

ASX ANNOUNCEMENT

4TH FEBRUARY 2020

SHALLOW HIGH-GRADE VANADIUM INTERSECTIONS FROM SOUTHERN INFILL DRILLING

Excellent results include the two highest grade and width intersections at shallow depths reported by AVL to date, above $1.25\% V_2O_5$ through the consistent massive vanadium titanium horizon

KEY POINTS

- Results received from 30 Reverse Circulation (RC) drill holes for 2,336 metres, conducted
 on Inferred Resource areas outside the current PFS mining schedule.
- Best drill intersections include:
 - \succ 22m at 1.25% V₂O₅ from 32m in 19RRC031, including 15m at 1.44% V₂O₅ from 37m
 - ➢ 21m at 1.28% V₂O₅ from 39m in 19RRC015, including 14m at 1.42% V₂O₅ from 43m
 - \blacktriangleright 18m at 1.24% V₂O₅ from 20m in 19RRC026, including 12m at 1.36% V₂O₅ from 22m
 - \succ 13m at 1.33% V₂O₅ from 36m in 19RRC034, including 10m at 1.40% V₂O₅ from 38m
 - \succ 18m at 1.14% V₂O₅ from 45m in 19RRC014, including 5m at 1.27% V₂O₅ from 51m
 - \succ 19m at 1.14% V₂O₅ from 24m in 19RRC029, including 3m at 1.33% V₂O₅ from 36m
- Shallow weathering and higher grades encountered will assist in the proposed magnetic recovery of high-quality magnetite concentrate.
- Strike extensive high-grade zones confirmed throughout the targeted areas.
- Programme strongly supporting goal to increase Project life by identifying low-cost, high grade, shallow, high recovery and low risk Resources.

Australian Vanadium Limited (ASX: AVL, "the Company" or "AVL") is pleased to announce results from the drill programme completed in December 2019 on the southern strike extensions at The Australian Vanadium Project ("the Project") which is located south of Meekatharra in Western Australia.

The outstanding results will underpin an updated resource model in the southern areas. The shallow intercepts and the relatively higher magnetic response relating to weathering are extremely encouraging. The new drilling has closed the existing drill spacing from 400m to approximately 140m. The drilling was successful in identifying the target vanadium mineralisation, confirming the impressive continuity of the unique massive-magnetite zones at the Project.

Australian Vanadium Limited Level 1, 85 Havelock Street West Perth, WA 6005 Phone: +61 8 9321 5594 Fax: +61 8 6268 2699 Email: <u>info@australianvanadium.com.au</u>

ASX: AVL FRA: JT7.F ABN: 90 116 221 740

As reported in December¹, thirty RC holes were drilled at the Project for 2,336 metres to further define the high-grade zone (HG 10) within the Pre-Feasibility Study (PFS) case area, (see Table 2 and Table 3 for details). New drilling in this report was focused on the southern blocks of AVL's 11.5km strike length, all currently outside the definition of Mineral Reserves used in the Company's PFS.

Managing Director Vincent Algar comments: "The exceptional high-grade results from this drilling programme in areas not currently in our Reserve base further strengthen our confidence in the deposit. The results have also confirmed the presence of additional, shallow, highly magnetic mineralisation in this area. This opens up potential for a second, and possibly third mining pit to be used in the DFS mining schedule which adds confidence to the strategies we are applying to bring the Project into production."

DRILLING COMPLETED

30 RC holes were drilled at the Project between the 10th and 17th December 2019 for 2,336 metres. The results include the two highest grades reported on a complete intersection through HG zone 10 on the Project.

Hole_ID	From (m)	To (m)	Interval	V ₂ O ₅	Fe	TiO ₂	SiO ₂	LOI1000
19RRC014	45	63	18	1.14	45.29	12.94	7.40	2.37
Including	51	56	5	1.27	52.79	14.30	1.91	-0.72
19RRC015	39	60	21	1.28	41.69	15.18	7.95	3.81
Including	43	57	14	1.42	45.00	16.65	4.63	3.18
19RRC016	69	85	16	1.20	48.73	13.52	4.46	1.25
Including	74	83	9	1.28	50.70	14.18	2.78	0.58
19RRC017	73	82	9	1.19	51.37	13.23	3.70	-0.84
19RRC018	33	46	13	1.31	44.13	15.42	7.37	3.63
19RRC019	65	67	2	1.32	42.85	14.80	6.71	4.58
19RRC020	33	42	9	1.21	44.04	13.85	7.57	3.37
19RRC021	64	77	13	1.13	48.12	13.02	5.31	1.14
Including	71	75	4	1.26	53.64	14.28	1.53	-0.67
19RRC022	40	43	3	1.00	38.26	11.71	12.69	4.96
19RRC023	58	67	9	1.15	45.99	13.27	6.44	3.12
Including	62	66	4	1.29	51.21	14.65	1.99	2.19
19RRC024	22	36	14	1.22	48.03	13.94	5.25	2.19

Table 1 - Drill Hole Results (HG Zone 10 Intersections Only*)

¹ See ASX announcement dated 20/12/19 'AVL Completes Second Successful Drilling Programme'

Hole_ID	From (m)	To (m)	Interval	V ₂ O ₅	Fe	TiO ₂	SiO ₂	LOI1000
Including	26	35	9	1.29	50.84	14.63	2.67	1.50
19RRC024	38	44	6	1.10	44.39	12.10	8.91	3.20
19RRC025	55	65	10	1.21	51.86	13.55	2.98	0.01
19RRC026	20	38	18	1.24	44.42	14.67	6.93	3.45
Including	22	34	12	1.36	48.81	16.04	3.16	2.13
19RRC027	53	56	3	1.19	40.18	14.67	9.02	4.06
19RRC028			0	NSR	NSR	NSR	NSR	NSR
19RRC029	24	43	19	1.14	40.24	13.07	12.49	4.40
Including	36	39	3	1.33	49.52	14.87	4.33	2.15
19RRC030	45	58	13	1.14	48.93	12.60	5.53	2.06
Including	51	54	3	1.27	53.08	13.80	1.65	1.41
19RRC031	32	54	22	1.25	38.70	13.22	11.67	3.24
Including	37	52	15	1.44	44.74	15.39	6.19	3.08
19RRC032	57	75	18	1.09	41.97	11.58	9.64	3.86
Including	64	73	9	1.38	50.55	14.33	2.52	1.64
19RRC033	81	101	20	1.07	44.47	11.84	8.60	2.19
Including	88	97	9	1.31	51.80	13.89	2.39	0.24
19RRC034	36	49	13	1.33	45.00	14.92	6.26	2.78
Including	38	48	10	1.40	47.32	15.18	4.41	2.13
19RRC035	69	85	16	1.22	50.01	13.53	3.71	1.35
Including	73	81	8	1.28	52.48	13.88	1.85	0.53
19RRC036	99	113	14	1.17	51.11	13.17	4.12	-1.21
19RRC037	29	37	8	1.25	49.75	14.10	3.54	2.01
Including	31	37	6	1.27	50.28	14.27	3.16	1.92
19RRC038	97	106	9	1.20	52.08	13.49	2.94	-1.33
19RRC039	12	25	13	1.08	34.85	15.37	9.21	8.74
Including	18	23	5	1.33	44.42	19.14	4.11	3.65
19RRC040	96	112	16	1.05	47.10	12.00	7.31	0.28
19RRC041	83	97	14	1.09	45.34	12.21	8.30	1.23
Including	85	88	3	1.29	52.22	14.63	1.88	-1.25
19RRC042	100	103	3	1.18	49.85	13.13	5.52	-0.29
19RRC043	71	83	12	1.13	49.38	12.37	4.88	1.00
Including	76	81	5	1.27	54.51	13.64	1.43	-1.24

*Drill hole intersections are reported by geological interpretation.

