

OKLO'S SK1 CONTINUES TO GROW ALONG STRIKE AND AT DEPTH INCLUDING 34m at 4.07g/t GOLD

Oklo Resources Limited ("Oklo" or "the Company") is pleased to report further highly encouraging developments from its flagship Dandoko Project located in west Mali, Africa.

HIGHLIGHTS

- Assay results received from a further 21 reverse circulation (RC) and 2 diamond (DD) holes from the expanded drilling program over the northern portion of SK1 at Seko.
- Recently discovered wide zone of high-grade gold mineralisation extended along strike and down dip. Significant intersections include:
 - ► 34m at 4.07g/t gold from 83m including;
 - ► 11m at 6.16g/t gold from 99m
 - 22m at 3.94g/t gold from 76m including;
 - ► 4m at 15.04g/t gold from 79m
 - ▶ 11m at 8.55g/t gold from 14m including;
 - ▶ 3m at 27.62g/t gold from 18m
 - ▶ 7m at 10.09g/t gold from 38m including;
 - ▶ 2m at 25.25g/t gold from 40m
 - 7m at 13.11 g/t gold from 21m including;
 - ▶ 1m at 65.40g/t gold from 26m
 - ▶ 12m at 3.84g/t gold from 111m including;
 - ► 2m at 18.53g/t gold from 116m
 - ▶ 18m at 2.27g/t gold from 66m, ending in mineralisation and including;
 - ▶ 7m at 3.48g/t gold from 74m
 - > 29m at 2.20g/t gold from 10m including;
 - ► 7m at 4.27g/t gold from 19m
 - ► 21m at 2.52g/t gold from 6m
 - Gold mineralisation remains open down dip and along strike.
- Second drill rig has arrived at site to accelerate the evaluation of SK1 North.
- Results expected shortly from the deeper RC and DD resource definition drilling at SK2 and SK3 (18 holes for 3,365m) and from the reconnaissance AC drilling currently in progress to the immediate south of Seko towards the Koko discovery.
- All new Seko results to be incorporated into the maiden Mineral Resource estimate scheduled for completion in Q2 2020.
- Metallurgical testwork progressing well with first results expected in March

ASX ANNOUNCEMENT

"The consistent flow of remarkable results from SK1 North is rapidly growing the scale of this new discovery and is also demonstrating that much of the earlier drilling at SK1 was not optimally oriented and therefore ineffective. With this new zone remaining open at depth and along strike, we are accelerating the rate of drilling to ensure as much of this mineralisation reports to our maiden resource estimate as possible. We look forward to updating the market on further positive developments at Seko in the weeks ahead." - commented Oklo's Managing Director, Simon Taylor.

Oklo Resources Limited ("Oklo" or "the Company") is pleased to report further assay results from its expanded drilling program of circa 3,000m completed over the northern portion of SK1 at Seko, within the Company's flagship Dandoko Project. This program is additional to the ~10,000m resource definition drilling program at Seko in advance of the maiden Mineral Resource estimate scheduled for completion in Q2 2020.

Oklo's Dandoko Project is located within the Kenieba Inlier of west Mali, approximately 30km east of B2Gold's 7.1Moz Fekola Project and 50km south-southeast of Barrick's 12.5Moz Loulo Project (Figure 1(a)). The Company currently holds ~500km² of highly prospective ground in this emerging world-class gold region.

Extensive gold anomalies have previously been outlined by auger drilling along the 12km-long Dandoko gold corridor (Figure 1(b)). The potential of this corridor to host large, gold mineralised systems has been demonstrated by the recent drilling success at Seko and several other nearby prospect areas.

Figure 1(a): Location of Oklo's gold projects in west Mali.

Figure 1(b): Location of Seko gold trends within the Dandoko gold corridor

SEKO DRILLING

Oklo's current field program is focusing on infill drilling and closing off areas of near surface mineralisation at Seko and surrounding areas in advance of a maiden Mineral Resource estimate. Seko comprises five coherent auger gold trends (SK1-5) with a combined strike length of ~7km.

All assay results have been received and reported from the initial phase of shallow AC and RC resource definition drilling (57 holes for 5,045m), testing the Seko gold mineralisation to depths averaging 85m and up to 184m. The deeper RC and DD drilling phase over SK2 and SK3 (18 holes for 3,365m) was recently completed with all assay results pending.

The initial phase of drilling returned a spectacular intersection of 47m at 10.95g/t gold from 48m at the northern end of SK1¹, following which Oklo's Board approved an additional 3,000m of drilling to test this emerging zone of high-grade gold mineralisation. A further 38 holes for 3,804m have since been completed over this zone, which is now referred to as SK1 North.

The Company recently announced assay results from the first 11 RC and two DD holes of the expanded program at SK1 North². Significant intersections reported included 55m at 7.65g/t gold from 54m, 51m at 4.28g/t gold from 63m, 31m at 7.12g/t gold from 30m and 29m at 2.46g/t gold from 51m.

Assay results received from two additional step-out DD holes testing the down-dip continuity of the high-grade gold mineralisation successfully intersected 30m at 8.54g/t gold from 135m in the deepest hole³, which remains open at depth.

Results from the remaining 2 DD holes and 21 RC holes from the expanded program are reported in this release.

SK1 NORTH

The latest batch of results from SK1 North infilled 3 previously drilled sections with a new step-out traverse completed to the northeast and 4 step-out traverses completed to the southwest (Figure 3a,3b).

Further significant gold mineralisation was intersected at shallow to moderate depths confirming the moderate easterly dip and continuity of the SK1 North mineralisation within the oxide zone over a strike length of at least 300m. The significant drill hole intersections are summarised in Table 1 and Table 3. All drill hole locations are summarised in Table 2 and are graphically represented in Figures 2-5.

Notably, hole RDSK20-059 in the southwest of SK1 North (Figure 4) further confirmed the depth potential of this emerging zone, intersecting **34m at 4.07g/t gold** from 83m downhole. This result, combined with much of the earlier east-directed drilling not being optimally oriented and therefore ineffective (refer to grey hole traces in Figures 4-5), provides promising indications for this new zone to persist further south into SK1 (Figure 3).

Significant gold mineralisation, including **18m at 2.27g/t gold** in hole RCSK20-170, was also intersected in the northernmost traverse at SK1 North. With all the holes ending in mineralisation, further deeper drilling is required to evaluate the northern strike extent of this zone which remains open to the northeast.

A second drill rig has now arrived at site to accelerate the evaluation of SK1 North for inclusion in the maiden Mineral Resource estimate.

DRILL RESULTS PENDING

Results are expected shortly from the deeper RC and DD resource definition drilling at SK2 and SK3 (18 holes for 3,365m) and from the reconnaissance AC drilling currently in progress to the immediate south of Seko, towards the Koko discovery.

