

30 April 2020

CORPORATE

DIRECTORY

Managing Director

Simon Noon

Directors

Gary Comb (Chairman)

Richard Monti

Andrew Parker

Company Secretary

Jerry Monzu

Registered Office

Level 1, 105 St Georges Terrace

Perth WA 6000

Telephone

+61 8 6268 0449

ASX Code PMY

ABN 43 107 159 713

Sorby Hills Optimised PFS Progress Update

Pacifico Minerals Limited (ASX: PMY) ('Pacifico' or the 'Company') is pleased to report on the significant progress being made on its Sorby Hills Joint Venture Project Optimised Pre-Feasibility Study ('PFS').

HIGHLIGHTS

- Resource Upgrade justified a 50% increase in plant throughput from 1.0Mtpa to 1.5Mtpa.
- Metallurgical testwork confirms improved lead (Pb) recovery estimates.
- Excellent results from Heavy Liquid Separation ('HLS') testwork on low-grade ore.
- Open pit optimisation and mine scheduling completed.
- Simple process plant design completed with engineering and cost estimation progressing.
- Optimised PFS on track to be completed in June.
- Resource Update underway with increased confidence gained from Phase III drilling.

BACKGROUND

The Sorby Hills Joint Venture Project ('Sorby Hills' or the 'Project') is located approximately 50 km northeast of Kununurra. There are existing sealed roads to transport concentrate from site to the facilities at Wyndham Port (150 km from the Project). Established infrastructure and existing permitting allow for fast tracked production. A previous Pre-Feasibility Study ('PFS') produced compelling economics (ASX Announcement 26 March 2019).

Following on from a significant Resource upgrade in Q4 2019 which resulted in a Global Resource estimate of 36 Mt at 4.9% Pb equivalent¹ (3.7% Pb, 39g/t Ag) and 0.5% Zn lying just 20 m below surface and open along strike and down dip (ASX Announcement 31 October 2019), Pacifico is completing an Optimised PFS. The Optimised PFS targets an increased mining rate and greater processing capacity and will further de-risk the project with additional testwork.

Managing Director Mr Simon Noon commented that the Company had made significant progress since the Project's updated PFS was released in March 2019. Mr Noon stated, "We reported a very significant upgrade to the project's Resource in October last year and this has underpinned the increase in plant throughput and processing capacity."

The 50% increase in plant throughput still allows for a project life of at least 8 years.

"Pacifico looks forward to providing further information when we release the Optimised PFS, currently scheduled for June," Mr Noon said.

¹ See Appendix 1 for lead equivalent calculation.

PROJECT METRICS

The Optimised PFS will **increase the Process Plant throughput by 50% from 1.0Mtpa to 1.5Mtpa.** Two options are being assessed within the study:

- 1. 'Whole Ore' option, which treats mined ore directly by flotation at 1.5Mtpa; and
- 2. 'DMS' option, which beneficiates low-grade ore by Dense Media Separation ('**DMS**') and blends the upgraded product with high-grade ore to feed the flotation plant at 1.5Mtpa.

Key project metrics are presented in table 1 below.

Table 1 Key Project Metrics

		Who	ole Ore Optio	n		OMS Option	
			G	rade		Gr	rade
Parameter	Unit	Quantity	%Pb	Ag g/t	Quantity	%Pb	Ag g/t
Total Material Mined	Mt	93.4			123.4		
Ore Mined	Mt	12.0	4.0	42	16.8	3.5	36
Strip Ratio		7.8			7.4		
DMS Ore Feed	Mt	NA	NA	NA	6.2	1.8	17
DMS Product	Mt	NA	NA	NA	1.9	4.8	42
Direct Flotation Ore	Mt	12.0	4.0	42	10.6	4.5	46
Total Flotation Feed	Mt	12.00	4.0	42	12.5	4.6	46
Concentrate Production	t	718,753	62.0	590	847,975	62.0	570
Contained Pb	t	445,627			525,744		
Contained Ag	Moz	13.7			15.5		
Project Life	Yrs	8.0			8.4		

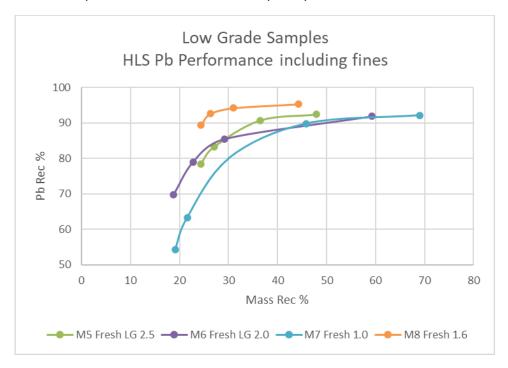
METALLURGICAL TESTWORK

Comminution

Comminution (crushing and grinding) tests have been performed on four composite samples to add to the existing data base for Optimised PFS level process design calculations. The testwork included SMC (drop weight), bond rod and ball mill and abrasion index testing. The testwork shows that Sorby Hills ore is amenable to semi-autogenous grinding having medium coarse competency and has a medium hardness ball mill work index in the range 9-12kWhr/t. Key material properties are presented in Table 2.

Table 2 Key Comminution Material Properties

Comminution Parameter	Average Value
Drop Weight index, kWh/m ³	5.3
Axb	51.6
Rod mill work index, kWh/t	15.5
Ball mill work index, kWh/t	10.2
Abrasion index	0.025


Heavy Liquid Separation

HLS beneficiation testwork was carried out on six fresh (primary) ore composites with head grades ranging from 1.0 to 5.4%Pb to confirm amenability to beneficiation. The samples were tested at -12 +1 mm size fraction over the SG range 2.7 to 3.0 in 0.1 increments.

Results from HLS testwork on low-grade samples showed a good response averaging 79.5% Pb recovery to a sinks + fines product containing 24.5% mass. **This equates to an upgrade ratio of 3.24.**

Good upgrades were also obtained from the higher-grade samples; however, the reject grade also increases and is considered too high at this stage. The opportunity to include higher-grade in the DMS process will be explored with additional testwork as part of the Definitive Feasibility Study.

Based on these results, a flowsheet including a DMS beneficiation circuit upgrading low-grade ore in parallel with a direct feed high-grade ore stream is being assessed within the Optimised PFS.

