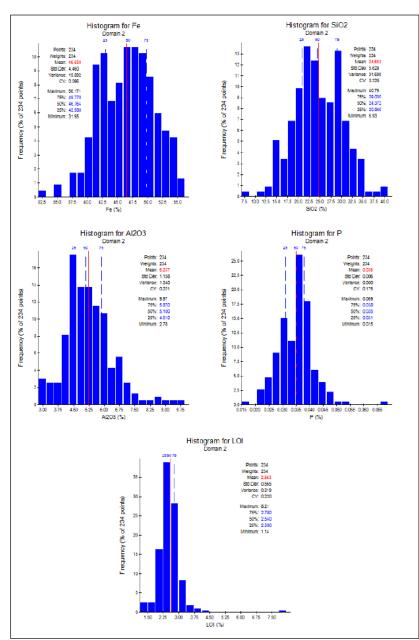


Figure 11: Population Histograms for Fe, SiO₂, Al₂O₃, P and LOI in the DID

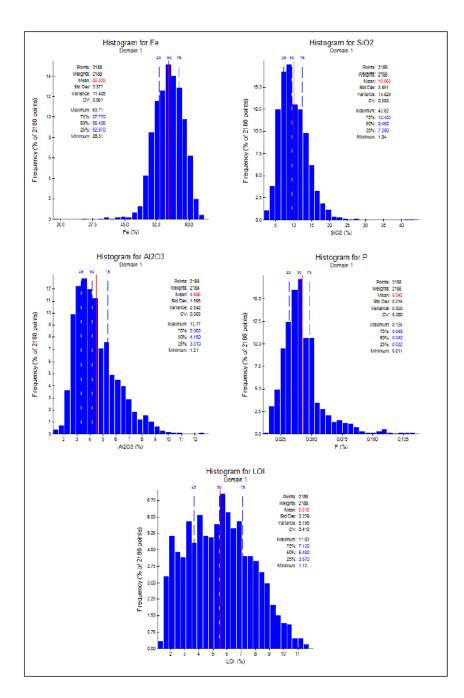
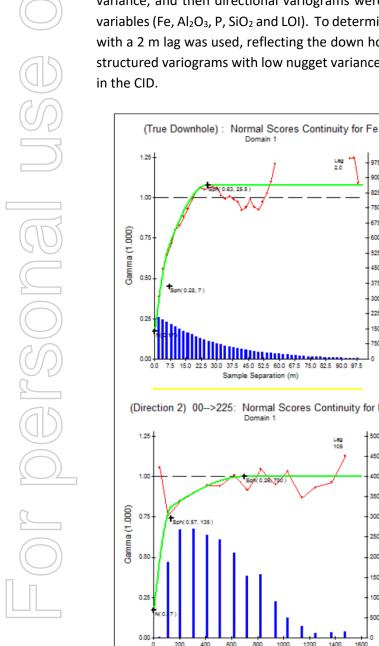


Figure 12: Population Histograms for Fe, SiO₂, Al₂O₃, P and LOI in the CID

High-Grade Cuts


Following a review of the population histograms and log probability plots and noting the low coefficient of variation statistics, it was determined that the application of a high-grade cut was not warranted.

Geostatistical Analysis

Directional variogram models were completed on the DID and CID domains. All variography was completed using Supervisor software.

To assist in the continuity analysis the data was transformed using a normal scores transformation. Down hole variograms were fitted to nested two structured spherical models to determine the nugget variance, and then directional variograms were prepared to define the directional continuity for five variables (Fe, Al₂O₃, P, SiO₂ and LOI). To determine the nugget variance of the selected data, a variogram with a 2 m lag was used, reflecting the down hole composite spacing. This resulted in moderately well structured variograms with low nugget variances. Figure 13 shows the semi variograms modelled for Fe in the CID.

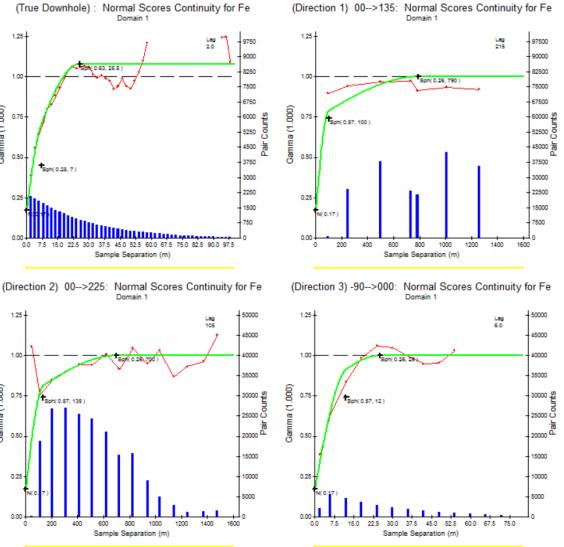


Figure 13: Down Hole and Directional Semi Variograms for Fe in the CID

The directional continuity analysis was back transformed to generate the final kriging parameters which are summarised in Table 8 and Table 9. The directions of maximum continuity matched the interpreted geology.

The grades were interpolated into a Surpac block model using ordinary kriging (OK) using the nugget, sill values and ranges determined from the variogram models. The ranges obtained from the variogram models were used as a guide in the search ellipse parameters used in the resource estimate.

Flomont	Major	Nuggot		Str	ucture 1			Stru	icture 2	
Element	Direction	Nugget	C1	A1	Semi	Minor	C2	A2	Semi	Minor
Fe	00>135	0.18	0.57	100	0.7	8.3	0.25	790	1.1	31.6
SiO2	00>135	0.15	0.54	272	1.5	20.9	0.31	875	2.2	31.3
Al2O3	00>135	0.14	0.56	274	1.5	11.9	0.3	1000	1.7	40
Р	00>135	0.04	0.57	280	1	6.4	0.4	900	1.3	18.4
LOI	00>135	0.08	0.43	425	0.9	8.5	0.49	2100	1.6	26.3

 Table 8: CID Kriging Parameters

Floment	Major	Nuggot		Str	ucture 1			Stru	ucture 2	
Element	Direction	Nugget	C1	A1	Semi	Minor	C2	A2	Semi	Minor
Fe	00>135	0.19	0.19	500	4.9	50	0.61	630	1.1	24.3
SiO2	00>135	0.21	0.17	62	1.6	8.9	0.62	620	1.3	25.8
Al2O3	00>135	0.13	0.24	805	5.5	80.5	0.64	885	2.2	20.1
Р	00>135	0.01	0.36	30	2.5	6	0.6	310	1.2	12.4
LOI	00>135	0.18	0.46	363	3.4	45.4	0.35	600	2.3	22.2

Table 9: DID Kriging Parameters

8. Resource Estimation

A Surpac block model was created to encompass the full extent of the deposit. Block model parameters are displayed in Table 10.

The block model used a parent block size of 100m NS by 50m EW by 5m vertical with sub-cells down to 25m by 12.5m by 1.25m.

The parent block size was selected on the basis of approximately 50% of the average drill hole spacing. The dimensions in other directions were selected to provide sufficient resolution to the block model in the across-strike and down-dip direction.

Model Name	winmar_	ok_20120815.mdl						
	Y	Х	Z					
Minimum	7,528,500	601,500	400					
Coordinates								
Maximum	7,532,100	750						
Coordinates								
Block Size (Sub-	100 (25)	50 (12.5)	5 (1.25)					
blocks)								
Rotation		None						
Attributes:								
fe	Estimated Fe grade							
sio2	Estimated SiO ₂ grade	Estimated SiO ₂ grade						
al2o3	Estimated Al ₂ O ₃ grade							
р	Estimated P grade							
loi	Estimated LOI grade	Estimated LOI grade						
cafe	Calculated Calcined Fe gra	de						
ave_dis	Average distance to sample	es						
min_dis	Distance to nearest sample	e						
num_sam	Number of samples used f	or block grade interp	olation					
bd	Bulk density							
kvar_fe	Kriging Variance for Fe							
lease	Lease Identification							
mined	y or n							
ke	Kriging Efficiency							
class	mes, ind, inf (JORC Classifi	cation)						
class_code	mes=1, ind=2, inf=3, waste							
pass	1=interpolated in first pass							
pod	Wireframe Object Number	ſ						
type	air, cid, did, inw or undf							

Table 10: Block Model Parameter

Grade Interpolation

For all zones in the Hamersley Iron Project, the wireframe objects were used as hard boundaries in the interpolation. That is, only grades inside each object were used to interpolate the blocks inside that object.

Ordinary Kriging (OK) was selected for the grade interpolation method to allow the measured spatial continuity to be incorporated into the model.

Orientated search ellipses, with an ellipsoidal search, were used to select data for interpolation.

Each ellipse was oriented based on the kriging parameters and were consistent with the interpreted geology. Variography parameters of the CID were applied to the internal waste zones where there were insufficient samples to conduct a geostatistical analysis.

Two interpolation passes were used for the interpolations. The first pass estimation radius was based on approximately half the variogram model or long range for each of the elements. For the second pass the search distance was expanded to the variogram range where all remaining cells were estimated. Greater than 99% of the blocks were filled in the first pass. Kriging parameters for Fe in the CID and DID are listed in Table 11 and Table 12.