¹ Refer ASX announcement 20th November 2019, "Spectacular Hit of 47m at 10.97g/t Gold from Seko"

² Refer ASX announcement 29th January 2020, "New High-Grade Zone Confirmed at Seko – 55m at 7.65g/t Gold"

³ Refer ASX announcement 5th February 2020, "High-Grade Continuity Confirmed at Depth at Seko"

		FROM	ТО	WIDTH	GOLD		FROM	TO	WIDTH	GOLD
	HOLE No.	(m)	(m)	(m)	(g/t)	HOLE No.	(m)	(m)	(m)	(g/t)
	REVER	SE CIRCU	LATION	DRILLING		RCSK20-176	36	38	2	1.57
$\langle \rangle$	RCSK20-163	58	62	4	3.73		50	65	15	2.40
	RCSK20-164	38	45	7	10.09	includes	51	56	5	3.99
6	includes	40	42	2	25.25	RCSK20-177	76	98	22	3.94
7	RCSK20-165	21	28	7	13.11	includes	79	83	4	15.04
$\left(\right)$	includes	26	27	1	65.40	RCSK20-178	57	102	45	1.34
1	RCSK20-166	43	47	4	3.30	Includes	71	77	6	2.70
	RCSK20-168	77	100	23	1.77	RCSK20-179	55	57	2	1.90
	includes	95	99	4	5.24		68	70	2	1.84
2	RCSK20-163	58	62	4	3.73		111	123	12	3.84
9	RCSK20-164	38	45	7	10.09	includes	116	118	2	18.53
	includes	40	42	2	25.25		133	135	2	1.15
	RCSK20-165	21	28	7	13.11	RCSK20-180	14	25	11	8.55
	includes	26	27	1	65.40	includes	18	21	3	27.62
	RCSK20-166	43	47	4	3.30	RCSK20-181	4	16	12	2.28
5	RCSK20-168	77	100	23	1.77	RCSK20-182	6	27	21	2.52
6	includes	95	99	4	5.24	RCSK20-183	10	39	29	2.20
2	RCSK20-169	60	71	11	1.20*	includes	19	26	7	4.27
(RCSK20-170	66	84	18	2.27*		DIAMON	D DRILL	NG	
2	includes	74	81	7	3.48	RDSK20-058	75	80	5	3.83
C	RCSK20-171	80	87	7	5.34*	RDSK20-059	12	14	2	1.88
5	RCSK20-172	101	106	5	1.21		70	72	2	1.78
	RCSK20-173	13	26	13	1.41		83	117	34	4.07
\mathcal{C}	RCSK20-174	37	44	7	3.82	includes	99	110	11	6.16
2	RCSK20-175	56	61	5	5.36	includes	114	116	2	9.28

Table 1: Summary of significant SK1 drill intersections

All intervals are reported using a threshold where the interval has a 0.3g/t Au average or greater over the sample interval and selects all material greater than 0.10g/t Au allowing for up to two samples of included dilution every 10m. Sampling was completed as 1m for DD/RC/AC drilling. *hole ends in mineralisation

Figure 2: Drill plan showing Leapfrog gold isosurfaces from recent and previous drilling programs (AC, RC and DD) over Seko Anomalies SK1-5

Figure 3(a): SK1 North Leapfrog gold isosurfaces, showing location of Sections A, C

Figure 3(b) SK1 North drill hole location plan showing new and previous results from resource drilling (AC, RC and DD).

Figure 4: Seko SK1 North Cross Section C

Figure 5: Seko SK1 North Cross Section A

ASX ANNOUNCEMENT

HOLE ID	EAST	NORTH	RL	LENGTH	AZI.	INC.	
	REVI	ERSE CIRCULATION	HOLES				
RCSK20-163	268846	1396846	186	102	315	-55	
RCSK20-164	268832	1396860	186	75	315	-55	
RCSK20-165	268818	1396874	185	50	315	-55	
RCSK20-166	268796	1396811	187	80	315	-55	
RCSK20-167	268782	1396825	187	60	315	-55	
RCSK20-168	268877	1396875	186	125	315	-55	
RCSK20-169	268931	1397072	180	72	315	-55	
RCSK20-170	268945	1397058	181	84	315	-55	
RCSK20-171	268960	1397044	181	87	315	-55	
RCSK20-172	268974	1397030	182	135	315	-55	
RCSK20-173	268821	1396931	183	54	315	-55	
RCSK20-174	268835	1396917	184	72	315	-55	
RCSK20-175	268850	1396902	184	114	315	-55	
RCSK20-176	268864	1396920	184	84	315	-55	
RCSK20-177	268878	1396906	185	102	315	-55	
RCSK20-178	268892	1396892	185	132	315	-55	
RCSK20-179	268932	1396902	185	140	315	-55	
RCSK20-180	268860	1396974	182	54	315	-55	
RCSK20-181	268875	1397015	180	42	315	-55	
RCSK20-182	268889	1397002	181	60	315	-55	
RCSK20-183	268903	1397044	180	60	315	-55	
DIAMOND DRILLING HOLES							
RDSK20-058	268864	1396888	185	134	315	-55	
RDSK20-059	268892	1396860	186	155	315	-55	

Table 2: SK1 North RC & DD drill hole locations

- ENDS -

This announcement is authorised for release by Oklo's Managing Director, Simon Taylor.

For further information, please contact:

Simon Taylor

Managing Director

T: +61 2 8319 9233

E: <u>staylor@okloresources.com</u>

SOD A

ABOUT OKLO RESOURCES

Oklo Resources is an ASX listed gold exploration company with a total landholding of 1,405km² covering highly prospective greenstone belts in Mali, West Africa. The Company's current focus is on its West Mali landholding (~405km²), and in particular its flagship Dandoko Project located east of the prolific Senegal-Mali Shear Zone and in close proximity to numerous world-class gold operations. The Company has a corporate office located in Sydney, Australia and an expert technical team based in Bamako, Mali, led by Dr Madani Diallo who has previously been involved in several significant discoveries totalling circa 30Moz gold.

Figure 6: Location of Oklo Projects in West and South Mali

Competent Person's Declaration

The information in this announcement that relates to Exploration Results is based on information compiled by geologists employed by Africa Mining (a wholly owned subsidiary of Oklo Resources) and reviewed by Mr Simon Taylor, who is a member of the Australian Institute of Geoscientists. Mr Taylor is the Managing Director of Oklo Resources Limited. Mr Taylor is considered to have sufficient experience deemed relevant to the style of mineralisation and type of deposit under consideration, and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the 2012 JORC Code). Mr Taylor consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

This report contains information extracted from previous ASX market announcements reported in accordance with the IORC Code (2012) and available for viewing at www.okloresources.com. Oklo Resources confirms that in respect of these announcements it is not aware of any new information or data that materially affects the information included in any original ASX market announcement. The announcements are as follows:

DANDOKO PROJECT:

Announcements dated 21st December 2016, 30th January 2017, 21st February 2017, 3rd March 2017, 7th March 2017, 15th March 2017, 30th March 2017, 6th April 2017, 26th April 2017, 29th May 2017, 21st June 2017, 12th July 2017, 25th July 2017, 14th August 2017, 16th August 2017, 4th September 2017, 28th November 2017, 5th December 2017, 20th December 2017, 5th February 2018, 22nd February 2018, 8th March 2018, 28th March 2018, 3rd May 2018, 16th May 2018, 22nd May 2018, 2nd July 2018, 6th August 2019, 22nd October 2019, 20th November 2019, 10th December 2019, 17th December 2019, 14th January 2020, 20th January 2020, 29th January 2020 and 5th February 2020.