Final full-scale DMS performance, corrected for fines content and DMS cyclone efficiency, is estimated to be 30% mass recovery with 81% Pb and 73% Ag recoveries giving upgrade ratios of **2.7 for Pb and 2.4 for Ag.**

Flotation

This year, new flotation testwork was conducted on four composite samples (one oxide and three fresh ore types). The flotation circuit consists of a staged sulphide and oxide rougher followed by two stages of combined rougher concentrate cleaning. A primary grind size is 106µm. No regrind is necessary. The reagent regime is simple consisting of soda ash, collector, frother, and sodium hydrosulphide for oxide ore sulphurdisation.

The testwork culminated with a locked cycle test of the prime 'life of mine' grade fresh composite which represents approximately 75% of the feed schedule.

Test results for each composite, the locked cycle test result and final Optimised PFS recovery estimates are presented in Table 3.

Table 3 Flotation Performance Results and Estimates

Test	Test Sample Mass %				Head Grade			
			%Pb	%Fe	Ag g/t	Pb:Fe	Pb	Ag
			Test Resu	ults				
CT6280 Locked Cycle	M4 (fresh)	NA	5.19	3.2	28	1.62	95.4	85.0
CT6265 Batch	M4 (fresh)	70	5.19	3.2	28	1.62	93.9	84.1
CT6277 Batch	M3 (fresh)	10	5.74	3.87	24	1.48	96.3	83.1
CT6283 Batch	M5 (fresh)	20	2.86	5.01	20	0.57	88.5	58.1
CT6281 Batch	M2 (oxide)	100	2.79	3.09	21	0.90	84.0	94.4
PFS Recovery Estimates								
Weighted Average Fresh			4.78	3.63	26	1.34	93.5	80.0
LCT Off-set Fresh ore							1.9	1.5
Final Fresh ore	Final Fresh ore						95.4	81.5
Oxide			2.79	3.09	21.0	0.90	84.0	94.4
Final Oxide ore							84.0	94.4
Average LOM ore (76% Fresh) ¹			4.30	3.50	24.8	1.23	92.7	84.6

¹The grades shown represent the weighted average grades of the test samples and not the final production schedule grades.

Comparison of the new flotation recovery performance to previous studies is shown in Table 4.

Table 4 Current vs Previous Recovery Estimates

	Current PFS			Lycopodium PFS Update 2019		
Recovery	Pb	Ag	Pb	Ag	Pb	Ag
Fresh Ore	95.4	81.5	NA	NA	NA	NA
Oxide Ore	85.0	94.4	NA	NA	NA	NA
Overall	92.7	84.6	91	87	91	87

The previous two studies used the same recovery estimates and did not assess the oxide and fresh ore types separately in their recovery estimates. Importantly, they were targeting lower-tonnage higher-grade projects.

The current recovery estimates have better sample representation and the improved Pb recovery more than compensates for the small reduction in Ag recovery. **The latest testwork will have a positive impact on the Project's NPV.**

All flotation testwork to date has been conducted on un-beneficiated ore samples. For the purpose of the Optimised PFS, it is assumed that the flotation performance of beneficiated product is consistent with unbeneficiated ore.

GEOLOGY AND RESOURCES

AUO BSN IBUOSIBO IOL

The October 2019 MRE (completed following the Phase II drilling results) has been used for the Optimised PFS pit optimisation.

A high-level review of the perceived impact of Phase III drilling data in addition to ongoing refinements to the geological model on the MRE has been completed.

Summary

- Localised tonnage increases are likely to be seen where new drilling extends the current Mineral Resource shapes or fills gaps in the current model;
- Refined geological models for the weathering profiles and updated density dataset add greater confidence to the Mineral Resource Estimate;
- Unlikely to see a material decrease in grade within the reported Mineral Resource; and
- Possible minor increase or decrease in reported global grades due to re-domaining of drill hole samples.

As a result of the above, Pacifico has commissioned CSA Global to complete a further MRE update. This work is expected to be completed during May 2020.

PERMITTING AND APPROVALS

The Sorby Hills Joint Venture Project proposal is to develop a lead-silver-zinc open pit mine, associated infrastructure, and processing facilities. Sorby Hills sits on **pre-native title granted mining tenements**.

In the October 2013, the Western Australian Environmental Protection Authority ('EPA') Report (1491), concluded: 'The Project can be managed to meet the EPA's objectives, provided there is satisfactory implementation by the proponent ('Sorby Management Pty Ltd' or 'Sorby') of the EPA's recommended conditions.' Subsequently ministerial approval was granted in April 2014.

Requested Changes to Conditions

Condition 3-1 of Ministerial Statement 964 requires Sorby Management Pty Ltd to substantially commence the proposal within five years of the date of issue of the Statement (before 2 April 2019). Sorby requested an extension of the Time Limit of Authorisation (now referred to as 'Time Limit for Proposal Implementation') for substantial commencement to be extended for a further five years to 2 April 2024.

During April 2019 Pacifico received Report 1632 from the EPA (ASX Announcement 17 April 2019), recommending that it is appropriate to amend condition 3 of Ministerial Statement 964 to allow for the extension of the timeframe for substantial commencement of the Sorby Hills Joint Venture Project for a further 5 years and in May 2019, Pacifico received Ministerial confirmation that condition 3 of Ministerial Statement 96 had been amended to allow for the timeframe for substantial commencement of the Sorby Hills Joint Venture Project, to be **extended** for a further 5 years, to 2 April 2024 (ASX Announcement 29 May 2019).

Pacifico has taken a conservative approach with its pit optimisations for the Optimised PFS and has excluded the Alpha and Beta deposits. These deposits sit outside of the open pit development zone approved by the EPA. The Company is focused on fast tracking Sorby Hills to production and would therefore prefer to avoid a material change in the size of the development zone.

HYDROGEOLOGICAL SITE INVESTIGATION PROGRAM

Using Pacifico's reinterpreted geological model, together with reinterpretation of recent and historical drilling and hydraulic testing programs, Pennington Scott has developed a hydrogeological conceptual site model of the Sorby Dolomite and Webber Plane alluvial aquifers. While historic investigations had difficulty interpreting complex pump tests from the karstic aquifer using traditional analytical equations; the use of modern radial flow modelling is providing much improved and confident analysis. A regional numerical groundwater model is now being developed over the mining area and will be calibrated against wet season recharge events.

Although the model is still in progress, the results from new pump tests as well as reinterpreted historical pump tests indicate that the Sorby Dolomite is not as permeable as previously thought.