"Including" criteria was 3 metres greater than 1.25% V₂O₅.

The drill programme focused on the southern blocks of AVL's 11.5 km strike length. Blocks 16 and 8 were the focus of drilling which was designed to infill existing drill holes to 140m x 30m drill spacing, with a view to increasing the Mineral Resource category from the current Inferred Resources to

Indicated Resources in the planned Mineral Resource Update. Figure 1 below shows the location of the AVL high-grade southern resources, with the location of the drilling. Table 2 contains a summary of the Inferred Resources targeted with this drilling within the southern fault blocks. Appendix 2 shows the current Global Resources, divided by domain, fault block and Resource category for the Project.

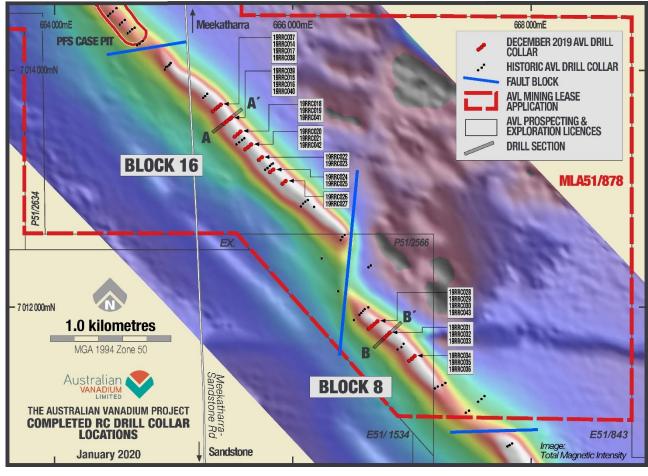


Figure 1 - Completed RC Drill Collar Locations in Southern Blocks

Grade and Intersections

Holes 19RRC015, 19RRC031 and 19RRC034 have core high grade intercepts of $1.4\% V_2O_5$ or greater (highlighted red in Table 1 above), levels which are close to the V_2O_5 concentrate grade achieved during PFS testing. Post treatment to reduce silica grades should result in a high vanadium grade concentrate product.

Notably, seven of these high-grade intercepts (highlighted red in Table 1 above), at the core of the intercepts are less than 2.00% SiO₂, which is approaching the quality of silica grades achieved in the concentrate product in the PFS testwork.

Magnetic Recovery

Geological observation during logging of the drill holes and magnetic susceptibility readings recorded on the samples, supported by the magnetic inversion model, all demonstrate a shallower weathering profile in Blocks 16 and 8. This opportunity translates to higher recoveries of magnetic product earlier in the mining schedule.

The high-grade (HG) zone 10 was intersected in 29 of the holes. The drilling also confirmed the shallower dip on block 8 to the south, where the unit dips approximately 40 degrees to the west, instead of between 50 and 60 degrees. This shallower dip might have additional benefits in relation to planning open pit mining, as it would generally result in a lower strip ratio.

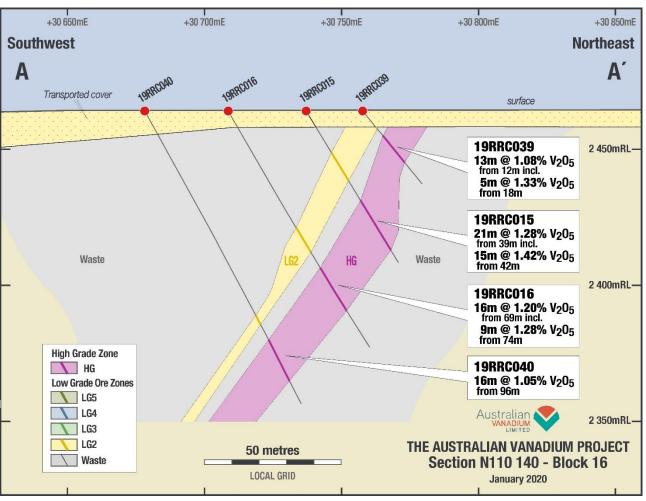
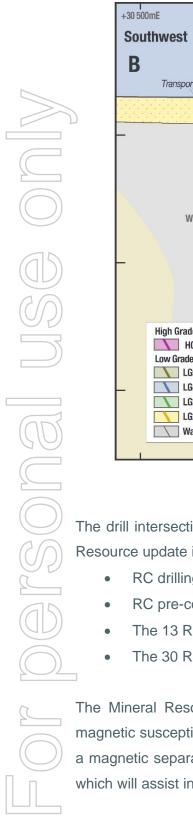



Figure 2 - Sectional Interpretation² N110140 Block 16

² LG zones 3-5 not well defined

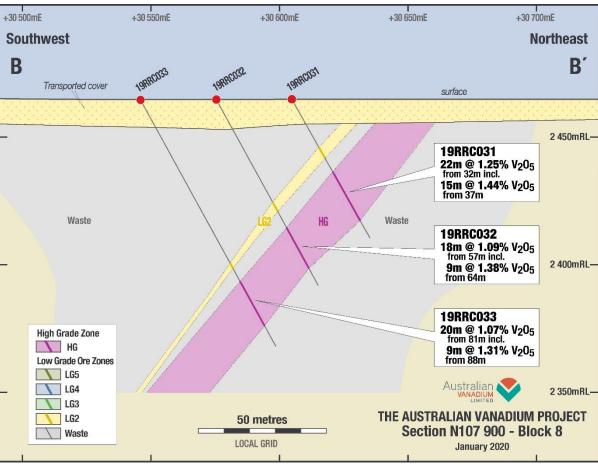


Figure 3 - Sectional Interpretation² N107900 Block 8³

The drill intersections are now being incorporated into the mineralisation interpretation. A Mineral Resource update is currently being completed, including data from:

- RC drilling from late 2018 in fault block 6;
- RC pre-collar/Diamond tail drilling from January April 2019 in fault blocks 17 and 20;
- The 13 RC holes completed in October 2019; and
- The 30 RC holes just completed.

The Mineral Resource update will incorporate new structural knowledge and an estimation of magnetic susceptibility, which is a proxy for metal recovery during concentration of the ore through a magnetic separation circuit. The new resource estimation will also be completed in a local grid, which will assist in the accuracy of the resource estimation and subsequent optimisations.