Parameter	Pass 1	Pass 2	
Search Type	Ellipsoid	Ellipsoid	
Bearing	135	5	
Plunge	0		
Dip	0		
Major-Semi Major Ratio	1		
Major-Minor Ratio	10		
Search Radius (Major)	400	800	
Max Vertical Search	999	999	
Minimum Samples	12	4	
Minimum Samples per Hole	4	4	
Maximum Samples	48	48	
Block Discretisation	5X by 5Y by 3Z		
Percentage Blocks Filled	>99%	<1%	

Table 11: OK Estimation Parameters Fe – CID

Parameter	Pass 1	Pass 2
Search Type	Ellipsoid	Ellipsoid
Bearing	135	
Plunge	0	
Dip	0	
Major-Semi Major Ratio	1.2	
Major-Minor Ratio	20.0	
Search Radius (Major)	300	600
Max Vertical Search	999	999
Minimum Samples	12	4
Minimum Samples per Hole	4	4
Maximum Samples	48	48
Block Discretisation	5X by 5Y by	3Z
Percentage Blocks Filled	>99%	<1%

Table 12: OK Estimation Parameters Fe - DID

Density and Material Type

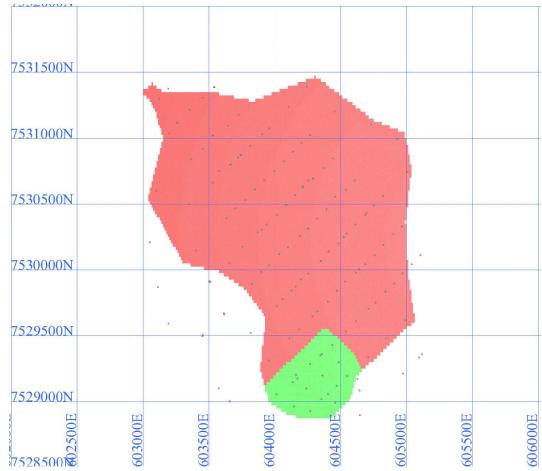
Limited bulk density measurements were available for the Hamersley Iron Project. The values supplied by Terra Search are based on measurements from one diamond hole. The values for waste and detrital mineralisation are consistent with known values from other deposits in the region. The value for the CID may be slightly high. Runge also recommended that further detailed bulk density testwork be carried out at the Hamersley Iron Project.

The bulk density values assigned to the block model are tabulated in Table 13.

Туре	ModelBulk DensityCodeUsed (t/m³)		Description
Waste	undf or	2.50	All material outside CID or DID
Detrital	did	2.50	Material inside DID resource
Channel	cid	2.59	Material inside CID resource

Table 13: Material Type and Bulk Density

Resource Classification


The Hamersley Iron Project shows reasonable continuity of the main mineralised zones allowing the drill hole intersections to be modelled into coherent, geologically robust wireframes. Consistency is evident in the thickness of the structure, and the distribution of grade appears to be continuous along strike.

The drill hole spacing for the project is approximately 250m along strike, with some infill drilling in the southern portion of the deposit to 125m spaced sections.

The closer drill spacing, along with the good continuity of mineralisation evident in the southern part of the deposit area, is considered adequate to allow classification of the resource as Indicated Mineral Resource. Indicated Mineral Resource has been classified for CID material only. The CID portions of the deposit drilled at spacings of greater than 125m, or material coded as DID material type have been classified as Inferred Mineral Resource.

The resource block model has an attribute "class" for all blocks within the resource wireframes coded as either "ind" for Indicated or "inf" for Inferred.

The Indicated and Inferred portions of the block model are shown in Figure 14.

Figure 14: Mineral Resource Classification (Green = Indicated, Red = Inferred)

The JORC Code (2012) describes a number of criteria which should be considered in the documentation of Mineral Resource estimates prior to public release of the information. The criteria provide a means of assessing whether or not parts of or the entire data inventory used in the estimate are adequate for that purpose. The Mineral Resources stated in this document were based on the criteria set out in Table 1 of the JORC Code.

These criteria are listed in Appendix 1.

Results

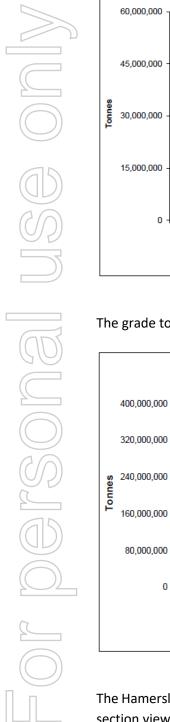
The results of the Mineral Resource (JORC Code 2012) estimate for the Hamersley Iron Project are summarised in Table 14.

Indicate	d Mineral Reso	ource					
Туре	Tonnes	Fe	SiO2	Al2O3	Р	LOI	CaFe
	Mt	%	%	%	%	%	%
CID	42.6	55.2	10.9	5.5	0.0	3.6	57.3
Total	42.6	55.2	10.9	5.5	0.0	3.6	57.3
Inferred	Mineral Resou	irce					
Туре	Tonnes	Fe	SiO2	Al2O3	Р	LOI	CaFe
	Mt	%	%	%	%	%	%
סוס	24 3	46.4	24.8	5.2	0.0	25	47.6

	IVIT	%	%	%	%	%	%
DID	24.3	46.4	24.8	5.2	0.0	2.5	47.6
CID	276.3	55.2	9.7	4.4	0.0	6.3	58.9
Total	300.6	54.5	10.9	4.4	0.0	6.0	58.0

Total Mir	Total Mineral Resource											
Туре	Tonnes	Fe	SiO2	Al2O3	Р	LOI	CaFe					
	Mt	%	%	%	%	%	%					
DID	24.3	46.4	24.8	5.2	0.0	2.5	47.6					
CID	318.9	55.2	9.8	4.5	0.0	5.9	58.7					
Total	343.2	54.5	10.9	4.6	0.0	5.7	57.9					

Notes: 1: Calcined Fe (CaFe) calculated by the formula CaFe % = [(Fe%)/100-LOI 1000)]*100


2: Channel Iron Deposit mineralisation reported at a 52% Fe cut=off grade.

3: Detrital Iron Deposit Mineralisation reported at a 40% Fe cut-off grade.

Table 14: Hamersley Iron Project Indicated and Inferred Mineral Resource Estimate

To show the tonnage and grade distribution throughout the entire deposit, a bench breakdown has been prepared and is shown graphically in Figure 15.

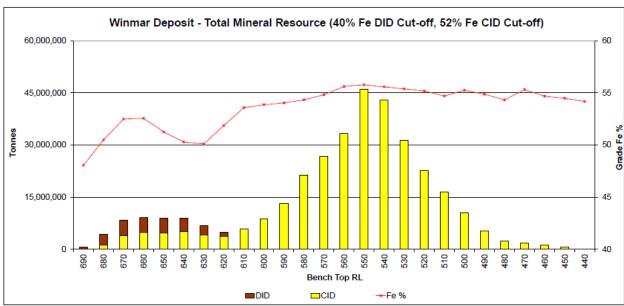


Figure 15: Hamersley Iron Project Mineral Resource – Global Bench Tonnage

The grade tonnage curve for the CID is shown in Figure 16.

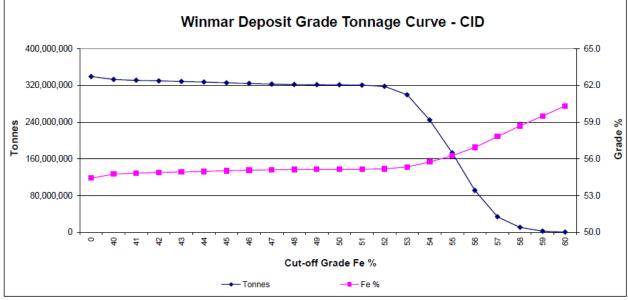


Figure 16: Hamersley Iron Project Mineral Resource – CID Grade Tonnage Curve

The Hamersley Iron Project coloured by Fe grade shown in plan view is displayed in Figure 17 and in long section view in Figure 18. The low grade DID material (blue) is clearly shown overlying the higher grade CID material. The thickest high-grade zone (> 55% Fe) occurs in the south, where the mineralisation is closest to the surface.

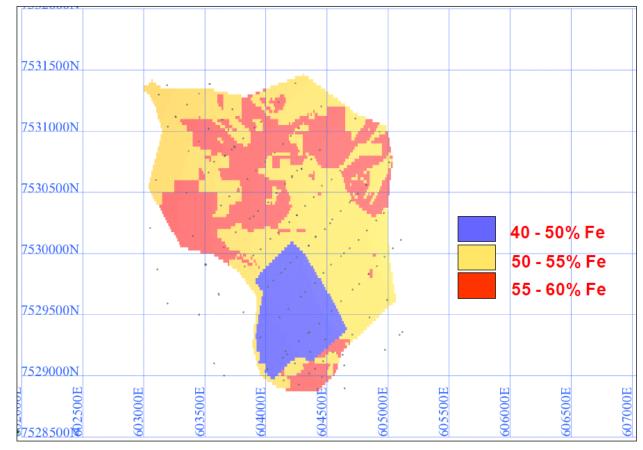


Figure 17: Hamersley Iron Project Mineral Resource Coloured by Fe – Plan View

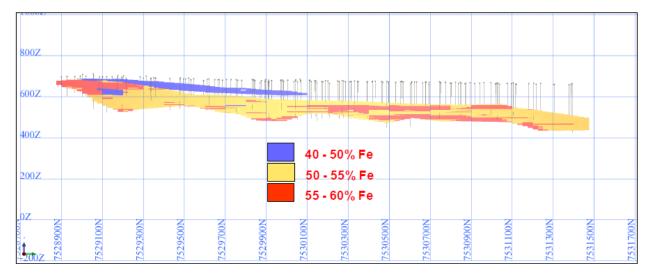


Figure 18: Hamersley Iron Project Mineral Resource Coloured by – Long Section View Facing West

Model Validation

A three step process was used to validate the Hamersley Iron Project Mineral Resource estimate.