Pennington Scott is also undertaking Gold Sim water balance modelling, coupled with catchment modelling of the Keep River, to develop a seasonal stormwater harvesting and surface water management strategy for the Project.

OPTIMISED PFS STATUS

The following provides an overview of the key study areas and progress to date.

Geology and Resources (CSA Global and Pacifico)

- MRE updated based on Phase II drilling results for use in PFS Pit Optimisation;
- Phase III drilling produced PFS metallurgical samples;
- Ongoing refinements to the geological model and ore SG estimates; and
- Further MRE revision incorporating the above underway.

Mining (Entech)

- Geotechnical site investigations complete;
- Hydrogeological site investigations complete;
- Two process plant configurations are being investigated in mine optimisation studies:
 - Whole ore flotation; and
 - Low-grade beneficiation by DMS and direct feed of high-grade;
- Pit optimisations completed for both options;
- Preliminary scheduling completed for both options;
- Mining contract cost estimation in progress;
- Preliminary designs commencing; and
- Surface water drainage and pit dewatering studies commenced.

Metallurgical Testwork (DRA and Pacifico)

- Comminution testwork complete for crushing and milling circuit design;
- HLS testwork complete for DMS circuit design; and
- Flotation testwork complete
 - Metallurgical testwork and final PFS recovery performance estimates complete;
 - Reagent scheme improved with low operating cost; and
 - Simplified circuit design.

Process Plant and Infrastructure Engineering (DRA)

- Option studies completed covering the following selections:
 - Grinding circuit design single stage SAG mill selected;
 - o DMS has been identified as being a viable option to upgrade low-grade ore; and
 - Power supply site diesel power station selected.
- Project throughput increased to 1.5Mtpa;
- Two flowsheet options being developed to PFS level of detail for consideration:
 - Whole ore direct milling and flotation without beneficiation; and
 - Low grade beneficiation by DMS with high grade feed direct to flotation:
 - DMS feed capacity 750,000tpa producing 225,000tpa mill feed; and
 - 1.275Mtpa high grade flotation feed.

- Process engineering is complete;
- Discipline engineering nearing completion;
- Tailings storage facility design complete (Coffey); and
- Concentrate transport study completed (Minerals to Market).

The Board of Pacifico Minerals Limited has authorised the release of this announcement.

FOR FURTHER INFORMATION PLEASE CONTACT:

Simon Noon

Managing Director

Phone: +61 (0)8 6268 0449

Email: info@pacificominerals.com.au

ABOUT PACIFICO MINERALS LIMITED

Pacifico Minerals Ltd ('Pacifico') (ASX: PMY) is a Western Australian based exploration company with interests in Australia and Colombia. In Australia, the company is currently focused on advancing the Sorby Hills Joint Venture Project in WA. Pacifico owns a 75% interest in the Joint Venture with the remaining 25% (contributing) interest held by Henan Yuguang Gold & Lead Co. Ltd.

ABOUT HENAN YUGUANG GOLD AND LEAD CO LTD

Henan Yuguang Gold and Lead Co., Ltd ('HYG') was established in 1957 by the government of Jiyuan City which is in Henan Province in North China. In July 2002, HYG (exchange code: 600531) was listed on the Shanghai Stock Exchange (SSX). Current ownership is approximately 29.61% by Jiyuan City. HYG is the largest lead smelting company and silver producer in China and has been among the Top 500 Chinese enterprises and Top 500 China manufacturing enterprises for the last five consecutive years. The main products produced by HYG are electrolytic lead, gold, silver and copper which are all registered at LME and LBMA respectively. In 2017, HYG produced 415,100 tonnes of electrolytic lead, 110,000 tonnes of copper, 958 tonnes of silver, 7,383 kg of gold and achieved sales of about US\$2,684 million. HYG's plants are largely modern, focussed on development of industrial technology and are environmentally friendly. Its recently refurbished lead smelting plant has achieved full automation. More information can be found on the HYG website; http://www.yggf.com.cn/en/.

FORWARD LOOKING STATEMENTS

Certain statements in this document are, or may be, 'forward-looking statements' and represent Pacifico's intentions, projections, expectations or beliefs concerning among other things, future exploration activities. The projections, estimates and beliefs contained in such forward-looking statements necessarily involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of Pacifico, and which may cause Pacifico's actual performance in future periods to differ materially from any express or implied estimates or projections. Nothing in this document is a promise or representation as to the future. Statements or assumptions in this document as to future matters may prove to be incorrect and differences may be material. Pacifico does not make any representation or warranty as to the accuracy of such statements or assumptions.

COMPETENT PERSON STATEMENT

Please refer to the below letter from DRA Pacifico Pty Ltd.

// DRA Pacific Pty Ltd

Level 8, 256 Adelaide Terrace, Perth, WA, 6000 / Australia PO Box 3130, East Perth, WA, 6892 / Australia T +61 (8) 6163 5900 / E info@draglobal.com / W draglobal.com

29 April 2020

CERTIFICATE OF AUTHOR

I, John Fleay B.Eng(Mineral Processing), do hereby certify that:

- I am currently employed as Manager Metallurgy with DRA Pacific Pty Ltd, 256 Adelaide Terrace, Perth, 6000.
- This certificate applies to the specific metallurgy sections contained in the ASX Release "Sorby Hills PFS Progress Update", 30 April 2020 prepared by Pacifico Minerals Ltd.
- My technical qualifications are Bachelor of Engineering (Mineral Processing) and I am a Fellow member of the Australian Institute of Metallurgy (AusIMM No:320872).
 - I am a graduate of WA School Of Mines (WASM). I have appropriate experience in these matters, by way of my qualifications and 25 years of experience in the mining and resource sector.
- I have not visited the Sorby Hills Project site.
- I am responsible for the metallurgy sections of the Sorby Hills Prefeasibility Study (PFS)
 which is currently in progress. This ASX release includes metallurgical information from
 this PFS.
- 6. I am independent of the Issuer and related companies.

Effective Date: April 30, 2020

Signing Date: April 29, 2020

John Fleay Manager Metallurgy

DRA Pacific Pty Ltd

APPENDIX 1 - CALCULATION OF Pb EQUIVALENT GRADES

The contained metal equivalence formula is made on the following assumptions based on historical metallurgical work included in a Pre-Feasibility Study (KBL ASX Announcement, 8 April 2014) and modified by more recent metallurgical testwork results (PMY ASX Announcement 17 July 2019), and on the published London Metal Exchange closing spot metal prices of 16 April 2020.