³ Section on local grid with MGA94, zone 50 coordinates shown at the southwest and northeast

Figure 4 - Total Magnetic Intensity Showing Location of Mineral Resources by Major Fault Block

Total Resources⁴ in the targeted southern blocks are as follows:

	Curren		Current	Current Resource Grades							
Block	Area	Category	Resource Tonnage (Mt)	V ₂ O ₅ %	Fe%	TiO ₂ %	SiO ₂ %	Al ₂ O ₃ %	LOI%		
16	South of pit in MLA	Inferred	19.7	1.00	42.5	11.0	11.3	7.2	2.3		
8	South of pit in MLA	Inferred	21.7	0.92	40.5	11.0	12.7	8.4	3.8		
15	South of pit in EL	Inferred	13.9	1.00	45.1	11.3	9.1	6.3	3.7		
Sub- total	Southern blocks		55.3	0.97	42.37	11.08	11.30	7.44	3.24		

Table 2 - Current Inferred Resources in South Fault Blocks

Table 3 - Target Blocks for Resource Definition Drilling to 140m Below Surface

	0.1	Current Inferred	Current Resource Inferred Grade to 140m Below Surface							
	Strike	Resource Tonnage to			140m Beid	w Surface				
Block	Extent (m)	140m Below Surface (Mt)	V ₂ O ₅ %	Fe%	TiO ₂ %	SiO ₂ %	Al ₂ O ₃ %	LOI%		
8	1,590	16.8	0.94	41.3	11.3	11.7	8.1	3.8		
15	850	9.4	0.99	45.0	11.3	9.0	6.3	3.9		
16	2,220	12.5	1.01	42.9	11.2	10.9	7.1	2.3		
Sum		38.6	0.98	42.7	11.2	10.8	7.3	3.3		

The results of the drilling will fulfill the planned objectives, being to significantly increase the potential mine life or scale of the Project to beyond the current 17 years as defined in the PFS⁵ and to enable better informed decisions on the optimal scale and mine life of the Project.

For further information, please contact: Vincent Algar, Managing Director +61 8 9321 5594

This announcement has been approved in accordance with the Company's published continuous disclosure policy and has been approved by the Board.

⁴ See ASX announcement dated 28/11/18 '*Resource Update at Gabanintha Vanadium Deposit Increases* Indicated Mineral Resource'

⁵ See ASX announcement dated 19/12/18 'Gabanintha Pre-Feasibility Study and Maiden Ore Reserve'

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND EXPLORATION TARGETS

The information in this report that relates to Exploration Results and Exploration Targets is based on and fairly represents information and supporting documentation prepared by Mr Brian Davis (Consultant with Geologica Pty Ltd). Mr Davis is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Specifically, Mr Davis consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

COMPETENT PERSON STATEMENT — MINERAL RESOURCE ESTIMATION

The information in this announcement that relates to Mineral Resources is based on and fairly represents information compiled by Mr Lauritz Barnes, (Consultant with Trepanier Pty Ltd) and Mr Brian Davis (Consultant with Geologica Pty Ltd). Mr Davis is a shareholder of Australian Vanadium Limited. Mr Barnes and Mr Davis are members of the Australasian Institute of Mining and Metallurgy (AusIMM) and Mr Davis is a member of the Australian Institute of Geoscientists, both have sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Specifically, Mr Barnes is the Competent Person for the estimation and Mr Davis is the Competent Person for the database, geological model and site visits. Mr Barnes and Mr Davis consent to the inclusion in this announcement of the matters based on their information in the form and context in which they appear.

COMPETENT PERSON STATEMENT — ORE RESERVES

The scientific and technical information in this announcement that relates to ore reserves estimates for the Project is based on information compiled by Mr Roselt Croeser, an independent consultant to AVL. Mr Croeser is a member of the Australasian Institute of Mining and Metallurgy. Mr Croeser has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a competent person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Croeser consents to the inclusion in the announcement of the matters related to the ore reserve estimate in the form and context in which it appears.

FORWARD LOOKING STATEMENTS

This announcement may contain certain "forward looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis. However, forward looking statements are subject to risks, uncertainties, assumptions and other factors which could cause actual results to differ materially from future results expressed, projected or implied by such forward looking statements. Such risks include, but are not limited to Resource risk, metal price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which we sell our product to, and government regulation and judicial outcomes. For more detailed discussion of such risks and other factors, see the Company's Annual Reports, as well as the Company's other filings. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward looking statement" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

APPENDIX 1

Table 4 - Reported RC Drill Hole Collar, Direction and Purpose Details*

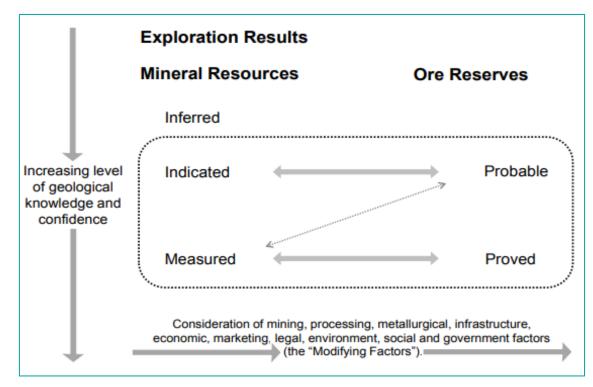
(TD)
00
\bigcirc

Hole ID	East	North	RL	Depth (m)	Dip	Azimuth
19RRC014	665358	7013697	464	71	-60	50
19RRC015	665448	7013590	464	65	-60	50
19RRC016	665425	7013571	464	101	-60	50
19RRC017	665335	7013678	464	95	-60	50
19RRC018	665541	7013485	464	53	-60	50
19RRC019	665518	7013465	464	83	-60	50
19RRC020	665631	7013378	464	53	-60	50
19RRC021	665608	7013359	464	86	-60	50
19RRC022	665721	7013270	464	53	-60	50
19RRC023	665698	7013251	464	74	-60	50
19RRC024	665814	7013166	464	53	-60	50
19RRC025	665792	7013147	464	71	-60	50
19RRC026	665918	7013071	464	47	-60	50
19RRC027	665895	7013051	464	77	-60	50
19RRC028	666687	7011885	465	52	-60	50
19RRC029	666664	7011865	465	53	-60	50
19RRC030	666641	7011846	465	65	-60	50
19RRC031	666788	7011787	465	62	-60	50
19RRC032	666765	7011768	465	83	-60	50
19RRC033	666742	7011748	465	110	-60	50
19RRC034	666998	7011591	465	59	-60	50
19RRC035	666975	7011572	465	95	-60	50
19RRC036	666952	7011553	465	119	-60	50
19RRC037	665374	7013711	464	59	-50	50
19RRC038	665312	7013659	464	119	-60	50
19RRC039	665463	7013602	464	35	-50	50
19RRC040	665402	7013551	464	122	-60	50
19RRC041	665495	7013446	464	110	-60	50
19RRC042	665585	7013340	464	116	-60	50
19RRC043	666618	7011827	465	95	-60	50

*Coordinate system is MGA94, zone 50.