Firstly a qualitative assessment was completed by slicing sections through the block model in positions coincident with drilling. Overall the assessment indicated that the trend of the modelled grade appeared consistent with the drill hole grades.

A quantitative assessment of the estimate was completed by comparing the average grades of the composite file input against the block model output for all the resource objects. The results of the comparison are tabulated below.

	Wireframe	Block Model Composites				Block Model							
Pod	Pod	Resource	Fe	SiO ₂	Al ₂ O ₃	Р	LOI	Number of	Fe	SiO ₂	Al ₂ O ₃	Р	LOI
	Volume	Volume	%	%	%	%	%	Comps	%	%	%	%	%
1	124,179,712	124,221,094	55.13	9.88	4.52	0.041	5.94	2,188	55.31	10.07	4.49	0.042	5.52
2	9,734,583	9,742,188	46.43	24.81	5.24	0.035	2.53	234	46.53	24.65	5.24	0.035	2.56
98	439,058	438,281	39.31	23.64	10.18	0.033	8.23	9	40.73	21.98	10.08	0.034	8.34
99	6,675,675	6,633,984	41.55	25.48	9.33	0.030	4.39	196	40.93	26.55	9.20	0.029	4.27
Total	141,029,028	141,035,547	53.84	11.69	4.82	0.040	5.64	2,627	53.40	12.64	4.92	0.040	5.17

Table 15: Average Composite Input v Block Model Output - By Object

As a further check that the interpolation of the block model correctly honoured the drilling data, a trend analysis was completed by comparing the interpolated blocks to the sample composite data.

The trend analysis was completed for elevation in 10m bench heights, and 125m strike panels. Results for Fe of the CID are summarised in Figure 19 and Figure 20.

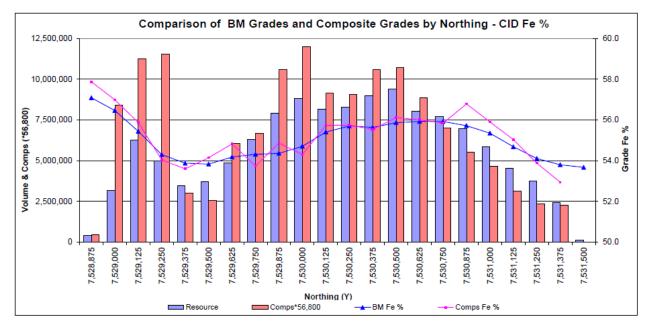


Figure 19: Fe Validation by 125m Northing - CID

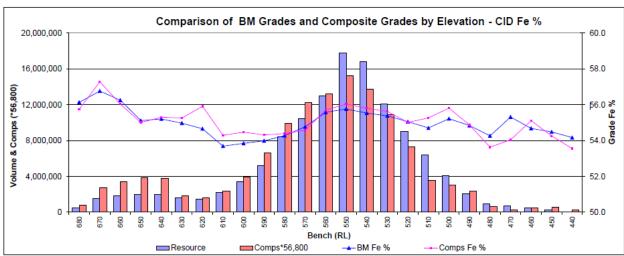


Figure 20: Fe Validation by 10m Elevation - CID

The validation plot shows good correlation between the composite grades and the block model grades for the comparison by northing and elevation. The trends shown by the raw data are honoured by the block model.

The comparisons show the effect of the interpolation, which results in smoothing of the block grades compared to the composite grades.

9. Resource Estimate Validation and JORC Code (2012) Compliance

AMA reviewed the Runge May 2013 Mineral Resource JORC Code (2004) report and the methods used to estimate the resources and AMA consider that the resource estimate and report to be sound and generally meets the standards expected by the current JORC Code (2012).

The only shortcoming in the report identified by AMA was the reporting of the QAQC procedures and assays, although meeting requirements of the then current JORC Code (2004), did not meet current JORC Code (2012) standards.

AMA has independently reviewed the data, and confirmed that the sampling and assays procedures met the current JORC Code (2012) requirements.

AMA also independently modelled the resource with MineMap[©] software using the database after it had been verified free of errors.

The AMA model used an Inverse Distance Squared algorithm to interpolate the grades into blocks within wireframes very similar to those used by Runge.

AMA 2019 Model

Туре	Tonnes	Fe	SiO ₂	Al ₂ O ₃	Р	LOI	CaFe
	Mt	%	%	%	%	%	%
Detrital (DID) >40% Fe	21.7	46.3	24.9	5.3	0.03	2.6	47.5
Channel (CID) >52% Fe	308.5	55.5	9.7	4.3	0.04	5.8	58.9
Total	330.2	54.9	10.7	4.4	0.04	5.6	58.2

Runge 2013 Model

Туре	Tonnes	Fe	SiO ₂	Al ₂ O ₃	Р	LOI	CaFe
	Mt	%	%	%	%	%	%
Detrital (DID) >40% Fe	24.3	46.4	24.8	5.2	0.03	2.5	47.6
Channel (CID)>52% Fe	318.9	55.2	9.9	4.5	0.04	5.9	58.7
Total	343.2	54.5	10.9	4.6	0.04	5.7	57.9

Difference

Туре	Tonnes	Fe	SiO ₂	Al ₂ O ₃	Р	LOI	CaFe
	Mt	%	%	%	%	%	%
Detrital (DID)	-2.6	-0.1	0.1	0.1	0.0	0.1	-0.1
Channel (CID)	-10.4	0.3	-0.2	-0.2	0.0	-0.1	0.2
Total	-13.0	0.4	-0.2	-0.2	0.00	0.0	0.3
Variation	-4%	1%	-2%	-5%	0%	-1%	0%

Table 16: Comparison between Runge and AMA Mineral Resource models

There was less than 5% variation between the AMA model and Runge Mineral Resource estimate in tonnes and grades which is well within the expected normal variation between resource models using different algorithms with slightly different wireframes. AMA are therefore comfortable retaining the Runge Mineral Resource estimate.

10. Conclusion

The Hamersley Iron Project Mineral Resource represents a continuous, well-defined zone of channel iron mineralisation (CID). The broad mineralised zone of economic interest is quite regular in geometry and has well defined boundaries. Drilling has confirmed the presence of mineralisation over a strike length of 2,500 m.

The Hamersley Iron Project displays reasonable geological and mineralisation continuity from information provided, however due to the wide 250 m spacing between most of the drilled cross sections, both geological and grade continuity can only be assumed rather than verified. Therefore in these sections of the deposit the resources are classified as an Inferred Mineral Resource while in the south-west section of the deposit where the drilling has been in-filled to 125 m spacing the resources are classified as Indicated.

AMA have confirmed that the Runge May 2013 Mineral Resource estimate, along with the updated QAQC report included, , meets the standards required by the current JORC Code (2012).

INDICATED MINERAL RESOURCE (JORC 2012)									
Mineralisation Type Tonnes Fe SiO2 Al2O3 P LOI CaFe ¹									
	Mt	%	%	%	%	%	%		
Channel (CID) ²	42.6	55.2	10.9	5.5	0.0	3.6	57.3		
Total	42.6	55.2	10.9	5.5	0.0	3.6	57.3		

INFERRED MINERAL RESOURCE (JORC 2012)								
Mineralisation Type Tonnes Fe SiO2 Al2O3 P LOI CaFe ¹								
	Mt	%	%	%	%	%	%	
Detrital (DID) ³	24.3	46.4	24.8	5.2	0.0	2.5	47.6	
Channel (CID) ²	276.3	55.2	9.7	4.4	0.0	6.3	58.9	
Total	300.6	54.5	10.9	4.4	0.0	6.0	58.0	

TOTAL MINERAL RESOURCE (JORC 2012)								
Mineralisation Type Tonnes Fe SiO2 Al2O3 P LOI CaFe1								
	Mt	%	%	%	%	%	%	
Detrital (DID)	24.3	46.4	24.8	5.2	0.0	2.5	47.6	
Channel (CID)	318.9	55.2	9.8	4.5	0.0	5.9	58.7	
Total	343.2	54.5	10.9	4.6	0.0	5.7	57.9	

Notes: 1: Calcined Fe (CaFe) calculated by the formula CaFe % = [(Fe%)/100-LOI 1000)]*100

2: Channel Iron Deposit mineralisation reported at a 52% Fe cut=off grade.

3: Detrital Iron Deposit Mineralisation reported at a 40% Fe cut-off grade.