Table 3: SK1 Nth RC and DD assay results ≥0.10g/t Au

	HOLE ID	FROM	то	Au (ppm)
	RCSK20-163	0	1	0.21
	RCSK20-163	3	4	0.14
	RCSK20-163	7	8	0.10
$(\square$	RCSK20-163	9	10	0.17
	RCSK20-163	10	11	0.91
$(\square$	RCSK20-163	21	22	0.23
	RCSK20-163	22	23	0.18
	RCSK20-163	23	24	0.20
(\square)	RCSK20-163	24	25	0.12
	RCSK20-163	25	26	0.23
$(C) \cap$	RCSK20-163	26	27	0.14
	RCSK20-163	29	30	0.40
	RCSK20-163	30	31	0.25
	RCSK20-163	31	32	0.14
	RCSK20-163	32	33	0.24
	RCSK20-163	36	37	0.12
(())	RCSK20-163	52	53	0.10
	RCSK20-163	57	58	0.36
	RCSK20-163	58	59	8.07
	RCSK20-163	59	60	0.17
$(\bigcirc$	RCSK20-163	60	61	5.67
	RCSK20-163	61	62	1.02
(0)	RCSK20-163	73	74	0.16
Ĩ	RCSK20-163	84	85	0.12
	RCSK20-164	3	4	0.10
(\square)	RCSK20-164	8	9	0.40
	RCSK20-164	9	10	0.33
$(\square$	RCSK20-164	10	11	0.45
	RCSK20-164	11	12	0.58
7	RCSK20-164	38	39	2.09
	RCSK20-164	39	40	1.63
\square	RCSK20-164	40	41	37.50
C	RCSK20-164	41	42	13.00
	RCSK20-164	42	43	6.15
	RCSK20-164	43	44	6.88
	RCSK20-164	44	45	3.41
	RCSK20-164	45	46	0.11
	RCSK20-164	48	49	0.13
	RCSK20-164	54	55	0.10
	RCSK20-165	0	1	0.30
	RCSK20-165	1	2	0.26

HOLE ID	FROM	то	Au (ppm)
RCSK20-165	3	4	0.11
RCSK20-165	4	5	0.13
RCSK20-165	8	9	0.10
RCSK20-165	17	18	0.12
RCSK20-165	18	19	0.18
RCSK20-165	21	22	2.01
RCSK20-165	22	23	6.30
RCSK20-165	23	24	8.32
RCSK20-165	24	25	6.20
RCSK20-165	25	26	1.65
RCSK20-165	26	27	65.40
RCSK20-165	27	28	1.88
RCSK20-165	28	29	0.34
RCSK20-165	30	31	0.12
RCSK20-165	32	33	0.17
RCSK20-166	2	3	0.15
RCSK20-166	3	4	1.07
RCSK20-166	4	5	0.10
RCSK20-166	7	8	0.15
RCSK20-166	8	9	0.11
RCSK20-166	9	10	0.21
RCSK20-166	36	37	0.19
RCSK20-166	39	40	0.10
RCSK20-166	40	41	0.17
RCSK20-166	42	43	0.18
RCSK20-166	43	44	0.41
RCSK20-166	44	45	11.00
RCSK20-166	45	46	1.14
RCSK20-166	46	47	0.65
RCSK20-166	48	49	0.24
RCSK20-166	49	50	0.15
RCSK20-166	50	51	0.10
RCSK20-166	74	75	0.13
RCSK20-167	0	1	0.57
RCSK20-167	1	2	0.20
RCSK20-167	2	3	0.29
RCSK20-167	3	4	0.35
RCSK20-167	4	5	0.20
RCSK20-167	5	6	0.11
RCSK20-167	6	7	0.14
RCSK20-167	7	8	0.21

	HOLE ID	FROM	то	Au (ppm)
	RCSK20-167	8	9	0.15
	RCSK20-167	9	10	0.14
	RCSK20-167	18	19	0.32
	RCSK20-167	33	34	0.92
	RCSK20-167	34	35	1.63
	RCSK20-167	35	36	0.27
	RCSK20-167	36	37	0.29
	RCSK20-167	38	39	0.11
	RCSK20-168	46	47	0.20
	RCSK20-168	54	55	0.18
	RCSK20-168	57	58	0.11
	RCSK20-168	58	59	0.16
	RCSK20-168	70	71	0.89
	RCSK20-168	72	73	0.58
	RCSK20-168	73	74	0.34
	RCSK20-168	74	75	0.64
	RCSK20-168	75	76	0.26
65	RCSK20-168	76	77	0.48
	RCSK20-168	77	78	1.04
	RCSK20-168	78	79	0.52
<u>(</u>	RCSK20-168	79	80	0.68
	RCSK20-168	80	81	0.85
	RCSK20-168	81	82	0.45
aG	RCSK20-168	82	83	0.22
()	RCSK20-168	83	84	0.41
Γ	RCSK20-168	84	85	0.39
	RCSK20-168	85	86	0.35
	RCSK20-168	86	87	0.70
	RCSK20-168	87	88	1.44
	RCSK20-168	88	89	1.14
	RCSK20-168	89	90	0.70
5	RCSK20-168	90	91	2.81
	RCSK20-168	91	92	3.18
	RCSK20-168	92	93	1.11
	RCSK20-168	93	94	1.82
	RCSK20-168	94	95	1.32
	RCSK20-168	95	96	4.84
	RCSK20-168	96	97	1.70
	RCSK20-168	97	98	3.10
	RCSK20-168	98	99	11.30
	RCSK20-168	99	100	0.63
	RCSK20-168	100	101	0.19
	RCSK20-168	101	102	0.10