APPENDIX 2

Table 5 - The Australian Vanadium Project Mineral Resource Estimate*


	Block #	Cat	Mt	V ₂ O ₅ %	Fe %	TiO ₂ %	SiO ₂ %	Al ₂ O ₃ %	LOI %
	20	Measured	9.2	1.11	42.9	12.7	10.2	7.9	3.8
	22	Measureu	1.0	1.1	41.7	12.5	10.4	9.3	4.9
		Subtotal	10.2	11.1	42.7	12.6	10.2	8.0	3.9
	17		5.5	1.01	43.6	11.5	11.4	7.8	3.7
	20	Indicated	5.9	1.09	44.4	12.1	9.7	7.2	3.1
	22		0.7	1.09	40.8	12.6	11.4	9.6	5.2
		Subtotal	12.1	1.05	43.8	11.9	10.6	7.6	3.5
	6		5.2	0.91	40.1	10.4	14.7	8.4	3.3
HG 10	8		21.7	0.92	40.5	11.0	12.7	8.4	3.8
Ĭ	15		13.9	1.00	45.1	11.3	9.1	6.3	3.7
	16	Inferred	19.7	1.00	42.5	11.0	11.3	7.2	2.3
	17	merred	1.5	0.95	42.7	10.9	12.7	7.9	3.8
	20		4.7	1.08	43.4	12.0	10.6	7.7	3.4
	21		5.1	1.00	41.7	11.4	12.3	7.8	3.9
	22		2.6	1.02	40.0	12.9	12.1	10.4	5.7
		Subtotal	74.5	0.97	42.1	11.2	11.6	7.6	3.4
	Sum	HG Total	96.7	1.0	42.4	11.4	11.3	7.7	3.5
	17	Indicated	7.7	0.49	26.1	6.7	26.9	18.0	8.6
	20		18.1	0.51	24.1	7.0	27.8	17.8	8.4
	22		2.9	0.50	23.6	6.8	27.0	17.8	9.9
		Subtotal	28.6	0.5	24.6	6.9	27.5	17.9	8.6
	6		4.0	0.46	25.2	6.3	28.1	16.4	7.9
	8		6.4	0.50	23.6	6.6	28.1	18.9	7.9
2-5	15		4.7	0.49	23.5	6.4	29.1	17.1	3.5
LG	16	Informed	18.6	0.52	26.8	6.9	26.5	14.3	5.9
_	17	Inferred	3.0	0.48	25.7	6.7	27.5	17.7	8.5
	20		5.4	0.51	24.7	6.9	27.9	17.4	8.2
	21		5.6	0.45	25.4	6.6	26.7	17.6	9.9
	22		6.2	0.43	24.4	6.5	29.0	17.5	9.5
		Subtotal	53.9	0.49	25.3	6.7	27.5	16.4	7.3
	Sum	LG Total	82.5	0.49	25.1	6.8	27.5	16.9	7.7
	8		0.9	0.73	33.5	8.4	19.4	12.3	8.2
ço	15		0.3	0.91	42.9	8.6	13.0	10.1	5.3
Transported 6-8	17	Inferred	0.0	0.53	21.5	7.5	31.7	19.7	8.2
orte	20		1.1	0.55	16.4	7.4	31.6	24.1	10.9
dsu	21		0.3	0.50	28.3	5.7	24.9	16.6	10.2
Tra	17		0.0	0.59	33.6	6.0	26.6	11.9	5.7
	20		1.6	0.66	29.9	6.6	25.3	15.9	7.4

22		0.1	0.47	22.6	5.1	27.2	16.6	12.0
20		0.1	0.50	30.9	5.1	26.3	15.1	7.5
Sum	Transported Total	4.4	0.65	28.2	7.2	24.7	16.7	8.5
	Measured	10.2	1.1	42.7	12.6	10.2	8.0	3.9
	Indicated	40.7	0.66	30.3	8.3	22.5	14.8	7.1
	Inferred	132.7	0.77	34.8	9.2	18.5	11.5	5.1
	Grand Total	183.6	0.76	34.3	9.2	18.9	12.1	5.5

*As announced on 28 November, 2018 ("*Resource Update at Gabanintha Vanadium Deposit Increases Indicated Mineral Resource*") by domain, fault block and resource classification using a nominal $0.4\% V_2O_5$ wireframed cut-off for low-grade and nominal $0.7\% V_2O_5$ wireframed cut-off for high-grade (total numbers may not add up due to rounding by fault block).

APPENDIX 3

APPENDIX 4

Table 6 - Reserve Statement

Reserve Classification	Tonnes	V ₂ O ₅ %	V ₂ O ₅ Produced t
Proved	9,820,000	1.07	65,000
Probable	8,420,000	1.01	56,000
Total	18,240,000	1.04	121,000

The key inputs or modifying factors include:

- Ore mining recovery of 95%.
- Mining dilution of 5%.
- A nominal plant throughput of 1.45 Mt/a based on a blend of ore types.
- An overall Life of Mine (LOM) V₂O₅ process recovery of 64%. This was based on metallurgical testwork and refinery flowsheet benchmarks.
- Geotechnical parameters based on independent consultant report by Dempers & Seymour.
- CMB costs averaging A\$17.09/t were used for pit optimisation and is based on preliminary plant design and cost estimates by Wood, including expected power and consumable usage and an overhead cost (general and admin) of A\$2.24/t.
- Total mining costs averaging \$3.50/t ore and waste mined (LOM).
- Pit designs based on optimal discounted cash flow pit shell using V_2O_5 revenue price of US\$8/lb.
- Gross royalty of 5.0% including 2.5% WA Government Royalty and additional royalties.

14 🔪

APPENDIX 5

2019 Drilling Progress Update with latest Mineral Resource Estimate dated November 2018 (2012 JORC Code – Table 1)

Section 1 - Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut	The Australian Vanadium Project deposit was sampled using diamond core and reverse circulation (RC) percussion
Techniques	channels, random chips, or specific	drilling from surface.
	specialised industry standard measurement	During 2019 43 RC holes were drilled; 30 RC holes were drilled for 2236m in the December 2019 drilling on blocks
	tools appropriate to the minerals under	16 and 8, and 13 RC holes for 1,224m drilled during October 2019.
	investigation, such as down hole gamma	A further 30 PQ diamond drill holes were completed by March 2019, to collect metallurgy sample for a plant pilot
	sondes, or handheld XRF instruments, etc).	study. 12 are drilled down-dip into the high-grade zone. These were complimented by an additional 18 PQ diamond
	These examples should not be taken as	drill tails on RC pre-collars, drilling vertically. The down dip holes are measured by hand-held XRF at 50 cm intervals
	limiting the broad meaning of sampling.	to inform metallurgy characterisation but will not form part of any resource estimation update unless certified
		laboratory analysis is completed on a cut portion of the drill core. The 18 diamond tails were cut and a 1/4 of the PQ
		sized core was sent for analysis.
		At the time of the latest Mineral Resource estimation (November 2018), a total of 250 RC holes and 20 diamond
		holes (6 of which are diamond tails) were drilled into the deposit. 59 of the 251 holes were either too far north or
		east of the main mineralisation trend or excised due to being on another tenancy. One section in the southern part
		of the deposit (holes GRC0156, GRC0074, GRC0037 and GRC0038) was blocked out and excluded from the
		resource due to what appeared to be an intrusion which affected the mineralised zones in this area. Of the
		remaining 191 drillholes, one had geological logging, but no assays and one was excluded due to poor sample
		return causing poor representation of the mineralised zones. Two diamond holes drilled during 2018 were not part
		of the resource estimate, as they were drilled into the western wall for geotechnical purposes. The total metres of
		drilling available for use in the interpretation and grade estimation was 17,530m at the date of the most recent
		resource estimate.
		The initial 17 RC drillholes were drilled by Intermin Resources NL (IRC) in 1998. These holes were not used in the
		2015 and 2017 estimates due to very long unequal sample lengths and a different grade profile from subsequent
		drilling. 31 RC drillholes were drilled by Greater Pacific NL in 2000 and the remaining holes for the project were