- Lead price US\$ 1664/t;
- Silver price US\$ 0.508/g (US\$15.78/oz);
- Lead recoverable to concentrate 91%; and
- Silver recoverable to concentrate 90%.

It is Pacifico's opinion that all elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold. The formula used to calculate lead equivalent grade is:

Lead equivalent grade Pb% = ((Grade % Pb x recoverable % Pb x price US\$ per tonne Pb metal / 10,000) + (grade g/t Ag x recoverable % Ag x price US\$/g)) / (Grade % Pb x recoverable % Pb x price US\$ per tonne Pb metal / 10,000)

Metal equivalents are highly dependent on the metal prices used to derive the formula. Pacifico notes that the metal equivalence method used above is a simplified approach. Only preliminary metallurgical recoveries are available. The metal prices are based on closing spot LME prices of 16 April 2020 and do not reflect the metal prices that a smelter would pay for concentrate nor are any smelter penalties or charges included in the calculation.

Owing to limited metallurgical data zinc grades are not included at this stage in the lead equivalent grade calculation.

APPENDIX 2 – JORC, 2012 EDITION – TABLE 1

Section 1 Sampling Techniques and Data

	Criteria	JORC Code Explanation	Com	mentary	,				
	Sampling Techniques	Nature and quality of sampling		•	Samples: The commi	nution te	stwork report	ed above	is based on four
		(e.g. cut channels, random		_	imples representing t		-		
		chips, or specific specialised			oosites C1, C2, C3 and				
		industry standard			ed on four low grade I	-	-		-
		measurement tools		-	e flotation testwork		-		-
		appropriate to the minerals			oxide and three grade	-			*
		· · · ·	Saiii	pies, one	Oxide and timee grade	e baseu ii	esii sairipies (1012, 1013, 1	vi4 aliu ivi5j.
		under investigation, such as	۸۱۱ ۵			احتفانيما		من مامندانن	tomials of 1/ 110
		down hole gamma sondes, or			were composited from	-		-	
		handheld XRF instruments,			l core sample from Pa				
		etc). These examples should		-	and distribution of	the comp	osites is sum	ımarised	in the following
		not be taken as limiting the	Table	e.					
(0)		broad meaning of sampling.	_						
		Include reference to measures		Sample	Description	# Drill	# Intervals	Total	Ore Zones
20		taken to ensure sample				Holes		Meters	
(U/J)		representivity and the		C1	Transition	11	13	13	B, Omega
		appropriate calibration of any		C2	Oxide	5	12	12	B, Omega
		measurement tools or systems		C3	Fresh	17	26	26	B, Omega
		used.		C4	Waste	2	11	11.5	B, Omega
		Aspects of the determination of		M2	Oxide Eroch High	3	8	9	B, Omega
		mineralisation that are		M3	Fresh High Flotation Feed Grade	5	8	9	B, Omega
GR		Material to the Public Report.	-	M4	Fresh LOM	4	10	12	B, Omega
(())		In cases where 'industry		1414	Flotation Feed Grade	4	10	12	B, Offiega
		standard' work has been done	-	M5	Fresh 2.5%Pb Grade	8	13	14	B, Omega
		this would be relatively simple	-	M6	Fresh 2.0%Pb Grade	5	10	12	B, Omega
		(e.g. 'reverse circulation drilling	-	M8	Fresh 1.5%Pb Grade	4	8	12	B, Omega
		was used to obtain 1 m samples	=	M7	Fresh 1.0%Pb Grade	11	12	12	B, Omega
		from which 3 kg was pulverised	_				I	I	, ,
10		to produce a 30 g charge for fire	Meta	allurgical	samples were selecte	d with the	e aim to satisfy	the follo	wing conditions:
		assay'). In other cases, more		_	would be mined, i.e.				
				Ore that	. Would be illined, i.e.	***************************************	e proposed pri	. Silens	
		explanation may be required, such as where there is coarse	•	Reflect t	he main oxidation typ	es and lit	hologies, part	icularly th	e more oxidised
(15)					e ores and the fresh ga			,	
		gold that has inherent sampling			Ü				
		problems. Unusual	•	Select gr	rades in line with the p	roductio	n schedule an	d/or life o	f mine grade
		commodities or mineralisation							
		types (e.g. submarine nodules)	•	Allow fo	r spatial representivity	y (i.e. spre	ead of depth a	nd along	strike where
		may warrant disclosure of		possible)				
2		detailed information.							
	Drilling Techniques	Drill type (e.g. core, reverse	All m	netallurgi	ical sample was from I	IQ diamo	nd drill core		
		circulation, open-hole hammer,							
		rotary air blast, auger, Bangka,							
Пп		sonic, etc) and details (e.g. core							
		diameter, triple or standard							
		tube, depth of diamond tails,							
		face-sampling bit or other type,							
		whether core is oriented and if							
		so, by what method, etc).							
	Drill Sample	Method of recording and	Core	recover	y for diamond core v	vas accep	table with re	coveries l	petter than 97%
	Recovery	assessing core and chip sample			nineralised zones.	·			
	•	J 2 P 2 P 2							