HOLE ID	FROM	то	Au (ppm)
RCSK20-168	102	103	3.23
RCSK20-168	103	104	0.17
RCSK20-168	104	105	0.13
RCSK20-168	105	106	0.13
RCSK20-168	108	109	0.22
RCSK20-168	109	110	0.35
RCSK20-168	111	112	0.22
RCSK20-168	114	115	1.47
RCSK20-168	118	119	0.12
RCSK20-168	120	121	0.20
RCSK20-169	6	7	0.21
RCSK20-169	7	8	0.23
RCSK20-169	8	9	0.21
RCSK20-169	31	32	0.15
RCSK20-169	39	40	1.20
RCSK20-169	40	41	0.11
RCSK20-169	46	47	0.16
RCSK20-169	47	48	0.17
RCSK20-169	48	49	0.50
RCSK20-169	49	50	0.88
RCSK20-169	50	51	0.15
RCSK20-169	51	52	0.38
RCSK20-169	52	53	0.16
RCSK20-169	55	56	0.52
RCSK20-169	56	57	0.14
RCSK20-169	57	58	0.19
RCSK20-169	58	59	0.11
RCSK20-169	60	61	0.78
RCSK20-169	61	62	0.42
RCSK20-169	62	63	0.81
RCSK20-169	63	64	0.42
RCSK20-169	64	65	0.60
RCSK20-169	65	66	1.25
RCSK20-169	66	67	2.20
RCSK20-169	67	68	1.16
RCSK20-169	68	69	1.67
RCSK20-169	69	70	1.62
RCSK20-169	70	71	2.26
RCSK20-170	2	3	0.20
RCSK20-170	3	4	0.14
RCSK20-170	4	5	0.18
RCSK20-170	5	6	0.14
RCSK20-170	6	7	0.34

	HOLE ID	FROM	то	Au (ppm)
	RCSK20-170	12	13	0.17
	RCSK20-170	62	63	0.15
	RCSK20-170	63	64	0.46
	RCSK20-170	64	65	0.12
	RCSK20-170	65	66	0.23
	RCSK20-170	66	67	0.59
	RCSK20-170	67	68	1.26
	RCSK20-170	68	69	1.29
	RCSK20-170	69	70	1.22
	RCSK20-170	70	71	3.95
	RCSK20-170	71	72	1.86
	RCSK20-170	72	73	1.24
	RCSK20-170	73	74	1.56
	RCSK20-170	74	75	3.64
	RCSK20-170	75	76	4.50
	RCSK20-170	76	77	3.92
	RCSK20-170	77	78	3.81
65	RCSK20-170	78	79	1.02
$(\zeta U$	RCSK20-170	79	80	3.88
	RCSK20-170	80	81	3.62
1	RCSK20-170	81	82	2.15
	RCSK20-170	82	83	0.41
	RCSK20-170	83	84	0.96
46	RCSK20-171	69	70	0.14
(0)	RCSK20-171	70	71	0.39
(RCSK20-171	73	74	0.11
	RCSK20-171	74	75	0.57
	RCSK20-171	75	76	0.13
	RCSK20-171	76	77	0.17
	RCSK20-171	77	78	0.27
	RCSK20-171	78	79	0.27
77	RCSK20-171	79	80	0.43
	RCSK20-171	80	81	0.57
\square	RCSK20-171	81	82	4.58
	RCSK20-171	82	83	15.90
	RCSK20-171	83	84	4.17
	RCSK20-171	84	85	3.84
	RCSK20-171	85	86	7.42
	RCSK20-171	86	87	0.90
	RCSK20-172	0	1	0.17
	RCSK20-172	91	92	0.13
	RCSK20-172	92	93	0.49
	RCSK20-172	93	94	0.96

HOLE ID	FROM	то	Au (ppm)
RCSK20-172	94	95	1.30
RCSK20-172	95	96	0.78
RCSK20-172	96	97	0.47
RCSK20-172	97	98	0.81
RCSK20-172	98	99	0.53
RCSK20-172	99	100	0.38
RCSK20-172	100	101	0.52
RCSK20-172	101	102	1.13
RCSK20-172	102	103	1.24
RCSK20-172	103	104	1.04
RCSK20-172	104	105	1.16
RCSK20-172	105	106	1.46
RCSK20-172	106	107	0.52
RCSK20-172	107	108	0.42
RCSK20-172	108	109	0.21
RCSK20-172	109	110	0.26
RCSK20-172	110	111	0.13
RCSK20-172	116	117	0.44
RCSK20-172	117	118	0.15
RCSK20-172	118	119	0.40
RCSK20-172	119	120	0.13
RCSK20-172	120	121	0.18
RCSK20-172	121	122	0.93
RCSK20-172	122	123	1.12
RCSK20-172	123	124	0.67
RCSK20-172	124	125	0.49
RCSK20-172	125	126	0.39
RCSK20-172	126	127	0.35
RCSK20-172	127	128	0.51
RCSK20-172	128	129	1.46
RCSK20-172	129	130	0.28
RCSK20-172	130	131	0.63
RCSK20-172	131	132	1.03
RCSK20-172	132	133	0.19
RCSK20-172	133	134	0.31
RCSK20-173	0	1	0.12
RCSK20-173	7	8	0.11
RCSK20-173	8	9	0.29
RCSK20-173	10	11	0.11
RCSK20-173	11	12	0.15
RCSK20-173	12	13	0.16
RCSK20-173	13	14	3.11
RCSK20-173	14	15	0.59

	HOLE ID	FROM	то	Au (ppm)
RC	SK20-173	15	16	4.14
RC	SK20-173	16	17	1.70
RC	SK20-173	17	18	0.96
	SK20-173	18	19	1.01
RC	SK20-173	19	20	2.30
	SK20-173	20	21	1.52
RC	SK20-173	21	22	0.95
	SK20-173	22	23	0.41
RC	SK20-173	23	24	0.12
RC	SK20-173	24	25	0.51
	SK20-173	25	26	1.03
RC	CSK20-173	26	27	0.24
	SK20-173	27	28	0.17
RC	CSK20-173	28	29	0.49
	SK20-173	29	30	0.79
RC	SK20-173	30	31	0.46
RC	SK20-173	31	32	0.44
RC	SK20-173	32	33	0.16
	SK20-174	0	1	0.10
RC	SK20-174	4	5	2.87
RC	SK20-174	5	6	0.21
RC	SK20-174	6	7	0.12
	SK20-174	7	8	0.27
RC	SK20-174	8	9	0.25
	SK20-174	9	10	0.14
RC	SK20-174	10	11	2.92
RC	SK20-174	34	35	0.15
	SK20-174	36	37	0.15
RC	SK20-174	37	38	2.57
RC	SK20-174	38	39	3.16
RC	SK20-174	39	40	12.00
RC	SK20-174	40	41	1.91
RC	SK20-174	41	42	2.02
RC	SK20-174	42	43	1.68
	SK20-174	43	44	3.43
RC	SK20-174	44	45	0.10
RC	SK20-174	45	46	0.17
RC	CSK20-175	17	18	0.15
RC	SK20-175	30	31	0.17
RC	SK20-175	31	32	0.17
RC	SK20-175	32	33	0.37
RC	SK20-175	33	34	0.27
RC	SK20-175	34	35	0.16