Criteria JORC Code Explanation	Commentary
	rilled by Australian Vanadium Ltd (Previously Yellow Rock Resources Ltd) between 2007 and 2018. This drilling
	icludes 20 diamond holes (6 of which are diamond tails) and 76 RC holes, for a total of 20,974m drilled.
	Il of the drilling sampled both high and low-grade material and were sampled for assaying of a typical iron ore suite,
	icluding vanadium and titanium plus base metals and sulphur.
	Q core from diamond tails was ¼ cored and sent for assay. The remaining core went to make up the pilot plant
	netallurgical sample. The Down Dip 2019 PQ core has not been sampled. Handheld XRF machines being used to
	ake ½ metre measurements on the core have been calibrated using pulps from previous drilling by the Company,
	or which there are known head assays. 2018 HQ diamond core was half-core sampled at regular intervals (usually
	ne metre) with smaller sample intervals at geological boundaries. 2015 diamond core was quarter-core sampled at
	egular intervals (usually one metre) and constrained to geological boundaries where appropriate. 2009 HQ
	iamond core was half-core sampled at regular intervals (one metre) or to geological boundaries. Most of the RC
	rilling was sampled at one metre intervals, apart from the very earliest programme in 1998. RC samples have been
	plit from the rig for all programmes with a cone splitter to obtain $2.5 - 3.5$ kg of sample from each metre. Field
	uplicates were collected for every 40th drill metre to check sample grade representation from the drill rig splitter.
	uring the October 2019 RC programme, field duplicates were collected from the rig splitter for every 30 th drill
	netre. During the December 2019 RC programme, field duplicates were collected from the rig splitter for every 20 th
	rill metre.
	C drilling samples were collected at one metre intervals and passed through a cone splitter to obtain a nominal 2-
	kg sample at an approximate 10% split ratio. These split samples were collected in pre-numbered calico sample
Report. ba	ags. The sample was dried, crushed and pulverised to produce a sub sample (~200g) for laboratory analysis using
XI	RF and total LOI by thermo-gravimetric analysis.
Di	iamond core was drilled predominantly at HQ size for the earlier drilling (2009) and entirely HQ for the 2018
pr	rogramme with the 2015 and 2019 drilling at PQ3 size.
Fi	ield duplicates, standards and blanks have been inserted into the sampling stream at a rate of nominally 1:20 for
bl	lanks, 1:20 for standards (including internal laboratory), 1:40 for field duplicates, 1:20 for laboratory checks and
1:	74 for umpire assays. For this RC programme completed in December 2019, the field duplicates were
in	corporated at a rate of 1:20, while standards 1:50 and blanks also 1:50.

_		
	Criteria	JORC Code Explanati
	Drilling	Drill type (e.g. core, reverse circula
	Techniques	open-hole hammer, rotary air blas
		Bangka, sonic, etc.) and details (e
		diameter, triple or standard tube, o
		diamond tails, face- sampling bit o
		type, whether core is oriented and
		what method, etc.).
	Drill Sample	Method of recording and assessin
	Recovery	chip sample recoveries and result
		assessed.
1		

Criteria	JORC Code Explanation	Commentary
Drilling	Drill type (e.g. core, reverse circulation,	Diamond drillholes account for 14% of the drill metres used in the Resource Estimate and comprises HQ and PQ3
Techniques	open-hole hammer, rotary air blast, auger,	sized core. RC drilling (generally 135 mm to 140 mm face-sampling hammer) accounts for the remaining 86% of the
	Bangka, sonic, etc.) and details (e.g. core	drilled metres. Six of the diamond holes have RC pre-collars (GDH911, GDH913 & GDH916, 18GEDH001, 002 and
	diameter, triple or standard tube, depth of	003), otherwise all holes are drilled from surface.
	diamond tails, face- sampling bit or other	No core orientation data has been recorded in the database.
	type, whether core is oriented and if so, by	17 RC holes were drilled during the 2018 programme and three HQ diamond tails were drilled on RC pre-collars for
	what method, etc.).	resource and geotechnical purposes. The core was not orientated but all diamond holes were logged by OTV and
		ATV televiewer. Six RC holes from the 2018 campaign are not used in the resource estimate due to results pending
		at the time of the latest update, and two diamond holes drilled during 2018 were not used as they are for
		geotechnical purposes and do not intersect the mineralised zones.
		During 2019 a further 12 PQ diamond holes have been drilled down-dip on the high-grade zone for metallurgical
		sample but have not been sampled for assay analysis as they have been sampled for a metallurgy pilot study
		programme. As such they do not form part of any resource estimation. An addition 18 PQ diamond tails on RC pre-
		collars have been drilled vertically, of which 16 are expected to contribute to the resource and two were used for the
		metallurgy pilot study programme. A further 43 RC holes using a 140 mm face hammer on a Schramm drill rig have
		been completed during October and December 2019.
Drill Sample	Method of recording and assessing core and	Diamond core recovery is measured when the core is recovered from the drill string. The length of core in the tray is
Recovery	chip sample recoveries and results	compared with the expected drilled length and is recorded in the database.
	assessed.	For the 2019, 2018 and 2015 drilling, RC chip sample recovery was judged by how much of the sample was
		returned from the cone splitter. This was recorded as good, fair, poor or no sample. The older drilling programmes
		used a different splitter, but still compared and recorded how much sample was returned for the drilled intervals. All
		of the RC sample bags (non-split portion) from the 2018 programme were weighed as an additional check on
		recovery.
		An experienced AVL geologist was present during drilling and any issues noticed were immediately rectified.
		No significant sample recovery issues were encountered in the RC or PQ drilling in 2015.
		No significant sample recovery issues were encountered in the RC or PQ drilling in 2019 except where core loss
		occurred in three holes intersecting high grade ore. This involved holes 19MTDT012 between 142.9m and 143.3m;
		19MTDT013 from 149m to 149.6m, 151m to 151.4m and 159.5m to 160m; as well as 19MTDT016 between 29.5m