recoveries and reachts assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bas may have occurred due to preferential loss/gain of fine/coarse material. Logging Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate and metallurgical studies. Whether logging is qualifative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and sample Preparation Sub-sampling Techniques and sample Preparation And whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stopes to maximise representative of the insturmaterial being sampled. Quality of Assay Data and laboratory Tests Quality of Assay Data and laboratory procedures and laboratory is MATA accredited. All testwork procedures and laboratory is all the metallurgical testwork reported was conducted by ALS Metallurgical laboratory procedures.			T	
Measures taken to maximics sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample biss may have occurred due to preferential loss/gian of fine/coase material. Logging Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Milmoreal Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation Techniques and Sample Preparation Techniques and sample preparation extending and whether quarter, half or all core taken. Ton-core, whether iffled, tube sampled, rotary spit, etc. and whether sampled were of dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representative of the in-situ material collected, including for instance results for felet duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material logic assignation was conducted by ALS Metallurgical and laboratory Tests. Quality of Assay Data and Laboratory Tests. The nature, quality and appropriate to the grain size of the material logic assignation was conducted by ALS Metallurgical and Laboratory Tests. All the metallurgical testwork reported was conducted by ALS Metallurgical and Laboratory Tests.			recoveries and results	
sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bis may have occurred due to preferential loss/gain of fine/coarse material. Logging Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core for costean, channel, etcl photography. The total length appropriate of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If core, whether riffled, tube sampled, vetory split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample appropriateness of the sample appropriate soft the sample stages to maximise representively of samples. Measures taken to ensure that the sampling, is representative or presentative or their-instumaterial collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material begraphical to the grain size of proportion to estimate and laboratory Tests. All the metallurgical testwork reported was conducted by ALS Metallurgical and laboratory Tests.			assessed.	
representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Logging Whether core and the samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and perentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If non-core, whether riffled, tube samples, toraty split, etc and whether quality and appropriateness of the sample wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests b.			Measures taken to maximise	
whether a relationship exists between sample recovery and grade and whether sample hiss may have occurred due to preferential loss/gain of fine/coarse material. Logging Whether core and chip samples have been geologically and gootechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation Sub-sampling of coarse, whether cut or sawn and whether exampled vet or dry. For all sample types, the nature, quality and appropriateness of the sample steps, the nature, quality and appropriateness of the sample preparation technique. Quality ortor procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-stu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sample. Quality of Assay Data and Laboratory Tests by appropriate near the grain size of the material being sampled. All the metallurgical testwork reported was conducted by ALS Metallurgical aboratory in Balcatta, Perth. This laboratory is MATA accredited. All testwork and Laboratory is MATA accredited. All testwork			sample recovery and ensure	
Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Logging Whether core and chip samples have been geologically and gentechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If non-core, whether riffled, the sample for lorary split, etc and whether sample wet or div. For all sample types, the nature, quality and appropriates of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling stages to maximise representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and laboratory Tests by the data and Laboratory Tests the sample of the material being sampled. All the metallurgical testwork reported was conducted by ALS Metallurgical abloratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork			representative nature of the	
between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Logging Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation Sub-sampleg Techniques and Sample Preparation Fin no-rore, whether rutt or sawn and whether qualter, half or all core taken. If non-rore, whether rutters and percentage of the relevant intersections logged. Drill hole and intercept selection for the samples was based on the core logging and and whether qualtrer, half or all core taken. If non-rore, whether rutters and appropriateness of the sample preparation technique. Quality ortor procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sample gis representative of the instru material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and taboratory Test. The nature, quality and appropriateness of the assaying disboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork reported was conducted by ALS Metallurgical and appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork			samples.	
grade and whether sample bias may have occurred due to preferential losygain of fine/coarse material. Logging Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If core, whether cut or saw and whether quarter, half or all core taken. If non-core, whether ruffled, tube sampled, rotary split, etc and whether asmpled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Test.) The nature, quality and appropriateness of the assayle and Laboratory is NATA accredited. All testwork is all the metallurgical testwork reported was conducted by ALS Metallurgical and appropriateness of the assayle glaboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork is a proportiated to the grain size of the material being sampled.			Whether a relationship exists	
Logging Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation Support appropriate many the core in the core logging and and whether quarter, haif or all core taken. If non-core, whether riffled, tube sample, rotary split, etc and whether sampled were or dry. For all sample types, the nature, quality and appropriateness of the sample greparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-strum attendation lesses are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests The nature, quality and appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests and Laboratory is NAIA accredited. All testwork is also barboratory in Balcatta, Perth. This laboratory is NAIA accredited. All testwork is also aboratory in Balcatta, Perth. This laboratory is NAIA accredited. All testwork is also accepted in detail. Core was logged at a secure facility in Kununurra, where it is also have to stored. Bilation detail. Core was processed with orientation lines and retroit. Structural measurements of stratigicaphy and fault orientation swere made where the ori-marks and RQD's were recorded. Structural measurements of stratigicaphy and fault orientation lines and retroit exists and RQD's were recorded. Structural measurements of stratigicaphy and fault orientation ines were of sufficient confidence. Sub-sampling If core, whether cut or sawn and whether sample developed and advallation in the first formation in the first formation in the firs			between sample recovery and	
Logging		U	grade and whether sample bias	
Logging Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the asampling stages to maximise representative of the in-stimuted of the in-stimu			may have occurred due to	
Under the core and chip samples have been geologically and gootechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etp) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation Techniques and Sample Preparation. If non-core, whether riffled, tube sampled, rotary spili, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the mistur material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests Whether company and appropriateness of the sample preparation state of the material being sampled. All the metallurgical testwork reported was conducted by ALS Metallurgical aboratory feats and Laboratory Tests			preferential loss/gain of	
have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation Frechniques and Sample Preparation For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representative of the in-strum attention the sampling is representative of the in-strum attention to the sample preparation technique. Quality of Assay Data and Laboratory Tests Quality of Assay Data and Laboratory Tests All core was logged in detail. Core was processed with orientation lines and RQD. Recoveries and RQD's were recorded. All core was logged in detail. Core was processed with orientation lines and RQD. Recoveries and RQD's were recorded. As the Core is of stratigraphy and fault orientation were made where the ori-marks and RQD. Recoveries and RQD's were recorded. Structural measurements of stratigraphy and fault orientation lines and RQD. Recoveries and RQD's were recorded. Sub-sampling and percentage of the relevant intersections of stratigraphy and fault orientations were made where the ori-marks and RQD. Recoveries and RQD's Recoveries and RQD. Recoveries and RQD's Recoveries and RQD's Recoveries and RQD. Recoveries and RQD Recov			fine/coarse material.	
detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Quality of Assay Data and Laboratory Tests The nature, quality and appropriateness of the sample gregaration technique. Quality of Assay Data and Laboratory Tests All the metailurgical testwork reported was conducted by ALS Metallurgical appropriateness of the sasaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork		Logging	Whether core and chip samples	Diamond drill core was logged at a secure facility in Kununurra, where it is also
of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation Techniques and Sample Preparation If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled was to any special studies. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled was and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests All core was logged in detail. Core was processed with orientation lines and RQD's were recorded. Structural measurements of stratigraphy and part orientations were made where the ori-marks and orientation lines were of sufficient confidence. Structural measurements of stratigraphy and and intervals were of sufficient confidence. Structural measurements of stratigraphy and and intervals were of sufficient confidence. Structural measurements of stratigraphy and and intervals were of sufficient confidence. Structural measurements of stratigraphy and and intervals were selected to represent oxide, trastition for fresh subplied mineralogy as required, hierorate selected to provide a target Pb grade. Drill hole and intercept selection for the samples was based on the core logging and and sasy data, and the material type dassification based on a weathering index. Samples were selected to represent oxide, trastification based on a weathering index. Samples were selected to represent oxide, trastification based on			have been geologically and	stored.
of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation Techniques and Sample Preparation If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled was to any special studies. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled was and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests All core was logged in detail. Core was processed with orientation lines and RQD's were recorded. Structural measurements of stratigraphy and part orientations were made where the ori-marks and orientation lines were of sufficient confidence. Structural measurements of stratigraphy and and intervals were of sufficient confidence. Structural measurements of stratigraphy and and intervals were of sufficient confidence. Structural measurements of stratigraphy and and intervals were of sufficient confidence. Structural measurements of stratigraphy and and intervals were selected to represent oxide, trastition for fresh subplied mineralogy as required, hierorate selected to provide a target Pb grade. Drill hole and intercept selection for the samples was based on the core logging and and sasy data, and the material type dassification based on a weathering index. Samples were selected to represent oxide, trastification based on a weathering index. Samples were selected to represent oxide, trastification based on				
Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample gizes are appropriateness of the total the mature, quality and appropriateness of the sample. Quality of Assay Data and Laboratory Tests Quality of Assay Data and Laboratory Tests All It the metallurgical testwork reported was conducted by ALS Metallurgical appropriateness of the assaying laboratory in Balicatta, Perth. This laboratory is NATA accredited. All testwork				All core was logged in detail. Core was processed with orientation lines and metre
metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If non-core, whether ut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and laboratory Tests Quality of Assay Data and laboratory Tests				
metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If non-core, whether ut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and laboratory Tests Quality of Assay Data and laboratory Tests				Structural measurements of stratigraphy and fault orientations were made where
Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests Quality of Assay Data and Laboratory Tests All the metallurgical testwork reported was conducted by ALS Metallurgical laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork	20		metallurgical studies.	- ' '
or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation Techniques and Sample Preparation From all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material obletical, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests Assaying and intercept selection for the samples was based on the core logging and assay data, and the material believant intersections for the samples was based on the core logging and assay data, and the material type classification based on a weathering index. Samples were selected to represent on the core logging and assay data, and the material type classification based on a weathering index. Samples were selected to represent oxive required. As required, intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Dial hole and intercept selection for the samples was based on the core logging and assay data, and the material type classification based on a weathering index. Samples were selected to represent oxive required, intervals were selected to represent oxive required. As required, intervals were selected to represent oxive required. As required, intervals were selected to represent oxive required. As required, intervals were selected to represent oxive required. As required, intervals were selected to represent oxive required. As required, inte	W 2		_	
(or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material by material collected and Laboratory Tests and percentage of the relevant intersections logged. Description of the relevant intersections logged. Drill hole and intercept selection for the samples was based on the core logging and assay data, and the material type dassification based on a weathering index. Samples were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on				
photography. The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, et and whether sample were or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. All the metallurgical testwork reported was conducted by ALS Metallurgical alaboratory Tests and intervols in NATA accredited. All testwork				
The total length and percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, et and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests Above the relevant intersections logged. Drill hole and intercept selection for the samples was based on the core logging and assay data, and the material type classification based on a weathering index. Samples were selected to represent oxide, transition or fresh sulphide mineralogy as required, intervals were selected to provide a target Pb grade. Drill hole and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule.				
percentage of the relevant intersections logged. Sub-sampling Techniques and Sample Preparation If non-core, whether riffled, tube sampled, rotary split, et and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the samples of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests Current and whether cut or sawn and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the assaying and aboratory Tests Drill hole and intercept selection for the samples was based on the core logging and assay data, and the material type classification based on a weathering index. Samples were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to provide a target Pb grade. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. All the ore schedule. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. All the ore schedule. All the metallurgical testwork reported was conducted by ALS Metallurgical laboratory Tests				
Sub-sampling Techniques and Sample Preparation Sample Preparation Sample Preparation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests If core, whether cut or sawn and whether quarter, half or all oars assy data, and the material type classification based on a weathering index. Samples were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to oprovide a target Pb grade. Drill holes and intercept selection for the sample was based on the core logging and assay data, and the material type classification based on a weathering index. Samples were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to represent oxide, transition or fresh sulphide mineralogy as required. A				
Sub-sampling Techniques and Sample Preparation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests If core, whether cut or sawn and whether quarter, half or all sasay data, and the material type classification based on a weathering index. Samples were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Drill hole and intercept selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Meanure for the samples says as a port of the ore schedule. All the metallurgical testwork reported was conducted by ALS Metallurgical laboratory Tests and Laboratory is NATA accredited. All testwork				
Techniques and Sample Preparation and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality of Assay Data and Laboratory Tests and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality of Assay Data and Laboratory Tests and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled were selected to represent oxide, transition or fresh sulphide mineralogy as required, intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Prill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Prill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Prill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Prill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule.	60	Sub-sampling		Drill hole and intercept selection for the samples was based on the core logging and
Sample Preparation Core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests Core taken. If non-core, whether riffled, tube sampled, terevisited or represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to option for fresh sulphide mineralogy as required. As required, intervals were selected to option for fresh sulphide mineralogy as required. As required, intervals were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to provide a target Pb grade. Drill holes and intervals were selected to option from sulphide mineralogy as required. As required, intervals were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to represent oxide, transition or fresh sulphide mineralogy as required. As required, intervals were selected to option for the most representative of the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule.				
If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests If non-core, whether riffled, tube sampled, tube sampled, tube sampled were required. As required, intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. All the metallurgical testwork reported was conducted by ALS Metallurgical laboratory Tests and Intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule.				
tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests The nature, quality and appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork		, ,	If non-core, whether riffled,	
and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. Drill holes and intervals were selected to offer the most representative spatial distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule.	(())			
distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests distribution, with a focus on B and Omega regions which are dominant in the first half of the ore schedule. All the metallurgical testwork reported was conducted by ALS Metallurgical laboratory Tests. All the metallurgical testwork reported was conducted by ALS Metallurgical laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				Drill holes and intervals were selected to offer the most representative spatial
For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests half of the ore schedule. half of the ore schedule.	(C/Ω)		· ·	·
nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests All the metallurgical testwork reported was conducted by ALS Metallurgical laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork			· ·	
appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests All the metallurgical testwork reported was conducted by ALS Metallurgical laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. All the metallurgical testwork reported was conducted by ALS Metallurgical laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork	a		· · ·	
Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests Quality of Assay Data appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests The nature, quality and appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests The nature, quality and appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests The nature, quality and appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests The nature, quality and appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork			_	
for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests The nature, quality and appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests The nature, quality and appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests The nature, quality and appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
Sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests All the metallurgical testwork reported was conducted by ALS Metallurgical appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork	Пп		_	
Whether sample sizes are appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
appropriate to the grain size of the material being sampled. Quality of Assay Data and Laboratory Tests appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork			· -	
the material being sampled. Quality of Assay Data and Laboratory Tests the material being sampled. All the metallurgical testwork reported was conducted by ALS Metallurgical aboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork			-	
Quality of Assay DataThe nature, quality and and Laboratory TestsAll the metallurgical testwork reported was conducted by ALS Metallurgical laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork				
and Laboratory Tests appropriateness of the assaying laboratory in Balcatta, Perth. This laboratory is NATA accredited. All testwork		Quality of Assay Data		All the metallurgical testwork reported was conducted by ALS Metallurgical
		, , , , , , , , , , , , , , , , , , , ,		·