HOLE ID	FROM	то	Au (ppm)
RCSK20-175	36	37	0.13
RCSK20-175	39	40	0.16
RCSK20-175	42	43	0.65
RCSK20-175	55	56	0.49
RCSK20-175	56	57	1.69
RCSK20-175	57	58	2.59
RCSK20-175	58	59	11.20
RCSK20-175	59	60	10.00
RCSK20-175	60	61	1.32
RCSK20-175	61	62	0.49
RCSK20-175	62	63	0.42
RCSK20-175	63	64	0.13
RCSK20-175	66	67	0.10
RCSK20-175	72	73	0.10
RCSK20-176	25	26	0.11
RCSK20-176	36	37	1.69
RCSK20-176	37	38	1.44
RCSK20-176	38	39	0.17
RCSK20-176	45	46	0.10
RCSK20-176	48	49	0.13
RCSK20-176	49	50	0.31
RCSK20-176	50	51	1.82
RCSK20-176	51	52	5.39
RCSK20-176	52	53	3.07
RCSK20-176	53	54	1.55
RCSK20-176	54	55	4.36
RCSK20-176	55	56	5.59
RCSK20-176	56	57	1.60
RCSK20-176	57	58	0.82
RCSK20-176	58	59	2.68
RCSK20-176	59	60	1.23
RCSK20-176	60	61	1.84
RCSK20-176	61	62	3.21
RCSK20-176	62	63	1.60
RCSK20-176	63	64	0.46
RCSK20-176	64	65	0.82
RCSK20-176	65	66	0.25
RCSK20-176	66	67	0.70
RCSK20-176	67	68	0.41
RCSK20-176	68	69	0.57
RCSK20-176	69	70	0.17
RCSK20-176	71	72	0.23
RCSK20-176	72	73	0.74

HOLE ID	FROM	то	Au (ppm)
RCSK20-176	73	74	0.55
RCSK20-176	74	75	0.31
RCSK20-176	78	79	0.23
RCSK20-176	79	80	0.15
RCSK20-177	1	2	0.15
RCSK20-177	2	3	0.15
RCSK20-177	47	48	0.21
RCSK20-177	56	57	0.21
RCSK20-177	57	58	1.97
RCSK20-177	58	59	0.33
RCSK20-177	59	60	0.12
RCSK20-177	60	61	0.41
RCSK20-177	61	62	0.92
RCSK20-177	62	63	0.68
RCSK20-177	63	64	0.14
RCSK20-177	67	68	0.11
RCSK20-177	68	69	0.43
RCSK20-177	69	70	0.15
RCSK20-177	70	71	0.65
RCSK20-177	71	72	0.96
RCSK20-177	72	73	0.26
RCSK20-177	73	74	0.12
RCSK20-177	74	75	0.54
RCSK20-177	75	76	0.77
RCSK20-177	76	77	1.38
RCSK20-177	77	78	0.73
RCSK20-177	78	79	2.39
RCSK20-177	79	80	18.10
RCSK20-177	80	81	32.30
RCSK20-177	81	82	3.88
RCSK20-177	82	83	5.89
RCSK20-177	83	84	0.40
RCSK20-177	84	85	1.21
RCSK20-177	85	86	0.31
RCSK20-177	86	87	4.80
RCSK20-177	87	88	0.72
RCSK20-177	88	89	1.89
RCSK20-177	89	90	0.18
RCSK20-177	90	91	1.91
RCSK20-177	91	92	0.41
RCSK20-177	92	93	0.27
RCSK20-177	93	94	2.54
RCSK20-177	94	95	0.65

HOLE ID	FROM	то	Au (ppm)
RCSK20-177	95	96	4.19
RCSK20-177	96	97	1.47
RCSK20-177	97	98	0.99
RCSK20-177	98	99	0.20
RCSK20-177	99	100	0.25
RCSK20-178	0	1	0.12
RCSK20-178	2	3	0.10
RCSK20-178	5	6	0.17
RCSK20-178	6	7	0.10
RCSK20-178	9	10	0.20
RCSK20-178	12	13	0.13
RCSK20-178	30	31	0.11
RCSK20-178	31	32	0.21
RCSK20-178	32	33	0.99
RCSK20-178	33	34	0.68
RCSK20-178	34	35	0.29
RCSK20-178	35	36	0.10
RCSK20-178	38	39	0.14
RCSK20-178	40	41	0.24
RCSK20-178	42	43	0.14
RCSK20-178	49	50	0.10
RCSK20-178	50	51	0.11
RCSK20-178	55	56	0.63
RCSK20-178	56	57	0.87
RCSK20-178	57	58	1.04
RCSK20-178	58	59	1.06
RCSK20-178	59	60	0.91
RCSK20-178	61	62	0.77
RCSK20-178	62	63	0.53
RCSK20-178	63	64	0.73
RCSK20-178	65	66	0.40
RCSK20-178	66	67	0.40
RCSK20-178	68	69	0.27
RCSK20-178	69	70	2.46
RCSK20-178	70	71	1.92
RCSK20-178	71	72	4.57
RCSK20-178	72	73	2.18
RCSK20-178	73	74	2.58
RCSK20-178	74	75	2.78
RCSK20-178	75	76	1.02
RCSK20-178	76	77	3.04
RCSK20-178	77	78	0.88
RCSK20-178	78	79	1.68

HOLE ID	FROM	то	Au (ppm)
RCSK20-178	79	80	0.31
RCSK20-178	80	81	0.16
RCSK20-178	82	83	0.36
RCSK20-178	83	84	1.59
RCSK20-178	84	85	2.34
RCSK20-178	85	86	1.00
RCSK20-178	87	88	1.47
RCSK20-178	88	89	1.08
RCSK20-178	89	90	0.56
RCSK20-178	90	91	0.99
RCSK20-178	91	92	0.97
RCSK20-178	92	93	1.53
RCSK20-178	93	94	1.76
RCSK20-178	94	95	2.22
RCSK20-178	95	96	0.62
RCSK20-178	96	97	0.92
RCSK20-178	97	98	0.81
RCSK20-178	98	99	7.72
RCSK20-178	99	100	1.26
RCSK20-178	100	101	1.16
RCSK20-178	101	102	0.16
RCSK20-178	102	103	1.13
RCSK20-178	103	104	0.90
RCSK20-178	104	105	0.27
RCSK20-178	105	106	0.20
RCSK20-178	108	109	0.61
RCSK20-178	109	110	0.28
RCSK20-178	110	111	0.15
RCSK20-178	114	115	1.01
RCSK20-178	115	116	0.28
RCSK20-178	120	121	0.35
RCSK20-178	126	127	0.35
RCSK20-179	14	15	0.11
RCSK20-179	15	16	0.43
RCSK20-179	16	17	0.64
RCSK20-179	23	24	0.20
RCSK20-179	29	30	0.26
RCSK20-179	30	31	0.36
RCSK20-179	32	33	0.73
RCSK20-179	55	56	0.79
RCSK20-179	56	57	3.02
RCSK20-179	57	58	0.35
RCSK20-179	60	61	0.54