Table 17: JORC Code 2012 Mineral Resource Estimate for the Hamersley Iron Project

11. Next Steps

The updated JORC (2012) Compliant Resource will be incorporated into the Company's ongoing work on the Hamersley Iron Project. This includes further reviews of the Hamersley Iron Project Mine Gate Scoping Study and of the Transport Infrastructure Scoping Study.

The Company will continue to update shareholders on its progress with this ongoing work.

If you have any queries please contact the Company on +61 8 6426 1421

Authorised by The Board of Winmar Resources Limited

For further information please contact:

Jason Brewer Chairman Winmar Resources Limited

Competent Persons Statement

The information in this report which relates to Exploration Targets, Exploration Results and Mineral Resources or Ore Reserves is based on information compiled by Mr Allen Maynard, who is a Member of the Australian Institute of Geosciences ("AIG"), a Corporate Member of the Australasian Institute of Mining & Metallurgy ("AusIMM") and independent consultant to the Company. Mr Maynard is the Director and principal geologist of Al Maynard & Associates Pty Ltd and has over 40 continuous years of exploration and mining experience in a variety of mineral deposit styles. Mr Maynard has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for reporting of Exploration Results, Exploration Targets, Mineral Resources and Ore Reserves" (JORC Code). Mr Maynard consents to inclusion in the report of the matters based on this information in the form and context in which it appears.

Where the Company refers to previous Exploration Results it confirms that it is not aware of any new information or data that materially effects the information included in previous announcements and all material assumptions and technical parameters disclosed in those announcements continue to apply and have not materially changed.

Forward Looking Statements

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licenses and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

APPENDIX 1: JORC CODE, 2012 EDITION - TABLE 1 REPORT

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and Quality of sampling (e.g. cut channels, random chips or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or hand held XRF instruments etc.). Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverized to produce 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or sampling types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drill holes used in the resource estimate include 112 RC holes for a total of 5,245m within the resource wireframes. The complete database in the project area contains records for 165 drill holes for 22,383m of drilling. Drilling in 1998 was conducted by Robe, from 2008 to 2011 by CAZ and from 2012 by WFE. RC samples were collected at 1 or 2m intervals from a rig mounted riffle or cone splitter. For CAZ 2008 drilling, 1m samples were composited into 2m samples using a bench splitter. Diamond and Sonic drill holes have not been assayed.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 RC drill holes of approximately 140mm diameter were completed using a standard face sampling hammer. Drill holes were both vertical
Drill sample recovery	 Whether core and chip sample recoveries have been properly recorded and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Actual recoveries from RC drilling were not measured Cazaly and Winmar consultants Terra Search, reported to Runge that recovery of drill samples from all drilling campaigns were of an acceptable standard.
Logging	 Whether core and chip samples have been logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography. 	 All drill holes have been geologically logged using industry accepted logging systems for rock type, colour, shape, alteration, hardness, moisture and sample recovery Mineralised zones were identified from observations of mineralogy, lithological characteristics, and geochemistry. The standard of logging is suitable to support an estimate of Mineral Resources.

Sub-sampling techniques and sample preparation
Quality of assay da and laboratory test
Verification of sampling and assaying
Location of data points
Data spacing and distribution

Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected. Whether sample sizes are appropriate to the grainsize of the material being sampled. 	 All sampling procedures for the Cazaly and Winmar drilling was reviewed by Runge and are considered to be of a high standard. RC prior to 2010 – 1m or 2m samples collected in a plastic bag through a properly designed cyclone and of sufficient weight. A 2m composite sample was collected from 1m samples by using a bench riffle. RC drilling from 2010 – 2m samples split using a rig mounted cone splitter and collected in marked calico bags. The majority of samples were dry. Standards and duplicates were inserted at a frequency of 1 in every 20 samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Analysis for Fe, Al₂O₃, P, SiO₂, LOI, Mn and S was completed using XRF after total sample pulverisation in a ring-mill. The majority of standards submitted report within the required grade range without bias. The majority of field duplicates are within tolerance of the original assay and without bias. Runge reviewed internal QAQC reports by Terra Search and confirms that all assay data used has passed standard industry quality assurance/quality control procedures.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 No verification sampling or drilling has been carried out.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Quality and adequacy of topographic control. 	 All drill holes used in the resource estimate have been accurately surveyed using DGPS equipment by qualified surveyors. No down hole surveys have been conducted however all holes are drilled vertically.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing of approximately 250m (along strike) by 100m (on section) was considered adequate to establish both geological and grade continuity for the Mineral Resource estimation and classifications applied. Samples were composited to 2m for estimation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the 	 Vertical holes have been drilled perpendicular to the local strike and dip of the mineralisation.

	 extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drilling has satisfactorily tested the geological structure and grade continuity of the mineralisation. The risk of sample bias is considered to be low.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No external audits were carried out during the drill programs. Runge conducted a site visit in October 2012 to review the project and deposit geology and verify drill hole collar locations. All site drilling and sampling procedures were considered to be standard industry practice AMA has reviewed QAQC results and found these to be acceptable.

Section 2: Reporting Of Exploration Results

Criteria	JORC Code Explanation	Commentary
General tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Hamersley Iron Project comprises Mining Lease M47/1450. Mining Lease M47/1450 was granted on 6th November 2014 and covers an area of 1,042 hectares, and the full area of the Mineral Resource.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Several exploration drilling programs have been carried out since 1998 by Robe River, Cazaly Resources and by Winmar. Cazaly completed 3 phases of RC drilling at the Hamersley Iron Project. During the first phase, eighteen holes were drilled for 1,795m (PLRC0001 – PLRC0018). For the second phase, a total of 9 drill holes for 1,332m were completed (PLRC0022 – PLRC0030). A third phase of drilling was completed in

			May 2011 (PLRC0044 – PLRC0136). In
		•	total 83 drill holes for 13,035m in a major resource drill-out campaign, testing the full 2.8km strike of the gravity anomaly. In addition, a program of 3 Sonic drill holes was completed in 2009 for bulk density testwork.
		•	Winmar assumed control of the Hamersley Iron Project in 2012 and completed a 40 RC drill program (PLRC0137 – PLRC0176) for a total of 5,314m.
		•	The most recent exploration work completed on the Hamersley Iron Project was carried out by Terra Search, independent contractors on behalf of Winmar including supervising the
		-	majority of the RC drilling. Previous Mineral Resource modelling and estimates were carried out by Runge Limited/Runge Pinnock Minarco Ltd for Winmar.
Geology	 Deposit type, geological setting and style of mineralisation. 	•	The Hamersley Iron Project contains two types of iron mineralisation: channel iron (CID) and detrital iron (DID). CID occurs both in synclinoria and on mild dip slopes on the margin of paleochannels, in addition to mesas
		•	paleochannels, in addition to mesas formed by relief inversion in the central zones of paleochannels. CID's are subdivided into "mesa" and "gorge" deposits. Such deposits are dominated by pisolitic goethite-hematite iron mineralisation and incorporate the Marillana Formation CID (gorge) and Robe Formation CID (gorge) and Robe Formation CID (mesa). The Hamersley Iron Project deposit CID is interpreted as a gorge CID and is completely masked by recent creek sediments. All CID's formed in the Tertiary period. DID occur as shallow blankets of outwash scree in structural depressions adjacent to iron ore escarpments. The material is derived from the erosion of
			a surface enriched carapace that encrusted the escarpments. Cyclic fluids result in ferruginisation of the matrix and lowering of the phosphorous content. Cementation can occur towards the base of the detrital pile and form a very hard hematite conglomerate known as canga.

	Drill hole information	•	A su
			unde
			a tal
			Mate
			0 6
			• e
			C
			• s
))			0 0
			0 0 0 1
2			If the
ノ			the b
			this
)			unde
/			Perso
)	Data aggregation	•	In r
~	methods		aver
	methous		minii
1			grad
			and s
		•	Whe
			lengt
			low
			aggr
			exan
		_	in de
		•	The o equiv
	Relationship between	•	Thes
	mineralisation widths	-	the r
	and intercept lengths	•	If the
			respe
		-	shou If it i
		-	lf it i: are r
			to th
			not k
\bigcirc			
	Diagrams	•	Appr
			tabu
			any s
			shou of dr
	1		- u u

Drill hole information	understanding of the exploration results including a tabulation of the following information for all		 The following table summarises the drilling at the Hamersley Iron Project. 						
	Material drill holes:			In P	roject	In Resourc		irce	
	\circ easting and northing of the drill hole collar			Dril	l Holes	Dril	Holes	Intersect	
	\circ elevation or RL (Reduced Level – elevation		Туре	No	м	No	М	м	
	above o sea level in metres) of the drill hole collar		RC	163	22,146	112	17,604	5,245	
	 dip and azimuth of the hole 		DD	5	475				
	 down hole length and interception depth hole length. 		Total	168	22,621	112	17,604	5,245	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 		 The drilling locations and other details are discussed in the body of this report and the collar details included as an Appendix 2. 						
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	-	length weighted averages and a resource estimates are tonnag weighted averages. No grades/assa were cut or otherwise adjusted.					and all tonnage es/assays ed.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The Mineral Resource modelling carried out in 3D and all appa widths accounted for in the estima method. Since the mineral deposits are alr horizontal and the drilling vertical, drill holes intersected mineralisation approxima orthogonally. The drill intersec width in most drill holes would approximately equal to the true w of the mineralisation. 					apparent stimation re almost rtical, the d the oximately cersection would be		
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	•	the in t	Hame the b	rsley Ir	on pro	ject are	o describe included and ASX	

	Balanced reporting
	Other substantive
	exploration data
	Further work
(ΩD)	
(n)	
(15)	
	Section 3: Estimatio
	Criteria Database integrity.
	Site Visits

Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 AMA believe that the reporting of the Exploration Results in this report is balanced.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other exploration data other than drilling and local geology maps were considered in the Mineral Resource estimate.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling to the southwest of PLRC0161 was recommended to test for an extension of the Mineral Resource. Further in-fill drilling and bulk density tests were recommended to improve the reliability of future resource estimate. This additional drilling will be undertaken as required for the further development and mining of the Hamersley Iron Project and completion of addition pre-feasibility and feasibility studies.