Criteria	JORC Code Explanation	Commentary
		and 30.7m down hole. In each case the interval lost was included as zero grade for all elements for the estimation of
		the total mineralised intercept.
	Measures taken to maximize sample	Core depths are checked against the depth given on the core blocks and rod counts are routinely carried out by the
	recovery and ensure representative nature	drillers. Recovered core was measured and compared against driller's blocks. 2019 diamond core samples had a
	of the samples.	coarse split created at the laboratory that was also analysed to evaluate laboratory splitting of the sample.
		RC chip samples were actively monitored by the geologist whilst drilling. Field duplicates have been taken at a
		frequency between every 30 th and every 50 th metre in every RC drill campaign.
		All drillholes are collared with PVC pipe for the first metres, to ensure the hole stays open and clean from debris.
	Whether a relationship exists between	No relationship between sample recovery and grade has been demonstrated.
	sample recovery and grade and whether	Two shallow diamond drillholes drilled to twin RC holes have been completed to assess sample bias due to
	sample bias may have occurred due to	preferential loss/gain of fine/coarse material.
	preferential loss/gain of fine/coarse material.	Geologica Pty Ltd is satisfied that the RC holes have taken a sufficiently representative sample of the mineralisation
		and minimal loss of fines has occurred in the RC drilling resulting in minimal sample bias.
Logging	Whether core and chip samples have been	All diamond core and RC chips from holes included in the latest resource estimate were geologically logged.
	geologically and geotechnically logged to a	Diamond core was geologically logged using predefined lithological, mineralogical and physical characteristics (such
	level of detail to support appropriate Mineral	as colour, weathering, fabric, texture) logging codes and the logged intervals were based on lithological intervals.
	Resource estimation, mining studies and	RQD and recoveries were also recorded. Minimal structural measurements were recorded (bedding to core angle
	metallurgical studies.	measurements) but have not yet been saved to the database.
		The logging was completed on site by the responsible geologist. All of the drilling was logged onto paper and was
		transferred to a SQL Server drillhole database using DataShedTM database management software. The database
		is managed by Mitchell River Group (MRG). The data was checked for accuracy when transferred to ensure that
		correct information was recorded. Any discrepancies were referred back to field personnel for checking and editing.
		All core trays were photographed wet and dry.
		RC chips were logged generally on metre intervals, with the abundance/proportions of specific minerals, material
		types, lithologies, weathering and colour recorded. Physical hardness for RC holes is estimated by chip recovery
		and properties (friability, angularity) and in diamond holes by scratch testing.
		From 2015, drilling also had magnetic susceptibility recorded, with the first nine diamond holes (GDH901-GDH909)

	Criteria	JO
D S N		
P		
		Whether logg
		photography.
		The total leng relevant inters
(15)	Sub-	If core, wheth
	Sampling	quarter, half c
	Techniques	
<u></u>	and Sample	
	Preparation	
	1	1

Criteria	JORC Code Explanation	Commentary
		having readings taken on the core every 30 cm or so downhole. Holes GDH910 to GDH917 had readings every 50
		cm and RC holes GRC0159 to GRC0221 had readings for each one metre green sample bag. 2018 RC drill holes
		also have magnetic susceptibility data for each one metre of drilling. Pulps from historic drillhole have been
		measured for magnetic susceptibility, with calibration on results applied from control sample measurement of pulps
		from drill programmes from 2015 onwards where measurements of the RC bags already exist.
		All resource (vs geotechnical) diamond core and RC samples have been logged to a level of detail to support
		Mineral Resource estimation to and classification to Measured Mineral Resource at best.
		Geotechnical logging and OTV/ATV data was collected on three diamond drillholes from the 2018 campaign, by
		consultant company Dempers and Seymour, adding to an existing dataset of geotechnical logging on 8 of the 2015
		diamond drillholes and televiewer data for four of the same drillholes. In addition, during 2018 televiewer data was
		collected on a further 15 RC drillholes from various drill campaigns at the project.
		PQ diamond drill holes completed during 2019 were geologically and geotechnically logged in detail by the site
		geologists.
	Whether logging is qualitative or quantitative	Logging was both qualitative and quantitative in nature, with general lithology information recorded as qualitative
	in nature. Core (or costean, channel, etc.)	and most mineralisation records and geotechnical records being quantitative. Core photos were collected for all
	photography.	diamond drilling.
	The total length and percentage of the	All recovered intervals were geologically logged.
	relevant intersections logged.	
Sub-	If core, whether cut or sawn and whether	The 2018 and 2009 HQ diamond core were cut in half and the half core samples were sent to the laboratories for
Sampling	quarter, half or all core taken.	assaying. Sample intervals were marked on the core by the responsible geologist considering lithological and
Techniques		structural features. No core was selected for duplicate analysis.
and Sample		The 2015 PQ diamond core was cut in half and then the right-hand side of the core (facing downhole) was halved
Preparation		again using a powered core saw. Quarter core samples were sent to the laboratories for assaying. Sample intervals
		were marked on the core by the responsible geologist considering lithological and structural features. No core was
		selected for duplicate analysis.
		16 of the 18 total vertical diamond PQ diamond drill holes from 2019 have been quarter core sampled and assayed.
		Sample intervals were marked on the core by the responsible geologist considering lithological and structural
		features.

Criteria	JORC Code Explanation	Commentary
	If non-core, whether riffled, tube sampled,	RC drilling was sampled by use of an automatic cone splitter for the 2019, 2018 and 2015 drilling programmes;
	rotary split, etc. and whether sampled wet or	drilling was generally dry with a few damp samples. Older drilling programmes employed riffle splitters to produce
	dry.	the required sample splits for assaying. One in 40 to 50 RC samples was resampled as field duplicates for QAQC
		assaying, with this frequency increasing to one in 30 for the October 2019 RC drilling, and one in 20 for the
		December 2019 RC drilling.
	For all sample types, the nature, quality and	The sample preparation techniques employed for the diamond core samples follow standard industry best practice.
	appropriateness of the sample preparation	All samples were crushed by jaw and Boyd crushers and split if required to produce a standardised ~3kg sample for
	technique.	pulverising. The 2015 programme RC chips were split to produce the same sized sample.
		All samples were pulverised to a nominal 90% passing 75 micron sizing and sub sampled for assaying and LOI
		determination tests. The remaining pulps are stored at an AVL facility.
		The sample preparation techniques are of industry standard and are appropriate for the sample types and proposed
		assaying methods.
	Quality control procedures adopted for all	Field duplicates, standards and blanks have been inserted into the sampling stream at a rate of nominally 1:20 for
	sub-sampling stages to maximize	blanks, 1:20 for standards (including internal laboratory), 1:40 for field duplicates, 1:20 for laboratory checks and
	representivity of samples.	1:74 for umpire assays. Also, for the recent sampling at BV, 1 in 20 samples were tested to check for pulp grind
		size. For 2019 diamond core samples, duplicates were created from the coarse crush at a frequency of 1 in 20
		samples at the laboratory and assayed.
	Measures taken to ensure that the sampling	To ensure the samples collected are representative of the in-situ material, a 140mm diameter RC hammer was used
	is representative of the in-situ material	to collect one metre samples and either HQ or PQ3 sized core was taken from the diamond holes. Given that the
	collected, including for instance results for	mineralisation at the Australian Vanadium Project is either massive or disseminated magnetite/martite hosted
	field duplicate/second-half sampling.	vanadium, which shows good consistency in interpretation between sections and occurs as percentage values in
		the samples, Geologica Pty Ltd considers the sample sizes to be representative.
		Core is not split for duplicates, but RC samples are split at the collection stage to get representative (2-3kg)
		duplicate samples.
		The entire core sample and all the RC chips are crushed and /or mixed before splitting to smaller sub-samples for
		assaying.
		1