		used and whether the	
		technique is considered partial	
		or total.	
		For geophysical tools,	
		spectrometers, handheld XRF	
		instruments, etc, the	
		parameters used in	
		•	
)	determining the analysis	
		including instrument make and	
		model, reading times,	
		calibrations factors applied and	
		their derivation, etc.	
		Nature of quality control	
		procedures adopted (e.g.	
		standards, blanks, duplicates,	
		external laboratory checks) and	
		whether acceptable levels of	
		accuracy (i.e. lack of bias) and	
20		precision have been	
(U/J)		established.	
	Verification of	The verification of significant	Metallurgical samples and testwork: Technical representatives of both Pacifico and
		_	
	Sampling and	intersections by either	DRA Pacific have been involved with the selection of the samples and have had a
	Assaying	independent or alternative	collaborative involvement in designing the testwork program, managing this
		company personnel.	program, reviewing the testwork results.
(TE)		The use of twinned holes.	
(())		Documentation of primary	Calculated head grades from each test are checked against the assay head grade. Any
		data, data entry procedures,	discrepancy is followed up by re-assaying.
		data verification, data storage	
		(physical and electronic)	
		protocols.	
		Discuss any adjustment to	
		assay data.	
$(\mathcal{C}/\mathcal{O})$	Location of Data	Accuracy and quality of surveys	The Pacifico Phase 1 and 2 drill hole collars were accurately surveyed using a DGPS
	Points	used to locate drill holes (collar	by a registered surveyor and recorded in GDA94 Zone 52.
		and down-hole surveys),	and a second sec
		trenches, mine workings and	·
		other locations used in Mineral	
		Resource estimation.	
		Specification of the grid system	
		used.	
7		Quality and adequacy of	
		topographic control.	
	Data Spacing and	Data spacing for reporting of	NA
	Distribution	Exploration Results.	
		Whether the data spacing, and	
		distribution is sufficient to	
		establish the degree of	
		geological and grade continuity	
		appropriate for the Mineral	
		Resource and Ore Reserve	
		estimation procedure(s) and	
		classifications applied.	
		ı	1