Section 3: Estimation And Reporting Of Mineral Resources

Criteria	JORC Code Explanation	Commentary
Database integrity.	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Sample data is stored using a customised Access database RPM performed initial database audits in Surpac. AMA independently verified the data using MineMap software.
Site Visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Runge conducted a site visit in October 2012 to review the project and deposit geology and verify drill hole collar locations and sign off on the JORC Code 2004 Mineral Resource. AMA has not completed a site visit as it was not deemed necessary. AMA reviewed the QAQC results and found these to be acceptable.

AIUO BSD IP	Geological interpretation.	•	Confi the g depo Natu made The e on M The u Mine The f and <u>o</u>
	Dimensions.	•	The e Resol other to the Resol
	Estimation and modelling techniques.	•	The r techr includ doma dista The c estim whet approd Fred Estim grade sulph In the block spaci Any c minin

		1
ical etation.	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Geological drilling has confirmed iron mineralisation resulting in generally continuous, robust wireframes for detrital and channel and iron mineralisation. Logging and geological interpretation was completed by geologists experienced in iron mineralisation. There is some risk of misinterpretation in areas of wider spaced drilling with limited assay data, however this is not considered to be material. Geological interpretation is based on surface mapping, down hole geological logging, geophysics and geochemistry of RC drill samples. CID and DID stratigraphy at the Hamersley Iron Project is well known, and it is envisaged that any alternative geological interpretation, with or without further drilling, would not have a material impact on the Mineral Resource estimate. It is not expected that further drilling will materially change the grade and geological continuity.
sions.	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The Winmar Fe deposit extends for approximately 2.5 km in a NNW-SSE direction. The mineralisation extends from near-surface to 230m below the surface. The CID mineralised domain is up to 120m thick.
tion and ing techniques.	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters, maximum distance of extrapolation from data points. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 The Winmar resource was modelled by Runge Pinnock Minarco in May 2013. The Winmar deposit was domained based on iron mineralisation type, with all domains applied as hard boundaries in the estimate. Statistical analysis was carried out on data from each of the two domains. High-grade cuts were not applied as low co-efficients of variation (CV) were observed. Ordinary kriging was used to estimate average block grades in 2 passes using Surpac software. The majority of cells were estimated during the first pass of interpolation. Parent block size of 100m NS by 50 m EW by 5m vertical with sub-cells to 25 m by 12.5 m by 1.25 m. No model rotation was undertaken after examining drill hole density and along strike and across strike grade continuity. The parent block size was

Moisture.	 selected on the basis of approximately 50% of the average drill hole spacing. Validation was conducted on both domains by elevation and northing. Validation plots showed good correlation between the composite grades and the block model grades. Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. Tonnages and grades were estimated on a dry values were reviewed.
Cut-off parameters.	 The basis of the adopted cut-off grade(s) or quality parameters applied. Overall the mineralisation displays good continuity within each domain. Runge has reported the Mineral Resource at a 40% Fe cut-off for DID and 52% Fe cut-off for CID as directed by Terra Search. Grade-tonnage plots were produced to allow further studies.
Mining factors or assumptions.	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It may not always be possible to make assumptions regarding mining methods and parameters when estimating Mineral Resources. Where no assumptions have been made, this should be reported. RPM and AMA have assumed that the deposit would be mined using open pit techniques SRK Consulting completed a Scoping Study in 2014 which was based upon mining by conventional open-pit methods
Metallurgical factors or assumptions.	 The basis for assumptions or predictions regarding metallurgical amenability. It may not always be possible to make assumptions regarding metallurgical treatment processes and parameters when reporting Mineral Resources. Where no assumptions have been made, this should be reported. In October 2013, Winmar announced the results of metallurgical test work that provided confidence that the resource can be beneficiated through dry crushing and screening, or through additional de-sliming of the material to further upgrade the product. Composite samples were additionally wet screened and the size fractions assayed to assess the upgrade potential of a de-sliming operation. The Fe grade increased by between 1.4% and 2.4%, and silica and alumina decreased by about 2% for cut sizes of 45 microns and above.
Bulk density.	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The in situ bulk density was assigned based on results obtained from four diamond holes. Results indicate a value of 2.59 t/m³ for CID, which AMAA considers comparable to other similar deposits currently being mined in the region. Further bulk density testwork is recommended.
Classification.	The basis for the classification of the Mineral Resources into varying confidence categories. Mineral Resources were classified in accordance with the Australasian Code

	 Whether appropriate account has been taken of all relevant factors. i.e. relative confidence in tonnage/grade computations, confidence in continuity of geology and metal values, quality, quantity and distribution of the data. Whether the result appropriately reflects the Competent Person(s)' view of the deposit. 	 for the Reporting of Identified Mineral Resources and Ore Reserves (JORC, 2012). The Indicated portion of the resource was defined where the drill spacing was 125 m by 100 m or less and continuity in both grade and geological structure was demonstrated. Indicated Mineral Resource was confined to the CID material. The Inferred Resource included areas of the CID material where sampling was greater than 125 m by 100 m and the DID material.
Audits or reviews.	The results of any audits or reviews of Mineral Resource estimates.	 The original RPM May 2013 Mineral Resource estimate and JORC Code (2004) report was audited by AM&A. With the addition of an independently verified QAQC section, the JORC Code (2004) resource estimate is now reported as being compliant with the current JORC Code (2012).

	Eastings	Northings			
Hole_ID	(GDA 94)	(GDA 94)	RL	Depth	Dip
PLRC0001	604172.4	7529175	704.165	136	-90
PLRC0002	604345.7	7529350	692.89	101	-90
PLRC0003	604537.1	7529532	683.412	122	-90
PLRC0004	604709.7	7529706	684.155	128	-90
PLRC0005	604907.6	7529897	682.811	113	-90
PLRC0006	605106.1	7530110	680.728	134	-90
PLRC0007	605095.2	7529336	689.663	83	-90
PLRC0008	604159.6	7529875	678.493	88	-90
PLRC0009	604350	7530065	685	20	-90
PLRC0010	604348.2	7530068	678.262	146	-90
PLRC0011	604523.5	7530248	677.275	143	-90
PLRC0012	604694.6	7530432	675.633	81	-90
PLRC0013	603621	7534658	629	53	-90
PLRC0014	603625	7535689	640	23	-90
PLRC0015	603897.1	7530305	672.649	104	-90
PLRC0016	604084.1	7530496	672.73	103	-90
PLRC0017	604253.5	7530678	671.652	110	-90
PLRC0018	603720.6	7530852	667.048	107	-90
PLRC0022	603751.3	7530175	672.715	140	-90
PLRC0023	604015.8	7529728	682.729	144	-90
PLRC0024	604255	7529971	678.46	144	-90
PLRC0025	604610.5	7530346	676.598	162	-90
PLRC0026	604824.9	7530189	678.66	140	-90
PLRC0027	604111.2	7529479	692.697	140	-90
PLRC0028	604285.8	7529648	683.147	144	-90
PLRC0029	604470.9	7529841	681.044	150	-90
PLRC0030	604638	7530005	680.369	168	-90
PLRC0042	604290	7530693	661	98	-90
PLRC0043	603743	7530869	663	132	-90
PLRC0044	604289.2	7530695	671.93	162	-90
PLRC0045	604157.1	7530568	672.66	162	-90
PLRC0046	604018.6	7530418	672.85	162	-90
PLRC0047	603866.2	7530285	673.07	156	-90
PLRC0048	603917.9	7530678	669.86	152	-90
PLRC0049	603774.5	7530532	669.77	164	-90
PLRC0050	603631.7	7530393	670.25	146	-90
PLRC0051	604069.3	7530823	669.61	160	-90
PLRC0052	603738.2	7530874	667.04	138	-90
PLRC0053	603573.1	7530749	666.75	150	-90
PLRC0054	603902.6	7531031	666	174	-90