HOLE ID	FROM	то	Au (ppm)
RCSK20-179	61	62	0.36
RCSK20-179	62	63	0.30
RCSK20-179	63	64	0.21
RCSK20-179	64	65	0.44
RCSK20-179	65	66	0.81
RCSK20-179	66	67	0.37
RCSK20-179	67	68	0.59
RCSK20-179	68	69	2.62
RCSK20-179	69	70	1.07
RCSK20-179	70	71	0.29
RCSK20-179	72	73	0.72
RCSK20-179	73	74	0.84
RCSK20-179	74	75	0.57
RCSK20-179	75	76	0.56
RCSK20-179	76	77	1.76
RCSK20-179	78	79	0.61
RCSK20-179	82	83	1.39
RCSK20-179	83	84	2.15
RCSK20-179	84	85	0.75
RCSK20-179	85	86	0.12
RCSK20-179	90	91	0.14
RCSK20-179	96	97	0.30
RCSK20-179	97	98	0.69
RCSK20-179	98	99	0.42
RCSK20-179	99	100	0.45
RCSK20-179	100	101	0.70
RCSK20-179	101	102	0.17
RCSK20-179	102	103	0.17
RCSK20-179	107	108	0.17
RCSK20-179	108	109	0.28
RCSK20-179	109	110	0.27
RCSK20-179	110	111	0.14
RCSK20-179	111	112	2.63
RCSK20-179	112	113	0.48
RCSK20-179	113	114	0.20
RCSK20-179	114	115	1.06
RCSK20-179	115	116	0.46
RCSK20-179	116	117	33.10
RCSK20-179	117	118	3.98
RCSK20-179	118	119	1.31
RCSK20-179	119	120	0.46
RCSK20-179	120	121	0.63
RCSK20-179	121	122	0.17

	HOLE ID	FROM	то	Au (ppm)
	DC5K20 170	122	122	(ppm)
	RCSK20-179	122	123	1.00
	RCSK20-179	123	124	0.26
	RCSK20-179	124	125	0.17
	RCSK20-179	125	126	0.11
$(\square$	RCSK20-179	126	127	0.33
2	RCSK20-179	127	128	0.19
\square	RCSK20-179	128	129	0.12
	RCSK20-179	129	130	0.13
	RCSK20-179	130	131	0.14
615	RCSK20-179	131	132	0.22
	RCSK20-179	132	133	0.21
are	RCSK20-179	133	134	1.27
\bigcup_{r}	RCSK20-179	134	135	1.04
	RCSK20-179	135	136	0.16
	RCSK20-179	136	137	0.16
	RCSK20-179	137	138	0.31
	RCSK20-179	138	139	0.27
60	RCSK20-179	139	140	0.16
GL	RCSK20-180	1	2	0.10
Ē	RCSK20-180	6	7	0.17
	_RCSK20-180	13	14	0.15
	RCSK20-180	14	15	1.11
	RCSK20-180	15	16	0.85
46	RCSK20-180	16	17	0.30
$\left(0\right) $	RCSK20-180	17	18	2.84
<u> </u>	RCSK20-180	18	19	9.96
	RCSK20-180	19	20	67.20
	RCSK20-180	20	21	5.71
GP	RCSK20-180	21	22	2.91
	RCSK20-180	22	23	0.86
	RCSK20-180	23	24	0.82
~	RCSK20-180	24	25	1.50
	RCSK20-180	25	26	0.28
\square	RCSK20-180	26	27	0.12
L	RCSK20-180	28	29	0.24
Пп	RCSK20-180	29	30	0.12
	RCSK20-180	30	31	0.30
	RCSK20-180	31	32	0.11
	RCSK20-180	36	32	0.39
	RCSK20-180	30	28	1.79
	RCSK20-190	20	30	0.10
	RCSK20-100	 ∕\2	12	0.10
	RCSK20-180	42	43	0.14
	RCSK20-180 RCSK20-180	38 42	39 43	0.10 0.44

HOLE ID	FROM	то	Au (ppm)
RCSK20-180	48	49	0.48
RCSK20-180	49	50	0.12
RCSK20-180	50	51	0.27
RCSK20-181	0	1	0.17
RCSK20-181	1	2	0.23
RCSK20-181	2	3	0.24
RCSK20-181	3	4	0.32
RCSK20-181	4	5	2.72
RCSK20-181	5	6	13.60
RCSK20-181	6	7	0.75
RCSK20-181	7	8	0.23
RCSK20-181	8	9	0.23
RCSK20-181	9	10	0.28
RCSK20-181	10	11	0.63
RCSK20-181	11	12	0.96
RCSK20-181	12	13	2.05
RCSK20-181	13	14	2.07
RCSK20-181	14	15	1.47
RCSK20-181	15	16	2.37
RCSK20-181	16	17	0.68
RCSK20-181	17	18	0.19
RCSK20-181	18	19	0.14
RCSK20-181	23	24	0.14
RCSK20-181	36	37	0.15
RCSK20-182	2	3	0.14
RCSK20-182	4	5	0.17
RCSK20-182	5	6	0.27
RCSK20-182	6	7	0.54
RCSK20-182	7	8	0.64
RCSK20-182	8	9	0.70
RCSK20-182	9	10	0.97
RCSK20-182	10	11	0.92
RCSK20-182	11	12	0.43
RCSK20-182	12	13	0.19
RCSK20-182	13	14	0.18
RCSK20-182	14	15	0.27
RCSK20-182	15	16	1.41
RCSK20-182	16	17	0.38
RCSK20-182	17	18	0.41
RCSK20-182	18	19	0.50
RCSK20-182	19	20	0.40
RCSK20-182	20	21	0.24
RCSK20-182	21	22	30.50

	HOLE ID	FROM	то	Au (ppm)
	RCSK20-182	22	23	5.34
	RCSK20-182	23	24	1.54
\rightarrow	RCSK20-182	24	25	1.93
	RCSK20-182	25	26	4.24
	RCSK20-182	26	27	1.14
	RCSK20-182	27	28	0.47
	RCSK20-182	28	29	0.49
	RCSK20-182	29	30	0.10
	RCSK20-182	30	31	0.50
	RCSK20-182	31	32	0.28
	RCSK20-182	32	33	0.69
	RCSK20-182	33	34	0.20
	RCSK20-182	34	35	0.12
	RCSK20-182	36	37	0.25
	RCSK20-182	42	43	0.64
	RCSK20-182	43	44	0.22
	RCSK20-182	45	46	0.32
	RCSK20-182	46	47	0.12
$(\zeta U$	RCSK20-182	54	55	0.11
	RCSK20-183	2	3	0.27
	RCSK20-183	3	4	0.11
	RCSK20-183	4	5	0.11
	RCSK20-183	5	6	0.26
	RCSK20-183	6	7	0.48
	RCSK20-183	7	8	0.34
	RCSK20-183	8	9	0.73
	RCSK20-183	9	10	0.63
	RCSK20-183	10	11	1.80
	RCSK20-183	11	12	0.79
	RCSK20-183	12	13	2.19
	RCSK20-183	13	14	3.13
(7	RCSK20-183	14	15	0.28
	RCSK20-183	15	16	0.18
\square	RCSK20-183	16	17	2.11
	RCSK20-183	17	18	2.60
Пп	RCSK20-183	18	19	0.52
	RCSK20-183	19	20	4.76
	RCSK20-183	20	21	12.80
	RCSK20-183	21	22	4.55
	RCSK20-183	22	23	2.87
	RCSK20-183	23	24	0.84
	RCSK20-183	24	25	3.09
	RCSK20-183	25	26	4.15