Criteria	JORC Code Explanation	Commentary
	Whether sample sizes are appropriate to the	As all of the variables being tested occur as moderate to high percentage values and generally have very low
	grain size of the material being sampled.	variances (apart from Cr ₂ O ₃), the chosen sample sizes are deemed appropriate.
Quality of	The nature, quality and appropriateness of	All samples for the Australian Vanadium Project were assayed for the full iron ore suite by XRF (24 elements) and
Assay Data	the assaying and laboratory procedures	for total LOI by thermo-gravimetric technique. The method used is designed to measure the total amount of each
and	used and whether the technique is	element in the sample. Some 2015 and 2018 RC samples in the oxide profile were also selected for SATMAGAN
Laboratory	considered partial or total.	analysis that is a measure of the amount of total iron that is present as magnetite (or other magnetic iron spinel
Tests		phases, such as maghemite or kenomagnetite). SATMAGAN analysis was conducted at Bureau Veritas (BV)
		Laboratory during 2018.
		Although the laboratories changed over time for different drilling programmes, the laboratory procedures all appear
		to be in line with industry standards and appropriate for iron ore deposits, and the commercial laboratories have
		been industry recognized and certified
		Samples are dried at 105°C in gas fired ovens for 18-24 hours before RC samples being split 50:50. One portion is
		retained for future testing, while the other is then crushed and pulverised. Sub-samples are collected to produce a
		66g sample that is used to produce a fused bead for XRF based analysing and reporting.
		Certified and non-certified Reference Material standards, field duplicates and umpire laboratory analysis are used
		for quality control. The standards inserted by AVL during the 2015 drill campaign were designed to test the V_2O_5
		grades around 1.94%, 0.95% and 0.47%. The internal laboratory standards used have varied grade ranges but do
		cover these three grades as well. During 2018 and 2019, three Certified Reference Materials (CRMs) were used by
		AVL as field standards. These covered the V_2O_5 grade ranges around 0.327%, 0.790% and 1.233%. These CRMs
		are also certified for other relevant major element and oxide values, including Fe, TiO ₂ , Al ₂ O ₃ , SiO ₂ , Co, Ni and Cu
		(amongst others).
		Most of the laboratory standards used show an apparent underestimation of V2O5, with the results plotting below the
		expected value lines, however the results generally fall within \pm 5-10% ranges of the expected values. The other
		elements show no obvious material bias.
		Standards used by AVL during 2015 generally showed good precision, falling within 3-5% of the mean value in any
		batch. The standards were not certified but compared with the internal laboratory standards (certified) they appear
		to show good accuracy as well.
		Field duplicate results from the 2015 drilling all fall within 10% of their original values.

Criteria	JORC Code Explanation	Commentary
		The BV laboratory XRF machine calibrations are checked once per shift using calibration beads made using exact
		weights and they performed repeat analyses of sample pulps at a rate of 1:20 (5% of all samples). The lab repeats
		compare very closely with the original analysis for all elements.
		2019 PQ diamond core has been assayed, and studies on all results for QAQC sample performance is in progress.
		Geologica considers that the nature, quality and appropriateness of the assaying and laboratory procedures is at
		acceptable industry standards.
	For geophysical tools, spectrometers,	The geophysical readings taken for the Australian Vanadium Project core and RC samples and recorded in the
	handheld XRF instruments, etc, the	database were magnetic susceptibility. For the 2009 diamond and 2015 RC and diamond drill campaigns this was
	parameters used in determining the analysis	undertaken using an RT1 hand magnetic susceptibility meter (CorMaGeo/Fugro) with a sensitivity of 1 x 10 ⁻⁵
	including instrument make and model,	(dimensionless units). The first nine diamond holes (GDH901 – GDH909) were sampled at approximately 0.3m
	reading times, calibrations factors applied	intervals, the last eight (GDH910 – GDH917) at 0.5m intervals and the RC chip bags for every green bagged
	and their derivation, etc.	sample (one metre). During 2018 and 2019 RC and diamond core has been measured using a KT-10 magnetic
		susceptibility metre, at 1 x 10 ⁻³ ssi unit. In addition to the handhold magnetic susceptibility described above the 2019
		drilling included downhole magnetic susceptibility. This was taken using a Century Geophysical 9622 Magnetic
		Susceptibility tool. The 9622 downhole tool sensitivity is 20 x 10 ⁻⁵ with a resolution of 10cm
		2019 diamond core is being analysed using an Olympus Vanta pXRF with a 20 second read time. The unit has been
		calibrated using pulp samples with known head assays from previous drill campaigns by the Company. Standard
		deviations for each element analysed are being recorded and retained. Elements being analysed are: Mg, Al, Si, P,
		S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, W, Hg, Pb, Bi, Th, and U.
		Four completed diamond drillholes were down hole surveyed by acoustic televiewer (GDH911, 912, 914 and 915)
		as a prequel to geotechnical logging during the 2015 drill campaign. A further six holes from the 2018 campaign
		have been down hole surveyed using acoustic televiewer and optical televiewer (18GEDH001, 002 and 003 and
		partial surveys of 18GERC005, 008 and 011) for 627 metres of data.
		Televiewer data was also collected during 2018 on some of the holes drilled in 2015 and prior. The holes surveyed
		were GRC0019, 0024, 0168, 0169, 0173, 0178, 0180, 0183, 0200 and Na253, Na258 and Na376 for a further
		286.75 m of data.
		All 12 of the 2019 down dip PQ holes have been televiewer surveyed.

Criteria	JORC Code Explanation	Commentary
	Nature of quality control procedures adopted	QAQC results from both the primary and secondary assay laboratories show no material issues with the main
	(e.g. standards, blanks, duplicates, external	variables of interest for the recent assaying programmes.
	laboratory checks) and whether acceptable	
	levels of accuracy (i.e. lack of bias) and	
	precision have been established.	
Verification of	The verification of significant intersections by	Diamond drill core photographs have been reviewed for the recorded sample intervals. Geologica Pty Ltd
Sampling and	either independent or alternative company	Consultant, Brian Davis, visited the Australian Vanadium Project site on multiple occasions and the BV core shed
Assaying	personnel.	and assay laboratories in 2015 and 2018. Whilst on site, the drillhole collars and remaining RC chip samples were
		inspected. All of the core was inspected in the BV facilities in Perth and selected sections of drillholes were
		examined in detail in conjunction with the geological logging and assaying.
		Resource consultants from Trepanier have visited the company core storage facility in Bayswater and reviewed the
		core trays for select diamond holes.
	The use of twinned holes.	Two diamond drillholes (GDH915 and GDH917) were drilled to twin the RC drillholes GRC0105 and GRC0162
		respectively. The results show excellent reproducibility in both geology and assayed grade for each pair.
	Documentation of primary data, data entry	All primary geological data has been collected using paper logs and transferred into Excel spreadsheets and
	procedures, data verification, data storage	ultimately a SQL Server Database. The data were checked on import. Assay results were returned from the
	(physical and electronic) protocols.	laboratories as electronic data which were imported directly into the SQL Server database. Survey and collar
		location data were received as electronic data and imported directly to the SQL database.
		All of the primary data have been collated and imported into a Microsoft SQL Server relational database, keyed on
		borehole identifiers and assay sample numbers. The database is managed using DataShed™ database
		management software. The data was verified as it was entered and checked by the database administrator (MRG)
		and AVL personnel
	Discuss any adjustment to assay data.	No adjustments or calibrations were made to any assay data, apart from resetting below detection limit values to
		half positive detection values.
	1	1

	Criteria	
	Location of	Accura
	Data Points	locate
		survey
		locatio
\bigcirc		estima
(15)		
$\widetilde{\mathbb{O}}$		
(QD)		
$(\mathcal{O}\mathcal{I})$		
		Specif
$\bigcirc _$		
\bigcirc		
Пп		