APPENDIX 2: HAMERSLEY IRON PROJECT DRILL HOLE INFORMATION

				•	
PLRC0055	603530.1	7531018	663.56	121	-90
PLRC0056	603351	7531217	660.19	163	-90
PLRC0057	604391.7	7530463	674.89	174	-90
PLRC0058	604251.9	7530313	675.2	180	-90
PLRC0059	604101.1	7530170	675.22	180	-90
PLRC0060	603954.7	7530035	675.37	138	-90
PLRC0061	603822.6	7529894	675.82	192	-90
PLRC0062	604751	7530489	675.24	229	-90
PLRC0063	604125.7	7529844	677.69	163	-90
PLRC0064	604761.4	7529752	683.62	157	-90
PLRC0065	604613.7	7529611	683.87	151	-90
PLRC0066	604355.3	7529359	692.24	115	-90
PLRC0067	604536.8	7530609	673.42	162	-90
PLRC0068	605038.9	7530043	681.45	144	-90
PLRC0069	604990.7	7529620	686.51	127	-90
PLRC0070	604847.7	7529478	686.14	145	-90
PLRC0071	604708.4	7529337	686.42	103	-90
PLRC0072	605117.8	7529359	689.63	91	-90
PLRC0073	604972.4	7529215	689.68	85	-90
PLRC0074	603194.8	7531039	660.73	150	-90
PLRC0075	603262.4	7531116	661.26	133	-90
PLRC0076	603449.5	7531306	660.46	151	-90
PLRC0077	603539.3	7531388	660.85	157	-90
PLRC0078	603723.8	7531181	663.77	168	-90
PLRC0079	603642.3	7531096	663.99	186	-90
PLRC0080	603449.1	7530917	664.26	156	-90
PLRC0081	603365	7530837	664.11	150	-90
PLRC0082	604202.8	7530961	668.61	162	-90
PLRC0083	604138.7	7530895	669.13	168	-90
PLRC0084	603701.5	7530468	669.88	162	-90
PLRC0085	603847.3	7530609	670.01	156	-90
PLRC0086	603958.9	7531076	665.81	175	-90
PLRC0087	604212.4	7530634	672.55	169	-90
PLRC0088	604441.4	7530846	670.53	163	-90
PLRC0089	604606	7530679	672.9	151	-90
PLRC0090	604965.5	7530331	677.76	145	-90
PLRC0091	604903.6	7530270	678.41	157	-90
PLRC0092	604755.6	7530111	679.58	163	-90
PLRC0093	604684.7	7530043	679.83	175	-90
PLRC0094	604531.3	7529912	680.43	181	-90
PLRC0095	604402.3	7529761	681.12	163	-90
PLRC0096	604823.5	7530561	675.38	84	-90
PLRC0097	604684.4	7530418	675.9	174	-90
PLRC0098	604542.6	7530278	677.21	180	-90

		•	•	•	
PLRC0099	604482.7	7530200	677	168	-90
PLRC0100	604199.7	7529926	678.29	162	-90
PLRC0101	604059.1	7529780	679.78	162	-90
PLRC0102	604323.2	7529686	681.06	157	-90
PLRC0103	604183.8	7529546	688.26	127	-90
PLRC0104	604971.6	7529973	682.03	145	-90
PLRC0105	604840.5	7529832	683.14	145	-90
PLRC0106	604191.7	7532389	653.58	145	-90
PLRC0107	604367	7532569	652.9	115	-90
PLRC0108	603813.1	7530942	666.77	181	-90
PLRC0109	604457.6	7530555	673.88	180	-90
PLRC0110	604320.8	7530392	674.84	180	-90
PLRC0111	604191.5	7530256	675.37	180	-90
PLRC0112	604033.7	7530118	675.27	180	-90
PLRC0113	603896.4	7529985	674.97	192	-90
PLRC0114	603660	7530798	666.56	181	-90
PLRC0115	604269.7	7531026	667.99	180	-90
PLRC0116	603189.2	7531378	658.57	180	-90
PLRC0117	603120.4	7531300	658.61	186	-90
PLRC0118	604369.3	7530774	671.2	192	-90
PLRC0121	603530.2	7530663	667.33	162	-90
PLRC0122	604090.3	7530497	672.7	198	-90
PLRC0123	604409.1	7530142	677.85	174	-90
PLRC0125	604269.6	7529284	697.15	156	-90
PLRC0135	604720.6	7532927	651.53	144	-90
PLRC0136	603455.9	7533069	643.98	108	-90
PLRC0137	603656.7	7529003	709.088	110	-90
PLRC0138	603613.4	7529671	683.551	30	-90
PLRC0139	603454.1	7529505	686.717	42	-90
PLRC0140	603450.8	7529496	686.984	102	-90
PLRC0141	603504	7529913	673	24	-90
PLRC0142	603500	7529910	673	120	-90
PLRC0143	603508.4	7529909	672.752	180	-90
PLRC0144	603191.7	7529594	677.935	84	-90
PLRC0145	603401.5	7530147	668.613	186	-90
PLRC0146	603109.1	7529869	669.09	132	-90
PLRC0147	603349	7530498	666.643	180	-90
PLRC0148	603050.5	7530209	664.493	168	-90
PLRC0149	603097.9	7530603	663.412	210	-90
PLRC0150	605008.5	7530745	673.234	180	-90
PLRC0151	604928.6	7530995	669.55	156	-90
PLRC0152	604732.5	7531105	667.826	156	-90
PLRC0153	604451.5	7531205	666.958	180	-90
PLRC0154	604239.7	7531394	663.894	240	-90