	Whether sample compositing	
	has been applied.	
Orientation of Data in	Whether the orientation of	NA
Relation to Geological	sampling achieves unbiased	
Structure	sampling of possible structures	
	and the extent to which this is	
	known, considering the deposit	
	type.	
	If the relationship between the	
	drilling orientation and the	
	orientation of key mineralised	
	structures is considered to have	
	introduced a sampling bias, this	
	should be assessed and	
	reported if material.	
	-1	
Sample Security	The measures taken to ensure	Drill samples were originally stored and processed at a secure facility in Kununurra
	sample security.	and a Laboratory in Darwin. All samples taken by Pacifico personnel to the truck
		depot in Kununurra and placed on a pallet and sealed for transport direct to the
		Intertek-Genalysis laboratory in Darwin. The metallurgical samples were taken from
		these two locations and have remained stored under secure premises at ALS
		Balcatta.
Audits or Reviews	The results of any audits or	Metallurgical sample: Representatives of both Pacifico and DRA have inspected the
	reviews of sampling techniques	testwork being conducted. Mr Craig Toogood of ALS managed the testwork program.
	and data.	Testwork result interpretation has been performed by both Pacifico and DRA
		personnel with review and final sign-off by Mr John Fleay of DRA Pacific.

Section 2 Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary							
Mineral Tenement and	Type, reference	Pacifico Minerals Ltd acquired a 75% interest in the Sorby Hills lead-silver project in Weste							
Land Tenure Status	name/number, location and	Australia on 5 Oct	ober 2018. Y	uguang (Austra	lia) Pty Ltd and	wholly owned subsidiary			
	ownership including	Yuguang Gold & L	Yuguang Gold & Lead Co. Ltd (HYG) owning the remaining 25%. The Sorby Hills Project comp						
	agreements or material issues	five mining leases	(M80/196-19	7 and M80/285	-287), all of whic	h are currently held jointly			
	with third parties such as joint	Sorby Hills Pty Ltd	(75%) and Yu	guang (Australia	a) Pty Ltd (25%).				
	ventures, partnerships,		Tenement	Area (km2)	Granted	Expiry			
	overriding royalties, native		. Circincine	7.1.00 (2)	G. a.i.ea				
	title interests, historical sites,		M80/196	9.99	22/01/1988	21/01/2030			
	wilderness or national park								
	and environmental settings.		M80/197	9.95	22/01/1988	21/01/2030			
	The security of the tenure held								
	at the time of reporting along		M80/285	5.57	29/03/1989	28/03/2031			
	with any known impediments								
	to obtaining a licence to		M80/286	7.89	29/03/1989	28/03/2031			
	operate in the area.				/ /	22/22/22			
			M80/287	8.15	29/03/1989	28/03/2031			
		The Minime Leaves			20057/5 45027/	.1			
		The Mining Leases			•				
		' '		•		e township of Kununurra,			
		north of Western	•		•	` '			
			•		ū	ases were granted prior to			
		J	•			been extinguished over th			
		The project area li	es adjacent to	the proposed (Goomig Range C	onservation Park.			