HOLE ID	FROM	то	Au (ppm)
RCSK20-183	26	27	1.99
RCSK20-183	27	28	1.37
RCSK20-183	28	29	0.90
RCSK20-183	29	30	1.62
RCSK20-183	30	31	1.13
RCSK20-183	31	32	0.11
RCSK20-183	33	34	0.19
RCSK20-183	34	35	3.03
RCSK20-183	35	36	1.18
RCSK20-183	36	37	2.13
RCSK20-183	37	38	0.47
RCSK20-183	38	39	2.97
RCSK20-183	39	40	0.59
RCSK20-183	40	41	0.29
RCSK20-183	41	42	0.21
RCSK20-183	42	43	0.58
RCSK20-183	43	44	0.30
RCSK20-183	44	45	0.62
RCSK20-183	45	46	0.45
RCSK20-183	46	47	1.11
RCSK20-183	47	48	0.34
RCSK20-183	48	49	0.26
RCSK20-183	49	50	0.17
RCSK20-183	50	51	0.22
RCSK20-183	53	54	0.32
RCSK20-183	54	55	0.12
RCSK20-183	56	57	0.22
RCSK20-183	57	58	0.26
RCSK20-183	58	59	0.47
RCSK20-183	59	60	0.56
RDSK20-058	36	37	0.19
RDSK20-058	40	41	0.18
RDSK20-058	41	42	0.24
RDSK20-058	61	62	0.36
RDSK20-058	62	63	0.22
RDSK20-058	63	64	0.11
RDSK20-058	64	65	0.15
RDSK20-058	66	67	0.11
RDSK20-058	69	70	0.37
RDSK20-058	70	71	0.47
RDSK20-058	71	72	0.47
RDSK20-058	73	74	0.10
RDSK20-058	74	75	0.31

	HOLE ID	FROM	то	Au (ppm)
	RDSK20-058	75	76	1.21
	RDSK20-058	76	77	3.52
	RDSK20-058	77	78	9.83
	RDSK20-058	78	79	3.79
	RDSK20-058	79	80	0.81
	RDSK20-058	83	84	0.15
	RDSK20-059	2	3	0.10
	RDSK20-059	3	4	0.17
	RDSK20-059	4	5	0.41
	RDSK20-059	5	6	0.13
	RDSK20-059	11	12	0.12
	RDSK20-059	12	13	2.12
(0)	RDSK20-059	13	14	1.64
	RDSK20-059	14	15	0.54
	RDSK20-059	15	16	0.41
	RDSK20-059	16	17	0.11
	RDSK20-059	17	18	0.11
60	RDSK20-059	69	70	0.13
	RDSK20-059	70	71	1.76
	_RDSK20-059	71	72	1.80
	RDSK20-059	72	73	0.17
	RDSK20-059	78	79	0.37
	RDSK20-059	79	80	0.27
RE	RDSK20-059	80	81	1.16
()	RDSK20-059	82	83	0.28
	RDSK20-059	83	84	2.09
	RDSK20-059	84	85	11.20
	RDSK20-059	85	86	2.20
	RDSK20-059	86	87	3.12
	RDSK20-059	87	88	1.40
	RDSK20-059	88	89	4.12
$\overline{\Omega}$	RDSK20-059	89	90	2.03
	RDSK20-059	90	91	3.55
$(\square$	RDSK20-059	91	92	3.36
	RDSK20-059	92	93	2.52
	RDSK20-059	93	94	1.69
	RDSK20-059	94	95	0.58
	RDSK20-059	95	96	2.30
	RDSK20-059	96	97	0.77
	RDSK20-059	97	98	2.82
	RDSK20-059	98	99	2.36
	RDSK20-059	99	100	18.30
	RDSK20-059	100	101	7.70

HOLE ID	FROM	то	Au (ppm)
RDSK20-059	101	102	7.68
RDSK20-059	102	103	1.85
RDSK20-059	103	104	0.88
RDSK20-059	104	105	5.99
RDSK20-059	105	106	1.84
RDSK20-059	106	107	3.22
RDSK20-059	107	108	3.69
RDSK20-059	108	109	3.76
RDSK20-059	109	110	12.80
RDSK20-059	110	111	0.66
RDSK20-059	111	112	0.56
RDSK20-059	112	113	0.67
RDSK20-059	113	114	1.01
RDSK20-059	114	115	10.80
RDSK20-059	115	116	7.75
RDSK20-059	116	117	2.98
RDSK20-059	124	125	0.12

NB: All gold assays $\geq 0.1g/t$ are listed.

JORC CODE, 2012 EDITION – TABLE 1 Section 1 Sampling Techniques and Data

CRITERIA	JORC CODE EXPLANATION	COMMENTARY		
Sampling techniques	 Nature and quality of sampling, measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All holes have been routinely sampled on a 1m interval for gold 1 metre samples are preserved for future assay as required. RC Samples were collected in situ at the drill site and are split collecting 2 to 3 kg per sample. Certified reference material and sample duplicates were inserted at regular intervals. DD samples are cut to half core on 1m intervals. All samples were submitted SGS, Bamako Mali and analysis in Mali using a 50g Fire Assay gold analysis with a 10ppb Au detection level. 		
Drilling techniques	Drill type (eg core, reverse circulation, open <hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face<sampling bit="" or<br="">other type, whether core is oriented and if so, by what method, etc).</sampling></hole 	 RC drilling was carried out by AMS drilling DD drilling was undertaken by AMS drilling and utilised PQ and HQ triple tube drilling 		
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 An initial visual estimate of RC sample recovery was undertaken at the drill rig for each sample metre collected. Collected samples were weighed to ensure consistency of sample size and monitor sample recoveries. For DD core recovery and RQD observations are made. A number of zones of poor recovery were encountered in drilling. Where recovery has been deemed to be poor or was null it has been treated as having a 0ppm grade in any compositing undertaken. No systematic sampling issue, recovery issue or bias was picked up and it is therefore considered that both sample recovery and quality is adequate for the drilling technique employed 		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples were geologically logged by Oklo Resources subsidiary Africa Mining geologists. Geological logging used a standardised logging system. 		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non<core, and="" dry.<="" etc="" li="" or="" riffled,="" rotary="" sampled="" sampled,="" split,="" tube="" wet="" whether=""> For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub<sampling li="" maximise="" of="" representivity="" samples.<="" stages="" to=""> Measures taken to ensure that the sampling is </sampling></core,>	 RC samples were split utilizing a 3 tier riffle splitter with a 1m sample being taken. Duplicates were taken to evaluate representativeness Further sample preparation was undertaken at the SGS laboratories by SGS laboratory staff All DD core was ½ cut and ¼ cut when a duplicate sample was taken. Duplicates were taken to evaluate representativeness At the laboratory, samples were weighed, dried and 		