PLRC0155603614.37529664683.6741156-90PLRC015660381.4.97529521691.8781144-90PLRC0157603953.57529314701.2951156-90PLRC0158604161.87529204702.8591162-90PLRC0150603652.27530052672.3951186-90PLRC016160410.47529057702.0141162-90PLRC016260440.77529057702.0141162-90PLRC0163604255.87530314675.24980-90PLRC016460426775291576931156-90PLRC016560440775291956931156-90PLRC01666043617529196689108-90PLRC0167604637752891704782-90PLRC016860445775289970442-90PLRC017060464575289970442-90PLRC017160447075291216901174-90PLRC01726044357529206851138-90PLRC01736044847529300685138-90PLRC0174604627752917367972-90PLRC017560435375292071896-90PLRC0176604464752896770278-90PLRC01766044647528937677.8251-90PLRC0176604353						
PIRC0157 603953.5 7529314 701.295 156 -90 PIRC0158 604161.8 7529204 702.859 162 -90 PIRC0158 604161.4 7531239 665.261 228 -90 PIRC0160 604104.4 7531239 665.261 228 -90 PIRC0161 60401.9 7529055 710.866 138 -90 PIRC0162 604402.7 7529057 702.014 162 -90 PIRC0163 604255.8 7530314 675.249 80 -90 PIRC0164 604267 7528927 713 96 -90 PIRC0165 604547 7529195 693 156 -90 PIRC0165 604457 7528910 694 108 -90 PIRC0168 604457 7529121 690 174 -90 PIRC0170 604452 7529859 704 42 -90 PIRC0171 604435 7529121 690 174 </td <td>PLRC0155</td> <td>603614.3</td> <td>7529664</td> <td>683.674</td> <td>156</td> <td>-90</td>	PLRC0155	603614.3	7529664	683.674	156	-90
PIRC0158 600101.8 7529204 702.859 162 .90 PIRC0159 603652.2 7530052 672.395 186 .90 PIRC0160 604104.4 7531239 665.261 228 .90 PIRC0161 60401.9 7529055 710.866 138 .90 PIRC0162 604402.7 7529057 702.014 162 .90 PIRC0163 604255.8 7530314 675.249 80 .90 PIRC0164 604267 7528927 713 .96 .90 PIRC0165 604547 7529195 .693 .156 .90 PIRC0165 604547 752891 .704 .78 .90 PIRC0168 604457 .752891 .704 .78 .90 PIRC0170 604645 .7528930 .661 .90 .90 PIRC0171 604457 .7529121 .690 .74 .90 PIRC0172 604453 .7529020 .718	PLRC0156	603814.9	7529521	691.878	144	-90
PIRC0150 6071413 7530052 672.395 186 -90 PIRC0160 604104.4 7531239 665.261 228 -90 PIRC0161 604011.9 7529055 710.866 138 -90 PIRC0162 604402.7 7529057 702.014 162 -90 PIRC0163 604255.8 7530314 675.249 80 -90 PIRC0164 604267 7528927 713 96 -90 PIRC0165 604547 7529195 693 156 -90 PIRC0166 604361 7529196 689 168 -90 PIRC0164 604457 7528991 704 78 -90 PIRC0169 604642 7529085 691 60 -90 PIRC0170 604645 7528991 704 42 -90 PIRC0171 604470 7529121 690 174 -90 PIRC0172 604435 7529020 718 96 <td< td=""><td>PLRC0157</td><td>603953.5</td><td>7529314</td><td>701.295</td><td>156</td><td>-90</td></td<>	PLRC0157	603953.5	7529314	701.295	156	-90
PLRC0150 60000512 753023 665.261 228 -90 PLRC0160 604104.4 7531239 665.261 228 -90 PLRC0161 60401.9 7529055 710.866 138 -90 PLRC0162 604402.7 7529057 702.014 162 -90 PLRC0163 604255.8 7530314 675.249 80 -90 PLRC0164 604267 7528927 713 96 -90 PLRC0165 604547 7529195 693 156 -90 PLRC0165 604457 752891 704 78 -90 PLRC0164 604457 752891 704 42 -90 PLRC0169 604457 752892 691 60 -90 PLRC0170 604642 752929 693 156 -90 PLRC0171 604435 7529121 690 174 -90 PLRC0172 604435 7529173 679 72 -90<	PLRC0158	604161.8	7529204	702.859	162	-90
PLRC0160 GOTACT 7521055 710.866 138 -90 PLRC0161 604011.9 7529055 710.866 138 -90 PLRC0162 604402.7 7529057 702.014 162 -90 PLRC0163 604255.8 7530314 675.249 80 -90 PLRC0165 604267 7529155 693 156 -90 PLRC0165 604547 7529195 693 156 -90 PLRC0165 604437 7529057 704 78 -90 PLRC0168 604457 752891 704 78 -90 PLRC0169 604642 7529085 691 60 -90 PLRC0170 604645 752892 693 156 -90 PLRC0171 604457 7529121 690 174 -90 PLRC0172 604453 752920 683 138 -90 PLRC0174 604627 7529173 679 72 -90	PLRC0159	603652.2	7530052	672.395	186	-90
PLRC0161 GOURD 1.5 F12535 F125355 F90535 F125355 F90535 F90535 F90535 F90535 F90535 F90535 F905355	PLRC0160	604104.4	7531239	665.261	228	-90
PLRC0163 604255.8 7530314 752.037 702.014 702 PLRC0164 604267 7528927 713 96 -90 PLRC0165 604361 7529195 693 1156 -90 PLRC0165 604547 7529196 689 168 -90 PLRC0166 604361 7529196 689 168 -90 PLRC0165 604457 7528911 704 78 -90 PLRC0169 604642 7529085 691 60 -90 PLRC0170 604645 7528991 704 42 -90 PLRC0170 604645 7529121 690 174 -90 PLRC0172 604435 7529429 693 156 -90 PLRC0173 604484 7529300 685 138 -90 PLRC0174 604627 7529173 679 72 -90 PLRC0175 604353 7529020 718 96 -90 <td>PLRC0161</td> <td>604011.9</td> <td>7529055</td> <td>710.866</td> <td>138</td> <td>-90</td>	PLRC0161	604011.9	7529055	710.866	138	-90
PLRC0164 604267 7528927 713 96 -90 PLRC0165 604547 7529195 693 156 -90 PLRC0166 604361 7529196 689 168 -90 PLRC0167 604238 7529100 694 108 -90 PLRC0168 604457 7528991 704 78 -90 PLRC0169 604642 752985 691 60 -90 PLRC0170 604645 7528991 704 42 -90 PLRC0170 604645 7529121 690 174 -90 PLRC0171 604457 7529121 690 174 -90 PLRC0172 604435 7529429 693 156 -90 PLRC0173 604484 7529300 685 138 -90 PLRC0175 604353 7529202 718 96 -90 PLRC0176 604404 7529837 683.08 51 -90 <tr< td=""><td>PLRC0162</td><td>604402.7</td><td>7529057</td><td>702.014</td><td>162</td><td>-90</td></tr<>	PLRC0162	604402.7	7529057	702.014	162	-90
PLRC0165 604547 7529195 693 156 -90 PLRC0166 604361 7529196 689 168 -90 PLRC0167 604238 7529100 694 108 -90 PLRC0168 604457 7528991 704 78 -90 PLRC0169 604642 7529085 691 60 -90 PLRC0170 604645 7528991 704 42 -90 PLRC0171 604457 7529121 690 174 -90 PLRC0172 604435 7529121 690 174 -90 PLRC0173 604444 7529300 685 138 -90 PLRC0174 604627 7529173 679 72 -90 PLRC0175 604353 7529020 718 96 -90 PLRC0176 604146 7528965 702 78 -90 PLRD0120 603666 7530804 666.28 67 -90 <tr< td=""><td>PLRC0163</td><td>604255.8</td><td>7530314</td><td>675.249</td><td>80</td><td>-90</td></tr<>	PLRC0163	604255.8	7530314	675.249	80	-90
PLRC0103 004347 7323133 0033 130 90 PLRC0166 604361 7529196 689 168 -90 PLRC0167 604238 7529100 694 108 -90 PLRC0168 604457 7528991 704 78 -90 PLRC0169 604642 7529085 691 60 -90 PLRC0170 604645 7528899 704 42 -90 PLRC0171 604450 7529121 690 174 -90 PLRC0172 604435 7529123 679 72 -90 PLRC0173 604484 7529300 685 138 -90 PLRC0174 604627 7529173 679 72 -90 PLRC0175 604353 7529020 718 96 -90 PLRC0176 604146 7528965 702 78 -90 PLRD0120 603666 7530804 666.28 67 -90	PLRC0164	604267	7528927	713	96	-90
Finderice Finderice <t< td=""><td>PLRC0165</td><td>604547</td><td>7529195</td><td>693</td><td>156</td><td>-90</td></t<>	PLRC0165	604547	7529195	693	156	-90
File Odd236 752100 Odd4 Odd4 Odd4 PLRC0168 604457 7528991 704 78 -90 PLRC0169 604642 7529085 691 60 -90 PLRC0170 604645 7528899 704 42 -90 PLRC0171 604435 7529121 690 174 -90 PLRC0172 604435 7529429 693 156 -90 PLRC0173 604484 7529300 685 138 -90 PLRC0174 604627 7529173 679 72 -90 PLRC0175 604353 7529020 718 96 -90 PLRC0176 604146 7528965 702 78 -90 PLRD0120 603666 7530804 666.28 67 -90 PLRD0120 604641.4 7529837 683.08 51 -90 PLRD0124 604404.9 7530137 675.25 51 -90	PLRC0166	604361	7529196	689	168	-90
PLRC0169 6004642 7529085 691 60 -90 PLRC0170 604645 7528899 704 42 -90 PLRC0171 604470 7529121 690 174 -90 PLRC0172 604435 7529429 693 156 -90 PLRC0173 604484 7529300 685 138 -90 PLRC0174 604627 7529173 679 72 -90 PLRC0175 604353 7529020 718 96 -90 PLRC0176 604146 7528965 702 78 -90 PLRD0176 604146 7528965 702 78 -90 PLRD0176 604404.9 7530137 677.82 51 -90 PLRD0120 603666 7530804 666.28 67 -90 PLRD0124 604404.9 7530137 677.82 51 -90 PLRD0125 60481.4 752980 680.2 51 -90 <td>PLRC0167</td> <td>604238</td> <td>7529100</td> <td>694</td> <td>108</td> <td>-90</td>	PLRC0167	604238	7529100	694	108	-90
PLRC0170 604645 7528899 704 42 -90 PLRC0171 6044470 7529121 690 174 -90 PLRC0172 604435 7529429 693 156 -90 PLRC0173 604484 7529300 685 138 -90 PLRC0174 604627 7529173 679 72 -90 PLRC0175 604353 7529020 718 96 -90 PLRC0175 604353 7529020 718 96 -90 PLRC0176 604146 7528965 702 78 -90 PLRD0179 604211.1 7530624 672.64 170 -90 PLRD0120 603666 7530804 666.28 67 -90 PLRD0124 604404.9 7530137 677.82 51 -90 PLRD0125 604841.4 7529837 683.08 51 -90 PLRD0128 604820.6 7530562 675.25 51 -90 <td>PLRC0168</td> <td>604457</td> <td>7528991</td> <td>704</td> <td>78</td> <td>-90</td>	PLRC0168	604457	7528991	704	78	-90