		Tenure is in good standing until 2030 (in some cases, out to 2031). Mining Leases M80/286 &
		M80/197 have a current cultural clearance access agreement in place; for the remaining mining
		tenements normal cultural clearance plans would be required. No mining agreement has been negotiated.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	The Sorby Hills area has been systematically explored by numerous companies since 1971. Prominent amongst these were ELF Aquitaine (1973-1981) with various JV partners (SEREM, St Joe Bonaparte & BHP), BHP (1981-1988), in JV with Triako; and CBH/Kimberley Metals/KBL Mining. Previous work included, geologic mapping, soil geochemistry, airborne and ground geophysics and
		extensive drilling campaigns.
Geology	Deposit type, geological setting and style of mineralisation.	The Sorby Hills mineralisation is regarded as having many features typical of Mississippi Valley Type (MVT) deposits. Mineralisation is focussed on the contact between the Knox Sediments and the underlying Sorby Dolomite. The Sorby Hills mineralisation consists of 13 discrete carbonate hosted Ag Pb Zn deposits (previously referred to as pods), Pods A–J, Beta Pod East, Beta Pod West and Alpha pod. The pods form a linear north-south belt extending over 7 km, sub parallel to the eastern margin of the Precambrian Pincombe Inlier and within the Carboniferous Burt Range Formation of the Bonaparte Basin. The mineralisation is largely stratabound and hosted mainly on the contact between Knox Sediments and Sorby Dolomite, sometimes in a dolomitic breccia, which generally dips shallowly to the east. The mineralised pods average 7–10 m in thickness, are generally less than 1 km long and 100 to 500 m wide. There is some structural control to the mineralisation, with higher grade zones associated with faulting. Some of this faulting is interpreted to be at a low angle. Mineralisation is often thicker and/or of higher grade in areas of strong brecciation. The Sorby Hills primary mineralisation is typically silver and lead-rich with moderate to high pyrite (FeS2) content and generally low amounts of sphalerite (ZnS). Galena (PbS) occurs as massive to semi-massive crystalline lenses often found in the more argillaceous units, and as coarse to fine disseminations or as open-space fill in fractures, breccias and vughs. Sphalerite typically predates galena and occurs as colloform open-space fill. It is typically more abundant at the lateral fringes of and below the lead mineralisation. Silver values tend to increase as the lead content increases and is generally assumed to be closely associated with the galena. A discrete pyrite zone is seen to occur below the base-metal mineralisation. The upper portions of the deposits are often oxidised and composed of a variable mix of cerussite
		(PbCO ₃) and galena. Cerussite has also been observed deeper in the deposits where faults, fractures and or cavities have acted as conduits for meteoric waters. The extent to which secondary lead
Drill Hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar	minerals exist through the deposit has not been systematically documented. N/A. This release relates to the results of metallurgical testwork, not an update to drilling, exploration results, resource or reserve reporting.
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	dip and azimuth of the hole	
	 down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion	

		does not detract from the	
		understanding of the report,	
		the Competent Person should	
		clearly explain why this is the	
		case.	
	Data Aggregation	In reporting Exploration	NA. No aggregated exploration data is reported here. The release relates to the results of ongoing
	Methods	Results, weighting averaging	metallurgical testwork, not an update to drilling, exploration results, resource or reserve reporting.
		techniques, maximum and/or	
		minimum grade truncations	
		(e.g. cutting of high grades)	
		and cut-off grades are usually	
	1	Material and should be	
		stated.	
	1	Where aggregate intercepts	
		incorporate short lengths of	
	4	·	
		high-grade results and longer	
		lengths of low-grade results,	
		the procedure used for such	
		aggregation should be stated	
		and some typical examples of	
20		such aggregations should be	
(U/J)		shown in detail.	
		The assumptions used for any	
		reporting of metal equivalent	
	}		
		values should be clearly	
		stated.	
	Relationship Between	These relationships are	N/A. The release relates to the results of ongoing metallurgical testwork, not an update to drilling,
	Mineralization Widths	particularly important in the	exploration results, resource or reserve reporting.
	and Intercept Lengths	reporting of Exploration	
		Results.	
		If the geometry of the	
	1	mineralisation with respect to	
		-	
		the drill hole angle is known,	
		its nature should be reported.	
	1	If it is not known and only the	
00		down hole lengths are	
((//))		reported, there should be a	
		clear statement to this effect	
		(e.g. 'down hole length, true	
	1	width not known').	
als	Diagrams	Appropriate maps and	N/A. The release relates to the results of ongoing metallurgical testwork, not an update to drilling,
	Diagrams	sections (with scales) and	exploration results, resource or reserve reporting.
			exploration results, resource of reserve reporting.
		tabulations of intercepts	
		should be included for any	
		significant discovery being	
_		reported These should	
2		include, but not be limited to a	
		plan view of drill hole collar	
		locations and appropriate	
		sectional views.	
	Balanced Reporting	Where comprehensive	All of the relevant data for the metallurgical results have been accurately summarised and provided
	Salancea Reporting	· •	-
		reporting of all Exploration	in this report.
		Results is not practicable,	
		representative reporting of	
		both low and high grades	
		and/or widths should be	
	1	prosticed to evoid mislesding	
		practiced to avoid misleading	
		·	
		reporting of Exploration Results.	

	Other Substantive	Other exploration data, if	N/A
	Exploration Data	meaningful and material,	, and the second
	Exploration Data		
		should be reported including	
		(but not limited to): geological	
		observations; geophysical	
		= : :	
		survey results; geochemical	
		survey results; bulk samples -	
		size and method of treatment;	
		metallurgical test results; bulk	
		density, groundwater,	
		geotechnical and rock	
		characteristics; potential	
((· '	
		deleterious or contaminating	
		substances.	
	Further Work	The nature and scale of	The metallurgical testwork reported above is a summary of all testwork conducted for the current
		planned further work (e.g.	pre-feasibility study.
		tests for lateral extensions or	
		depth extensions or large-	Further metallurgical testwork is planned to support a definitive feasibility study in the near future.
(\Box)		scale step-out drilling).	This testwork will include:
		Diagrams clearly highlighting	Additional comminution samples
60		the areas of possible	 Additional HLS testing of schedule composites and variability samples across all ore types
$(\cup/)$		extensions, including the main	Additional flotation testing of schedule composites and variability samples, including
		geological interpretations and	
			flotation testing of beneficiated low grade samples
		future drilling areas, provided	Pilot scale DMS testing
		this information is not	
		commercially sensitive.	
_		,	
(5(0)			
7			
(())			
10			
(C/Ω)			
7			
(())			
~			
2			
(())			
Пп			