CRITERIA	JORC CODE EXPLANATION	COMMENTARY		
	 representative of the in situ material collected, including for instance results for field duplicate/second<half li="" sampling.<=""> Whether sample sizes are appropriate to the grain size of the material being sampled. </half>	 fine crushed to 70% <2mm (jaw crusher), pulverized and split to 85 %<75 um. Gold is assayed by fire assay (50g charge) with an AAS Finish. Sample pulps were returned from the SGS laboratory under secure "chain of custody" procedure by Africa Mining staff and are being stored in a secure location for possible future analysis. Sample sizes and laboratory preparation techniques are considered to be appropriate for this early stage exploration and the commodity being targeted. 		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 Analysis for gold on AC, RC and diamond samples is undertaken at SGS Bamako by 50g Fire Assay with an AAS finish to a lower detection limit of 10ppb Au. Fire assay is considered a "total" assay technique. No field non assay analysis instruments were used in the analyses reported. 		
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 A review of certified reference material and sample blanks inserted by the Company indicated no significant analytical bias or preparation errors in the reported analyses. Results of analyses for field sample duplicates are consistent with the style of mineralisation evaluated and considered to be representative of the geological zones which were sampled. 		
(\Box)		 Internal laboratory QAQC checks are reported by the laboratory and a review of the QAQC reports suggests the laboratory is performing within acceptable limits. 		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drill hole data is paper logged at the drill site and then digitally entered by Company geologists at the site office. All digital data is verified and validated by the Company's database consultant in Paris before loading into the drill hole database. No twinning of holes was undertaken in this program. Reported drill results were compiled by the Company's geologists, verified by the Company's database administrator and exploration manager. No adjustments to assay data were made. 		
Data spacing	 Accuracy and quality of surveys used to locate drill holes (collar and down<hole surveys),="" trenches,<br="">mine workings and other locations used in Mineral Resource estimation.</hole> Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. 	 AC, RC and diamond drill hole collars are positioned using differential GPS (DGPS). Accuracy of the DGPS < +/< 0.1m and is considered appropriate for this level of exploration The grid system is UTM Zone 29N RC and DD drilling is now being undertaken on a ~20x40m spacing as infill undertaken in areas of 		
distribution	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling reported in this program is being designed to infill or extend known mineralisation to a sufficient density of drilling to enable the estimation of a maiden resource. 		
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation 	Exploration is at an early stage and, as such, knowledge on exact location of mineralisation and its relation to lithological and structural boundaries is not accurately known. However, the current hole orientation is considered appropriate for the program to reasonably assess the prospectivity of		

ASX ANNOUNCEMENT

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	known structures interpreted from other data sources.
Sample security	 The measures taken to ensure sample security. 	RC and diamond samples were collected from the company camp by SGS and taken to the SGS laboratory in Bamako under secure "chain of custody" procedure by Africa Mining staff.
		Sample pulps were returned from the SGS laboratory under secure "chain of custody" procedure by Africa Mining staff and have been stored in a secure location.
		The AC samples remaining after splitting are removed from the site and trucked to the exploration camp where they are stored under security for future reference for a minimum of 6 months
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There have been no external audit or review of the Company's sampling techniques or data at this early exploration stage.

Section 2 Reporting of Exploration Results

CRITERIA	JORC CODE EXPLANATION	CRITERIA
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results reported in this report are all contained within the Dandoko Exploration Permit, Gombaly Exploration Permit which are held 100% by Africa Mining SARL, a wholly owned subsidiary of Oklo Resources Limited. The Dandoko permit (100km²) which was renewed on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years: The Gombaly permit (34km²) which was granted on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area that is presently covered by the Dandoko permit was explored intermittently by Compass Gold Corporation between 2010 and 2013. Exploration consisted of aeromagnetic surveys, gridding, soil sampling and minor reconnaissance (RC) drilling. The area that is presently covered by the Mousalla permit was explored intermittently by Compass Gold Corporation between 2010 and 2013. Exploration consisted of aeromagnetic surveys, gridding, soil sampling. Ashanti Mali undertook reconnaissance soil sampling surveys over part of the license area.
Geology	Deposit type, geological setting and style of mineralisation.	 The deposit style targeted for exploration is orogenic lode gold. This style of mineralisation can occur as veins or disseminations in altered (often silicified) host rock or as pervasive alteration over a broad zone. Deposit are often found in close proximity to linear geological structures (faults & shears) often associated with deep<seated li="" structures.<=""> Lateritic weathering is common within the project area. The depth to fresh rock is variable and may extend up to 50-70m below surface and in this drill program weathering of >150m was encountered </seated>
Drill hole	A summary of all information material to the	Locations are tabulated within the report and are

CRITERIA	JORC CODE EXPLANATION	CRITERIA
Information	 understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 how on plans and sections within the main body of this announcement. Dip of lithologies and/or mineralisation are not currently known. Drilling was oriented based on dips of lithologies observed ~5km to the north of the prospect and may not reflect the actual dip.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut<off and="" are="" be="" grades="" li="" material="" should="" stated.<="" usually=""> Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. </off>	 Intervals are reported using a threshold where the interval has a 0.3 g/t Au average or greater over the sample interval and selects all material greater than 0.10 g/t Au allowing for up to 2 samples of included dilution every 10m. No grade top cut off has been applied to full results presented in Significant Intersection Table. No metal equivalent reporting is used or applied
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known as the exact orientation and extent of known mineralised structures are not yet determined. Mineralisation results are reported as "downhole" widths as true widths are not yet known
Diagrams Balanced reporting	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting of all Exploration Results is not practicable representative reporting 	 Drill hole location plans are provided in earlier releases with new holes tabulated within this release. Drill hole locations are provided in earlier reports.
	of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All assays received of >=0.1ppm nave been reported. No high cuts to reported data have been made.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data that is considered meaningful and material has been omitted from this report
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large<scale drilling).<="" li="" step<out=""> Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. </scale>	AC, RC and diamond drilling to continue and follow up these and other ongoing results on the Dandoko project is scheduled to continue through January and February 2020.