Criteria	JORC Code Explanation	Commentary
cation of	Accuracy and quality of surveys used to	The 2019 drill holes have been set out using a real-time Kinematic (RTK) GPS system. At completion of drilling the
ta Points	locate drillholes (collar and down-hole	collar positions were picked up by a professional surveyor with an RTK system.
	surveys), trenches, mine workings and other	For the 2018 drilling, all collars were set out using a handheld GPS. After drilling they were surveyed using a
	locations used in Mineral Resource	Trimble RTK GPS system. The base station accuracy on site was improved during the 2015 survey campaign and a
	estimation.	global accuracy improvement was applied to all drillholes in the Company database.
		For the 2015 drilling, all of the collars were set out using a Trimble RTK GPS system. After completion of drilling all
		new collars were re-surveyed using the same tool.
		Historical drill holes were surveyed with RTK GPS and DGPS from 2008 to 2015, using the remaining visible collar
		location positions where necessary. Only five of the early drillholes, drilled prior to 2000 by Intermin, had no obvious
		collar position when surveyed and a best estimate of their position was used based on planned position data.
		Downhole surveys were completed for all diamond holes, using gyro surveying equipment, as well as the RC holes
		drilled in 2015 (from GRC0159). Some RC drillholes from the 2018 campaign do not have gyro survey as the hole
		closed before the survey could be done. These holes have single shot camera surveys, from which the dip readings
		were used with an interpreted azimuth (nominal hole setup azimuth). The holes with interpreted azimuth are all less
		than 120m depth. All other RC holes were given a nominal -60° dip measurement. These older RC holes were
		almost all 120m or less in depth.
	Specification of the grid system used.	The grid projection used for the Australian Vanadium Project is MGA_GDA94, Zone 50. All reported coordinates are
		referenced to this grid.
	1	

	Criteria	JORC Code Explanation
		Quality and adequacy of topographic control.
\bigcirc		
nse M		
[SON2]		

Commentary High resolution Digital Elevation Data was captured by Arvista for the Company in June 2018 over the MLA51/878 tenement area using fixed wing aircraft, with survey captured at 12 cm GSD using an UltraCam camera system operated by Aerometrex. The data has been used to create a high-resolution Digital Elevation Model on a grid spacing of 5m x 5m, which is within 20 cm of all surveyed drill collar heights, once the database collar positions were corrected for the improved ground control survey, that was also used in this topography survey. The vertical accuracy that could be achieved with the 12 cm GSD is +/- 0.10 m and the horizontal accuracy is +/- 0.24m. 0.5m contour data has also been generated over the mining lease application. High quality orthophotography was also acquired during the survey at 12cm per pixel for the full lease area, and visual examination of the imagery shows excellent alignment with the drill collar positions. The November 2018 Mineral Resource used this surface for topographic control within the Mining Lease Application area (MLA51/878). For the entire 2017 and July 2018 Mineral Resource estimates, and the November 2018 Mineral Resource estimate outside the MLA area, high resolution Digital Elevation Data was supplied by Landgate. The northern two thirds of the elevation data is derived from ADS80 imagery flown September 2014. The data has a spacing of 5M and is the most accurate available. The southern third is film camera derived 2005 10M grid, resampled to match it with the 2014 DEM. Filtering was applied and height changes are generally within 0.5M. Some height errors in the 2005 data may be +/- 1.5M when measured against AHD but within the whole area of interest any relative errors will mostly be

no more than +/- 1M. In 2015 a DGPS survey of hole collars and additional points was taken at conclusion of the drill programme. Trepanier compared the elevations the drillholes with the supplied DEM surface and found them to be within 1m accuracy.

An improved ground control point has been established at the Australian Vanadium Project by professional surveyors. This accurate ground control point was used during the acquisition of high quality elevation data. As such, a correction to align previous surveys with the improved ground control was applied to all drill collars from pre-2018 in the Company drill database. Collars that were picked up during 2018 were already calibrated against the new ground control.

2019 drill collar locations have been verified with a DGPS in the field (accuracy about 20 cm on the horizontal) with final RTK pick up complete for all but the October 2019 RC drillholes (survey scheduled in the coming fortnight).

Criteria	JORC Code Explanation	Commentary
Data Spacing	Data spacing for reporting of Exploration	The 2018 RC drilling in Fault Block 17 and 6 has infilled areas of 260 m spaced drill lines to about 130m spaced drill
and	Results.	lines, with holes on 30 m centres on each line.
Distribution		The closer spaced drilled areas of the deposit now have approximately 80m to 100m spacing by northing and 25m
		to 30m spacing by easting. Occasionally these spacings are closer for some pairs of drillholes. Outside of the main
		area of relatively close spaced drilling (approximately 7015400mN to 7016600mN), the drillhole spacing increases
		to several hundred metres in the northing direction but maintains roughly the same easting separation as the closer
		spaced drilled area.
	Whether the data spacing and distribution is	The degree of geological and grade continuity demonstrated by the data density is sufficient to support the definition
	sufficient to establish the degree of	of Mineral Resources and the associated classifications applied to the Mineral Resource estimate as defined under
	geological and grade continuity appropriate	the 2012 JORC Code. Variography studies have shown very little variance in the data for most of the estimated
	for the Mineral Resource and Ore Reserve	variables and primary ranges in the order of several hundred metres.
	estimation procedure(s) and classifications	
	applied.	
	Whether sample compositing has been	All assay results have been composited to one metre lengths before being used in the Mineral Resource estimate.
	applied.	This was by far the most common sample interval for the diamond drillhole and RC drillhole data.
Orientation of	Whether the orientation of sampling	The grid rotation is approximately 45° to 50° magnetic to the west, with the holes dipping approximately 60° to the
Data in	achieves unbiased sampling of possible	east. The drill fences are arranged along the average strike of the high-grade mineralised horizon, which strikes
Relation to	structures and the extent to which this is	approximately 310° to 315° magnetic south of a line at 7015000mN and approximately 330° magnetic north of that
Geological	known, considering the deposit type.	line. The mineralisation is interpreted to be moderate to steeply dipping, approximately tabular, with stratiform
Structure		bedding striking approximately north-south and dipping to the west. The drilling is exclusively conducted
		perpendicular to the strike of the main mineralisation trend and dipping approximately 60° to the east, producing
		approximate true thickness sample intervals through the mineralisation.
	If the relationship between the drilling	The orientation of drilling with respect to mineralisation is not expected to introduce any sampling bias. Drillholes
	orientation and the orientation of key	intersect the mineralisation at an angle of approximately 90 degrees.
	mineralised structures is considered to have	The 2019 PQ diamond holes are deliberately drilled down dip to maximise the amount of metallurgy sample
	introduced a sampling bias, this should be	collected for the pilot study, with all material used for metallurgy purposes (hence not being available for assay).
	assessed and reported if material.	They are not intended to add material to the resource estimation, or to define geological boundaries, though where
		further control on geological contacts is intercepted, this will be used to add more resolution to the geological model.
1	A	

ologist. The samples were then stored in lidded
the BV core shed in Perth (or other
ed in bulk bags to the assay laboratory and the
transport companies. Sample dispatch sheets
ported and corrected.
ing Assets Pty Ltd (MASS) and Schwann
ound any material error. AMC also reviewed
015. The database has been audited and rebuilt
missing lithological data was sourced.
of the drillhole database shows sufficient quality
ound an 015. The missing