PLRC0171 600470 7529121 690 174 -90 PLRC0172 604435 7529429 693 156 -90 PLRC0173 604484 7529300 685 138 -90 PLRC0174 604627 7529173 679 72 -90 PLRC0175 604353 7529020 718 96 -90 PLRC0175 604146 7528965 702 78 -90 PLRC0176 604146 7528965 702 78 -90 PLRD0119 604211.1 7530624 672.64 170 -90 PLRD0120 603666 7530804 666.28 67 -90 PLRD0124 604404.9 7530137 677.82 51 -90 PLRD0125 604841.4 7529830 680.2 51 -90 PLRD0126 604841.4 7529837 683.08 51 -90 PLRD0128 604820.6 7530562 675.25 51 -90<	PLRC0169	604642	7529085	691	60	-90
PLRC01710004470772110006174PLRC01726044357529429693156-90PLRC01736044847529300685138-90PLRC0174604627752917367972-90PLRC0175604353752902071896-90PLRC0176604146752896570278-90PLRD119604211.17530624672.64170-90PLRD01206036667530804666.2867-90PLRD0124604404.9752937683.0851-90PLRD0125604613.47529837683.0851-90PLRD0126604841.47529837683.0851-90PLRD0127604613.47529837663.0251-90PLRD0128604820.67530562675.2551-90PLRD0130603741.27530750669.7751-90PLRD013160350.37531021663.5251-90PLRD0132603258.1753187660.8551-90PLRD0133603541.27531387660.8551-90PLRD0134603935.37529147698124-90SB022604136752910169626-90SB023603574752910169626-90	PLRC0170	604645	7528899	704	42	-90
PLRC01712 6004135 7529173 6055 138 -90 PLRC0173 604484 7529300 685 138 -90 PLRC0174 604627 7529173 679 72 -90 PLRC0175 604353 7529020 718 96 -90 PLRC0176 604146 7528965 702 78 -90 PLRD0119 604211.1 7530624 672.64 170 -90 PLRD0120 603666 7530804 666.28 67 -90 PLRD0124 604404.9 7530137 677.82 51 -90 PLRD0124 60481.4 7529837 683.08 51 -90 PLRD0125 604613.4 752980 680.2 51 -90 PLRD0128 604820.6 7530562 675.25 51 -90 PLRD0129 603994.4 7530750 669.77 51 -90 PLRD0130 603741.2 7531021 663.52 51	PLRC0171	604470	7529121	690	174	-90
PLRC0173000440473233000005130130PLRC0174604627752917367972-90PLRC0175604353752902071896-90PLRC0176604146752896570278-90PLRD0119604211.17530624672.64170-90PLRD01206036667530804666.2867-90PLRD0124604404.97530137677.8251-90PLRD0125604841.47529837683.0851-90PLRD0126604613.47529800680.251-90PLRD0127604613.47530750669.7751-90PLRD0128604820.67530562675.2551-90PLRD0130603741.27530874666.9551-90PLRD0131603530.37531021663.5251-90PLRD0132603258.1753187660.8551-90PLRD0133603541.27530348672.7151-90PLRD0134603935.3753048672.7151-90SB0226041367529147698124-90SB023603574752910169626-90	PLRC0172	604435	7529429	693	156	-90
PLRC0171 G03151 F1525175 G155 F12 PLRC0175 604353 7529020 718 96 -90 PLRC0176 604146 7528965 702 78 -90 PLRD0119 604211.1 7530624 672.64 170 -90 PLRD0120 603666 7530804 666.28 67 -90 PLRD0124 604404.9 7530137 677.82 51 -90 PLRD0126 604841.4 7529837 683.08 51 -90 PLRD0127 604613.4 7529837 683.08 51 -90 PLRD0128 604820.6 7530562 675.25 51 -90 PLRD0129 603994.4 7530750 669.77 51 -90 PLRD0130 603741.2 7530874 666.95 51 -90 PLRD0131 603530.3 7531021 663.52 51 -90 PLRD0132 603258.1 7531387 660.85 51 -90<	PLRC0173	604484	7529300	685	138	-90
PLRC01766081353752502671656PLRC0176604146752896570278-90PLRD0119604211.17530624672.64170-90PLRD01206036667530804666.2867-90PLRD0124604404.97530137677.8251-90PLRD0126604841.47529837683.0851-90PLRD0127604613.47529980680.251-90PLRD0128604820.67530562675.2551-90PLRD0129603994.47530750669.7751-90PLRD0130603741.27530874666.9551-90PLRD0131603530.37531021663.5251-90PLRD0132603258.17531387660.8551-90PLRD0133603541.27530348672.7151-90PLRD0134603935.37520147698124-90SB023603574752910169626-90	PLRC0174	604627	7529173	679	72	-90
PLR001706001110752050762760PLRD0119604211.17530624672.64170-90PLRD01206036667530804666.2867-90PLRD0124604404.97530137677.8251-90PLRD0126604841.47529837683.0851-90PLRD0127604613.47529980680.251-90PLRD0128604820.67530562675.2551-90PLRD0129603994.47530750669.7751-90PLRD0130603741.27530874666.9551-90PLRD0131603530.37531021663.5251-90PLRD0132603258.17531387660.8551-90PLRD0133603541.27530348672.7151-90PLRD0134603935.37529147698124-90SB023603574752910169626-90	PLRC0175	604353	7529020	718	96	-90
PLRD012060366675308046072.04170PLRD01246036667530804666.2867-90PLRD0124604404.97530137677.8251-90PLRD0126604841.47529837683.0851-90PLRD0127604613.47529980680.251-90PLRD0128604820.67530562675.2551-90PLRD0129603994.47530750669.7751-90PLRD0130603741.27530874666.9551-90PLRD0131603530.37531021663.5251-90PLRD0132603258.1753187660.8551-90PLRD0133603541.27530348672.7151-90PLRD0134603935.37529147698124-90SB023603574752910169626-90	PLRC0176	604146	7528965	702	78	-90
PLRD0124 603600 7530137 677.82 51 -90 PLRD0126 604841.4 7529837 683.08 51 -90 PLRD0127 604613.4 7529837 683.08 51 -90 PLRD0128 604820.6 7530562 675.25 51 -90 PLRD0129 603994.4 7530750 669.77 51 -90 PLRD0130 603741.2 7530874 666.95 51 -90 PLRD0131 603530.3 7531021 663.52 51 -90 PLRD0132 603258.1 7531387 660.85 51 -90 PLRD0133 603541.2 7530348 672.71 51 -90 PLRD0134 603935.3 7530348 672.71 51 -90 PLRD0134 603935.3 7529147 698 124 -90 SB023 603574 7529101 696 26 -90	PLRD0119	604211.1	7530624	672.64	170	-90
PLRD0124004404.575501570077.5251-90PLRD0126604841.47529980683.0851-90PLRD0127604613.47529980680.251-90PLRD0128604820.67530562675.2551-90PLRD0129603994.47530750669.7751-90PLRD0130603741.27530874666.9551-90PLRD0131603530.37531021663.5251-90PLRD0132603258.17531121661.1751-90PLRD0133603541.27530348672.7151-90PLRD0134603935.37529147698124-90SB023603574752910169626-90	PLRD0120	603666	7530804	666.28	67	-90
PLRD0120 604041.4 7525657 6065.66 51 -90 PLRD0127 604613.4 7529980 680.2 51 -90 PLRD0128 604820.6 7530562 675.25 51 -90 PLRD0129 603994.4 7530750 669.77 51 -90 PLRD0130 603741.2 7530874 666.95 51 -90 PLRD0131 603530.3 7531021 663.52 51 -90 PLRD0132 603258.1 7531121 661.17 51 -90 PLRD0133 603541.2 7530348 672.71 51 -90 PLRD0134 603935.3 7520147 698 124 -90 SB022 604136 7529101 696 26 -90	PLRD0124	604404.9	7530137	677.82	51	-90
PLRD0127 60343.4 752556 60042 51 -90 PLRD0128 604820.6 7530562 675.25 51 -90 PLRD0129 603994.4 7530750 669.77 51 -90 PLRD0130 603741.2 7530874 666.95 51 -90 PLRD0131 603530.3 7531021 663.52 51 -90 PLRD0132 603258.1 7531121 661.17 51 -90 PLRD0133 603541.2 7531387 660.85 51 -90 PLRD0134 603935.3 7530348 672.71 51 -90 SB022 604136 7529147 698 124 -90 SB023 603574 7529101 696 26 -90	PLRD0126	604841.4	7529837	683.08	51	-90
PLRD0129 603994.4 7530750 669.77 51 -90 PLRD0130 603741.2 7530874 666.95 51 -90 PLRD0131 603530.3 7531021 663.52 51 -90 PLRD0132 603258.1 7531121 661.17 51 -90 PLRD0133 603541.2 7530348 672.71 51 -90 PLRD0134 603935.3 7529147 698 124 -90 SB023 603574 7529101 696 26 -90	PLRD0127	604613.4	7529980	680.2	51	-90
PLRD0130 603531.4 7530874 666.95 51 -90 PLRD0131 603530.3 7531021 663.52 51 -90 PLRD0132 603258.1 7531121 661.17 51 -90 PLRD0133 603541.2 7531387 660.85 51 -90 PLRD0134 603935.3 7530348 672.71 51 -90 SB022 604136 7529147 698 124 -90 SB023 603574 7529101 696 26 -90	PLRD0128	604820.6	7530562	675.25	51	-90
PLRD0131 603530.3 7531021 663.52 51 -90 PLRD0132 603258.1 7531121 661.17 51 -90 PLRD0133 603541.2 7531387 660.85 51 -90 PLRD0134 603935.3 7530348 672.71 51 -90 SB022 604136 7529147 698 124 -90 SB023 603574 7529101 696 26 -90	PLRD0129	603994.4	7530750	669.77	51	-90
PLRD0132 603258.1 753121 661.17 51 -90 PLRD0133 603541.2 7531387 660.85 51 -90 PLRD0134 603935.3 7530348 672.71 51 -90 SB022 604136 7529147 698 124 -90 SB023 603574 7529101 696 26 -90	PLRD0130	603741.2	7530874	666.95	51	-90
PLRD0133 603541.2 7531387 660.85 51 -90 PLRD0134 603935.3 7530348 672.71 51 -90 SB022 604136 7529147 698 124 -90 SB023 603574 7529101 696 26 -90	PLRD0131	603530.3	7531021	663.52	51	-90
PLRD0134 603935.3 7530348 672.71 51 -90 SB022 604136 7529147 698 124 -90 SB023 603574 7529101 696 26 -90	PLRD0132	603258.1	7531121	661.17	51	-90
SB022 604136 7529147 698 124 -90 SB023 603574 7529101 696 26 -90	PLRD0133	603541.2	7531387	660.85	51	-90
SB022 604130 7525147 6036 124 SB023 603574 7529101 696 26 -90	PLRD0134	603935.3	7530348	672.71	51	-90
35023 003374 7323101 030 20	SB022	604136	7529147	698	124	-90
SB024 601930 7528883 658 10 -90	SB023	603574	7529101	696	26	-90
	SB024	601930	7528883	658	10	-90